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INTRODUCGTION

M. le professeur Daniéls a indiqué dans une note a la fin de
son livre : Essai de Géométrie sphérique en coordonnées projectives,
que ses coordonnées projectives, en choisissant des faces cristallines
pour déterminer le trilatére sphérique de référence et sa droite-unité,
ne sont autres que les indices de Miller des faces et arétes du cristal
et a montré en quelques théorémes combien le calcul vectoriel et
I'emploi de ses coordonnées sphériques rendaient plus simple et plus
élégant le développement des formules de la cristallographie géomé-
trique, formules généralement compliquées et qu’a établies principale-
ment Liebisch : Th. Liebisch, Geomelrische Krystallographie, lLeip-
zig 1881. M. Daniéls a eu l'obligeance de m’indiquer lui-méme
un travail de thése dans le développement de cette note et de
me fournir tous les renseignements nécessaires pour appliquer ses
résultats obtenus en coordonnées projectives sur la sphére aux in-
dices des faces et aretes cristallines et traiter ainsi d’'une maniére
plus simple et plus concise tout ce que Liebisch a traité dans la
premiére moitié de son ouvrage. Cest ce que jai fait dans la pre-
miére partie de mon travail.

Sur les indications encore de M. Daniéls jai développé dans
une seconde partie ou plutot décrit avec ses propriétés la construe-
tion parallelipipédique de l'assemblage réticulaire de Bravais (réseau
dans l'espace pour Mallard et Wallerant) dont I'étude esl aujourd’hui
inséparable du domaine de la Cristallographie géométrique et au
moyen duquel principalement les cristallographes francais ont tenté
d’expliquer la structure intime du ecristal. Enfin dans une troisieme
partie, j’ai montré qu’il n’existe, en tenant compte de la symétrie
de leur réseau spatial primitif, que 6 types différents de complexes
cristallins possibles et du groupe entier de symétrie de ce réseau
primitif qui a la symétrie de la classe holoédrique correspondante,
jai déduit par une méthode nouvelle les sous-groupes de symétrie
indépendants, en d’autres termes, I'ensemble des 32 classes possibles
de cristaux.



1v

Ainsi congu mon travail forme un tout suffisamment homogéne
et 8’1l peut prétendre renfermer la moindre idée utile et nouvelle, il
la doit a M. le professeur Daniéls, & qui j'exprime en terminant
mon entiére reconnaissance.

SEVERIN BAYS.

Les ouvrages auxquels mon travail se référe ou que j'ai plus ou moins con-
sultés sont les suivants :

Daniéls : EHssai de géomélrie sphérique : introduction, chapitres I, 11, III, IV,
§ 83 et suivants, nofe 2.
Baumhauer : Die neuere Entwickelung der Krystallographie, page 23-53.
Liebisch : Geometrische Krystallographie, Leipzig, 1831, page 1-98.
Sommerfeld : Geometrische Krystallographie, Leipzig, 1906. Abschnitten II, III,
IV et V, page 40-91
Bravais : Mémoire sur les systémes de points distribués réguliérement sur un
plan ou dans lUespace. Etudes cristallographiques, page 101-205.
Encyklopedie der Math. Wissensch., Krystallographie Bd. VI, cahier 3, 1906.
A. page 395-429, B. page 437-452.
Schonflics :  Krystallsystem und Krystallstructur, Leipzig 1891, page 1-105 et
237-304.
Gibbs : Vector analysis. London 1902, page 260-371.
Gadolin : Mémoire sur la déduction d’un seul principe de tous les systémes
cristallographiques. Acta. soc. fenn. 1871.
Sohncke : Entwickelung einer Theorie der Krystallstructur, Leipzig 1879. Die
unbegrenzten regelmdfiigen Punkisysteme, Karlsruhe 1876.
Mallard : Traité de cristallographie geomélrique et physique, Paris 1879.
Les articles suivants du: Zeitschrift fur Krystallographie :
Ne 27, page 1. Viola: Elementare Darstellungen der 32. Krystallclassen.
Page 399. Viola: Beweis der Rationalitdt einer 3-zdhligen Deckaxe.
Ne 28, page 36. Fedorow: Beitrag zur Syngonielehre.
Ne 30, page 390. Fedorow® : Ein elementarer Beweis des Weiss’schen
Zonengesetzes. "
Ne 31, page 135. Goldschmidt*: Uber Krystallsysteme deren Definition
und Erkennung.
Ne 32, page 49. Goldschmidt: Uber Abteilungen der Krystallsysteme.
Ne 33, page 555. Fedorow® : Beitrdge zur zonalen Krystallographie.
IT1. Syngonie Ellipsoid-Gesetz. ‘
et les 2 suivants du: Neues Jahrbuch fiir Mineralogie 1896, Beil.-Bd. 10,
page 167-178. Viola: Die HKinfiihrung des geometrischen Rechnens in
der geometrischen Krystallographie,
page 495-532. Viola : Uber die Symetrie der Krystalle und Anwen-
dung der Quaternionen Rechnung.. :

=]

* Ceux qui m'ent plus spécialement servi, sont marqués d'un astérisque.
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CHAPITRE I

1. Le cristal, en tant qu'individu, c’est-a-dire exception faite des
agrégats de cristaux, est un complexe de faces et d’aretes, limitant
un polyedre conwvexe. Par le fait le théoreme d’Euler nous donne la
relation entre le nombre f de ses faces, s de ses sommets et @ de
ses arétes:

f4+s=a-+ 2

Ces faces et arétes limites du polyédre n’ayant de déterminé que
leurs directions dans l'espace, leur concentration (en les déplacant
parallelement a elles-mémes) par un point quelconque, peut adéquate-
ment représenter la forme géométrique du cristal, Dans ce cas l'en-
semble des faces paralleles & une méme aréte et constituant une zone
du cristal se réduit au faisceau de plans qui a pour support cette
aréte ou cet aaxe zonal, et I'ensemble des arétes paralleles a une
méme face, au faisceau d'arétes qui a pour support ce plan du com-
plexe.

St nous faisons maintenant de ce point de concentration des
faces et aretes du cristal, le centre O d’une sphére de rayon égal a
I'unité, sur cette surface sphérique obtenue: |

Chaque face est adéquatement
représentée par la droite sphéri-
que (ou grand cercle) correspon-
dante, et comme telle univoque-
ment déterminée par un vecteur
unité [, partant du centre, nor-
mal a son plan, et dirigé a gauche
du sens positif adopté pour en
parcourir le contour.

Chaque aréte est adéquatement
représentée par son point d’affleu-
rement et comme telle univoque-
ment déterminée par un vecteur
unité r, partant du centre et pas-
sant par ce point.

Chaque multiple positif de ce
vecteur détermine la méme aréte
ou le méme axe zonal; chaque



Chaque multiple positif de ce
vecteur détermine la méme face,
chaque multiple négatif détermine
la face opposée et paralléle a la
premiére, c’est-a-dire la face né-
gative correspondante du cristal.

Fig.

2. L’angle de 2 faces données
I, et [,, défini par I'angle de leurs
normales est immeédiatement fourni
par le produit scalaire :

L[, = cos ¢.

Q&Vl"“:‘

multiple négatif détermine l'aréte
oppos¢e et paralléle a la premiére,
c’est-a-dire I'aréte négative corres-
pondante du eristal.

Vil

RPAL

L’angle de 2 arétes données
r, et r,, est de méme immédiate-
ment fourni par le produit sca-
laire :

1,1y, = COS Y.

L’angle d’incidence d’une aréte r par rapport a une face [, défim
par angle ¢ de l'aréte avec le vecteur de la face est également

donné par le scalaire:

[t — cos V.

3. Le vecteur d'une face paral-
lele a 2 aretes données t; et 1,
devant étre normal au vecteur 1,
comme au vecteur 1, est leur pro-
duit vectoriel : |

= thr_z

Le vecteur d'une aréte paral-
lele a 2 faces données [ [, de-
vant étre normal au vecteur [
comme au vecteur [, est leur pro-
duit vectoriel :

+ Vi1,



Le double signe correspond aux
2 faces opposées qui peuvent étre
paralléles aux 2 arétes.

Le double signe correspond aux
2 arétes opposées qui peuvent étre
paralleles aux 2 faces.

Le vecteur d'une face paralléle & une aréte et normale & une
face données r et [, devant étre normal au vecteur | comme au vec-
teur r, est encore leur produit vectoriel:

Le double signe correspond encore aux 2 faces
opposées remplissant la condition demandée.

=k VIt

Evidemment rien ne change aux résultats de ces 2 derniers
paragraphes, lorsque les vecteurs [; et r; cessent d’étre vecteurs-
unités; dans le premier § nous n’avons qu'a tenir compte de leurs
tenseurs, c'est-a-dire de leur valeur absolue, pour appliquer nos 3
formules, et dans le second, peu importe les tenseurs des produits
vectoriels, un vecteur, quelque soit sa valeur absolue, déterminant

toujours la méme face ou la méme aréte.

4. Le vecteur d’une face tauto-
zonale & 2 faces données [, et L,
devant étre coplanaire avec leurs
vecteurs, est de la forme :

L
et 1 est le rapport de position
de la 3me face par rapport aux
2 premieéres.

En effet, les faces étant p,, p,,
ps, si7estle tenseur de [, — 1 L,
qui n’est pas en général un vec-
teur-unité, nous avons d’apres les
regles du produit vectoriel :

Vh([l —)[ :—l\r[ [>:T sin (P1P3)
\-'[2( [ —al)—— Vi ply==ain [pyps) iy

et par d1v1510n -

X sm (pips)
A=
sin (popy)

= (pyp2ps)
e Qs

Le vecteur d’'une aréte copla-
naire a 2 arétes données 1, et 1,,
est par le fait méme nécessaire-
ment de la forme:

r, — AL,
et 1 est le rapport de position
de la 3me aréte par rapport aux
2 premiéres.

En effet, les arétes étant =, 7.,
75, si 7 est le tenseur de v, — A 1,
qui n'est pas en général un vec-
teur-unité, nous avons d'apres les
regles du produit vectoriel :
vrl (% —Zr.z):—/"lvrl ty=rsin(m, %),
y oty —At)—— Vrl ¥,—rsin(m,775)l,
et par division:
sin {7, 7,

=~ = (7 71,715)

2 -
sin (:fz._:z6
¢ § 1 d




En remarquant que

sina__ sin (a -} 7)

sin i sin(f 4+ @)’

c’est-a-dire que les rap-

ports de position sont égaux pour 2 faces ou aretes opposées et
paralleles, la fig. 2 nous montre immédiatement (du moins pour les

5. Trois faces [, sont fawutozo-
nales, s'1l existe 3 nombres k; tels
que :

kM + kb =k;=0
puisque dans ce cas le 3™ vecteur
est nécessairement coplanaire aux
2 autres.

arétes, (ce serait identique pour les
faces) que le rapport de position 1
de la 3me face ou aréte est posi-
tif quand elle passe dans l'angle
extérieur, et négatif, quand elle
passe dans l'angle intérieur des
2 faces ou arétes données.

Trois arétes r; sont copla-
naires, s'1l existe 3 nombres k;
tels que:

kit + kot, +ksts =0
puisque dans ce cas le 3me vecteur
est nécessairement coplanaire aux
2 autres.

Encore ici rien ne change aux résultats des § 4 et 5, quand les
vecteurs [; et r; cessent d’étre vecteurs-unités ; dans les formes [[ — 4 1,
et ¥, — Ar,, nous n’avons qu'a les réduire & l'unité pour avoir la
valeur exacte du rapport de position 4, et quels que soient leurs ten-
seurs, les vecteurs de 3 faces ou de 3 arétes sont encore coplanaires,
dés que, multipliés par 3 facteurs k;, ils donnent une somme qui est

nulle.

6. Enfin dans le cas de £ faces
tantozonales :

p: =1L
p=L—ph
nous appelons le quotient des rap-
ports de position 4 et u des faces

=5
p=1L — il

Enfin dans le cas de 4 arétes
coplanaires :

i

nous appelons le quotient des rap-
ports de position 4 et u des arétes



ps et p, par rapport aux faces
P et py:

A __ sin (pypy) . sin (p.py)
@ sin (pps) * sin (papy)

le rapport anharmonique du cou-
ple des 2 derniéres par rapport a
celul des 2 premieres et on I'écrit :

A _ (P1P2P3)_E
7 (P1P2pP4)

On voit immédiatement en gar-
dant unies les 2 faces de chaque
couple, que ce rapport anharmo-
nique des 2 couples p; p; et p; ps
peut prendre 8 formes différentes ;
mais si 'on prend les quotients
des rapports de sinus représentés
par ces formes, on ne leur trouve
que 2 valeurs distinctes dont la
seconde est l'inverse de la pre-
mieére :

(P1p2psp4)

(P1P2PsPs) = (P2P1P1Ps) = (PsP4P1P2)
—— (P4P3P2PL)

(P2p1PsPs) = (P1P2P«Ps) = (P4PsP1P2)
— (P3P4P2P1)-

7y et 7, par rapport aux arétes
m et m,:

A sin (mm)  sin (7y7)

,u sin (7,7t;) ~ sin (7,7,)

le rapport anharmonique du cou- .
ple des 2 derniéres par rapport a
celui des 2 premiéres et on l'écrit:

Ao ()

mo () = (mmmm)

On voit immédiatement en gar-
dant unies les 2 arétes de chaque
couple, que ce rapport anharmo-
nique des 2 couples 7, 7, et 73 7,
peut prendre 8 formes différentes ;
mais si I'on prend les quotients
des rapports de sinus représentés
par ces formes, on ne leur trouve
que 2 valeurs distinctes dont la
seconde est l'inverse de la pre-
miere :

(72,9 0y 704 ) = (72, 70, 70, 703 ) == (70570, 70, 0, )
= (773 70,71,)

(7270, 7070, V= (70, 370705 ) = (70,7057, 7, )
— (g7, ).

Le rapport anharmonique de 4 éléments (faces ou arétes) se

change en rapport harmonique lorsqu’il a pour valeur — 1. Dans
ce cas, sa valeur inverse devenant égale a sa valeur directe, on peut
non seulement intervertir I'ordre de ses 2 couples ou a la fois 'ordre
des éléments des 2 couples, mais encore l'ordre des éléments d'un
seul de ses couples, sans qu'il cesse d’éetre harmonique, et on dit
pour cela que ses 2 couples sont alors conjugués harmoniques I'un
par rapport a l'autre.

7. Si par 4 arétes coplanaires :

7, =1 T =1, T, =1 — AL, Ty =1y~ uby



passent 4 faces tautozonales :
pp=1 p= L ps =L — 4l pe=1L — wl,

le rapport anharmonique des faces est égal au rapport anharmonique
des arétes.

En effet laréte n, étant sur la face py,w, sur p,, etc., on a
d’abord :

iy =0 Lty=o0 (n—in)( —4ib)=o0 (1, —ur) (, —ul) =0

et si I'on simplifie les 2 derniéres équations a 'aide des 2 premieres :
oty +A L, = o et wolyr, + ulir, =o

d’ou I'on tire immédiatement :

Ayt == 41, c. q. £ d.



CHAPITRE

8. Soient données maintenant
3 faces |; = a,; quelconques, mais
non tautozonales, du complexe
cristallin concentré par le point o.
Lews intersections donnent 3
arétes , dont les vecteurs sont
d’apres le § 3:

II

Soient données maintenant 3
arétes t; quelconques, mais non
coplanaires, du complexe cristallin
concentré par le point o. Leurs
plans de jonction donnent 3 faces
dont les vecteurs sont d’apres le

§ 3:

\.[‘-’[3 =gin AT,

";[3[1 =rain AT

L1, =sin A,r,
et dont les angles sont d’aprés
le § 2:
Vi, — Vi,

COS a; == Iy — __ i
sin A, sin A;

v :
L = ik
T .
‘rgrl — sin a,[,

T

\ (1

“rlrg — sin agly
et dont les angles sont d’apres

le § 2:

V y
cos A, — LI, =T — Il
sin @, sin a;




LG L — L

~ sin A, sin A,

~cos Ag cos A; — cos A1 (1bis)

sin A, sin A,

et en permutant pour les 2 autres:

cos A; cos Ay — cos A,
sin Ay sin A,

COS 8.2 —

cos A; cos A, — cos A,

G608 By == . .
sin A, sin A,

Il est inutile de faire remarquer
que le triangle des r; obtenus est
le polaire de celui des [; donnés.

Bt Nt — BT
~ sina, sin ag

__ €08, €OS 83 — €O0S & (10is)

sin ay sin a,

et en permutant pour les 2 autres :

COS a3 €OS &; — COS a,
cos A, = . .
sin ag sin a,
COS @, COS &, — COS Ay
cos Ay —

sin a, sin a,

Il est inutile de faire remarquer
que le triangle des [; obtenus est
le polaire de celui des r; donnés.

9. D’apres le paragraphe 2 nous avons encore, en remarquant
qu'une face normale par r; a la face [;, passe également par le

vecteur [; :

Lit; = eos ¥, = sin h;
Lty — cos ¥, = sin h,
l3¥; = cos 95 = sin hy

s ==bts=10
Lt = Lt = (2)
Ly =L% =&

de sorte qu'en multipliant scalairement les équations (1) par [,L.[

et r,,r,,r;, nous obtenons :

[1‘ LIy —=sin A, sin h, =sin A, sin h, = sin A, sin h,

rl\"rgtg: sin a, sin h, — sin a, sin h, =— sin a; sin h;

et enfin par division :

sinA, sinA, sinA, VLI

(3)

sina, sina,

sina; 1\t

— M. 4)

c’est-a-dire que le module M du triangle sphérique 11,1, est égal au

T 7
rapport des sinus des angles triédres 11\‘[213 et r1\ A R

! Le sinus d'un angle plan peut étre défini comme la surface d'un parallélo-

gramme dont les cotés sont 'unité; par analogie le volume du parallélipede cons-

truit avec les 3 vecteurs unités r; que représente le scalain 1'1\ r.r, est le sinus
du triédre r,r,v,.
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Or dans les 3 couples de triangles sphériques rectangles que
détermine la construction des h;, I'égalité des rapports sin A : sin a;

nous donne :
sin h, = sin A, sin a; — sin A, sin a,

sin h, — sin A; sin a, — sin A, sin a; (5)

sin hy = sin A, sin a, — sin A, sin a;

ce qui, substitué dans les équations (3), donne encore :

T
ll‘ Ll; =sin A, sin A, sina; — sin A, sin A; sina, — sin A; sin A, sin a,

;
rl\‘ I,t; —sin a, sin &, sin A; —sin a, sin ag sin &, = sin ay sina, sin A,

et si nous posons les expressions équivalentes :

sin Ay sin A, sin a; == =
SN a; sin 8, sin Ay == =
nous avons trés simplement, avec égalité des numérateurs et déno-
minateurs :
WV, 4
y\nry, D

10. Les valeurs 4 et D des sinus des triédres peuvent prendre
encore une autre forme. Pour simplifier, posons dorénavant:

€OS 85 = €h = Cus

eos Ay = Gy = Gy,

En élevant au carré l'une des
expression A :

]

sin 2A, sin %A, sin Za,
et en y substituant la valeur de
sin %ay, que nous fournit tres facile-
ment 1'équation (1°*) correspon-
dante, nous obtenons aprés ré-
duction :

A2—=1—C} —-C3 —-C34+2C,G,C;

et sous forme de déterminant:
CI,1CIQCI3

A2 — ( [1“‘[__)[3) — CI‘BCQZC'B w

Ci5Cs5Css |
puisque G; = cos A;—=1.

SIN Ay = Sy == — Sy
sin A, =S, = — S,

En élevant au carré l'une des
expression D :

sin %a, sin 2a, sin 2A,

et en y substituant la valeur de
sin 2Ag, que nous fournit tres facile-
ment 1'équation (1°%) correspon-
dante, nous obtenons aprés ré-

duction :

D2—1—c¢} —c}—ci+2¢0c0

et sous forme de déterminant :
C11C12Cy3 ]

D‘-’:(I’l‘vrgrg)?: 012(3220-_)3!

C13C23C33

puisque ¢; = cos a; = 1.



CHAPITRE I11

11. Soit maintenant une nou-
velle face quelconque du méme
complexe dont nous allons déter-
-miner la position par rapport aux
3 faces fondamentales que nous
venons d’établir.

D’une part, cetle position est
complétement déterminée si nous
décomposons le nouveau vecteur,
qui n’est pas en général un vec-
teur-unité, et que nous écrirons
done u,l, selon les 3 vecteurs 1,1,
des faces fondamentales, n,n,,n,,
. étant les tenseurs des 3 compo-
santes ;

ud=nl; + n,l; 4 ngly

En introduisant les constantes v,,
composantes elles-mémes par rap-
port & ces mémes 3 faces fonda-
mentales, du vecteur d’une 5me

face du complexe et par le fait,
différentes de o :

wl =»ul +rul, + vuly

Pour tout choix completement
arbitraire des constantes »;, M.
Daniéls appelle les valeurs u;,
déterminant le vecteur donné, ou
un multiple positif quelconque de
ces valeurs, les coordonnées pro-

Soit maintenant une nouvelle
aréte quelconque du méme com-
plexe dont nous allons déterminer
la position par rapport aux 3
arétes fondamentales que nous
venons d’établir.

