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CHAPITRE I11

11. Soit maintenant une nou-
velle face quelconque du méme
complexe dont nous allons déter-
-miner la position par rapport aux
3 faces fondamentales que nous
venons d’établir.

D’une part, cetle position est
complétement déterminée si nous
décomposons le nouveau vecteur,
qui n’est pas en général un vec-
teur-unité, et que nous écrirons
done u,l, selon les 3 vecteurs 1,1,
des faces fondamentales, n,n,,n,,
. étant les tenseurs des 3 compo-
santes ;

ud=nl; + n,l; 4 ngly

En introduisant les constantes v,,
composantes elles-mémes par rap-
port & ces mémes 3 faces fonda-
mentales, du vecteur d’une 5me

face du complexe et par le fait,
différentes de o :

wl =»ul +rul, + vuly

Pour tout choix completement
arbitraire des constantes »;, M.
Daniéls appelle les valeurs u;,
déterminant le vecteur donné, ou
un multiple positif quelconque de
ces valeurs, les coordonnées pro-

Soit maintenant une nouvelle
aréte quelconque du méme com-
plexe dont nous allons déterminer
la position par rapport aux 3
arétes fondamentales que nous
venons d’établir.

D’une part, cette position est
completement déterminée si nous
décomposons le nouveau vecteur
qui n’est pas en général un vec-
teur-unité et que nous écrirons
done x,r, selon les 3 vecteurs 1,,1,,1;
des arétes fondamentales, m,, m,
et m, étant les tenseurs des 3
composantes :

Xt =myty - m,t, + myty

En introduisant les constantes u,,
composantes elles-mémes par rap-
port & ces mémes 3 arétes fonda-
mentales, du vecteur d'une 5me
aréte du complexe et par le fait,
différentes de o:

X 0= Xy Ty = Uy Xoly - U Xyl

Pour tout choix completement
arbitraire des constantes w;, M.
Daniéls appelle les valeurs x;, dé-
terminant le vecteur donné, ou
un multiple positif quelconque de
ces valeurs, les coordonnées pro-



Jectives de la droite sphérique
correspondante, par rapport au
triangle de référence des droites
sphériques données [,

Elles le sont donc encore sinous
assujettissons ces 3 constantes a
la condition que nous leur avons
posée, et le vecteur que celles-ci
déterminent, est alors celui de la
face-unité du complexe, puisque
ses coordonnées se réduisent cha-
cune a l'unité:

1’1[1 _I“ "’2[2 _l‘ vyl

12. D’autre part si les longueurs
OH; sont les segments qu’inter-
cepte la nouvelle face donnée, dé-
placée parallélement a elle-meéme,
sur les axes r; intersections des
3 faces fondamentales (fig. 4), les
longueurs OFE; étant les segments
correspondants interceptés par une
ome face du ecristal prise comme
face-unité, les rapports :

OE, OE, OF,
OH, OH, OH,

ot un multiple positif quelconque
de leurs valeurs, déterminent éga-
lement sa position par rapport aux
3 faces fondamentales et a la face-
unité choisies et sont par rapport
a ce systeme de référence, les in-
dices de Miller de cette face quel-
conque du cristal.

13. Or le vecteur de cette face
qui est en coordonnées projectives
ul=»ruly +ruly + rausly

11 —

Jectives du point correspondant
sur la sphere, par rapport au tri-
angle de référence des sommets
donnés 11,1,

Elles le sont donc encore si nous
assujettissons ces 3 constantes a
la condition que nous leur avons
posée, et le vecteur que celles-ci
déterminent, est alors celu de
I'aréte-unité du complexe, puisque
ses coordonnées se réduisent cha-
cune a l'unité : '

Pty poty = psty

D’autre part, s1 les longueurs
OK; sont les coordonnées carté-
siennes obliques de la nouvelle
aréte donnée par rapport au sys-
teme d’axes 1; coincidant avec les
3 arétes fondamentales (fig. 4), les
longueurs OD, étant les coordonnées
obliques correspondantes d'une 5m¢
aréte du cristal prise comme aréte-
unité, les rapports:

OK, OK, OK,
OD, ' 0D, 0D,

ou un multiple positif quelconque
de leurs valeurs, déterminent éga-
lement sa position par rapport aux
3 arétes fondamentales et a 'aréte-
unité choisies et sont par rapport
a ce systeme de référence, les in-
dices de Miller de cette aréte quel-
conque du cristal.

