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CHAPITRE

8. Soient données maintenant
3 faces |; = a,; quelconques, mais
non tautozonales, du complexe
cristallin concentré par le point o.
Lews intersections donnent 3
arétes , dont les vecteurs sont
d’apres le § 3:

II

Soient données maintenant 3
arétes t; quelconques, mais non
coplanaires, du complexe cristallin
concentré par le point o. Leurs
plans de jonction donnent 3 faces
dont les vecteurs sont d’apres le

§ 3:

\.[‘-’[3 =gin AT,

";[3[1 =rain AT

L1, =sin A,r,
et dont les angles sont d’aprés
le § 2:
Vi, — Vi,

COS a; == Iy — __ i
sin A, sin A;

v :
L = ik
T .
‘rgrl — sin a,[,

T

\ (1

“rlrg — sin agly
et dont les angles sont d’apres

le § 2:

V y
cos A, — LI, =T — Il
sin @, sin a;




LG L — L

~ sin A, sin A,

~cos Ag cos A; — cos A1 (1bis)

sin A, sin A,

et en permutant pour les 2 autres:

cos A; cos Ay — cos A,
sin Ay sin A,

COS 8.2 —

cos A; cos A, — cos A,

G608 By == . .
sin A, sin A,

Il est inutile de faire remarquer
que le triangle des r; obtenus est
le polaire de celui des [; donnés.

Bt Nt — BT
~ sina, sin ag

__ €08, €OS 83 — €O0S & (10is)

sin ay sin a,

et en permutant pour les 2 autres :

COS a3 €OS &; — COS a,
cos A, = . .
sin ag sin a,
COS @, COS &, — COS Ay
cos Ay —

sin a, sin a,

Il est inutile de faire remarquer
que le triangle des [; obtenus est
le polaire de celui des r; donnés.

9. D’apres le paragraphe 2 nous avons encore, en remarquant
qu'une face normale par r; a la face [;, passe également par le

vecteur [; :

Lit; = eos ¥, = sin h;
Lty — cos ¥, = sin h,
l3¥; = cos 95 = sin hy

s ==bts=10
Lt = Lt = (2)
Ly =L% =&

de sorte qu'en multipliant scalairement les équations (1) par [,L.[

et r,,r,,r;, nous obtenons :

[1‘ LIy —=sin A, sin h, =sin A, sin h, = sin A, sin h,

rl\"rgtg: sin a, sin h, — sin a, sin h, =— sin a; sin h;

et enfin par division :

sinA, sinA, sinA, VLI

(3)

sina, sina,

sina; 1\t

— M. 4)

c’est-a-dire que le module M du triangle sphérique 11,1, est égal au

T 7
rapport des sinus des angles triédres 11\‘[213 et r1\ A R

! Le sinus d'un angle plan peut étre défini comme la surface d'un parallélo-

gramme dont les cotés sont 'unité; par analogie le volume du parallélipede cons-

truit avec les 3 vecteurs unités r; que représente le scalain 1'1\ r.r, est le sinus
du triédre r,r,v,.



9 _

Or dans les 3 couples de triangles sphériques rectangles que
détermine la construction des h;, I'égalité des rapports sin A : sin a;

nous donne :
sin h, = sin A, sin a; — sin A, sin a,

sin h, — sin A; sin a, — sin A, sin a; (5)

sin hy = sin A, sin a, — sin A, sin a;

ce qui, substitué dans les équations (3), donne encore :

T
ll‘ Ll; =sin A, sin A, sina; — sin A, sin A; sina, — sin A; sin A, sin a,

;
rl\‘ I,t; —sin a, sin &, sin A; —sin a, sin ag sin &, = sin ay sina, sin A,

et si nous posons les expressions équivalentes :

sin Ay sin A, sin a; == =
SN a; sin 8, sin Ay == =
nous avons trés simplement, avec égalité des numérateurs et déno-
minateurs :
WV, 4
y\nry, D

10. Les valeurs 4 et D des sinus des triédres peuvent prendre
encore une autre forme. Pour simplifier, posons dorénavant:

€OS 85 = €h = Cus

eos Ay = Gy = Gy,

En élevant au carré l'une des
expression A :

]

sin 2A, sin %A, sin Za,
et en y substituant la valeur de
sin %ay, que nous fournit tres facile-
ment 1'équation (1°*) correspon-
dante, nous obtenons aprés ré-
duction :

A2—=1—C} —-C3 —-C34+2C,G,C;

et sous forme de déterminant:
CI,1CIQCI3

A2 — ( [1“‘[__)[3) — CI‘BCQZC'B w

Ci5Cs5Css |
puisque G; = cos A;—=1.

SIN Ay = Sy == — Sy
sin A, =S, = — S,

En élevant au carré l'une des
expression D :

sin %a, sin 2a, sin 2A,

et en y substituant la valeur de
sin 2Ag, que nous fournit tres facile-
ment 1'équation (1°%) correspon-
dante, nous obtenons aprés ré-

duction :

D2—1—c¢} —c}—ci+2¢0c0

et sous forme de déterminant :
C11C12Cy3 ]

D‘-’:(I’l‘vrgrg)?: 012(3220-_)3!

C13C23C33

puisque ¢; = cos a; = 1.



	