D’une part, cette position est
completement déterminée si nous
décomposons le nouveau vecteur
qui n’est pas en général un vec-
teur-unité et que nous écrirons
done x,r, selon les 3 vecteurs 1,,1,,1;
des arétes fondamentales, m,, m,
et m, étant les tenseurs des 3
composantes :

Xt =myty - m,t, + myty

En introduisant les constantes u,,
composantes elles-mémes par rap-
port & ces mémes 3 arétes fonda-
mentales, du vecteur d'une 5me
aréte du complexe et par le fait,
différentes de o:

X 0= Xy Ty = Uy Xoly - U Xyl

Pour tout choix completement
arbitraire des constantes w;, M.
Daniéls appelle les valeurs x;, dé-
terminant le vecteur donné, ou
un multiple positif quelconque de
ces valeurs, les coordonnées pro-



Jectives de la droite sphérique
correspondante, par rapport au
triangle de référence des droites
sphériques données [,

Elles le sont donc encore sinous
assujettissons ces 3 constantes a
la condition que nous leur avons
posée, et le vecteur que celles-ci
déterminent, est alors celui de la
face-unité du complexe, puisque
ses coordonnées se réduisent cha-
cune a l'unité:

1’1[1 _I“ "’2[2 _l‘ vyl

12. D’autre part si les longueurs
OH; sont les segments qu’inter-
cepte la nouvelle face donnée, dé-
placée parallélement a elle-meéme,
sur les axes r; intersections des
3 faces fondamentales (fig. 4), les
longueurs OFE; étant les segments
correspondants interceptés par une
ome face du ecristal prise comme
face-unité, les rapports :

OE, OE, OF,
OH, OH, OH,

ot un multiple positif quelconque
de leurs valeurs, déterminent éga-
lement sa position par rapport aux
3 faces fondamentales et a la face-
unité choisies et sont par rapport
a ce systeme de référence, les in-
dices de Miller de cette face quel-
conque du cristal.

13. Or le vecteur de cette face
qui est en coordonnées projectives
ul=»ruly +ruly + rausly

11 —

Jectives du point correspondant
sur la sphere, par rapport au tri-
angle de référence des sommets
donnés 11,1,

Elles le sont donc encore si nous
assujettissons ces 3 constantes a
la condition que nous leur avons
posée, et le vecteur que celles-ci
déterminent, est alors celu de
I'aréte-unité du complexe, puisque
ses coordonnées se réduisent cha-
cune a l'unité : '

Pty poty = psty

D’autre part, s1 les longueurs
OK; sont les coordonnées carté-
siennes obliques de la nouvelle
aréte donnée par rapport au sys-
teme d’axes 1; coincidant avec les
3 arétes fondamentales (fig. 4), les
longueurs OD, étant les coordonnées
obliques correspondantes d'une 5m¢
aréte du cristal prise comme aréte-
unité, les rapports:

OK, OK, OK,
OD, ' 0D, 0D,

ou un multiple positif quelconque
de leurs valeurs, déterminent éga-
lement sa position par rapport aux
3 arétes fondamentales et a 'aréte-
unité choisies et sont par rapport
a ce systeme de référence, les in-
dices de Miller de cette aréte quel-
conque du cristal.

Or les coordonnées obliques
OK, de cette aréte sont les com-
posantes mémes de son yecteur



et donne en le multipliant scalaire-
ment par t,.r,.r;, d'aprées les § 2
et 9: (fig. 4).
u,lr, = u, cos 9, =y, sin h,
uylr, = u, cas ¥, =»,u, sinh,
uglr; —=u, cos ¥ = v;ug sinh

donne également avec les 3 seg”
ments interceptés sur les axes t;:

Fig. 4.

OH, cos),—=0H,cos #,—=0H, cos ¥,
ou:
OH, : OH, : OH, =

1 1 1
cos ¥, cosd, cosd,
D’ot en comparant les 2 résultats :

1 T
v,u, sin h, *»sussin h, " ugsin hy

‘OH,: OH,: OH,—

Nous aurions donc aussi pour
la face-unité :
1 1 1

" . = . .
v, sinh, #»ysinh, » sin h,

OEl H OE.z H OE3:

‘et enfin pour les indices de notre
face quelconque du ecristal :
OE, OE, OE,
OH, OH, OH, ™"

U, : Uy

ou plus brievement :

OHi ol

12

en coordonnées projectives :

XU =y X; ¥y 1 o Xoly = fgXly

et par le fait:

OK, : OK, : OK; = u; %, : poX, © 5,
| Nous avons donc aussi
I'aréte-unité :

OD;:0D,:0D; = p; : 5 : 5 (7)
et enfin pour les indices de notre
aréte quelconque du cristal:

OK, OK, OK,
0D, 'OD, 0D,

pour

X Xp : Xa

OK.
ODi..Xi

Donc les constantes w; étant elles-
mémes les composantes du vecteur
d'une aréte du complexe, les coor-
données projectives du point sur

ou plus briévement :




—_—

Donc les constantes »; étant elles-
mémes les composantes du vecteur
d’une face du complexe, les coor-
données projectives de la droite
sphérique sont les indices de la
face correspondante, et dés ce mo-
ment pour impliquer en un seul
les 2 concepts, nous appelons les
valeurs u; les indices de la face
du cristal dont ils déterminent le
vecteur :

uld =»ul 4+ vu,l, + wul;

14. Nous avons done en multi-
pliant scalairement par t,r,,r; le
vecteur d'une face dont les 1n-
dices sont u, (les ¥; étant les angles
d'mcidence de la face par rapport
aux arétes fondamentales):
ule ==, cos ¥, =wu; sin by
ulr, —u, cos 9, = »u, sin h, (8)
ulr; — u, cos 9; = »; u; sin h,
et donc directement la relation
entre ces indices :
cos ¥y  cos ¥, cos
v sinh; », sin h, v, sin h

[9

Pour une seconde face dont les
indices sont uj :
cos 71 cos 9; cos 9}
v, sinh, ', sinh, ‘», sin h,
et enfin en divisant membre a
membre :

U u, u3  cosd  cosd,
uiuy ui  cos? cos?,
ou plus briévement:

u; . cos?,

u; cos ¥

Uy Ut =

ujus:u

e

g§—

. cos Uy
“cos ¥}

13

—_—

la sphere, sont les indices de I'aréte
correspondante, et dés ce moment
pour impliquer en un seul les 2
concepts nous appelons les valeurs
a; les indices de l'aréte du cristal
dont ils déterminent le vecteur :

XU = i X; b + oXoly ~ UsXsly

Nous avons également en multi-
pliant scalairement par [ ,L,[; le
vecteur de I'aréte dont les indices
sont x; (les ¥, étant les angles d'in-
cidence de l'aréte par rapport aux
faces fondamentales) :

x, ¢l = x, cos ¥, =y X; sin hy

x,tl, = x, cos ¥, — u,X, sin h,
x,tl; = x, cos ¥ — pgX; sin hg
et donc directement la relation
entre ces 1ndices :

(8)

cos?,  cos?, coshy

X, Xy Xg=————y— i ——
12, sinh, ", sinh, " ugsinhy
[9

Pour une seconde aréte dont les
indications sont xj :
. cos?¥] cos ¥, cos
" uysinh, u, sin h, ey sinh
et enfin en divisant membre a
membre :
X; Xy Xy cosd cosd, cosdh,

x| X, x4 cosdi cosd, cos P

#4904

ou plus briévement:
X; . costy

X; cos¥




c’est-a-dire que les quotients des
indices de 2 faces sont propor-
tionnels aux quotients des cos.
des angles d’incidence des arétes
1, par rapport a ces faces.

15. La relation (9) nous donne
immédiatement pour le signe des
indices u; d’'une face quelconque:
est positif l'indice u; correspon-
dant a l'aréte fondamentale située
par rapport & la face du meéme
coté que son vecteur, et négatif
celur du cas contraire;

Fig. 5.

(Toute face [ n’entrant pas dans le
triedre des faces fondamentales, a done
seule ses 3 indices de méme signe).

et comme cas particulier: toute
face paralléele a 'une des arétes
fondamentales a son indice u; cor-
respondant nul.

Toute face tautozonale a l'aréte
r; par ex. est donc de la forme;
v,y - vyugls s son vecteur est en
effet coplanaire a [, et 1;, et d’a-

c'est-a-dire que les quotients des
indices de 2 arétes sont propor-
tionnels aux quotients des cos. des
angles d'incidence de ces arétes
par rapport aux faces fondamen-
tales.

La relation (9) nous donne im-
médiatement pour le signe des in-
dices x; d'une aréte quelconque :
est positif I'indice x; correspondant
a la face fondamentale par rap-
port & laquelle l'aréte est située
du méme coté que son vecteur, et
négatif celui du cas contraire ;

.
Fig. 5.

(Toute aréte v passant a l'intérieur du
triedre des arétes fondamentales, a done
seule ses 3 indices de méme signe).

et comme cas particulier: toute
arete paralléle a 'une des faces
fondamentales a son indice x; cor-
respondant nwul.

Toute aréte coplanaire a la face
[, par ex. est donc de la forme:
UsXoty 4 M3Xsty 5 son vecteur est en
effet coplanaire aux vecteurs r, et vy,



VY3Ug

pres le § 4, — est son rap-

Vs UQ

port de position par rapport a ces
2 faces.

16. Toute face parallele a une
aréte donnée :
piX Ty - aXoty = pgXply
son vecteur devant étre normal a
cette aréte, a ses indices tels qu’ils
satisfont a la relation :

(X ¥ = o Xo ¥y = 5 X515) g |y -
vouly 4 vsu5ly) = 0

ou : vy sin hy L xuy 4

s, sinhy. X, uy =+ gy sinhy. xguz==0

16%s Si l'aréte donnée est co-
planaire & la face fondamentale [,
par ex., son indice x; étant nul,
la relation précédente se réduit
aux 2 termes:

ﬂ2v2 Sil’l h2 .X2U2 + M373 Si[] lls.X3U3=O

Elle n'est donc plus satisfaite
que par une seule valeur du rap-
port des 2 indices u; quelle con-
tient encore, et toute face paral-
lele a I'aréte donnée a nécessaire-
ment cette valeur pour le rapport
de ses deux derniers indices u, et u;.
D’une maniére générale, pour toutes
les faces tautozonales a une aréte
paralléle & I'une des faces fonda-
mentales, les 2 indices u; corres-
pondants. aux 2 autres faces fon-
damentales sont constants, c’est-a-
dires sont les mémes pour toutes les
faces dans le cas d’une méme aréte.

15

M3Xg
2

port de position par rapport a ces
2 arétes.

et d’apres § 4, — et son rap-

9

Toute aréte paralléle a une face
donnée :
viwgly +ru,l, 4 vougl;
son vecteur devant étre normal a
celul de la face, a ses indices tels
,. ) ' .
quils satisfont a la relation :

yugly + 0l - vusls) (e xi1, -
MaXoty —+ UgXyls) =0

ou : vy sinhy .ux, +

175 sinhyu, X, 4wy, sinhg.usx; =0

Si la face donnée est tautozo-
nale a l'aréte fondamentale v, par
ex., son indice u, étant nul, la
relation précédente se réduit aux
2 termes:
sV S10 hy Uy X, —+ 1375 sinhg.uyx3=—=0

Elle n’est donc plus satisfaite
que par une seule valeur du rap-
port des 2 indices x; qu’'elle con-
tient encore, et toute aréte paral-
lele a la face donnée a nécessaire-
ment cette valeur pour le rapport
de ses 2 derniers indices x, et x;.
D’une maniére générale, pour toutes
les arétes coplanaires a une face
paralléle a I'une des arrétes fonda-
mentales, les 2 indices x; corres-
pondants aux 2 autres arétes fon-
damentales sont constants, c’est-a-
dire sont les mémes pour toutes les
arétes dans le cas d'une méme face.



CHAPITRE IV

17. Dans le milieu fermé contre toute perturbation des propriétés
inhérentes a la substance cristalline, la lempérature et la pression
extérieures étant égales et constantes en chaque point, le eristal en
formation, ne garde invariable que la direction

de ses faces et par le fait celle
de ses arétes, et n’est hmité dans
son développement que par la na-
ture des faces qui peuvent inter-
venir.

1o Seuls les angles diédres et
polyedres de ses faces sont fixes,
et par le fait les angles plans de
ses arétes : c'est la lo1 de la cons-
tance des angles des faces du cris-
tal. Il en résulte que toutes les
directions paralléles aux intersec-
tions réalisées ou non des faces
présentes ou pouvant intervenir,

de ses aréles, et par le fait celle
de ses faces, et n’est limité dans
son développement que par la na-
ture des aréfes qui peuvent inter-
venir.

10 Seuls les angles plans de ses
arétes sont fixes, et par le fait les
angles diedres et polyedres de ses
faces : c’est la loi de la constance
des angles des aréfes du cristal.
Il en résulte que tous les plans
paralleles aux plans de jonction
réalisés ou non, des arétes pré-
sentes ou pouvant intervenir

ou plus simplement, en s’en rapportant a la concentration du com-
plexe cristallin par le centre o de notre sphére de rayon-unité :

toutes les intersections des faces
pouvant entrer dans le complexe,
sont des arétes possibles du cristal.

20 Seules peuvent intervenir
dans le développement du cristal,
les faces paralléles & 2 de ses
arétes, c’est-a-dire appartenant a
2 de ses zones présentes ou pos-
sibles ; c’est la lo¢ des zones, qui
rapportée encore au complexe con-

tous les plans de jonction des arétes
pouvant entrer dans le complexe,
sont des faces possibles du cristal.

2o Seules peuvent intervenir
dans le développement du cristal,
les arétes paralléles a 2 de ses
faces présentes ou possibles; c’est
I'équivalent pour les arétes de la
lo1 des zones pour les faces, qui
rapportée encore au complexe con-



centré par le point O, peut s’ex-
primer plus simplement : seuls les
plans de jonction des arétes pou-
vant entrer dans le complexe sont
des faces possibles du cristal.

18. Or le plus simple complexe
cristallin de faces données et con-
centrées par le point O, nous per-
mettant d’en déterminer zonale-
ment de nouvelles, exige de toute
évidence au moins 4 faces, dont
i1 n’y en ait pas 3 tautozonales.
En retour, étant données d’un eris-
tal, 4 faces quelconques, mais rem-
plissant la condition posée, la dé-
pendance zonale des faces cristal-
lines nous permet d’en déduire
toutes les autres faces et par le
fait toutes les arétes présentes et
possibles du cristal.

19. Soient donc £ faces quel-
conques d'un cristal, [;,[;,[,,l;, dont
il n'y en a pas 3 tautozonales.
[,,L,, 1, étant prises comme faces
fondamentales, et [,=p, comme
face-unité :

po =l +»l -l
nous avons pour les vecteurs des
faces suivantes, zonalement dé-
duites (fig. 6), d’apres les cas par-
ticuliers des § 15 et 16, d’abord:

pr =nh +nl;
p: =l +nl
ps =l + vly
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centré par le point O, peut s’ex-
primer plus simplement : sewules les
intersections des faces pouvant en-
trer dans le complexe sont des
aréles possibles du cristal.

Or le plus simple complexe cris-
tallin d’arétes données et concen-
trées par le point O, nous per-
mettant d’en déterminer zonale-
ment de nouvelles, exige de toute
évidence. au moins 4 arétes, dont
il n’y en ait pas 3 coplanaires ou
paralléles & la méme face. En re-
tour, étant données d'un cristal,
4 arétes quelconques, mais rem-
plissant la condition posée, la dé-
pendance zonale des arétes cris-
tallines nous permet d’en déduire
toutes les autres aréles et par le
fait toutes les faces présentes et
possibles du cristal.

Soient donc 4 aréles quelcon-
ques d’un cristal, t,,1t;,1,,1;, dont
il n’y en a pas 3 coplanaires.
1,1, ry étant prises comme arétes
fondamentales et -r,=x, comme
aréte-unité :

Tty = ity fo¥s + ity
nous avons pour les vecteurs des
aréetes suivantes, zonalemenl dé-
duites (fig. 6), d’apres les cas par-
ticuliers des § 15 et 16, d’abord :

7ty = pyte + s
Ty = psty + pyty
7y = ety - ety

Ty



et ensuite, en partant uniquement
du couple des 2 derniéres p, et ps,
et tenant compte encore que toute
face par lintersection commune
de 2 autres, a son vecteur de la
forme [[—al, (§ 4), les 2 sys-
temes suivants, qui s’établissent
indépendemment 'un de Tautre;
[mais dont nous faisons directe-
ment dans la fig. 6 concorder les
intersections sur la face p,; car
il est en effet trés facile de mon-
trer que pour chacune d’elles, les
vecteurs de 3 quelconques des faces
qui y concourent, multiplié chacun
par le facteur convenable, donnent
une somme -algébrique qui san-

nule (§ 5)]:

1o en ajoutant p, & p;, p. & pi,
p. & p%, ete., successivement:
pi=2nl + vl 47l
ps = 2l + wl
p; =3nl +rl +nl
pPs = 3|y + ’2[2
ete.

20 en retranchant p, de p;, P

de pi, p. de p3, ete.. successive-
ment :
p; =nl, —nl
pi=nl +nl —nl
pi=wl, — 2l
pi =nl 4+l —2nl,

ete.

En mettant en ordre les résul-
tats qui nous intéressent directe-
ment :

18 —

et ensuite, en partant uniquement
du couple des 2 derniéres =, et a,,
et tenant compte encore que toute
arete dans le plan commun de 2
autres, a son vecteur de la forme
r, —Ar, (§ 4), les 2 systémes sui-
vanls, qui s’établissent indépen-
demment 'un de l'autre; [mais
dont nous faisons directement dans
la fig. 6 coincider les plans de
jonction par l'aréte z,; 1l est en
effet tres facile de montrer que
pour chacun de ces plans, les
vecteurs de 3 quelconques des
arétes qui s’y trouvent, multiplié
chacun par le facteur convenable,
donnent une somme algébrique
qui s’annule (§ 5)]:

1° en ajoutant =, & my, 7, & 7w},
7, a @y, ete., successivement :

AL =2+ ety - gty
= 2u, ¥ -+ pots
7} == 3ty ety Ty
7y = 3T + Mol

etc.

20 en retranchant =, de =, =,
de nl, 7, de @3, etc., successive-

ment :
Ty == Mty — Myl
Ty =l ety
Y == pty — 2ty
73 ==y ¥y — 21Ty

sty

ete.

En mettant en ordre les résul-

tats qui nous intéressent directe-
ment:



pl =2 + L+ vly

pi =3l +»l + vsly
pt =dnl + by 25l
etc.
et: pi=nl +nb—rl
pi = nl 4wl — 2l
pi =nl +nl — ST
ete.

20. Nous obtenons donc par cette
déduction zonale des faces du cris-
tal, la face dont I'un des indices
est le nombre entier m comme
celle dont I'un des indices est le
nombre entier —in, et cela sans
changer leurs 2 autres indices.
Evidemment le méme procédé ap-
pliqué maintenant a ces 2 nou-
velles faces, par rapport a I'un de
leurs 2 indices encore unités, nous
donnera de méme la face quel-
conque qui a pour 2 de ses in-
dices les valeurs entieres m et n

19

it = 2ty + oty + ety
7} = Sty Moty T+ Ul
7} = 4ty pots + My
ete.
et: ah =t + oty — p3ty

7y == Uy 1 fety — 2.“3_1':-;
¥y gty — 3T,
ete,

B —
e =

Nous obtenons donc par cette
déduction zonale des aretes du eris-
tal, I'aréte dont 1'un des 1ndices
est le nombre entier m, comme
celle dont I'un des indices est le
nombre entier —m, et cela sans
changer leurs 2 autres indices.
Evidemment le méme procédé ap-
pliqué maintenant a ces 2 nou-
velles arétes, par rapport a I'un de
leurs 2 indices encore unités, nous
donnera de méme l'aréte quel-
conque qui a pour 2 de ses 1In-
dices les valeurs entiéres m et n



ou —m et —n. Enfin en le répé-
tant encore pour le 3¢ indice unité
restant, nous obtenons sans peine
la face dont les 3 indices sont
entiers quelconques positifs ou
négatifs. D’une part done, foute
face d’indices entiers (positifs et
négatifs) par rapport au systéme
de référence des 4 faces données
l, [, L, l;, impliquée dans la dé-
duction zonale qui a ces 4 faces
pour point de départ, est impli-
quée par le fait dans le complexe
des faces possibles du cristal.

D’autre part, toute face possible
du ecristal, que nous fournit la
déduction zonale partant des 4
faces [, [, l,, 5, est une face d’in-
dices enliers par rapport & ces
faces. En effet supposons que

[0, [, l; solent les vecteurs de-

4 faces d’indices a;,b;,c;,d;,
obtenues par la construction du
complexe. D’apres le § 3, l'aréte
d’intersection des 2 premiéres est
Vlalb, et celle des 2 derniéres V[Jd,
et la nouvelle face possible que
déterminent ces 2 arétes est leur
produit vectoriel :

VVIEI‘,VICL,
qui s’écrit développé :
Ve — Ve

Chacun de ces vecteurs ayant
la forme du premier:

vidily + vy d s 4 vydsly

20

ou —m et —n. Enfin en le répé-
tant encore pour le 3™e indice unité

‘restant, nous obtenons sans peine

I'aréte dont les 3 indices sont
entiers quelconques positifs ou
négaltifs. D’'une part donc, toute
aréte d’indices entiers (positifs et
négatifs) par rapport au systéme
de référence des 4 arétes données
Iy, ¥y, ¥, t3, 1mpliqué dans la de-
duction zonale qui a ces 4 arétes
pour point de départ, est impli-
quée par le fait dans le complexe
des arétes possibles du cristal.