Or les coordonnées obliques
OK, de cette aréte sont les com-
posantes mémes de son yecteur



et donne en le multipliant scalaire-
ment par t,.r,.r;, d'aprées les § 2
et 9: (fig. 4).
u,lr, = u, cos 9, =y, sin h,
uylr, = u, cas ¥, =»,u, sinh,
uglr; —=u, cos ¥ = v;ug sinh

donne également avec les 3 seg”
ments interceptés sur les axes t;:

Fig. 4.

OH, cos),—=0H,cos #,—=0H, cos ¥,
ou:
OH, : OH, : OH, =

1 1 1
cos ¥, cosd, cosd,
D’ot en comparant les 2 résultats :

1 T
v,u, sin h, *»sussin h, " ugsin hy

‘OH,: OH,: OH,—

Nous aurions donc aussi pour
la face-unité :
1 1 1

" . = . .
v, sinh, #»ysinh, » sin h,

OEl H OE.z H OE3:

‘et enfin pour les indices de notre
face quelconque du ecristal :
OE, OE, OE,
OH, OH, OH, ™"

U, : Uy

ou plus brievement :

OHi ol

12

en coordonnées projectives :

XU =y X; ¥y 1 o Xoly = fgXly

et par le fait:

OK, : OK, : OK; = u; %, : poX, © 5,
| Nous avons donc aussi
I'aréte-unité :

OD;:0D,:0D; = p; : 5 : 5 (7)
et enfin pour les indices de notre
aréte quelconque du cristal:

OK, OK, OK,
0D, 'OD, 0D,

pour

X Xp : Xa

OK.
ODi..Xi

Donc les constantes w; étant elles-
mémes les composantes du vecteur
d'une aréte du complexe, les coor-
données projectives du point sur

ou plus briévement :




—_—

Donc les constantes »; étant elles-
mémes les composantes du vecteur
d’une face du complexe, les coor-
données projectives de la droite
sphérique sont les indices de la
face correspondante, et dés ce mo-
ment pour impliquer en un seul
les 2 concepts, nous appelons les
valeurs u; les indices de la face
du cristal dont ils déterminent le
vecteur :

uld =»ul 4+ vu,l, + wul;

14. Nous avons done en multi-
pliant scalairement par t,r,,r; le
vecteur d'une face dont les 1n-
dices sont u, (les ¥; étant les angles
d'mcidence de la face par rapport
aux arétes fondamentales):
ule ==, cos ¥, =wu; sin by
ulr, —u, cos 9, = »u, sin h, (8)
ulr; — u, cos 9; = »; u; sin h,
et donc directement la relation
entre ces indices :
cos ¥y  cos ¥, cos
v sinh; », sin h, v, sin h

[9

Pour une seconde face dont les
indices sont uj :
cos 71 cos 9; cos 9}
v, sinh, ', sinh, ‘», sin h,
et enfin en divisant membre a
membre :

U u, u3  cosd  cosd,
uiuy ui  cos? cos?,
ou plus briévement:

u; . cos?,

u; cos ¥

Uy Ut =

ujus:u

e

g§—

. cos Uy
“cos ¥}

13

—_—

la sphere, sont les indices de I'aréte
correspondante, et dés ce moment
pour impliquer en un seul les 2
concepts nous appelons les valeurs
a; les indices de l'aréte du cristal
dont ils déterminent le vecteur :

XU = i X; b + oXoly ~ UsXsly

Nous avons également en multi-
pliant scalairement par [ ,L,[; le
vecteur de I'aréte dont les indices
sont x; (les ¥, étant les angles d'in-
cidence de l'aréte par rapport aux
faces fondamentales) :

x, ¢l = x, cos ¥, =y X; sin hy

x,tl, = x, cos ¥, — u,X, sin h,
x,tl; = x, cos ¥ — pgX; sin hg
et donc directement la relation
entre ces 1ndices :

(8)

cos?,  cos?, coshy

X, Xy Xg=————y— i ——
12, sinh, ", sinh, " ugsinhy
[9

Pour une seconde aréte dont les
indications sont xj :
. cos?¥] cos ¥, cos
" uysinh, u, sin h, ey sinh
et enfin en divisant membre a
membre :
X; Xy Xy cosd cosd, cosdh,

x| X, x4 cosdi cosd, cos P

#4904

ou plus briévement:
X; . costy

X; cos¥




c’est-a-dire que les quotients des
indices de 2 faces sont propor-
tionnels aux quotients des cos.
des angles d’incidence des arétes
1, par rapport a ces faces.