D’autre part, toute aréte possible
du cristal, que nous fournit la
déduction zonale partant des 4
arétes 1), 1, t, 15, est une aréte d'in-
dices entiers par rapport a ces
4 aretes. En effet supposons que
r, b, I, ¥; solent les vecteurs de
4 arétes d’indices a;, b;, c;,d;,
obtenues par la construction du
complexe. D’apres le § 3, la face
de jonction des 2 premiéres est

Vrurb, et celle des 2 derniéres Vrcrd,
et la nouvelle aréte possible que
déterminent ces 2 faces est leur
produit vectoriel :

Vvt,‘rhvrerd
qui s’écrit développé:
rdVratb.rc - rcvrarbtd

Chacun de ces vecteurs ayant
la forme du premier:

pydity - ppdyty 4= pgdsry



les 2 produits scalaires YL et

[C"‘Ialb se calculent sans peine, et
en se servant d’une abréviation
toute naturelle pour écrire les dé-
terminants, se réduisent aux 2
expressions :

v1v2v3|abdlllvlg[3
v vyvslabell; \ L1
En négligeant le facteur cons-

tant vlvgrgll\" L, le vecteur que re-
présente le produit vectoriel cher-
ché, tout en déterminant quand
meéme la méme face, s'éerit trés
simplement :

labd|[, — |abe|l,

ou: pl.— vl

Si les indices des 4 faces don-
nées sont enfiers, 1l en est de
meéme pour les déterminants de
valeur p et r et donc pour les in-
dices de la nouvelle face qui sont:

pe; — rdy, pe, — rdy, pes—rd;

Or les 4 faces qui servent de
pomnt de départ a toute la cons-

truction zonale, ont les indices
entiers :
111, 100, 010, 001

Il en est donc de méme pour
toutes les faces déduites, c’est-a-
dire pour foute face possible du
cristal.

21. Amsi chaque face dont les
indices sont entiers est une face

21

" . T
les 2 produits scalaires rd‘ rr, et

rc\"tarb se calculent sans peine, et
en se servant d'une abréviation
toute naturelle pour écrire les dé-
terminants, se réduisent aux 2
expressions :

My M |abdlr1\' LT,
My Mo g |3-b(5|r1\; Tyl
En négligeant le facteur cons-

tant ,uly._,/,%rl\frrc_,r,g, le vecteur que
représente le produit vectoriel
cherché, tout en déterminant quand
méme la méme aréte, s’éerit tres

. simplement :

labd|r, — [abc]r,

Ou : ﬂ.rc — Q.I'd

Si les indices des 4 arétes don-
nées sont entiers, il en est de
meéme pour les déterminants de
valeur 7 et o et donc pour les in-
dices de la nouvelle aréte qui sont:

me, — ody, 7we, — ody, me; — ody

Or les 4 arétes qui servent de
point de départ a toute la cons-

truction zonale, ont les indices
entlers :
111, 100, 010, 001

Il en est donc de méme pour
toutes les aretes déduites, c’est-a-
dire pour toute aréte possible du
cristal.

Ainsi chaque aréte dont les
indices sont entiers est une aréle



du complexe cristallin et chaque
face de ce complexe est une face
dont les indices sont entiers. Toufes
et seules les faces possibles du
cristal sont done des faces a in-
dices entiers; ou en d'autres ter-
mes, par le centre O de notre
spheére de rayon-unité, le complexe
des faces a indices entiers par
rapport au systeme de référence
que constituent les 4 faces lui
servant de point de départ est
identique au complexe des faces
possibles du cristal.
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du complexe cristallin et chaque
aréte de ce complexe est une aréte
dont les indices sontentiers. Toutes
et seules les arétes possibles du
cristal sont donc des arétes a in--
dices entiers; ou en d’autres ter-
mes, par le centre O de notre
sphére de rayon-unité, le complexe
des arétes a indices entiers par
rapport au systeme de référence
que constituent les 4 arétes lui
servant de point de départ, est
identique au complexe des arétes
possibles du eristal.

Le produit de la fusion des 2 lois expérimentales du cristal, lois

des zones et de la constance des angles, est donc la lo1 mathéma-
tique de la rationnalité des indices, qui, bien que difficilement con-
firmable par l'expérience, n'en est pas moins la loi a la base de la
cristallographie : les faces et arétes a indices entiers sont les seules
faces et aretes possibles du cristal.

L’ensemble des droites sphériques cor-
respondantes aux faces du complexe
zonalement déduites, constitue 'exten-
sion donnée par M. Daniéls du réseau
de Mobius aux droites sphériques

L’ensemble des points sur la sphére
correspondanis aux arétes du complexe
zonalement déduites, constitue le 1ésean
de Mobius, et Mobius appelle ces droites
et ces points ou les faces ct arétes cor-

respondantes

géométriquement déductibles des 4 faces ou arétes données et énonce ainsi
la loi des zones: toute face et aréte géométriquement déductible des 4 faces ou
arétes cristallines données est une fuce ou une aréte également possible du cristal.

Naturellement quoique les indices que nous venons d’établir de chaque face
ou aréte du complexe ecristallin, soient entiers, comme un multiple positif quel-
conque de leurs valeurs détermine lu méme face et la méme aréte, il est inutile
méme de faire remarquer que toutes les valeurs quelconques ayant entre elles les
mémes rapports que les 3 nombres entiers représentant les indices donnés, sont
également les indices de la face ou de l'aréte déterminée et il serait plus exact de
formuler ainsi la loi établie: toutes les faces et arétes dont les indices se réduisent
4 des rapports de nombre rationnels sont des faces et arétes possibles du eristal.

Mobius appelle arithmétiquement déductible de 4 faces ou arétes données
toute face ou aréte dont les rapports correspondanis OE; : OH; ou OK; : 0D;
sont des valeurs rationnelles et exprime ainsi la loi de la rationnalité des indices :
toute face et aréte arithmétiquement déductible de 4 faces ou arétes cristallines
données, est une face ou une aréte également possible du cristal.



22. Enfin de la considération
du complexe total des faces pos-
sibles du ecristal que nous venons
de construire, nous avons encore
immédiatement les conclusions sui-
vantes. Puisque ce complexe des
faces possibles reste évidemment
identique a lui-méme, quelles que
soient les 4 de ses faces choisies
comme point de départ pour sa
déduction zonale, 1l reste égale-
ment le complexe des faces dont
les 1ndices sont enliers, quelles
que soient les faces fondamentales
ou la face-unité auxquelles on le
rapporte. Done pour tout change-
ment de ces faces fondamentales
ou unité, non seulement les in-
dices des faces restent entiers,
mais encore ils restent les mémes,
quoique affectant des faces diffé-
rentes, puisqu’ils sont dans chaque
cas toutes les combinaisons pos-
sibles des nombres entiers positifs
et négatifs.

Enfin de la considération du
complexe total des arétes possi-
bles du ecristal que nous venons
de construire, nous avons encore
immédiatement les conclusions sui-
vantes. Puisque ce complexe des
arétes possibles reste évidemment
identique a lui-méme, quelles que
solent les 4 de ses arétes choisies
comme point de départ pour sa
déduction zonale, il reste égale-
ment le complexe des arétes dont
les indices sont entiers, quelles
que soient les arétes fondamen-
tales ou laréte-unité auxquelles
on le rapporte. Done pour tout
changement de ces arétes fonda-
mentales ou unité, non seulement
les indices des arétes restent en-
tiers, mais encore 1ls restent les
mémes, quoique affectant des arétes
différentes, puisqu’ils sont dans
chaque cas toutes les combinai-
sons possibles des nombres entiers
positifs et négatifs.




CHAPITRE V

23. Reprenons maintenant les
premiers éléments que nous fournit
la construction zonale du complexe
des faces cristallines, des 4 faces
données pour son point de départ.

Les 3 faces possibles, tautozo-
nales aux aréetes fondamentales

(fig. 7):

pr =l + »l;

ps =w3ly +» |y

ps =7l + b
donnent par leur intersection deux
a deux, les 3 nouvelles faces pos-
sibles, tautozonales aux mémes
aretes :

e

pi =l —nl
p: =wly — vl
ps =l —nl,

et formant avec les premieres, les

Vg Vg Ve v
valeurs —=2:-%, 1.1 2.2
étant égales a — 1, (§ 4 et 6)
3 couples de faces harmonique-
ment conjuguées par rapport au
couple correspondant de faces fon-
damentales. Leur intersection com-

mune m, =1r,, puisque la somme

%%

-

Reprenons maintenant les pre-
miers éléments que nous fournit
la déduction zonale du complexe
des arétes cristallines, des 4 arétes
données pour son point de départ.

Les 3 arétes possibles, copla-
naires aux faces fondamentales
(fig. 7):

Ly A e 1 &

Tty = pag¥s -ty

Ty = ¥y Ml
donnent par leur plan de jonction
deux a deux, les 3 nouvelles arétes
possibles, coplanaires aux mémes
faces:

T == Uty — Ugly
Ty = Mgty — Ty
Ty = ¥y — sty
et formant avec les premieres, les
g Uy oo
valeurs — 22,4t H  Hs B
Mz Mz My Wy

Moty
étant égales a — 1, (§ 4 et 6),
3 couples d’arétes harmonique-
ment conjuguées par rapport au
couple correspondant d’arétes fon-
damentales. Leur plan de jonction
commun p, = l,, puisque la somme



de leurs vecteurs est nulle, est
donc encore une aréte pnssible du
cristal, déterminant ainsi conjoin-
tement avec la face-unité un fai-

sceau harmonique de faces par
chaque aréte fondamentale :

(aazp,pi)=—1

(88, ppi) = —1 .

(a,a,psps) — —1
et par le fait, (§ 7) un faisceau
harmonique d'arétes sur chaque
face fondamentale :

(@ogm7y) = —1
(o50y7my5) = —1
(yaymtgmf) — —1

Nous appellerons simplement
cette aréte, dont le point sur la
sphére est le pole trilinéaire de
la droite sphérique correspondante
a la face-unité, Varéte harmoni-
que de cette méme face-unité.
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de leurs vecteurs est nulle, est
donc encore une face possible du
cristal, déterminant ainsi conjoin-
tement avec l'aréte-unité un fai-

sceau harmonique d'aréles sur
chaque face fondamentale :

(aaymmi)=—1
(ay0ymymy) = —1
(o aprgmy) == —1

et par le fait, (§ 7) un faiscean
harmonique de faces par chaque
aréte fondamentale :

(3233131]3/1) =1
(asa,p;ps) — —1
(,a,psps) =—1

Nous appellerons simplement
cette face, dont la droite sphérique
correspondante est la polaire trili-
néaire du point déterminé sur la
sphére parl'aréete-unité, la face har-
monique de cette méme aréte-uniteé,



24. Son vecteur est le produit
vectoriel de 2 quelconques des
vecteurs des 3 faces qui la déter-
minent :

VL) (=, )=
v,v, sin Ay, +vr, sin Ayr, + w0, sin Ay
En divisant par le facteur cons-

tant »,»,v;, le vecteur obtenu re-
présente encore la méme aréte:

sin A, sin ~\ sin A,

2021y, 450 Sy, B0y,

vy v

et ses mdlces sont les (uotients
des tenseurs de ses composantes
par les constantes pu; :

sin A,

FASRS

sin A,

H3V3

sin A,
Ha¥s

Son vecteur est le produit vee-
toriel de 2 quelconque des vec-
teurs des 3 arétes qui la déter-
minent :

‘: (‘LL_; 1'3 — ‘l,f,_-,; 1’;) (Iu'-"i 1’3 -

wort, sina I, 4w, sina, [, 4 w0, sina,l,

Jul r1 ):

En divisant par le facteur cons-

tant

*
My U Uy

208

M
représente encore ia méme face :

[ +blll—\ +smAI
H 2 Hs

et ses indices Sont les quotients
des tenseurs de ses composantes
par les constantes »} :
sin A,

o ’V:Z

ie vecteur obtenu

Sin Al

sin A,

MYy

sin A,

HsVy

Or jusqu’ici nous n’avons encore établi aucune relation, entre la

face et arété-unités, cest-a-dire entre les constavtes

et v, déter-

mmant leurs vocteurs, et pourtant il nous faut une dépendance fixe

entre ces 2 ¢éléments,

si nous voulons donner

un sens preécis aux

relations qui lient entre elles les faces et les aretes constituant le

complexe du cristal.

La face-unité étant 1'une quel-
conque des faces du cristal, nous
cnoisissons  dorénavant comme
aréte-unité, son aréte harmonique,
¢’est-a-dire nous posons doréna-
vant entre les constantes u; et »;
les relations qui suivent:

wyy —=sin A;, w,v, = sin A,, uyv; —sin A,.

L’aréte-unité étant l'une quel-
conque des arétes du cristal, nous
choisissons  dorénavant comme
face-unité sa face harmonique,
c’est-a-dire nous posons dorena-
vant entre les constantes w; et »,
les relations qui suivent:

(10)

25. Dans ce cas, la relation du § 13 :

OFL, : OE, : OE; =

1

* M étant module > i

v, sin hy

" wysinh, vy sinhy

du triangle de référence.
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qui nous donne les longueurs interccptées sur les arétes fondamen-
tales (ou les awxes) par la face-unité, devient immédiatement, si nous
tenons compte que sin A, sin h; — 4 == constante, et de la rela-

tion (7) correspondante pour l'aréte-unité :

OE[ . OE} . OE;} — ,u,l . }LL._;: . Mg prmm— OD] . ODZ . OD..}

Si donc nous prenons comme
aréte-unité , '’harmonique de la
face-unite, ses composantes OD;
sont les segments interceptés sur
les axes par la face-unité dépla-
cée parallelement a elle-meéme, et
celle-c1 donnée, nous obtenons di-
rectement cette aréte harmonique :

Fig. 8.

Elle est la diagonale principale
du parallelipipede construit sur
les 3 awxes-unités comme arétes.

(11)

Si donc nous prenons comme
face-unité, 'harmonique de I'aréte-
unité, les segments OE; qu’elle
intercepte sur les axes sont les
composantes de aréte-unité, et
celle-c1 donnée, nous obtenons di-
rectement ceite face narmonique:

Fig, 8.

Elle est le plan diagonal (D, D,D,)
du parallélipipede construit sur les
composantes OD; comme arétes.

26. Cette relation posée des u;»; —sin A; établit d’ailleurs, pour

le cas général, entre les longueurs OH,; des segments qu’intercepte
la face d'indices u; sur les arétes fondamentales, et les composantes
OK,; de Taréte d'indices x;, plus de symétrie qu’il n’y en avait
jusqu’ict :

=]

OHl : OHJ . OHg p—— ‘ti . E’;’ - M

U U U

OKl : OK3 . OK.} pum— ,ul}(l . M2X2 . JL£3X3

~ Les rapports des indices de cette face et de cette aréte devien-
nent: (§ 14).
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Uy COS ¥y @ Uy COS &5

A (12)
X; Xy 2 Xg = ¥ COS By ¥y €OS Dy vy COS Ty
et enfin I'équation du § 16:
wvy sin hy. xqu, wvy sin hy.ux, +
~+ w,», sin h,. x,u, 4+ v, sin hy. x;u, =o u,v, sin h,. w,x, + w7, sinh, u,x, = o

prend 1mmédiatement la forme
simple et élégante:

XUy + XpUy - Xgus = 0

Toute combinaison de valeurs
entieres des indices u, satisfaisant
cette relation, représente une face
parallele a l'aréte x; ; c’est donc
la sous sa forme définitive, 1'édqua-
tion de cette aréte du cristal.

27. La face-unité peut étre une
face quelconque du ecristal. Toute
face du cristal, pouvant donc étre
prise comme face-unité, a par con-
séquent son aréte harmonique pos-
sible, et construisible par le pro-
cédé de la fig. 8, et, puisque, dans
ce cas, les longueurs OH; inter-
ceptées par la face el les compo-
santes OK,; de l'aréte, sur les axes
sont égales (11) :

My M My . .
— s L = Xy L Xy L UsXy
Uy 2 U
et donc:
1 1 1
Up - Uy o Uy — -
X, Xp Xy

c'est-a-dire que les indices d'une
face quelconque du cristal sont
les valeurs inverses de ceux de
son aréte harmonique.

prend immédiatement la forme
simple et élégante :

(13)

Toute combinaison de valeurs
entieres des indices x,; satisfaisant
cette relation, représente une aréte
paralléle a la face u; ; c’est done
la sous sa forme définitive 1'équa-
tion de cette face du cristal.

WX, + UsXy + Uzxg = 0

L’aréte-unité peut étre une aréte
quelconque du cristal. Toute aréte
du cristal, pouvant donc étre prise
comme aréte-unité, a par consé-
quent sa face harmonique possible,
et construisible par le procédé de
de la fig. 8, et, puisque, dans ce
cas, les composantes OK; de I'a-
réte et les longueurs OH,; inter-
ceptées par la face, sur les axes
sont égales (11):

M M, M
Xy * floXs * MeXg ==L L2 3 LB
Xy 2 Xy o U u; U, -
et done:
) 1 1 1
UI u2 l.lH

c’est-a-dire que les indices d'une
aréte quelconque du cristal sont
les valeurs ¢nverses de ceux de
sa face harmonique.
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27 bis. Remarquons encore que si nous appelons les 4 faces [,[,,1, 15,
déterminant le complexe des faces, et les 4 arétes ry,r,r,,1r5, déter-
minant celul des arétes, les 4 faces et arétes élémentaires du cristal,
I'un quelconque de ces 2 systémes est maintenant complétement
connu deés que l'autre est donné. Les arétes fondamentales sont en
effet les intersections des faces fondamentales, I'aréte-unité est 1'har-
monique de la face-umté, et réciproquement. Par le fait, soit les
valeurs :

sin A;. sin A,, sin Ay avec celles des rapports » :», : v
déterminant le systeme des faces élémentaires,

soit les valeurs :

sin a,, sin a,, sin ag, avec celles des rapports py @ u, @ uy
déterminant celui des arétes élémentaires,

déterminent a elles seules le systéme complet de référence du com-
plexe cristallin, et pour cette raison, constituent les unes et les autres
au méme fitre, les éléments du cristal.



CHAPITRE VI

28. Le vecteur:
vy + vl - rugly

n'est pas en général un vecteur-
unité. Pour en trouver la valeur
absolue que nous appelons uy,
nous élevons au carré les 2 mem-
bres de l'équation :

U4[: ’Vll_]l[l "!_ V2u2[2 “E— v:—_}llj[,—j

Nous obtenons ainsi, selon les
regles du produit scalaire, la forme
quadratique suivante :

5] B b 9 g
ui =. »{,ui, +»3uj 4+ »ju3

+ 2v,v,uyu, €08 Apy + 2 vy,

qui peut s’écrire, sI nous posons
par abréviation :

Qi =, c0s A, =0y
ui==02,ui + ,uj + Lyuj

—+20, ,u,u, + 202,5u,u5 4 2825, uu,

ou plus briévement encore :

ui — Q(u;u,u,) = Q(un)
Les expressions:
Quy + 20y + Qpuy =027 ()
Qouy + 1, + Lpsuy =027 ()
Qi3uy + Qy5u, + Qyyuy == 27 (uy)

Le vecteur:

Py Xy Ty~ (o XoTy = psXsTy
n'est pas en général un vecteur-
unité. Pour en trouver la valeur
absclue que nous appelons x,,
nous élevons au carré, les 2 mems-
bres de l'équation:

Xy U= X ¥ + (pXoly = UsXgly

Nous obtenons ainsi, selon les
regles du produit scalaire, la forme
quadratique suivante :

Xi=uixi + p3x3i + pix3
ot D by Xy Xy COB Byg ~ coasnrsnnarsian
qui peut s’écrire, sl nous posons
par abréviation :

WD = Wil COS By = Wy,

X = 0 X] + 0yX5 + 0g5X3
+ 203X, Xy + 20059 X, X5 + 2005, X5Xy
ou plus brievement encore:

X3 = oX;X,X3) = o(xx).

Les expressions :

a)11X1 + U)Ic).k + (1)10)1_% )] (Xl}
(1)12\1 + U))c)}&) + (U)g)\! — (\ )
My5X; F 093X, - 045X, == 07 (X;)



sont les demi-dérivées partielles
de la forme par rapport & u.u,,ug,
et nous donnent pour sa valeur
I'identité suivante :

Quu)=u, 2 (u,) + 0,27 (v,) + v, 2’ (u,)

S1 nous divisons maintenant

notre vecteur:
viugly 4 uly 4 vl

par la valeur 4V 2(uu), nous en
faisons les vecteurs-unités des 2
faces possibles, opposées et paral-
leles dont les indices sont u; par
rapport au systeme de référence
des 4 faces données [,[.1,,1,.
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sont les demi-dérivées partielles de
la forme par rapport a x,x,.X,
et nous donnent pour sa valeur
I'identité suivante : |

o(x3) =x07 (%) + X,07(X,) + X0 (%)

Si nous divisons maintenant
notre vecteur:

fulxlrl + ngzrg + Mf‘?x.‘-‘:rh'

par la valeur ~+\/om(xx), nous en
faisons les vecteurs-unités des 2
arétes possibles, opposées et paral-
leles, dont les indices sont X, par
rapport au systéeme de référence
des 4 arétes données r,,r,,1,,1,.

29. Connaissant maintenant les tenseurs des vecteurs de la face
d'indices u; et de l'aréte d’'indices x;, nous reprenons les résultats,
établis au début, des § 2, 3, 4, 5 et 6, exprimés alors directement
en vecteurs-unités des faces et des arétes et cherchons ce qu'ils de-
viennent pour les valeurs absolues quelconques u, et x, de ces vec-
teurs, et comment ils s’expriment en fonction de leurs indices.

L'angle ¢ de 2 faces données
d’indices entiers u; et uj:

U_:LI- = 'Vlulll + 'VQU:_)IQ _}— 1;3l13[3
usl’ =wvuil, + vusly, +vuils
est donc immédiatement fourni par
le produit scalaire de leurs vec-
teurs, pour lequel nous obtenons ;
riuug 4+ viu,ul 4 viugul
vy cos Ap(ugul H-usug) ...
ce qui peut s’écrire, en utilisant
les abréviations du paragraphe

précédent :
11U U] = Q5005 + Q3uzu
+ p(wud 4 wui) s

L'angle v de 2 arétes données
d’indices x entlers x; et x]:

Xyt = gy X Ty HaXoly - psXyly
Xy P = i Xq0 — X oty - pus Xyt
est donc immédiatement fourni par
le produit scalaire de leurs vec-
teurs, pour lequel nous obtenons:

pIXX] 4 u3XX S A= XX
+ s €08 Ay5(X X5 + XX 1) e
ce qui peut s’écrire, en utilisant
les abréviations du paragraphe
précédent : '

W11 XX | T 05X, X5 - WggX3X
+0)12(X1x;} + X?X{) -—I_ CEEX RN RN
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et par analogie avec la forme | et par analogie avec la forme
Q(uu) et son expression en fone- | w(xx) et son expression en fonc-
tion de ses demi-dérivées partielles, | tion de ses demi-dérivées partielles,

plus simplement encore : plus simplement encore :
Q(uu’) = @(u’u) | w(xx") = w(x'x)
our=u; Qu{)+uwQu)+uzQus) | ou:=x;0(x]) 4 X,0(x})+ x30(x3)
=u{Q(u) + uiQu,) +ujely) —X{0(X;) + X3 0(X;) +x50(x5)

les u; et les u{ jouant un role | les x; et les x{ jouant un role
parfaitement symétrique dans ce | parfaitement symétrique dans ce
produit que nous venons d’obtenir. | produit que nous venons d’oktenir,

St nous tenons compte des ten- Si nous tenons compte des ten-
seurs : eurs :
uy ::\/Q(uu ) et uj = \/D(u = \/Jxx_)et x, =V o(x'x’)
nous avons donc directement en | nous avons donc directement en
fonction des indices: fonction des indices :
Q(uu’ 14 w(xx’ 14
s AW A el
\ e(uu)e(u’u’) V o(xx)o(x’'x’)

30. L’angle d’incidence 9 de l'aréte:
M XYy U Xty - UsXyTy
par rapport a la face:
riuly + vauply 4 vusl;

est également donné par la multiplication scalaire des 2 vecteurs (§ 2),
pour laquelle nous trouvons d’abord:

wvy sin hy . xjup -+ pevs sinhy L xu, + wgvs sinhg L xu,

et ensuite, par le fait toujours des relations :
wiv; =—sin A, et siin A; sin h, =— 4,
sin A; sin h;(x;u; + x,u, + x3u3)

Les tenseurs de ces vecteurs étant \/Wx) et \/m
nous avons encore directement en fonction des indices:
(x,u; + Xpu, + Xju5)4 (15)

\ @(xx)2(uu)

cos ¢ —



31. Le vecteur de 'aréte pos-
sible paralléle aux 2 faces données:

Yy lllll —“‘ "1/21.]2[2 + V;;u:.;[;.}
viuily +wusl, +wuily

est leur produit vectoriel (§ 3),
pour lequel nous obtenons :

33

Le vecteur de la face possible
parallele aux 2 arétes données:
PX 1Ty T (o Xo Ty - UzXg Ty
My X T = MoX 5Ty = Xy

est leur produit vectoriel (§ 3),
pour lequel nous obtenons :

”2"’:-}(“2“:;_113“-3)\'?[2[3 + v (ugu "—'U1U§)V[3[1 + vwa(uul — Uzui)V[Jz

[ M5 (X,X —ngé)\rrz T3 - sty (XX _XLX:'J.)Vr:-sr1 —+ 1y p5(X X3 —XpX )Vr1 T,

ce qui, en tenant compte de nou-
veau des relations wy;, = sin A, et
des équations (1), (§ 8), qui en-
semble nous donnent :

peut aussi s’écrire :

ce qui, en tenant compte de nou-

veau des relations wy, == sin A, et

des équations (1), (§ 8), qui en-

semble nous donnent :

sin A,
M.

[1 :lu’l 7y (

M.

Vr2r3:si11 - 1 ete.

peut aussi s’écrire :

ViVaVs [#1(”2“:2 — uyu)ty + wy(uguf — ugubiry + py(uuy — u2ui)l‘3]

1 Ha by

M.

ou bien encore, si nous posons
dorénavant symboliquement :

wu; — ugus = (uu’),
ugui — ugui = (uu’),
uuj — uui = (uu');

Vv, [‘“1 (au’),r, + g, (au’),r, + H:;(lm’):arsl
(16)

Les indices de cette aréte sont
done les déterminants ainsi formés

des indices u; et uj des faces qui

la déterminent :

Ug uy

’

Ug

Us

’

Uy

u
u

LT T U]

uj

["1 (XaX 3 — X:sxé)[l + vy (X3x] — X1x§)[2 + vy(x; x5 — x:zxi)[a]

ou bien encore, si nous posons
dorénavant symboliquement :

X,X§ — XgX 3 = (XX')
X3X 1 — X X5 = (xx'),
X1X} — XoX{ = (xx');
B i L+ e, + G

(16)

Les indices de cette face sont
done les déterminants ainsi formés
des indices x; et x| des arétes qui
la déterminent:

X

X
X

g

aq 2
X{ X;

[ S0 (8]



et sécrivent facilement sous la
forme schemathue qui s'interpréte
a premiere vue:

UqjuoUgUUs|ly
XXX
uijusuzuiusfus

32. La valeur absolue du vecteur
entre parentheses (16) est d'apres
le paragraphe 28 la racine carrée
de la forme:

o[(ua’), (uu’),(uu’),] =

= o[(uu’)(uu’)]

La valeur absolue ‘du produit

vectoriel total est done d’une part:

v\ o[ (uu’)(un’)]

et d’autre part le produit des ten-

seurs: \o(uu)e(u’u’) et du sinus
de l'angle a des 2 faces d'indices
u; et uj. L'égalité de ces 2 va-
leurs nous donne 1mmédiatement
pour le sinus de cet angle :

v\ ol (uu’)(un’)]

sin ¢ == ; —
\/ 2(uu)e(u’u’)

Si nous divisons cette expres-
sion de sin ¢ par celle de cos ¢
trouvée au § 29, nous avons, sous
cette forme simple et définitive,
la valeur de l'angle de 2 faces

u; et ui en fonction de leurs in-
dices :
g Vol )] o

Quu’)
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et s'écrivent facilement sous la
forme schématique qui s’interpréte
a premiére vue:

X

b

Xil|XsXaX1Xs
XXX
X{[XoX5X{X"o[X]

La valeur absolue du vecteur
entre parenthéses (16) est d’apres
le paragraphe 28, la racine carrée
de la forme :

A (xx"); (xx") (xx");] == 0 (xx’)(xx")]

La valeur absolue du produit
vectoriel total est done d'une part:

1 Gy
I\T'Mﬂzlls\/g[(uu Juw)]

et d’autre part le produit des ten-
seurs : \ o(xx) et Vo(x'x’) et du si-
nus de l'angle v des 2 arétes d'in-
dices x; et x{. L’égalité de ces 2
valeurs nous donnent immédiate-
ment pour le sinus de cet angle:

P Mo Nol(xx)(xx')]
M-\/ o(xx)m(x'x’)

S Y —

Si nous divisons cette expres-
sion de sin y par celle de cos y
trouvée au § 29, nous avons, sous
cette forme simple et définitive,
la valeur de l'angle de 2 arétes
x; et x{ en fonction de leurs in-
dices :

st (3 )(xx )]

M.o(xx) (17)

t =



33. Tout vecteur de la forme:

(rougdy = musly - wugly)
— Aruily 4 ruily +vuily),

les u; et les u} étant les indices
entiers de 2 faces possibles et 4
prenant toutes les valeurs ration-
nelles de — =z a 4 o=, représente
une face également possible, puis-
que ses indices sont entiers et
tautozonale aux 2 premiéres, puis-
que son vecteur est coplanaire aux
2 vecteurs qui le composent.

A chaque couple de faces u;
et u; du cristal correspond donc
une zone de faces possibles qui
a pour axe leur aréte commune,
et pour indices ui de chacune de
ses faces:

uiugiul=u;—4uj:u,—Auj:us—4iu;

34. Désignons, sans trop nous
encombrer de parentheses, par:
(S 4

sin_uu”
sinu’u”

(uu'u”) =

le rapport de position de cette face
générale uf par rapport aux 2
faces déterminant la zone, et nous
trouvons tres facilement sa valeur.
D’une part le vecteur plus haut
peut s’écrire sous cette forme qui
représente la méme face :

(’V]_ l,l] [1 + 'Vg 11-2 [3

T V3Us [3)
Vo(uu)

_}mea;j (”1 uil+wushb4ru;g L‘a)
\/ 2(uu) \/ o(u'u’)

Tout vecteur de la forme:

(4 Xy Ty = paXo Ty = 5X5T5)
— A X0 - paX 4Ty - ugXiT,),

les x; et les x| étant les indices
entiers de 2 aréles possibles et 4
prenant toutes les valeurs ration-
nelles de — o= a - o=, représente
une aréte également possible, puis-
que ses indices sont entiers, et
coplanaire avec les 2 premieres,
puisque son vecteur est coplanaire
aux 2 vecteurs qui le composent.

A chaque couple d’aréte x; et
x; du cristal, correspond donc
un faiscean d’arétes possibles qui
a pour support leur plan commun,
et pour indices x{ de chacune de
ses aretes:

X7 X5 X=X, —AX]:Xo,—AX}:1Xs—AX}

Désignons, sans trop nous en-
combrer de parenthéses, par :
(§ 4 _
sin xx”
sin x'x”

(xx'x”) =

le rapport de position de cette aréte
générale x7 par rapportaux 2arétes
déterminant le faisceau, et nous
trouvons trés facilement sa valeur.
D’une part le vecteur plus haut
peut s’écrire sous cette forme qui
représente la méme aréte:

(F51X11'1 + M Xp T+ ,“;-;X;-;I’E‘)

\ Yor(xx)
2\/0)(3(’ )(:“I.Xl’. ! +/1-2X§r~z+/‘:%xér3)
Vorlxx Volx'x')



et chacun de ses vecteurs com-
posants étant maintenant un vec-
teur-unité, nous avons, d’apres ce
qui a été établi pour le coefficient
du second (§ 4):

\/Qu u’)

\/Q (uu)

D’autre part, [, [,-, [~ étant les
vecteurs des 3 faces en question,
formons le quotient des valeurs
absolues des 2 produits vectoriels :

Sil’] uu”

sin uu’

\/.Q(uu). \/.Q(u 7u”). sin un”

VL,
_T_u’_[—u_”l B \/Q(u’u’). \/.Q(u 7u”)+ sin u’'u”

. T
Puisque ces vecteurs VL[ et

VI,-L,» ont tous deux la méme di-
rection, celle de I'aréte commune
aux 3 faces ou de leur axe zonal,
on se rend compte sans peine que
le rapport de leurs valeurs abso-
lues est le méme que celui de
leurs composantes sur chacune des
3 arétes fondamentales. Ces com-
posantes, trouvées au § 31, s’ex-
priment symboliquement: (uu”),,
(uu”)y, (uu”), (u'u”),, ete., et'éga-
lité posée devient:

\/IQ_(IMJ_J)— sin uu”  (uu”),

Ve(u'u') sin u'u” (u'u”);

De la comparaison des 2 résul-
tats obtenus, nous avons mainte-
nant 1'égalité générale :
Ve

Ve(u'a’) sinu’u”

(uu”), sin uu”

(uu”)

18) 1=
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et chacun de ses vecteurs com-
posants étant maintenant un vec-
teur-unité, nous avons, d’apres ce
qui a été établi pour le coefficient
du second (§ 4):

Vo)
Vw\x

D’autre part, t,, t,-, r,~ étant les
vecteurs des 3 arétes en question,
formons le quotient des valeurs
absolues des 2 produits vectoriels :

sin ‘xx”

sin xx’

\/w(x‘(
\/w (x'x’). \/w(‘c”x”) sinx’x”

‘Vr £ | \/w(x”‘(”) sin xx”

l\I Ir !.r

Puisque ces vecteurs \1,r,~ et

Ve, v~ ont tous deux la méme di-
rection, celle du vecteur de la face
commune aux 3 arétes, on se rend
compte sans peine que le rapport
de leurs valeurs absolues est le
méme que celul de leurs compo-
santes sur chacune des directions
des vecteurs des faces fondamen-
tales. Ces composantes, trouvées
au § 31, s’expriment symbolique-
ment : (xx”),, (xx”),, (xx”)s, etc.,
et I'égalité posée devient:

(xx”),

(x'x")

Vo(xx  sin xx”

\/o(x'x") sin x'x”

De la comparaison des 2 résul-
tats obtenus, nous avons mainte-
nant I'égalité générale:

(xx”), _\/;(—X—X_)— sin Xx”

A= = — (18)
(x'x”); \/w(x’x’) sin xX'x”



35. De ces différentes relations
se déduit tres simplement une
nouvelle expression du rapport
des indices de 2 faces quelconques
du cristal (§ 14).

Le couple de faces u; et u; dé-
termine donc une zone de faces
possibles dont les indices sont de
la forme, 42 étant rationnel:

u; — 4u]
Pour la face u! de celte zone
parallele a I'aréte fondamentale r,
son premier indice étant néces-

sairement nul, 1ls se réduisent aux
2 derniers:

u, - Auj , uy — 4u}

Or cette face, en tant que plan
de jonction des 2 aretes données:

1 -0 0
(uu)y  (uu),  (uu)

a également pour indices d’apres
le schema du § 31:
— (uu’); et (uu'),

c’est-a-dire :

u,u; — uu, et ugu; — yug

D’ou, en comparant les 2 valeurs
de ces indices, le résultat général
du § précédent devient immédiate-
dans ce cas-c1:
u, Vo(uu). sin uut

! = T
U1 Vo(u'w). sin u'ut

Il en serait de méme pour les
faces u? et u?® de cette meme zone

; W,
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De ces différentes relations se
déduit trés simplement une nou-
velle expression du rapport des
indices de 2 arétes quelconques
du cristal (§ 14).

Le couple d’arétes x; et x| dé-
termine donc un faisceau d'arétes
possibles dont les indices sont de
la forme, 4 étant rationnel :

Xy — AX

Pour l'aréte x' de ce faisceau
coplanaire a la face fondamentale [,
son premier indice étant néces-
sairement nul, ils se réduisent aux
2 derners :

X, — AX) . X3 — AX}

Or cette aréte en tant quinter-
section des 2 faces données:
1 0 0
(xx)p  (xx')y,  (xx')y
v 3 L : M
a eégalement pour indices d’apres
le schema du § 31:
— (xx'); et (xx'),
c’est-a-dire :
X,X] — X; X5 et XgX{ — Xx;X3
D’ou, en comparant les 2 valeurs
de ces indices, le résultat général

du § précédent devient immédiate-
ment dans ce cas-ci:

%, _\/w(xx). sin xx!

’ I —_— .
Al Vo (x'x’). sin x'x!

Il en serait de méme pour les
arétes x? et x® de ce faisceau co-



paralleles aux 2 autres arétes fon-
damentales, et des 3 équations
que l'on obtiendrait ainsi résulte
directement cette égalité de rap-
ports :

u; u, u; sinuu! sinuu? sinuuv?
u; uyup  sinu'utsinu’u?’sinu’u?

¢'est-a-dire que les quotients des
des indices de 2 faces sont pro-
portionnels aux quotients des sinus
des angles qu’elles font avec la
face de leur zone parallele a I'aréte
fondamentale correspondante.

36. Les 3 faces d'indices entiers:

'Vlul[l + 'Vzuzg[.z + 1)3[]3[3
viugly 4= vugl, 4 vugls

ruil +vuil, 4+ ruil;

sont tautozonales (§ 5) s’1l existe
3 nombres k; tels que la somme
des 3 vecteurs posés multipliés
par ces facteurs soit nulle, c'est-
a-dire, chaque [; devant avoir pour
cela dans cette somme un coeffi-
cient qui s’annule, fels que:

ki, + koui +ksuy =0

k,u, + kyuj 4+ ksuj —=

kjuy 4 kyuj + kyuf =

Or ces 3 équations ne peuvent
eétre simultanément satisfaites par
des valeurs k; autres que 0, que
st le déterminant de leurs coef-
ficients s’annule:

iUl i uf
Ug u; uil=90
us uz uj
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planaire aux 2 autres faces fon-
damentales et des 3 équations
que l'on obtiendrait ainsi, résulte
directement cette égalité de rap-
port :

X, X, X3 sinXx! sinxx® sinxx®
~sin x'xUsin x'x?'sin x'x3

%] Xo %L

¢’est-a-dire que les quotients des
indices de 2 arétes sont propor-
tionnels aux quotients des sinus
des angles qu’elles font avec I'aréte
de leur faisceau coplanaire a la
face fondamentale correspondante.

Des 3 arétes d'indices entiers :

X T = (X, Ty - (X Ty

MXTTy = (X 5T = usX il

M X Tt (o X5Ty = Xy
sont coplanaires (§ 5) s’1l existe
3 nombres k; tels que la somme
des 3 vecteurs posés multipliés
par ces facteurs soit nulle, c'est-
a-dire, chaque r; devant avoir pour
cela dans cette somme un coeffi-
cient qui s'annule, fels que:

kix; + kox{ 4 kyx7 =0
kix, + koxj + kyx§ =
ki X3 - kox§ =+ kyxj
Or ces 3 équations ne peuvent
étre simultanément satisfaites par
des valeurs k; autres que 0, que
si le déterminant de leurs coeffi-
cients s’annule :

Xi X; X}
X3 X3 Xj
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Mai si cela est, les 3 facteurs k,
sont possibles ; les faces u; et uj
étant données, toute face d’in-
dices entiers uf satisfaisant cette
égalité, est par le fait tautozonale
aux 2 premiéres et c’est donc la
le déterminant équation de 1'aréte
commune en fonction des indices
des 2 faces déterminant cette aréte.

37. Si1 enfin nous introduisons

une 4me face u?7, tautozonale en-
core aux 3 faces de la méme zone
u;, uj etu?, nous appelons (§ 6)
le rapport anharmonique de ces
4 faces, le quotient des rapports
de sinus :

o Sinuu” sin uu”
T ginuu” s u'n”?

(uu’u”u

et nous servant des relations du
§ 34, 1 et u étant les parametres
des indices des 2 derniéres en fone-
tion de ceux des 2 premiéres, nous
trouvons immédiatement sa valeur:

A__(uu”) (uu”),
1w (u'u”) (u'u”),
rapport anharmonique de 4
tautozonales,
donc uniquement en fonction de
leurs indices entiers, est un nom-
bre rationnel ; ¢’est un corollaire
direct de la rationnalité des in-
dices des faces du cristal.

(19) (uu'u”u”) =

n

Le

faces

s’exprimant
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Mais si cela est, les 3 facteurs k;
sont possibles; les arétes x; et x|
étant données, toute aréte din-
dices entiers x7 satisfaisant cette
égalité, est par le fait coplanaire
aux 2 premieres et c’est donc la
le déterminant équation de la face
commune en fonetion des indices
des 2 arétes déterminant cette face.

Si enfin nous introduisons une
4me grete x,”, coplanaire encore
aux 3 arétes dans un meéme plan
X;, X; et xf, nous appelons le
rapport anharmonique de ces 4
arétes (§ 6), le quotient des rap-

ports de sinus :

/4

sin xX”  sin XX
b2 o e ey e
) sin X'x” * sin xX’'x

”

et nous servant des relations du
§ 34, 1 et u étant les parametres
des indices des 2 derniéres en fon-
tion de ceux des 2 premieres, nous
trouvons immeédiatement sa valeur :

)._;fE:(xx")i (XX (19)
o (XX7) (XX

Le rapport anharmonique de 4
arétes coplanaires, s'exprimant
done uniquement en fonction de
leurs indices entiers, est un nom-
bre rationnel ; ¢’est un corollaire
direct de la rationnalité des in-

dices des aréles du cristal.