15. La relation (9) nous donne
immédiatement pour le signe des
indices u; d’'une face quelconque:
est positif l'indice u; correspon-
dant a l'aréte fondamentale située
par rapport & la face du meéme
coté que son vecteur, et négatif
celur du cas contraire;

Fig. 5.

(Toute face [ n’entrant pas dans le
triedre des faces fondamentales, a done
seule ses 3 indices de méme signe).

et comme cas particulier: toute
face paralléele a 'une des arétes
fondamentales a son indice u; cor-
respondant nul.

Toute face tautozonale a l'aréte
r; par ex. est donc de la forme;
v,y - vyugls s son vecteur est en
effet coplanaire a [, et 1;, et d’a-

c'est-a-dire que les quotients des
indices de 2 arétes sont propor-
tionnels aux quotients des cos. des
angles d'incidence de ces arétes
par rapport aux faces fondamen-
tales.

La relation (9) nous donne im-
médiatement pour le signe des in-
dices x; d'une aréte quelconque :
est positif I'indice x; correspondant
a la face fondamentale par rap-
port & laquelle l'aréte est située
du méme coté que son vecteur, et
négatif celui du cas contraire ;

.
Fig. 5.

(Toute aréte v passant a l'intérieur du
triedre des arétes fondamentales, a done
seule ses 3 indices de méme signe).

et comme cas particulier: toute
arete paralléle a 'une des faces
fondamentales a son indice x; cor-
respondant nwul.

Toute aréte coplanaire a la face
[, par ex. est donc de la forme:
UsXoty 4 M3Xsty 5 son vecteur est en
effet coplanaire aux vecteurs r, et vy,



VY3Ug

pres le § 4, — est son rap-

Vs UQ

port de position par rapport a ces
2 faces.

16. Toute face parallele a une
aréte donnée :
piX Ty - aXoty = pgXply
son vecteur devant étre normal a
cette aréte, a ses indices tels qu’ils
satisfont a la relation :

(X ¥ = o Xo ¥y = 5 X515) g |y -
vouly 4 vsu5ly) = 0

ou : vy sin hy L xuy 4

s, sinhy. X, uy =+ gy sinhy. xguz==0

16%s Si l'aréte donnée est co-
planaire & la face fondamentale [,
par ex., son indice x; étant nul,
la relation précédente se réduit
aux 2 termes:

ﬂ2v2 Sil’l h2 .X2U2 + M373 Si[] lls.X3U3=O

Elle n'est donc plus satisfaite
que par une seule valeur du rap-
port des 2 indices u; quelle con-
tient encore, et toute face paral-
lele a I'aréte donnée a nécessaire-
ment cette valeur pour le rapport
de ses deux derniers indices u, et u;.
D’une maniére générale, pour toutes
les faces tautozonales a une aréte
paralléle & I'une des faces fonda-
mentales, les 2 indices u; corres-
pondants. aux 2 autres faces fon-
damentales sont constants, c’est-a-
dires sont les mémes pour toutes les
faces dans le cas d’une méme aréte.

15

M3Xg
2

port de position par rapport a ces
2 arétes.

et d’apres § 4, — et son rap-

9

Toute aréte paralléle a une face
donnée :
viwgly +ru,l, 4 vougl;
son vecteur devant étre normal a
celul de la face, a ses indices tels
,. ) ' .
quils satisfont a la relation :

yugly + 0l - vusls) (e xi1, -
MaXoty —+ UgXyls) =0

ou : vy sinhy .ux, +

175 sinhyu, X, 4wy, sinhg.usx; =0

Si la face donnée est tautozo-
nale a l'aréte fondamentale v, par
ex., son indice u, étant nul, la
relation précédente se réduit aux
2 termes:
sV S10 hy Uy X, —+ 1375 sinhg.uyx3=—=0

Elle n’est donc plus satisfaite
que par une seule valeur du rap-
port des 2 indices x; qu’'elle con-
tient encore, et toute aréte paral-
lele a la face donnée a nécessaire-
ment cette valeur pour le rapport
de ses 2 derniers indices x, et x;.
D’une maniére générale, pour toutes
les arétes coplanaires a une face
paralléle a I'une des arrétes fonda-
mentales, les 2 indices x; corres-
pondants aux 2 autres arétes fon-
damentales sont constants, c’est-a-
dire sont les mémes pour toutes les
arétes dans le cas d'une méme face.



	