L

X

(xxrxf/

38. Sur les 3 angles que déterminent entre elles les 3 faces
tautozonales u;, ui et uf ou les 6 angles que déterminent entre elles
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les 4 faces de la méme zone u;, uj, uf et uy, deux seuls dans le
premier cas et frois seuls dans le second cas sont indépendants I'un
de l'autre. Dans les 2 cas, 1l suffit done de tenir comple uniquement
de ceux de ces angles qui sont indépendants et pour lesquels nous pren-
drons dés a présent soit les 2 angles uu’ et uu”, soit les 3 angles
uu’, uu” et uu”.

~ Avec cela le simple rapport de position des 3 faces reste sans
aucune symétrie :

sin uu” sin uu”

sinu'u” ~ sin (W'u+uu”)

mais le rapport anhormanique des 4 faces:

»n

__sinuu” _ sin uu
s u'u” sinu'u”

(uu'u”u”)

s’écrit tres facilement s1 nous appelons A sa valeur:

__cot uu” — cot uu’
~ cotuu” — cot uu’

et nous avons donc entre les angles de 4 faces tautozonales et la
valeur de leur rapport anharmonique la relation générale:

cot uu” =(1—A) cot uu’ 4 A cot uu” ' (20)

St ce rapport anharmonique a pour valeur —1, c'est-a-dire si
les 4 faces sont conjuguées harmoniques, le couple des 2 derniéres
par rapport a celui des 2 premiéres, la relation se réduit a :

2 cotuu’ — cotuu” — cot uu” = (21)

St enfin nous prenons pour la 3m¢ face uf la face u' de la zone
qui est parallele a l'aréte fondamentale t; (§ 35), le parametre 4 des
indices de cette face étant alors u; :uf, pour toute valeur rationnelle
p:q du parametre u de la 4™ face u?, nous aurons pour le rapport
anharmonique correspondant: (19)

A:'uiq,
uip

et la relation générale (20) devient dans ces conditions :
pu;i. cot uu” — qu;. cot uu! —(pu; — qu,) cot uu’ (22)

Naturellement tout ce qui vient d’étre dit des angles de 3 ou
4 faces tautozonales se répéterait pour les angles que forment entre
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elles 3 ou 4 arétes coplanaires; 1'égalité reliant les valeurs des 3
angles indépendants xx’, xx” et xx” et celle de leur rapport anhar-
monique est donc également :

cot xx” == (1—A) cot xx" 4+ A cot xx”

“Elle devient si la valeur du rapport anharmonique est —1:

9 eot xx' — ¢ol xx* — ecot xx” =10

et enfin s1 la 3m arete xi est l'aréte x' coplanaire a la face
fondamentale [; et la 4me¢, l'aréte x7 de parameétre rationnel p:q,
elle s’écrit d'une maniére assez symétrique :

px;. cot xx” — gx;. cot xx' —(px{ — gx;) cot xx’

39. Les résultats de ces derniers paragraphes permettent de ré-
soudre aisément les 2 petits problémes suivants que nous appliquons
aux faces tautozonales, mais qui évidemment se poseraient et se
résoudraient d’'une maniére pareille pour le cas des arétes coplanaires.

I. Etant donnés les éléments du cristal, les indices des faces
u; et uf et leur angle uu’, toute face de leur zone:

1° son angle uu” connu, a ses indices uj de la forme:

] Q(uu). .sin uu”
u; —Auj ou 2:\/ g}

Q(u’u’). sin u'u”

20 ses indices uf connus, a son angle uu” déterminé par:

sinuw”  __Ve'u).(uun”),
sin(u'u—-+uu”) Vel (u'v”),

Si nous appelons tg @ la quantité connue que représente le se-
cond membre, nous avons par le fait de 1'égalité posée :

’ !
® sin(u'u—+uu” ; v - SE—— -+ uu” oS

14+ tg® sin(uu-uu”)+4 sinuu 3 5
1—tg ® sin(uu—uu”)—sinuu”

;

\ ’

u'u .y . u'a
cos( 5 —i—uu’)5111—2---—

ou encore, en changeant le signe des angles:

.._l

tg(uu’ — uu”): tg u%l’;tg (45° + ©)

¢’est-a-dire une expression plus directement logarithmique que la premiére.
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I[I. Etant donné les indices des faces u;, uj et uf et leurs angles
uu’ et uu”, toute face de leur zone:

1o son angle uu” connu, a ses indices de la forme (§ 37):
1 (uu”),

1. —llt[]’ Oil ﬂL: P
i : (uu’u”u”) " (u'u”);

20 ses indices u?y connus, a son angle uu” déterminé par:
cot uu” == (1—A) cot uu” + A cot uu”
Mais comme nous pouvons aussi écrire :

sin uu” 1 smun”

sin (W'u + uu”) A “sinu'u”

nous avons, en opérant d'une maniére toute pareille a celle du cas
précédent, si nous posons la quantité connue :
1 sinuu”
. : ! r” == tg @
A s u'u

’

tg (“;‘ i 'uu’”) —tg 1 tg (450 + O)

c¢’est-a-dire encore une expression bien plus avantageuse que la pre-
miere au calcul par logarithmes.

40. Comme cas particulier, si les 3 faces u;, ui et ui sont les
3 faces tautozonales a l'aréte fondamentale r;, d’indices 010, 001 et
011, (c’est-a-dire les 2 faces fondamentales [, et [; et la face p, (§ 19)

4

les indices u7 d'une 4™¢ face quelconque de cette méme zone sont
donc de la forme :

1 (uu”),
u; —  — ( )Lu;

A e

o

Or en substituant les indices u;, uj et u{ donnés, pour 1=1
cette forme se réduit a:

U +’11§U§

de sorte que nous obtenons pour le rapport des 2 indices u7 diffé-
rents de 0:

rnr
n%
2

3
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On obtiendrait dans les mémes conditions pour le rapport des
2 indices non nuls d’'une face tautozonale a T'aréte r, ou a 'aréte r,:

V4 "

u’ u
B, = A et L

" rnr

uy uy

e gL

et le résultat général peut s’exprimer ainsi:

Pour toute face appartenant a 'une des 3 zones que constituent
les aretes fondamentales, le rapport de ses 2 indices non nuls est
égal au rapport anharmonique obtenu en accouplant cette 4me face
au groupe correspondant des 3 faces u;, uj et u? choisies et main-
tenues dans l'ordre qui leur a été donné.




CHAPITRE VII

41, Les indices de l'aréte nor-
male a la face possible :

vl = vuly - vsugly

le vecteur de la face coincidant
avec celul de 'aréte, se déduisent
immeédiatement de 1'égalité vecto-
rielle :

Les indices de la face normale
a l'arréte possible :

XYy = Xty - Xyl

le vecteur de l'aréte coincidant
avec celu1 de la face, se déduisent
immédiatement de 1'égalité vecto-
rielle :

viugly +vuly 4 vpugly = sy xi v 4 peXot, 4 X,

En effet, en s’en rapportant toujours aux équations du chap. II’
unissant entre eux les vecteurs des faces et des arétes fondamentales,

si nous multiplions scalairement
les 2 membres de notre égalité
successivement par » [, »l,, »l;,
et tenons compte des relations :

puvy =sinA; etsin A, sinh; —=4
nous obtenons :

VO y
Ax, =»rlu, +»ru, cos A, 4+, 7vu, cos Ay
9
A%, =w,ru cos A, +r3u, 4 r,7u, cos A,
e " 2
Ax, =wyvu, cos A, +vv,u, cos A, + v3u,

ce qui, avec la notation introduite
au § 28, nous donne sous une
forme extraordinanement simple
les indices demandés:

(23) x,:x,:x, =2'(u,): 2'(v,): (u,)

st nous multiplions scalairement
les 2 membres de notre égalité
successivement par gy, u,r,, sty
et tenons compte des relations :

wiv; =sin A; etsin A, sinh; =4,
nous obtenons :
Au, = p’x, + p,p,X, cosa,, + u, 1, X, cosa,,

a2
Ay = a1, X €S A, + U3X, - Uy, X; €OS Ay
Ay = e 00, X, €O @y, + 1, 14,X, COS By + (13X,

ce qui, avec la notation introduite
au § 28, nous donne sous une
forme extraordinairement simple
les indices demandés :

(23)

w, Uy u = e’ (X)) 0 (%) wi(x,)

42. Or contrairement a tous ceux dont 1l a été question jusqu’ici,
ces indices trouvés ne jouissent plus du tout nécessairement de I'es-
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sentielle propriété que nous avons établie au § 20 des indices des
faces et aretes possibles du ecristal. Les constances w; et v, déter-
minant la face et l'aréte-umité, et les cos A, et cos a, des angles
que font entre elles les faces et arétes fondamentales sont en effet
pour le cas général des quantités irrationnelles quelconques; les va-
leurs @'(u;) et ’(x;) qui les impliquent, ne sont donc pas elles-
meémes en général des indices entiers, et par le fait la face ou 'aréte
normale a une aréte ou une face possible, ne sont pas en général

elles-mémes une face ou une aréte également possible.

Si par contre un complexe cris-
tallin 1mplique un systeme de 4
faces, telles que les cos A, de
leurs angles et les composantes »;
de la face-unité sur les vecteurs
des faces fcndamentales *, solent
des quantités rationnelles, les in-
dices ©’(u;) de l'aréte normale a
toute face possible u; sont égale-
ment rationnels. A chaque face de
ce complexe correspond done une
aréte normale possible, et comme
cette aréte nermale appartient au
complexe, quelles que soient les
4 de ses faces prises pour point
de départ de sa construction zo-
nale, ses indices sont enliers,
quelles que soient les 4 faces du
complexe auxquelles on le rapporte.

Par le fait pour chaque systéeme
de référence que fournissent 4 faces
quelconques du complexe en ques-
tion, les coefficients v3, »,», cos A,,,
ete., des indices 2'(u;) que nous
avons appelés : (§ 28)

Si par contre un complexe cris-
tallin implique un systéme de 4
arétes, telles que les cos a; de
leurs angles et les composantes u;,
de T'aréte-unité sur les vecteurs
des arétes fondamentales, soient
des quantités 7ationnelles, les in-
dices '(x;) de la face normale a
toute aréte possible x; sont égale-
ment rationnels. A chaque aréte de
ce complexe correspond donc une
face normale possible, et comme
cette face normale appartient au
complexe, quelles que soient les
4 de ses arétes prises pour point
de départ de sa construction zo-
nale, ses 1indices sont entiers,
quelles que soient les 4 arétes du
complexe auxquelles on le rapporte.

Par le fait pour chaque systéme
de référence que déterminent 4
arétes quelconques du complexe
en question, les coefficients uf,u s
cos a,,, etc., des indices o' (x;)

| que nous avons appelés: (§ 28)

* Déterminées par les relations p; = sin A;, les w; étant les segments inter-
ceptés par la face-unité sur les intersections des faces fondamentales.
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doivent étre des quantités ration-
nelles.

W1y, Wy, Wyg, Wiy, Wyg, Wyg

doivent étre des quantités ration-
nelles.

43. Un seul complexe eristallin réalise totalement la condition
énoncée ; le complexe cubique pour lequel nous avons (§ 85, V)

en choisissant comme faces fon-
damentales les 3 faces du cube
générateur et comme face-unité
le plan diagonal déterminant ses
3 aretes (face de l'octaedre):

cos A, —cos A, =—cos A; =0

V) TV TV — 1

en choisissant comme arétes fon-
damentales les 3 arétes du cube
générateur et comme aréte-unité
sa diagonale principale passant
par le point 0 :

cos &; —— cos a, — cos a; — ()
;L1:y2:y3:1

g A&y e=gin A, =—pin Ay =1

Pour chaque face du complexe
cubique T'aréte normale est done
une aréte possible, dont les in-
dices £2'(u;) se réduisent, dans le
cas particulier du systeme de ré-
férence choisi, aux valeurs mémes

des 1ndices de la face:
X 0 X iXg— U 10y Uy
En conséquence, puisque a chaque
couple de faces du complexe, correspond
une zone compléte de faces possibles,
leurs arétes normales, situées chacune
dans le plan commun perpendiculaire a
I'axe zonal, déterminent ainsi une face
possible du complexe. Par le fait, réci-
proquement pour chaque axe zonal, ¢’est-
a-dire pour chaque aréte du complexe
cubique, la face normale est également
possible.

Pour chaque aréte du complexe
cubique la face normale est une
face possible, dont les indices
»'(x;) se rédusent, dans le cas
particulier du systeme de référence
choisi, aux valeurs mémes des
indices de l'aréte :

U (s P =% | & %

En conséquence, puisque a chaque
couple d’arétes du complexe, correspond
un faisceau complet d’arétes possibles,
leurs faces normales, passant chacune
par lintersection commune perpendicu-
laire au plan du faisceau, déterminent
ainsi une aréte possible du complexe.
Par le'fait, réciproquement pour chaque
faiscean d’arétes, c’est-a-dire pour chaque
face du complexe cubique, I'aréte normale
est également possible.

Chaque face du complexe cubique fait donc en somme partie

d'un systeme de 3 faces trinormales, comme chacune de ses arétes
est comprise dans un systeme de 3 arétes perpendiculaires entre
elles. Chaque zone du complexe est telle qu'a chacune de ses faces
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correspond une face normale dans la méme zone; chaque faisceau
ou zone d’aréles est telle qua chacune de ses arétes correspond une
aréte perpendiculaire dans la méme face. Fédorow appelle zones iso-
tropes des zones de faces et d'arétes cristallines possédant cette pro-
priété, et ce que nous venons de dire s'exprime plus simplement :
chacune des zones de faces ou d'arétes du complexe cubique est une

zone isotrope.

44, Deux autres complexes cristallins (voir § 85) réalisent par-
tiellement la condition du paragraphe 42. En effet, pour le complexe

quadratique,

en choisissant comme faces fon-
damentales les 3 faces du prisme
droit générateur a base carrée et
comme face-unité le plan diagonal
déterminant ses 3 arétes (face de
la protopyramide), les cos A, et
les constances v, sont les valeurs *:

cos A, ==cos A,=——cos A, —0
Vi o, Vo ==y =]

et les indices ©'(u;) de 'aréte nor-
male a la face possible u;, se ré-
duisent, pour ce systéeme de réfé-
rence choisi, aux rapports des 3
quantités dont la premiere est es-
sentiellement irrationnelle (remar-
que du § suivant:

X; 1 Xyt Xg==»iu U, Uj

en choisissant comme arétes fon-
damentales les 3 arétes du prisme
droit générateur a base carrée et
comme aréte-unité sa diagonale
principale passant par le point 0,
les cos a,; el les constances u;
sont les valeurs :

CO8 8, == €08 8, == 08; =
By 5 B ==, e

et les indices w'(x;) de la face nor-
male a laréte x; se réduisent,
pour ce systétme de référence
choisi, aux rapports des 3 quan-
tités dont la premiére est essen-
tiellement irrationnelle (remarque
du § suivant) :

VsV iUy —uiX, I Xyl X

Pour le complexe hexagonal (§ 85, 1IV), les

faces fondamentales étant les 3
faces du prisme droit générateur
a base équilatérale, et la face-
unité le plan diagonal déterminant

arétes fondamentales étant les 3
arétes du prime droit générateur
a base équilatérale, et l'aréte-
unité la diagonale principale pas-

* En désignant simplement par la leltre correspondante celle de ses cons:

tances qui sont irrationnelles.



ses 3 arétes (face de la protopy-
ramide hexagonale) les éléments
du systéme sont :

cos A, = =, cos A, —=cos A; =

5

By, Wiy ==1

et les indices @'(u;) de l'aréte nor-
male sont également les rapports
des 3 expressions dont la premiere
est encore irrationnelle (méme re-
marque) :

X, pEeX, ==y, vlu o) s (Y, < a,)

Pour l'un comme pour l'autre

le premier indice u; des faces tau-
tozonales a I'aréte fondamentale 1,
étant nul, les indices de leurs
arétes normales se réduisent aux
2 derniers, et sont ainsi des rap-
ports de quantités rationnelles.
Pour chaque face de la zone fon-
damentale r;, l'aréte normale est
donc possible, et puisque par cette
aréte normale passe une nouvelle
face dans la méme zone, cette
zone 1, est encore telle, quelle
implique une face normale & cha-
cune de ses faces.
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sant par le point 0, les éléments
du systeme sont :

COS 8; == 5, COS 8, = €08 8 —

Py pe—p3 =1

et les indices w’(x?) de la face nor-
male sont également les rapports
des 3 expressions dont la premiére
est encore 1rrationnelle (méme re-
marque) :

U0y 0y ==X (X 1 pXg) 1 (YaX, - xy)

de ces 2 complexes,

le premier indice x; des arétes co-
planaires a la face fondamentale [
étant nul, les indices de leurs
faces normales se réduisent aux
2 derniers, et sont ainsi des rap-
ports de quantités rationnelles.
Pour chaque aréte du faisceau fon-
damental [, la face normale est
done possible, et puisque cette face
normale détermine une nouvelle
aréte du meme faisceau, cette zone
d’aréte I, est encore telle, qu’elle
implique une aréte normale a cha-
cune de ses arétes.

~ Pour T'un et I'autre des 2 complexes quadratique et hexagonal,
les zones fondamentales de faces et d’'arétes v, et [ sont donc en-

core des zones isotropes.

En appelant {Fedorow) zone orthogonale de faces ou d’arétes
celle qui n'implique qu’un seul couple de faces ou d’arétes normales™,
on se rend compte en outre sans peine,

* On démontrerait facilement que dés qu'une zone de faces (d’arétes) posséde
deux couples de faces (arétes) normales, elle posséde une face normale a chacune
de ses faces, c'est-a-dire qu’elle est isotrope.



puisque chacune de leurs arétes,
c¢'est-a-dire chacun
zonaux est

de leurs ares
nécessairement situé
sur une face de la zone fondamen-
tale r,, a laquelle correspond une
aréte normale, que foutes les au-
tres zones de faces des 2 com-
plexes sont des zones orthogo-
nales.
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puisque chacune de leurs faces,
c¢’est-a-dire chacune de leurs zones
d’arétes passe nécessairement par
une aréte du faisceau fondamen-
tal [, a laquelle correspond une
aréte normale, que foufes les au-
tres zones d'arétes des 2 com-
plexes sont des zones orthogo-
nales.

45. Les 3 autres complexes cristallins, rhombique, monocline
et tricline (voir toujours § 85) n'ont plus aucun systéme de référence
avec des éléments rationnels suffisants pour y nécessiter la présence
de zones de faces ou d’arétes isotropes.

En choisissant toujours comme
faces éléementaires les 3 faces du
parallélipipede générateur avec la
face déterminant ses 3 arétes, les
éléments du complexe rhombique
sont (prisme droit a base rectan-
gle, faces des 3 pinakoides et de
la protopyramide):

cos A, =cos A,:cos A; —

vl » 1)2 s V3

et les indices £'(u;) de laréte
normale sont les rapports des 3
quantités irrationnelles :

X i Xs ! Xg S=RIU | W20, 2¥E0;

Seules donc les arétes normales
aux 3 faces dont 2 indices sont
nuls, c’est-a-dire aux 3 faces fon-
damentales », [, »,[,, »l;, sont des
arétes possibles. Ces 3 faces sont
ainsi les seules faces du complexe
auxquelles corresponde une aréte
normale, et on se rend compte
immédiatement que chaque zone

En choisissant toujours comme
aretes élémentaires les 3 arétes du
parallélipipéde générateur avee la
diagonale principale passant par 0,
les éléments du complexe rhom-
bique sont (prisme droit a base
rectangle) :

cOS &, ——¢os a, : cos a; — ()
Moy My o HUs

et les indices w'(x;) de la face
normale sont les rapports des 3
quantités irrationnelles :

DUy == uiX,  u3X, 1 UEXg

Seules donc les faces normales
aux 3 arétes dont 2 indices sont
nuls, c¢’est-a-dire aux 3 arétes fon-
damentales v, u,t,, tistsy, sont des
faces possibles. Ces 3 arétes sont
ainsi les seules arétes du complexe
auxquelles corresponde une face
normale, et on se rend compte
immédiatement que chaque zone
4

U, : U,



de faces dont I'axe est situé sur
I'une d’elles, est une zone ortho-
gonale.

Pour le complexe monocline,
le prisme est droit a base paral-
lélogrammique quelconque (faces
des 3 pinakoides et de I'hémipy-
ramide positive), les éléments du
systeme sont :

cos A, , cos A,—=cos A; =0

Vi, Ve , V3

et les indices irrationnels £'(u;)
s’écrivent, abstraction du facteur
proportionnel :

X, == riuy
X2 — 'Vguz "I"‘ ’1’21’31]3 CcOS A-]_
Xg — ¥3¥5 U5 €OS A; 4 r3uy

Seule I'aréte normale a la face
dont les 2 indices u, et u; sont
nuls, est une aréte possible. La
face fondamentale [, est donc la
seule face du complexe possédant
une aréte normale, et chaque zone
de faces dont I'aréte est située sur
cette face, est une zone orthogo-
nale.

B0 —

d’arétes dont la face support passe
par l'une d’elles, est une zone
orthogonale.

Pour le complexe monocline
le prisme est droit a base paral-
lélogrammique quelconque (arétes
du prisme, orthodome et clino-
dome), les éléments du systéme
sont :

C03 8, , COS &, — COS a; —

My, My, Mg

et les indices 1rrationnels o'(x;)
s’écrivent, abstraction du facteur
proportionnel :

2
U —HiXy

Ug == yfsz —f'- Mo UsXg COS Q4
Ug == Mgy X, €COS &y = UEX,

Seule la face normale a laréte
dont les 2 indices x, et x; sont
nuls, est une face possible. L’a-
réte fondamentale v, est done la
seule aréte du complexe possédant
une face normale, et chaque zone
d’aréte dont le plan passe par
cette aréte, est une zone ortho-
gonale.

Enfin pour le complexe fricline, les 3 faces du parallélipipede
générateur sont des parallélogrammes quelconques; les 6 constantes
de chaque systéme sont des quantités essentiellement irrationnelles,
et les indices 2'(u;) et o’(x;) restent sans aucune simplification ce
quils ont été trouvés au § 41. Pour aucune valeur des indices u,
et x;, ils ne peuvent se réduire a un seul ou devenir rationnels ;
le complexe tricline est donc le seul complexe ecristallin qui n’ait
aucune aréte normale a l'une de ses faces.



— 51 —

Remarque. Le fait que les coefficients Qi et wi, en fonction desquels s’ex-
priment les indices £'(u;) et w’(xi), implique chacun un produit ou un carré des
constantes », cos 4; ou g, cos a; du complexe, ne permet, semble-t-il, rien
d’absolu en ce qui concerne la propriété que nous venons d’établir des zones et des
complexes cristallins. En principe, il ne serait sans doute aucunement impossible
par exemple que 2 quelconques ou les 3 constantes irrationnelles u,, p,, w,, (et
par suite »,, »,, ») cest-d-dire les longueurs des axes-unités d’'un complexe cristallin
rhombique soient des valeurs de racines carrées quelconques: ]/a_, Vb, Vc_, ce
complexe rhombique posséderait dans ce cas, comme un complexe quadratique, une
zone isotrope, ou pour chacune de ses faces une aréte normale et réciproquement,
comme le complexe cubique. Il en serait de méme d’'un complexe monccline dans
le cas ol ses constantes u; (») seraient des racines carrées et ses cos a; et cos
A; tels que les coeflicients w,u,cos a, et »,r,cos 4, soient des quantités ration-
nelles. Mais en réalité, pour I'étude du cristal, cette restriction n’a auecune impor-!
tance. Si rien n’empéche que, momentanément, pour une température déterminée,
les axes unités ou les constantes g d’un eristal rhombique ou monocline puissent
prendre des valeurs de racines carrées, pour le plus petit changement de tempé-
rature, les propriétés physiques étant différentes sur chacune des 3 directions de
ces axes, leurs dilatations inégales (positives ou négatives) auront aussitot ramené
ces constantes a des rapports de nombres irrationnels quelconques. C'est d’ailleurs
la Pessence méme de la nature du complexe cristallin: Iirrationnalité des rapports
des constantes d’un eristal n’est qu'un cas spécial de la non-équivalence physique
des directions correspondantes dans la substance eristalline.

Naturellement la méme remarque sapplique aux complexes quadratique ct
hexagonal; au cas ou leur premiére constante w, (par suite ») serait une valeur
de racine carrée quelconque chacune de leurs zones de faces et d’arétes pourrait
étre isotrope.

46. Le vecteur d'une face pa-
ralléle & une aréte et normale
a une face données x; et u,, est
d’apres le § 3, le produit vectoriel :

Le vecteur dune aréte paral-
lele & une face et mormale & une
aréte données u; et x,;, est d'apres
le § 3, le produit vectoriel:

Vipxr, + poxots —+ s X3 05) (v g by - vou, b - wvyugly)

Ce produit vectoriel s’effectue
tres simplement si nous substi-
tuons au vecteur de la face:

viugly -l - ryugly

le vecteur équivalent de son aréfe
normale ;: en d’autres termes si
nous rapportons, comme le vec-
teur de l'aréte, le vecteur de la

Ce produit vectoriel s’effectue
tres simplement s1 nous substi-
tuons au vecteur de 'aréte :

PuX Ty T Xty + faXsly
le vecteur équivalent de sa face
normale ; en d’autres termes si
nous rapportons, comme le vec-
teur de la face, le vecteur de l'a-



face au triedre des arétes fonda-
mentales :

a0 2" (g )ty -y 2" (ug )ty -5 £2" ()1

Cela revient d’ailleurs a cher-
cher le vecteur de la face copla-
naire aux 2 arétes d'indices x;
et £2'(u;); ses indices sont en effet

(§ 31) les déterminants de 2me
ordre :

X, X, X5 Xy Xy X, ]
I.Q’(ug).Q’(us) s |27 (0,) 2 (u,))], |2/ (u )2’ (u,)

que nous donnerait également le
produit vectoriel posé.

Naturellement la méme réserve est a
faire ici que dans les paragraphes pré-
cédents. Cette face normale n’est une
face possible que lorsque ses indices
¢’est-a-dire lorsque les valeurs Q’'(u;)
sont des quantités rationnelles. Pour les
faces du complexe cubique, les faces des
zones isotropes du complexe hexagonal
et quadratique, les 3 faces fondamentales
du complexe rhombique et la face [, du
complexe monocline, la face normale
passant par une arréte quelconque est
done toujours une face possible. Clest
d’ailleurs ce qui a déja été dit sous une
autre forme en parlant des zones ortho-
gonales.
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réte au triedre des vecteurs des
faces fondamentales :

n o (X 720" (%)l 4 vy0’ (x5)l;

Cela revient d’ailleurs a cher-
cher le vecteur de l'aréte inter-
section des 2 faces d'indices u;
et w'(x;); ses indices sont en effet
(§ 31) les déterminants de 2me

ordre :

u, u, u, u, u, u,
o' (%)’ (%)

o' (x)oo"(5,) o ()0’ (x,)

?]

que nous donnerait également le
produit vectoriel posé.

Naturellement la méme réserve est a
faire ici que dans les paragraphes pré-
cédents. Cette aréte normale n’est une
aréte possible que lorsque ses indices
c'est-d-dire lorsque les valeurs ’(x;)
sont des quantités rationnelles. Pour les
arétes du complexe cubique, les arétes
des zones isotropes du complexe hexa-
gonal et quadratique, les 3 arétes fon-
damentales du complexe rhombique et
I'aréte r, du complexe monocline, I'aréte
normale coplanaire & une face quelconque
est donc toujours une aréte possible.
Cest d’ailleurs ce qui a déja été dit
sous une autre forme en parlant des
zones d’arétes orthogonales.




CHAPITRE VIII

47. De la simple considération du complexe total des faces et
arétes possibles du ecristal, nous avons déja tiré la conclusion au
dernier paragraphe du chap. [V (§ 22), que les indices de ces faces
et aréles restent entiers quelles que soient les 4 d’entre elles (faces
ou arétes) auxquelles on les rapporte. Si donc les a;, f;,7;,9;, sont
les indices de 4 faces ou de 4 arétes du complexe par rapport a un
premier systéme, et les af,f{,r{,0{ leurs mdices par rapport a un
second systeme de référence (§ 27%%), ceux-ci sont entiers comme les
premiers; et puisque 4 faces ou 4 arétes, dont il n’y en ait pas 3
tautozonales ou coplanaires, sont nécessaires et suffisantes pour dé-
terminer complétement un complexe de faces et arétes ecristallines,
le probléeme du changement des indices se pose ainsi d’une maniere
tout a fait générale: Etant donnés les 4 couples d’indices a;, f;,7:,9;
et af,pi,ri, 901, et les éléments complets du 1er systeme de référence,
déterminer successivement :

1° les nouveaux indices u! de toute face d’anciens indices uj;.
20 les éléments du systeme des nouvelles faces élémentaires.
3° les nouveaux indices x| de toute aréte d’anciens indices x;.
4o les éléments du systéme des nouvelles arétes élémentaires.

Nous ne traitons que le cas ou les indices donnés sont ceux de
4 faces, dont 1l n’y en a donc pas trois tautozonales; le cas ou ils
seralent les indices de 4 arétes, non 3 a 3 coplanaires, se traiterait
d’une maniére 1dentique et en tout parallélement au premier.

" 48. Les 3 premiéres faces rapportées successivement au systéme
connu Ly, I, [,, I; et au systeme dnconnu [, I{, I}, [, (mais par
rapport auquel nous connaissons cependant leurs indices), nous don-
nent, les facteurs o, 0,, 05 satisfaisant aux équations :

Q(ao) =i &' (da’), L(ff)=03 L (F'F), L(y)=05 2 (V)



et par le fait rendant égaux les tenseurs des 2 membres correspon-
dants, les 3 égalités vectorielles suivantes:

violy vl + waly =0 (viail] +vi0l +via3l;)
vy + vafoly 4 vyl 0,(vip1l “‘T"V’)ﬂ’[, +"’;ﬁ§[§) (24)
vyl vyl + vyl = oviyil “1—"’2?3[’ + viysl )
Désignons un peu arbitrairement, 1l est vrai, mais d’une maniére
avantageuse pour rendre claire et simple notre transformation, par
les symboles |a,aayl, loaiaay oaja,al, ete., les déterminants de 3me
ordre :

alaza:ﬂl\ )01“ &, Oy 01050503
D, = BiBobsl  @:BiBBsl  |0BiBuBsl  ele,
Y1 7275l 0371 V2 Vs 03Y3272 Vs

et multiplions successivement nos 3 égalités par les déterminants
mineurs dans D, de «,, f,, 7, de a, f,, 7., et de a,, f;, 7. Nous
obtenons ainsi sans aucune difficulté 3 nouvelles équations qui sont
I'expression directe des vecteurs [; et des constantes »,, composantes
de la premiere face-unité, en fonction des vecteurs i et des compo-
santes »{ de la nouvelle face-unité:

Dovlll—v1|oa ayay| 1] v} |oadayayl 1+ v) Joajayas| 1
Dyw,l, =21 |ay0a{ay| 1 —|—'v, \a, 00! aJ|[ + v§ |ayoabag| 15 (25)
Dovsly =»{ loyap0ai [ 1] v} lqyay0af i1y + v} [ala.ﬂ,ga‘,g‘[ (4
Si nous substituons, dans le vecteur de la face d’indices quel-
conques u; par rapport au premier systéme :

Dy(ryu, | ~+», u, [, + vyuls)

aux valeurs Dyv;[; celles que nous venons de trouver, nous obtenons
le vecteur de cette méme face rapporté au systeme des [ :

vi(u loajaay| 4+ u, |a0aia;| - u;

+ vi(u loaayay| -+ uy |aj0asas] 4 uy 'a ay0a

+ vilug Joaiaas| -, |a0atas] 4 ug o a,00

Et ainsi les quantités entre parentheéses ne sont autres que les

nouveaux indices u; cherchés, qui d’ailleurs sous forme développée,
s'écrivent trés bien en déterminant de 4me ordre :

|01ty oafl)
r

1
)1

2
’
4}

U, u, us 0o u u, uy 0 u; u, g 0
AUy 0501 01| O AyU30( Ay |0y 0y0s0, A
£1BaPs0:1 : BiBsP30:0 5 : PiPsfs 05
ViV2730sV 1| |ViVaVs @372|  (V1P2V3 0373
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49. Reste a déterminer maintenant les facteurs o,, 0,, 05, autre-
ment que par les 3 équations qui nous ont servi a les poser, et
dans lesquelles les formes 2'(a’a’), ete. sont pour le moment du
moins également inconnues, et cela en utilisant précisément le couple
d'indices o; et 8 de la 4™ face donnée. Ainsi la premiére question
du probléme sera completement résolue.

Puisque les 6] sont les nouveaux indices de la face 9,, ils doi-
vent done vérifier 1'égalité proportionnelle que nous venons de
trouver :

9 0, 6 o] |6, 6, 65 o] |6 O & o
@ ay az 0y | Gy A3 04} |Gy Gy Gy Oy
B B B 0Bl T B B B oS T B B By oo
14 Ys Q71| Y1 72 Vs Q33| (71 V2 Vs @373

(30

VA L 3 ! S
(51 S5 B0l =

~2
|3

et qui, abstraction faite d’un facteur de proportionnalité, se décompose
par rapport aux inconnues o; en 3 équations partielles, dont nous
écrivons encore symboliquement les déterminants-coefficients :

0f =o,a{ [0y + 0,61 10y al + o371 [0 apfl
05 =g1a5 (087 + 0,05 19y al 4 0375 |0 ap
05 =o0,a5 |10y 4+ 0,85 [0y al 4 o5y5 |da B

Ces 3 équations se résolvent immeédiatement, mais comme en
réalité, en tant que provenant d’'une égalité de rapports, elles ne
sont que deux a deux indépendantes I'une de l'autre, nous n’avons
le droit d’en tirer de méme que les rapports des quantités ¢, pour
lesquels nous avons donc en multiphant par le déterminant commun

o' By

o OB 10y e
Qe = gl by al I a pl o

Cela nous suffit d'ailleurs pleinement ; dans la proportion plus
haut des indices uf, les facteurs ¢; jouant le méme role dans chacun
des indices et le premier lerme de leur colonne étant nul, leurs rap-
ports seuls entrent en ligne de compte. De méme dans les propor-
tions que nous trouverons plus loin les mmpliquant encore, ce ne
sera toujours que le rapport de leurs valeurs qu’il nous sera néces-
saire de connaitre.

Introduisons donc notre résultat dans les déterminants de 4me

ordre du § précédent, et nous obtenons directement sous leur forme
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définitive les indices uj de toute face u; uniquement en fonction des
indices de 4 faces rapportées successivement aux 2 systemes de
référence :

, __upyllé'By'| , | luyalld’y'a uafl|d’'ad’ |
ul— ‘aﬁﬂ a1—|_ !6/(1' ﬁ1+ '6aﬁ] yl

. OBy, o luralid’y'e] luap||d’'d’f|
96t uy — 1BV a’ ; _
@) 0=l BT T e T g
_ agpllo’g’y'| , | |uyal|dy'd| , | |uafl|d’a’f’|
u3* a3+ IIS“/Q} ﬁd+ ldaﬁ 78

50. Les o; ou du moins leurs rapports étant donc établis une
fois pour toutes, les autres questions du probleme ne présentent
maintenant plus aucune difficulté. Continuons a désigner par les
expressions |oa| oal pall , a, oal oal| , a, gal oal', ete., les détermi-
nants de 3me ordre :

’ ’ ’ ’ ’ ’ ’
0101 010y 0103 0 010, 0103 Gy 01Uy 010Gy

4 Ve ¥l r r 4 i

Ay = 1061 065 0B5 B 0.fh 0.f] fr 0:f% 0.
7 V4 4 Fs r ! v

0371 O3V2 O3V3| » (71 9372 ©O37V3| 5 |Va 093732 0373

et inversement de ce que nous avons fait pour notre premiére trans-
formation, multiplions successivement les 3 égalités vectorielles pri-
mitives par les déterminants mineurs dans A, de oaf, 0,81, 0371,
de o,ay, 0,85, o575, et de oal, 0,65, o375. Nous obtenons de
nouveau sans aucune peine ces 3 équations, qui sont la contrepartie
des équations (25):

A1l =»|a0aj0ai|l, + v, |a,0as0a5|l, 4 viiaz0as0al|l]
A3l =wv|oaia0afll, 4+ vy loaia,0al|l, + vi|oaiaz0allly (27)
A3l = loajoasaq |l + v, 0ai0aja,|l, + viloaioajay L,

et nous donnent immeédiatement les éndices des nouvelles faces fon-
damentales cherchées, rapportées au systeme connu de référence, et
en les élevant au carré, le rapport des composantes v; de la nou-
velle face-unité, que nous écrivons, en faisant encore abstraction du
facteur de proportionnalité :

vi2=Qa,0as0a;| a,oajpnl| ayoajoal)
vi2=Qoaja 0a}| oajayoa;| |oajasoas) (28)
vit=oajoaja,| |oajoaja,| |oajoaja,l)
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Le calcul de ces derniéres formes quadratiques quoique un peu
long, n'offre aucune difficulté ; les constantes », et les cos A;, sont
les éléments donnés du systéme des [, et il est facile de voir que
dans ce cas-ci comme aussi pour les indices précédents des faces [},
il suffit toujours de la substitution des seuls rapports des facteurs o,
trouvés au § précédent.

51. Avant de passer aux 2 autres questions du probléme, ap-
pliquons nos résultats au cas particulier ol les nouveaux indices af,
pi, vi, 67 sont les valeurs 100, 010, 001, 111, c’est-a-dire au cas
ou les 4 faces données a;, f;, y;, 6; sont prises elles-mémes comme
faces fondamentales du nouveau systéeme de référence.

Les déterminants des équations (27) se réduisent immédiatement,
comme cela doit étre, aux simples indices a;, f;, y; des 3 nouvelles
faces fondamentales données; les déterminants [0'p"y"|, [0'y'd’|,
[0'a’p’ des égalités (26%) se ramenant a l'unité, toute face d'anciens
indices u;, recoit pour ses nouveaux indices uj :

u ‘ll a udl
af s ud 1ng = lugyl  |uyal  |uaf]

07| " 18yal " [dafl
et enfin les formes quadratiques (28) se simplifiant considérablement,
les composantes »{ de la nouvelle face-unité, d’anciens indices 9.,
deviennent d’abord, en sortant de la forme correspondante les fac-
teurs o0«

vi2:ivi?ivi2= 030} Aaa): 030} 2BP): 0303 Ary)

et ensuite, en divisant le second meml)le par le produit pie303 et
substituant aux o, les valeurs trouvées de leurs rapports :

vl 1wy —Mﬁ/\\/ Qaa): (Sya\\/.() (Bp) : \6aﬁ\\/.Q (77)
Au cas ou les indices a,, 5, y;, 0, seraient réduites, c’est-a-
dire telles que les tenseurs \V Qaa) , \V Q(BP) \/IJGI_}:)“, des vecteurs des
faces correspondantes se réduisent a l'unité, le rapport des compo-

santes »{ se réduirait également au seul rapport des 3 déterminants
que constituent les indices.

52. Les deux dernieres questions que nous nous sommes posées
se traiteront maintenant sans aucune peine et par le meéme procédé
que nous avons mis a traiter les 2 premiéres, dés que nous aurons



établi, parallelement aux égalités (24) entre les vecteurs des 3 pre-
miéres faces données, 3 égalités correspondantes entre les vecteurs
des arétes qui déterminent les intersections de ces 3 faces.

Pour cela, multiplions vectoriellement deux & deux et membre &
membre ces égalités (24). Si nous appelons 4, , B, , I'; les mineurs
du déterminant Dy, (§ 48), correspondants aux a, f;, y; et Ri4{ R, B},
R, I'{, ceux du déterminant A,, (§ 50), correspondants aux o,af, 0,41,
0371 ; sl nous tenons compte également, comme nous l'avons déja
fait au § 31, des équations (1), (§ 8), et de la relation fondamentale
entre les composantes de la face et de l'aréte-unité dans chacun des
2 systémes de référence :

wivy; =sin A, il =g AL i
st enfin nous négligeons d’éerire aux premiers membres le facteur
constant : »»,vy 1 v{vir;, completement inutile dans tout ce que nous
voulons établir, nous obtenons sans difficulté, entre les vecteurs des
aretes demandées, les 3 nouvelles égalités, compléetement homologues
des 3 égalités vectorielles (24):
A 4 e Aoty + g Aty =R (niAjv] - ui Al + uidiry)
(29) py Bty + py Byty +- py Bty =R, (] Biv{ + pu; Biv + uf Bir)
Lty A= po 5ty - gLy == Ry (i Iiv] + wi vy + pil'ies)

53. Reprenons naturellement pour les déterminants la notation
symbolique employée dans la premiere partie et multiplions succes-
sivement ces 3 égalités vectorielles par «,, p,, 7., par a, f,, 7, et
par ay, By, 5. Nous avons aussitot, parallelement aux équations
(25), les 3 équations suivantes, qui sont I'expression immédiate des
vecteurs r; et des constantes u;, composantes de la premicre aréte-
unité, en fonction des vecteurs r{ et des composantes u! de la nou-
velle aréte-unité :

Dopty ty=pu @y 0a; 00 s\rl—Ht
DBy pests—=—u lapaioas —{—,u,loala oal, 1"—+»z ; a{gagagérg (30)

v I

|
Dousts=p1|azoasoal|t] +u}oaias0af vyl loatoabast)

0a{0ay oy s

En substituant dans le vecteur de l'aréte d'indices quelconques
X; par rapport au systeme des t; :
Dy (X, 0y puXyty + psXsty)
aux valeurs Dyu;r; celles que nous venons de trouver, nous obtenons
le vecteur de cette méme aréte rapportée au systeme des tj :



11(X, lar0as0a;|4-X, @y 0a30a5 4 Xs|as0as 005t
+ wi(xiloaia,pail+-x, 00 ay0af|+Xsl0aiazoasit]
+ wilxileaioajal4-x,leaf gaja,|+x;l0a 0ajaty
et entre parenthéses ses nouveaux dndices x; cherchés qui s’écrivent
d’ailleurs tres bien, en les développant, sous forme de ces détermi-
nants de 3m¢ ordre : ‘
" u , X{:X§ X3 =
Xia + Xop + X305 0@} @il  |oral Xya - Xa - Xzaz 0af
Xif+ Xofy + Xafs 0uf5 5| 0BT Xify A Xofy + XsBs 03
X+ Xoye FXa7s Q75 QY| Q21 Xayi T Xely T Xa¥y QeV
010 Qa5 Xy 0y + Xoay - Xy0y
0Pt 0Py Xyfy -t Xofy - Xafy
0371 0375 X1+ Xos F Xs7s
Comme dans les deux cas des valeurs des indices uj et des
constantes »{, ce n’est toujours que les rapports des o¢; quil nous
est nécessaire de connaitre, et nous pourrions, comme pour les in-
dices u; écrire nos déterminants en y introduisant en place des o,
les quotients (26) représentant leurs valeurs; mais cette substitution
est inutile et le résultat est plus élégant de le garder sous cette
forme. |

54. Si enfin, a l'inverse de nouveau de cette premicre transfor-
mation, nous multiplions successivement les 3 égalités (29) par o ai,
0.f1, 0571, par oial, 0,5, o5y et par oiaj, 0,63, 0574, nous oblenons
parallelement encore aux équations (27), ces 3 dernieres égalités :

Agpiv] =y [oafayay| ¥t + py ayoaiay| vy + py layay0ai| v
31)  Aopiry = wy foajayag| vy + py ‘ay0aiag| v, + g [ayaz0al| vy
Aopsvs = wy Joajayas| vy + uy la0agas| v, + py layay0ai| v

Elles nous donnent immédiatement les #ndices des nouvelles
aretes fondamentales cherchées par rapport au systéme connu de
référence, el en les élevant au carré le rapport des composantes
de la nouvelie aréte-unité, que nous écrivons de nouveau en faisant
abstraction du facteur proportionnel: | |

wi2=w(joaiaay |a0aia| |aa0ai
;

e
i)
pir=o(loasaa;| |a0aso| laa0al) (32)
ui? = wlloasaay| |a0aias| |aja0a;l)
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Comme celles qui représentent les carrés des constantes »{, ces
derniéres formes quadratiques ne présentent aucune difficulté de cal-
cul; les constantes ; et les cos a;, sont les éléments donnés du
systeme des vecteurs r;, et dans ce cas-ci encore 1l est clair a pre-
miére vue que ce sont seuls les rapports des facteurs o; qu’il importe
de connaitre.

55. En terminant, comme nous l'avons fait pour la premiére
partie, appliquons nos résultats au cas particulier ou les indices af,
Bi, vi, 0, prennent de nouveau les valeurs 100, 010, 001, 111,
c’est-a-dire au cas ou les intersections des 3 premiéres faces données
a;, Bi, 7: sont les arétes fondamentales elles-mémes du nouveau
systeme de référence, et son aréte-unité, 'aréte harmonique de la
4me face donnée o;.

Dans ces conditions, les déterminants du § 53 qui sont les in-
dices x{ de l'aréte d’indices donnés x;, se réduisent aux expressions
suivantes :

K{ X3 ike =

0:05(X1 0+ Xo05 = X303) 1 030 (X1 B1 1 Xa85 + X305) 1 0102(X1 71 + X075 + X373)

qui, divisées par le produit g,0,0;, prennent en substituant leurs
valeurs aux o; qui restent en dénominateurs, la forme définitive :
Xi 1 X) 1Xs =
08| (%2, + %0, + Xya) 2 [8yal (X, + X,8, + x,,) : [daf| (x,7, + Xpp2 + xy73)
Les 3 équations (31) qui nous donnent les indices des nouvelles
arétes fondamentales, deviennent chacune comme 1l doit en étre, une
égalité représentant le vecteur d’une aréte en fonction des indices
donnés des 2 faces dont elle est I'intersec:tion : (§ 31)

1 ¥ r
E;AO puits =y (Byys — B )ty (Bsyy — Buys)tat-us(Biya — Boyi)ts

1 Pt
0—240 pat s = (Yo 03— y305)t;, o (Y30y — p103) ¥4 pus (7, @y — @, 7,)¥s

1 o ] ’ .
o Ayt s =ty (s — a3 f3)¥, + s (a3 8y — oy Ba)¥s -+ s (ay fy—a, By )5

Enfin par ce fait le rapport des composantes u{ se simplifie de
la méme maniere; 1l s’écrit d’abord :

pit s pg® e pgt =
Q%w(ﬂz}"c&_ﬂs?’z----) D030 (Yoa3—)30...) 1 Q3@ (%ﬁs—amgz'--')
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et en substituant aux ¢} leurs valeurs, il devient le rapport des
quotients de ces formes quadratiques par le carré du déterminant
correspondant :

(‘)(ﬁ‘z?’g—ﬁ:ﬁg:-) ) (U(J’gaa‘—?’saz----) ; o (A f5-— 3 fs....)
|opy]* |0ya[* |0ap?




CHAPITRE IX

56. Les coordonnées projectives de la droite ou du point sur la
sphére ne sont les indices de la face et de l'aréte correspondante (§
13) qu'autant que les constantes »; (et ;) déterminent elles-mémes
une face (et une aréte-unité) prises dans le complexe des faces et
arctes possibles du eristal. Pour tout autre choix purement arbitraire
de ces constantes, les valeurs u; et x; n’ont donc plus rien de les-
sentielle propriété des indices que constitue leur rationnalité, mais
restent néanmoins pour la face et l'aréte qu'elles déterminent ce
qu'elles sont pour la droite sphérique et le point correspondant : les
sumples coordonnées projectives de cette face et de cette aréte, rap-
portées au triedre des 3 faces fondamentales avec des constantes »; (et
i, arbitrairement choisies.)

Or tout ce qui a été établi jusqu’ici des indices, en dehors preé-
cisément de ce qui touche a leur rationnalité qui seul exige expres-
sément pour sa démonstration que la face (et larete-unité) sorent
une face (et une aréte du complexe), est complétement ndépendant
des valeurs »; et u; a la seule condition que celles-ci satisfassent
aux relations essentielles u;»; =sin A;. Les résultats des §§ (23—
55) subsistent donc intégralement pour toutes les combinaisons p;»;
satisfaisant a cette condition, c’est-a-dire pour chacun de cette infinité
de systéemes possibles de coordonnées projectives auxquels nous pou-
vons rapporter notre complexe du cristal.

57. Un seul de ces systémes nous offre ici un intérét particulier;
celur pour lequel nous choisissons les constantes :

iy =1 v; —sin A;

qui remplissent donc ainsi la condition nécessaire p;v; =—=sin A;. Le



point-unité sur la sphere étant alors le barycentre * du triangle
sphérique que déterminent les v; (la droite-unité est sa polaire trili-
néaire ou le grand cercle parallele a la circonférence circonscrite a
ce méme triangle), on obtient ainsi directement les coordonnés bary-
cenfriques de Mobius de la droite et du point sur la sphére**, tandis
que pour la face et l'aréte correspondante les valeurs u; et x; ne
sont autres que ce que Liebisch appelle tout court les coordonndes
des faces et arétes du cristal.

Fn effet dans ce cas, les rapports des valeurs u; et x; que
nous fournit le § 26, se réduisent a:

U; : Uy o Uy == coS P ; cosd, : cosdy (33)
X; 1 X, : Xy == sIn A, cos¥, :sin A, cosd, : sin A, cos

Les coordonnées d'une face sont donc les cosinus des angles
d'incidence de cette face par rapport aux arétes fondamentales, ou
un multiple positif quelconque de ces valeurs; les coordonnées d’une
aréte sont les cosinus, multiplié chacun par le sin A;*** correspon-
dant, des angles d’incidence de cette arcte par rapport aux faces
fondamentales, ou un multiple positif quelconque de ces valeurs.

58. La relation fondamentale u;»; = sin A; étant donc satisfaite,
quoique non contenues I'une et l'autre dans le complexe des faces et
arétes possibles, l'aréte-umté, ou plutot la droite menée du point O
au point-unité sur la sphére, n’en est pas moins 'harmonique de la
face-unité, c'est-a-dire du plan du grand cercle qui est la droite-
sphérique unité, et réciproquement. La relation :

U X, + wx, + ugx; =0

qui est I'équation en dndices entiers de la face u; ou de laréte x;,
reste 'équation en coordonnées quelconques de cette méeme face et

*) Si les vecteurs-unités v, v, v, déterminent les 3 sommets d'un triangle
sphérique, le vecteur: r, 4+ r, + r, détermine son barycentre, puisqu’il représente
un point situé sur chacune des droites joignant un sommet au milieu du eoté
oppose.

") M. Daniéls : Essai de géométrie sphérique en coordonnées projectives p. 45.

**) Liebisch multiplie par le sin a; correspondant, mais ce sont les mémes
coordonnées puisque nous avons sin A; .*. sin a; la seule différence qui en ré-
sulte est que plus loin nous trouverons la valeur A, sinus du triedre des [; (§ 9),
ot Liebisch trouve la valeur D da sinus du triédre des 1, puisque 4 = MD.
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de cette méme aréte; enfin identiquement au résultat du § 27, les
coordonnées d'une face quelconque du eristal sont les valeurs in-
verses de celles de son aréte harmonique, et celles d'une aréete les
valeurs 1nverses de celles de sa face harmonique,

Les coordonnées de laréte in-
tersection des 2 faces de coor-
données u; et u’, sont encore les
déterminants de second ordre:

u; Uy
ug uj

u; u,
uj u,

b »

Celles d’'une 3me face tavtozo-
nale aux 2 faces données, sont
également de la forme :

u; —4Aug
mais le parametre 4 a perdu, comme
les valeurs u; et uj, sa propriété
d’étre nécessairement rationnel.

Enfin celles des 4 faces tauto-

zonales u;, uj, uf, u?, satisfont
encore 1'égalité (19):
A (wu”);  (uu”)

oy :
(uu'u”u )__E = W) W)
et, quoique valeurs quelconques,
représentent par ce rapport de leurs
quotients ainsi constitués, la va-
leur rationnelle du rapport anhar-
monique des 4 faces.

Les coordonnées de la face-
jonction des 2 arétes de coordon-
nées x; et x{, sont encore les
déterminants de second ordre :

X3 Xy
Xs X1

X X3

’

’ H Xl. X{;

Celles dune 3me arcte copla-
naire aux 2 arétes donndes, sont
également de la forme :

X; — AX]
mais le parametre 4 a perdu, comme
les valeurs x; et x{, sa propriété
d’étre essentiellement rationnel.

Enfin celles des 4 arétes copla-
naires x;, X;, x7, x7, satisfont
encore l'égalité (19):

A (xx7); (XX”)y

XE X E e = ;
( X ) ju’ (X’X”)i (Xfxw)k

et, quoique valeurs quelconques,
représentent par ce rapport de leurs
quotients ainsi constitués, la va-
leur rationnelle du rapport anhar-
monique des 4 arétes.

59. Il serait facile de continuer a développer ainsi ce parallé-
lisme complet entre les coordonnées et les indices des faces et arétes
du eristal pour les problemes du § 38 et pour les autres résultats
des chapitres précédents; ce parallélisme est d’ailleurs naturellement
le fait, comme nous l'avons dit, de chacun de linfinité de systémes
possibles de cocrdonnées projectives auxquels nous pouvons rapporter
le complexe du cristal. Il est par contre une particularité intéressante
dans le systéeme des coordonnées et y apportant une simplification
qui ne se retrouve pour aucun autre systéme :



Le tenseur u, du vecteur de la Le tenseur x, du vecteur de I'a-
face quelconque de coordonnées u;: | réte quelconque de coordonnées x;:
viug Ly vl -+ vouyly X e Xoty - g Xaty

qui nous est fourni dans le cas | qui nous est fourni dans le cas
général par la racine carrée de la | général par la racine carrée de la
forme quadratique £(uu), nous est | forme quadratique o(xx), nous est
en outre donné dans ce cas-ci, | en outre donné dans ce cas-ci,
directement et sous une forme bien | directement et sous une forme hien
plus simple, par les 3 relations | plus simple, par les 3 relations

du § 14: du § 14:
u, cos ¢, —»u, sin h, X, co8 ¥ — u x; sin hy
u, cos ¥, — »,u, sin h, X, €08 ¥, = u,X, sin h,
u, cos ¥y — »yuy sin hy Xy COB ¥ = g% 8in. by
Si nous y substituons en effet Si nous y substituons en effet

aux valeurs wu; les coordonnées | aux valeurs x; les coordonnées
cos 1, chacune des 3 équations | sin A; cos @, chacune des 3 équa-

nous donne également : _ tions nous donne également :
Wy = \/Q(UU) =4 Xy == \/o)(xx) ==, |

ou mieux, pour éviter toute con- | ou mieux, pour éviter toute con-
fusion, en écrivant dans la forme 2, | fusion, en écrivant dans la forme w,
dont les coefficients », sont les | dont les coefficients g, sont les
valeurs sin A, les expressions | valeurs u,=—1, les expressions
memes cos 9 mémes sin A, cos ¥ :

A= \/!J(cos & cos ) (34) | A= \/};—)Gn A cos 9. sin A cos ) (34)

Done s1 les valeurs u; et x; sont les coordonnées cos 9, et
sin A, cos ¥, des faces et arétes du cristal, la racine de la fonction
quadratique de ces coordonnées \V 2(uu) et \/o(xx), (nous écrivons u;
et x;, é¢galement dans le paragraphe suivant, uniquement pour sim-
plifier Iécriture), qui est le tenseur des vecteurs déterminant chaque
face et chaque aréte, est une quantité constante, indépendante de

ces coordonnées u,; et x;, et égale au sinus du triedre des vecteurs
des faces fondamentales.

60. Dans ces conditions, les résultats des §§ 29, 30, 32, ete.,
exprimés en coordonnées, nous donnent également les propriétés ou
les simplifications suivantes.



Pour toute aréte x;
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non coplanaire a la face u,, la fonction

linéaire de leurs coordonnées ainsi constituée :

U X, + UpX; + ugXy = 4 cos J

est constamment égale au produit du sinus du ftriedre des |,

(35)

par

le cosinus de I'angle d'incidence de I'aréte par rapport a la face.

Le cosinus et le sinus de I'an-
gle ¢ de 2 faces de coordonnées
u; et u} deviennent; en d’autres
termes, entre le cosinus ou le si-
nus de l'angle ¢ de 2 faces, leurs
cos ¥; et cos ¥{ correspondants,
et les constantes angulaires du
complexe, il existe les 2 relations
suivantes :

cosip = &;?,—)
in o — M"/‘““j,“ ) (uw)]

Le parameétre 2 des coordonnées
de la 3me face u; tautozonale aux
2 faces données u; et uf, est in-

dépendant des tenseurs \/o(uu) et
Vo('u' des vecteurs de ces faces :

l_sin uu”
~ sinu’u”

Enfin la fonction linéaire sui-
vante, constituée des coordonnées
d’'une face et de celles de son

aréte normale:
u; Q' (uy)4-u, Q' (u)H-us 2 (u)=0(un)

est également une constante, et
sl nous remarquons que les va-
leurs ©'(u;) sont les valeurs ab-
solues Ax; (§ 41), la fonction des

Le cosinus et le sinus de 'an-
gle y de 2 arétes de coordonnées
x; et x! deviennent; en dautres
termes, entre le cosinus ou le si-
nus de 'angle v de 2 arétes, leurs
cos #; et cos ¥ correspondants,
et les constantes angulaires du
complexe, il existe les 2 relations
suivantes :

COsYP— w(j:X,)
/
sin P == \/ Q[(MXA)(, — 1]

Le parametre 4 des coordonnées
de la 3me aréte x{ coplanaire aux
2 arétes données x; et x{, est in-

dépendant des tenseurs \ w(xx) et

V o(x’x’) des vecteurs de ces arétes :

P sin xx”
sinx’x”

Enfin la fonction linéaire sui-
vante, constituée des coordonnées
d'une aréte et de celles de sa
face normale :

X; @' (%) )X, 0" (X,) 4= X0 (x5)=0(xx)

est également une constante, et
sl nous remarquons que les va-
leurs ’(x;) sont les valeurs ab-
solues Au; (§ 41), la fonction des



seules coordonnées (cos#; etsin A; | seules coordonnées (sin A; cos 9,
cos ;) : et cos 9;):

WXy 4 WX, + uyxy — 4 (36) X Uy + XUy +Xguy — A4 (36)
est encore une constante égale au | est encore une constante égale au

stnus A des vecteurs des faces | sinus A des vecteurs des faces
fondamentales. fondamentales.

61. Tout ce qui vient d’eétre dit des coordonnées trouve son
application 1mmeédiate dans le cas méme des ¢ndices du premier
complexe cristallin. En choisissant comme faces fondamentales les
3 faces du cube ef comme face-unité la face de I'octaédre dont 1'aréte
harmonique possible est la diagonale du cube passant par le point 0
et détermine le barycentre du triangle sphérique des r;, les constantes
du complexe cubique satisfont en effet les conditions du systeme des
coordonnées :

gy =1 #, =80 Ape==1
Cos. iy =—0 A =] cos A, =0

Pour le systeme de référence choisi, les indices entiers des
faces et aretes du complexe cubique et leurs coordonnées sont donc
les mémes valeurs.

Pour chaque face du complexe, Pour chaque aréte du complexe,
les cos ¥, de ses angles d’inci- | les cos ¢, de ses angles d’incidence
dence par rapport aux arétes fon- | par rapport aux faces fondamen-
damentales, sont donc entre eux | tales(puisquesin A; —1),sontdonc
dans le rapport de 3 nombres en- | entre eux dans le rapport de 3

tiers quelconques : nombres entiers quelconques :
COS Dy 1 COSPy 1COSPy —M:n:p COS 91 1 COS ¥, : COS Jy =M :N: P
Pour chaque face du complexe, Pour chaque aréte du complexe,

sa forme quadratique @(cos ¢ cos ) | sa forme quadratique w(cos 9 cos 9)
correspondante, ainsi simplifiée | correspondante, ainsi simplifiée
puisque sin A, =1 etcos A; =0, | puisque sin A; = 1 et cos a; =0,
se réduit a l'unité : se réduit a I'unité:

cos?9, -+ cos?d, -+ cos?9; =1 cos?9; + cos?d, 4+ cos?y9; —1

(Cest la relation originelle entre la somme des carrés des cosinus-
directeurs d'un vecteur quelconque par rapport au systéme d’axes
rectangulaires passant par son origine.



Les indices de chaque face du com-
plexe cubique sont ceux de son aréte
normale (§ 43). Les angles d'incidence
de chaque face par rapport aux arétes
fondamentales étant les amgles d’inci-
dence de l'aréte normale par rapport
aux faces fondamentales avec le systéme
de référence choisi, les coordonnées ¢’est-
d-dire les cos ¥; de chaque face du com-
plexe cubique sont également les coor-
données ou les cos ¥; de son aréte nor-
male. Leur fonction linéaire de la forme
(36) a donc encore pour valeur 4 ¢’est-
d-dire Tunité,
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Les indices de chaque aréte du com-
plexe cubique sont ceux de sa face nor-
male (§ 43). Les angles d’incidence de
chaque aréte par rapport aux faces fon-
damentales étant les angles d'incidence
de la face normale par rapport aux aré-
tes fondamentales avec le systéme de
référence choisi, les coordonnées ¢’est-a-
dire les cos J; de chaque aréte du com-
plexe cubique sont également les coor-
données ou les cos ¥ de sa face nor-
male. Leur fonection linéaire de la forme
(36) a donc encore pour valeur 4 c’est-
a-dire 'unité. -

Le cos # de l'angle d’incidence d'une face et d'une aréte quel-

conque est la fonction des cos 9,

de celte face et de cette aréte :

cos ¥ = cos . cos?, + cosd,. cosd, + cosd,. cosi,

Le cosinus et le sinus de I'an-
gle de 2 faces sont les fonctions
de leurs cos ¢; et cos 9/ :
cosg—cosd, cosd)| 4cosidcosd), 4 cosd e
sing—\/ (cosd, cosd—cosd,c.94)*+ () +( )

Le cosinus et le sinus de I'an-
gle de 2 arétes sont les fonctions
de leurs cos 9; et cos 9, :

cosy—=cost), cosl| + cosd,cosd),+ cosd, e

sinyp=\/ 7czoﬁsvz’)'.,cosil{‘_cagﬁig.ﬂt{)_"‘:i—“ 1 T
/ \( 2 3

Enfin puisque les coordonnées du complexe cubique sont égale-
ment ses indices (naturellement uniquement toujours pour le systéme
de référence choisi), le parameétre 2 de ces coordonnés est une quan-
tité rationnelle et puisque nous avons: (§ précédent)

— sin uu”
sin u’u”

le rapport de position de chaque
face du complexe cubique par rap-
port & 2 autres quelconques qui
lui sont tautozonales, est une quan-
tité rationnelle. Ce parametre ra-
tionnel peut done valoir 1 ou —1;
par le fait pour chaque couple de
faces d'une zone quelconque du
complexe cubique, la face bissec-
trice est une face possible et ap-
partenant au complexe.

e Siﬂxfﬂ_
le rapport de position de chaque
aréte du complexe cubique par rap-
port & 2 autres quelconques qui
lui sont coplanaires, est une quan-
tité rationnelle. Ce parameétre ra-
tionnel peut donc valoir 1 ou —1;
par le fait pour chaque couple
d’aretes d’une zone quelconque d’a-
rétes du complexe cubique, I'aréte
bissectrice est une aréte possible
et appartenant au complexe.




CHAPITRE X

62. Sur la surface de la sphere de rayon-unité, les 4 droites
sphériques qu’y découpent 4 faces quelconques du complexe cristallin,
ou les 4 points d’affleurement de 4 quelconques de ses arétes, nous
fournissent done par déduction zonale, le réseau complet des droites
et points d'affleurement du complexe total, c’est-a-dire par le fait les
directions dans l'espace de toutes les faces et arétes possibles du
cristal. Rapporté au systeme de référence de ces 4 faces ou arétes
¢lémentaires, le faisceau de ces directions est le faisceau (au sens
figuré) des faces et aretes a indices rationnels ; mais comme jusqu'ici
seuls les rapports des constantes w; et »; et des indices u; et x,
entratent en ligne de compte, ni les longueurs des 3 axes-unités sur
les aretes fondamentales, ni1 les tenseurs des arétes el des vecteurs
des faces ne sont encore déterminés d’'une maniére absolue.

Puisque la longueur des arétes et la grandeur des faces du eristal
n'est en principe limitée en aucune maniére, fixons donc arbitraire-
ment la longueur de l'aréte-unité ou la grandeur du triangle découpé
sur la face-unité déplacée parallelement a elle-meme (fig. 8), et déve-
loppons maintenant dans l'espace le noyau du complexe erislallin
constitué de ses faces et arétes élémentaires, et représentant son
systeme complet de référence, tel que nous 'avons établi au chapitre V.

La déduction zonale partant des
4 aretes élémentaires 1, 1, 1,, I,
nous donne successivement (fig; 7),

63. La déduction zonale partant
des 4 faces élémentaires [, 1, 1, L,
nous donne successivement (fig. 7),

en ne tenant compte que des faces,
les faces py, p., pss puis pi, pi, pi
harmoniquement conjuguées avee
les premiéres par rapport au cou-
ple correspondant de faces fonda-

en ne tenanl compte que des arétes,
les arétes @, m,, @y puis @; a,,x},
harmoniquement conjuguées avec
les premieres par rapport au cou-
ple correspondant d’arétes fonda-



mentales et dont I'intersection com-
mune est l'aréte harmonique r,
choisie comme aréte-unité du sys-
teme. L'aire fixée du lriangle
découpé sur la face-unité (déplacée
parallelement a elle-méme), déter-
minant la grandeur de ce déplace-
ment, et par le fait les longueurs
absolues des 3 axes-unités, le com-
plexe élémentaire de la fig. 7 four-
nit dans l'espace, pour peu qu'on
suive ce développement on s’en
rend compte sans peine, précisé-
ment tous les éléments du paral-
lélipipéede que nous allons cons-
truire. Les 3 fléches sont dans la
direction des plans p; et p{, au
point du croisement des arétes 7,
et 7] ; les 3 aréles intermédiaires
(p2ps). (psp1)s (pipe) sont les 3 gran-

70

mentales, et dont le plan commun
est la face harmonique l;, choisie
comme face-unité du systéme.
La longueur fixée de l'aréte-
unité, déterminant par le fait les
longueurs absolues des 3 axes-
unités et ainst les dimensions re-
latives des faces et arétes déduites,
le complexe élémentaire de la fig. 7
fournit dans l'espace, pour peu
qu'on suive ce développement on
s'en rend compte sans peine, pré-
cisément tous les éléments du pa-
rallélipipede que nous allons cons-
truire. Les 3 fléches sont au point
de croisement des arétes z; et 7]
et dans la direction des plans p;
et pi; les 3 plans intermédiaires
(my7;), (757,), (,71,) sont les 6 plans
triangulaires (2 a 2 paralleles) au.

Arétes 7, et 7} harmon. conjug. avec t, et 1,
et plans p, et p; harmon. conjug. avec |, et [,

Fig. 9.

Arétes x, et a!, har-

mon. conjug. a r, et
t, et plans p, et p;
harmon. conjug. a [,
et L.

Arétes 7, et 7] harmon. conj. avec 1, et t,

et plans p, et p/ harmon. conj. avec L, et L.
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des diagonales autres que r,, qui | tres que le plan diagonal (ABC),
est elle-méme l'arete-unité, inter- qui est lui-méme la face-unité,
section commune des 3 plans p{. | plan commun des 3 arétes x].

Juxtaposons ensuite sur les 6 faces de ce parallélipipéde primor-
dial 6 parallélipipéedes identiques, et de la continuons a les entasser
a I'indéfin1 dans toutes les directions possibles. Les sommets de tous
ces parallélipipédes constituent un assemblage de points réguliérement
distribués dans D'espace sur les 3 directions ‘paralléles aux aretes fon-
damentales du parallélipipede primitif. Les longueurs de ces arétes
étant prises comme axes-unités, tous ces points ont des coordonnées
numériques entiéres, et de toute évidence ce sont la les seuls points
jouissants de cette propriété par rapport a ces axes. Nous appellerons
désormais un Rawmgitter * un tel assemblage de points dans I'espace,
et le parallélipipede primordial qui I'engendre, le parallélipipede élé-
mentaire du Raumgitter.

64. Faisons pour le moment abstraction de toutes les arétes et
diagonales paralleles des parallélipipedes et ne laissons subsister que
le faisceau de droites partant du point 0 dans toutes les directions
et le réunissant a chaque sommet du Gitter. Tous les points dont
les coordonnées numériques ont entre elles les mémes rapports se
trouvent évidemment sur la méme droite, et le premier point sur
chaque droite a partir du point 0 a nécessairement pour ses 3 coor-
données des nombres premiers entre eux, sinon elles seraient divi-
sibles par un facteur commun, et nous aurions sur la méme droite
un point plus rapproché que le premier du point 0.

Or toute aréte possible du cristal est représentée par le vecteur:

My Xe - o Xoty - f1gXs Ty
dans lequel, les u; étant précisément les longueurs prises pour axes-

) Jai employé le terme allemand : Raumgitter ou Gitter tout court au lieu
des termes francais équivalents : assemblage réticulaire ou réseau spatial et me suis
réservé le mot francais: réseau tout court pour signifier la méme chose dans le
plan (§ 67) au lien des termes: plan réticulaire ou réseau plan, uniquement pour
avoir & ma disposition 2 mots trés courts essentiellement distinets pour les répéter
dés maintenant aunssi souvent (u’il sera nécessaire dans la suite de mon travail
en toute facilité et sans crainte de confusion. Jemploierai indifféremment les ex-
pressions : points et sommets pour signifier les points constituant le Raumgitter.
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unités des 3 arétes fondamentales, les indices x; ne sont autre chose
que les coordonnées numériques des différents points de cette aréte
rapportée a ces meémes axes. Mais ces indices x; sont rationnels pour
toutes les aretes du cristal et uniquement pour elles ; c¢’est-a-dire sont
entiers pour certains points de ces arétes et des fractions ayant
entre elles les mémes rapports que ces nombres entiers pour les points
intermédiaires. Puisque les sommets du Gitter sont tous les points
et les seuls de coordonnées numériques entiéres, 1l s’ensuit tres claire-
ment que toutes les aretes du cristal et seules ces arétes passent par
ces points, et donc que ce faisceau (au sens large) de droites joignant
le point O a tous les points du Gitter, n'est autre que le faisceau
ou le complexe méme des arétes possibles du cristal.

D’apres ce que nous venons de dire plus haut, chacune de ces
aretes est ainsi le support d'une mfinité de sommets du Raumgitter,
dont le premier a partn du pomnt O a pour ses coordonnées numé-
riques, c'est-d-dire pour indices x;, des nombres premiers entre eux.
Le segment OT qui est la distance du point O & ce premier point
sur chaque aréte, mesure en outre la distance constante entre 2 points
successifs quelconques de cette meéme arete; en effel, ces points sue-
cessifs sont obtenus a partir du premier en multipliant par 2, par 3, ete,,
ses coordonnées numériques premieres entre elles, ¢'est-a-dire en dou-
blant, triplant, ete., ses composantes sur les axes-unités et par le fait
sa propre distance au point O. Nous appelons ce segment OT le
segment preamitif ou le parametre de laréle qui le supporte, et sa
longueur nous est immediatement donnée par la racine carrée de la
forme quadratique w(xx), les indices x; v prenant les valeurs absolues
entieres et premieres entre elles, correspondantes au premier point
sur cette arete.

Enfin puisque seuls lous les plans de jonction de 2 quelconques
de ses arétes, sont des faces possibles du cristal, seuls tous les plans
que détermient avec le point O, 2 sommets quelecong: s du Gitter,
sont ces faces possibles, et en un mot, le complexe des faces et
aretes cristallines n'est autre que celur des droites et des plans pas-
sant par le point O, et déterminés par chaque sommet ou chaque
couple de sommets du Raumgitter.

65. La situation du point O est absolument celle de tous les
points du Gitter; chacun de ces poimnts est en effet le sommet com-
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mun de 8 parallélipipedes élémentaires, sur lesquels s’entassent &
I'indéfini dans toutes les directions des parallélipipedes identiques. Le
groupement dans 'espace des sommets du Gitter est done le méme
autour de chaque point qu'il est autour du point O; en dautres
termes, chaque point doit étre entouré par les autres d’une maniere
absolument pareille & celle dont est entouré son voisin. Ce principe,
évident & premiére vue, qui n’est en quelque sorte que l'expression
méme de la construction parallélipipédique du Raumgitter et que nous
pourrions appeler le principe de la syméirie du Gilter (en prétant
pour l'instant au mot: symétrie, un sens plus large qu'un sens
exactement géométrique), est la source de toutes ses autres propriétés
qui en découlent d’ailleurs sans aucune difficulté.

66. Sur chaque aréte I'un quelconque A des points qu'elle sup-
porte (fig. 10), exige de concert avec le point O, puisque chacun d’eux
doit étre entouré sur cette arcte de la meme maniére que lautre, un
autre point dans chaque sens a une distance égale a la distance des
2 premiers, et par le fait une infinité d’autres points successifs, a
la meme distance sur chacune des demi-droites 1ndéfinies que cons-
litue Paréle partagée par le point O. Si c'est le sommet T le plus
rapproché de O, qui est pris avee lui comme points de départ, nous
avons ainsi U'infinité méme des sommets du Raumgitter situés sur les
2 demi-droites de l'aréte, a distance constante égale au parametre,
comme nous venons déja plus ou moins de Pétablir au § précédent;
les indices x; des points que supporte la demi-droite opposée sonl
les indices pris en signe contraire des points de la demi-droite directe.

A A A A

Fig. 10.

Puisque maintenant chaque autre pomt du Rawngitter doit étre
dans une situation 1identique a celle du pomnt O et des ditférents
points de l'aréte considérée, chaque autre sommet du Gitter doit done
se trouver sur une rangée parallele de points de méme équidistance.
[’ensemble des points du Raumgitter total est done completement
représenté par un faisceau (au sens propre du terme) d’'un nombre
indéfin1 de rangées de points équidistants, toutes paralleles et iden-
tiques a la rangée de points que constitue I'une des arétes quelconques
du complexe.
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67. Sur chaque plan P les 3 points qui le déterminent, les 2
points quelconques A et B du Gitter et le point O, nécessitent a eux
trois, puisque chacun d’eux doit étre entouré dans ce plan de la
méme maniere qu'ils entourent chacun des 2 autres, 9 autres points
répartis sur le pourtour du triangle des 3 premiers, a des distances
égales aux cotés du triangle (fig. 11) et par le fait une infinité d’autres
poinls sur ce méme plan, distribués régulitrement comme les som-
mets de parallélogrammes identiques, juxlaposés dans toutes les di-
rections, et formant ainsi une sorte de réseau a maille parallélo-
grammique, qui est pour le plan qui le supporte exactement ce qu’est
le Raumgitter pour 'espace qu’il remplit.

Si nous prenons comme points de départ avec le point O, les
2 sommets du plan qui en sont les plus rapprochés, sans étre évi-
demment sur la méme droite avec le point, les sommets du réseau
parallélogrammique obtenu doivent absorber sans exception tous
les points du Raumgitter situés sur ce plan. S’il existait en effet en
quelque endroit du plan, un point du Gitter localis¢ a l'intérieur ou
sur lun des cotés du parallélogramme générateur, en vertu du prin-
cipe de la symétrie, ce point se retrouverait pour chacun des paral-
lélogrammes identiques (fig. 12), et de quelque maniére que ce soit,
nous aurions un point plus rapproché du point O que les 2 sommets

T et T.

Fig. 11 et 12.

Le réseau parallélogrammique construit sur les 2 parameétres
minéma du plan, implique donc a lui seul linfinité des réseaux pa-
rallélogrammiques a maille plus grande, que détermine avec le point O
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chaque autre couple de points quelconques A et B situés dans ce
plan. Nous l'appellerons. simplement par rapport aux autres et pour
I'en distinguer, le réseau primitif du plan P, et son parallélogramme
générateur, celui dont les juxtapositions successives fournissent fous
les sommets du réseau, le parallélogramme élémentaire du meéme
plan.

St nous prenons comme réseau primitif du plan P, le réseau
parallélogrammique de la fig. 11, en y supposant que les points A
et B sont les points T et T’, on voit sans peine déja que chaque
couple de cotés (OA, OB), (BO, OC), (OC, OD) du triangle OTT" dé-
termine également ce parallélogramme élémentaire. Tous les couples
de parameétres, dont le parallélogramme correspondant fournit ainsi
par ses juxtapositions successives tous les sommets du réseau, seront
appelés les couples comjugués du résean primitif donné.

68. Les mémes conclusions sont a tirer 11 qu’a la fin du para-
graphe précédent. Puisque la situation du point O et des différents
points du réseau primitif du plan P, doit étre de nouveau celle de
tous les points du Gitter, chacun d’eux doit étre sommet d’un réseau
de meéme direction dans l'espace et en tout pareil au premier. La
superposition d’'un nombre indéfini de réseaux paralléles et 1dentiques
au réseau primitif d'un plan quelconque du complexe, représente
donc également 'ensemble des points du Raumgitter total.

Dans un méme plan, les rangées
paralleles a la méme aréte sont
équidistantes (§ 66).

Si nous prenons en effet le
point B, (fig. 11), le plus rap-
proché de O, sur l'aréte OB doit
exister le point B’ tel que OB=
OB’, et pour chaque aréte menée
par le point O, les 2 rangées pa-
ralleles passant par B et B’ en
seront équidistantes. La méme
preuve se répeéte pour les points
B, B” et 0O, et ainsi de suite.
Toutes les rangées” d'un réseau
paralléles & la méme aréte, sont

Dans l'espace, les réseaux pa-
ralleles au réseau primitif d'un
meéme plan sont équidistants.

Sur une aréte menée par le
point O en un point B quelconque
du premier réseau supérieur, nous
avons un point B’ a égale dis-
tance en sens contraire, et pour
chaque plan passant par le point
O, les 2 réseaux paralleles par
B et B’ en sont équidistants. La
méme preuve se répéte pour les
points B, B” et O, et ainsi de
suite. Tous les réseaux d’'un Raum-
gitter, paralleles au méme plan,
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sont donc équidistants et les 2 ré-
seaux contenant B et B’, étant les
plus rapprochées de laréte, sont | plus rapprochés du plan, sont
appelées ses 2 rangées limi- | appelés ses 2 réseaux plans limi-
trophes. ' trophes.

donc équidistantes, et les 2 rangées
passant par B el B’, étant les

L’ensemble de tous les points qui constituent le Raumgitter
peut donc se concevoir sous une double infinité de formes que l'on
se représente sans peine, et chaque élément du complexe détermine
'une de ces formes.

A chaque aréte correspond le faisceau constitué du nombre in-
défini de ses rangées paralleles et identiques de points équidistants:
la distance de ces rangées est indéterminée, mais dans un méme plan
elles sont équidistantes ; et si nous donnons avec le point O, la pe-
sition du point A déterminant I'aréte et son parametre, et celle d'un
point B quelconque de I'une de I'infinité des rangées limitrophes qui
I'entourent, il est facile de se rendre compte que le réseau primitif
lut meéme du plan (OAB) est entierement déterminé (§ 70).

A chaque plan correspond le systéme de ses réseaux paralléles
en nombre indéfini, dont la maille a ses cotés paralleles et égaux a
ceux du parallélogramme élémentaire du plan. Ces réseaux paralleles
sont equidistants ; et si, avec les 3 points O, A el B déterminant le
plan et son réseau primitif, nous donnons la position d’'un 4" point
(. quelconque de T'un des réseaux limitrophes, la position de tous
les réseaux paralleles et ainsi de tous les points du Gitter, est par
le fait encore completement déterminée (§ 75).

69. Si nous revenons maintenant aux définitions données a la
fin du § 67, l'unique condition a laquelle doit satisfaire un parallélo-
gramme d'un réseau pour étre élémentaire, est done qu'il ne renferme
a lui seul que 4 points du Gitter situés en chacun de ses sommets;
ses juxtapositions successives reproduisent en effet dans ce cas né-
cessairement tous les sommets du réseau.

De cette condition découle immédiatement que les aires de tous
les parallélogrammes élémentaires d'un réseau sont égales. En effet sur
une certaine surface imdéfinie™ du réseau suffisamment grande, & chaque

) Cette démonstration donnée dans; Sommerfeld, Geomelrische Cristallogra-
phie, p. 8%, telle quelle, n’est pas rigoureuse au point de vue mathématique. Voir
plus loin § 80.
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parallélogramme élémentaire p’, comme a chaque parallélogramme élé-
mentaire p, correspond exactement 4 sommets du Gitter. Le nombre
des sommets contenus dans cette surface considérée étant naturellement
le méme qu’elle soit constituée de parallélogrammes p ou de parallé-
logrammes p’, 1l s’ensuit que le nombre des parallélogrammes p con-
stituant cette surface est égal au nombre des parallélogrammes p’
constituant la méme surface, et donc que les aires de ces parallélo-
grammes sont équivalentes, comme 1l fallait le démontrer.

70. La méme condition nous permet d’ailleurs de déterminer
tres facilement tous les parallélogrammes élémentaires, c’est-a-dire
tous les couples conjugués d’un réseau parallélogrammique donné;
el 'on verra sans peine que les résultats trouvés se trouvent en
réalité impliqués déja dans les conclusions du § 68.

Les cotés d'un parallélogramme élémentaire ne sauraient étre
d’abord que des segments primitifs ou des paramétres du réseau.
Soit done un parametre quelconque OT; un autre parameélre ne
pourra former avec lui un couple conjugué que s’il se termine sur
I'une ou Tautre de ses 2 rangées limitrophes. S’il dépasse en effet
I'une de ses 2 rangées, ce ne peut étre qu’en passant par un som-
met du réseau, et dans ce cas ce n'est plus un paramétre, ou en
coupant la rangée entre 2 de ses points successifs, mais alors le coté
parallele par le sommet T la coupe également entre les 2 points
suivants, et le parallélogramme, enfermant un point dans son inté-
rieur, n'est plus élémentaire.

A chaque parameélre d'un réseau correspond donc une double
infinité de parallélogrammes élémentaires, ou une double infinité de
parameétres conjugués, se terminant en chaque point des 2 rangées
limitrophes. Sans méme qu’ill nous soit nécessaire de tenir compte
de la preuve du § précédent, tous ces parallélogrammes élémentaires
ont déja la méme surface; ils ont en effet la méme base, le para-
metre de l'aréte, et des hauteurs égales, la distance de l'aréte a la
rangée limitrophe.

Mais s1 nous la faisons intervenir, puisque toutes les aires égales
des parallélogrammes élémentaires du réseau sont comprises entre un
parameétre quelconque et ses 2 rangées limitrophes, les longueurs
des paramétres sont en raison inverse de la distance des rangées
paralléles, ou en d'autres termes: la densité des points sur les
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rangées paralleles d’un réseau est en raison inverse de leur équi-
distance.

Naturellement s1 au parametre OT, nous accouplons un segment,
primitif ou non, se terminant en un point quelconque de I'une de
ses 2mes rangées paralleles, le parallélogramme qu’ils  déterminent est
double du parallélogramme élémentaire. Il serait triple, quadruple,
etc., pour les rangées suivantes, et en s'exprimant encore dune
maniére générale. |

A chaque parametre du réseau correspond une double infinité de
parallélogrammes multiples du parallélogramme élémentaire ; le nombre
qui représente ce multiple donne le rang de la rangée paralleéle qui
porte le coté du parallélogramme opposé au parameétre.

71. Nous obtenons sans peine la surface d'un parallélogramme
quelconque et celle du parallélogramme élémentaire d’un plan, des
que nous sont donnés ses indices.

En effet solent x{ et x{ les indices ou coordonnées de 2 points
quelconques du réseau d'un plan représentant une face cristalline
donnée. Le tenseur du produit vectoriel des 2 vecteurs coincidant
avec les segments que ces 2 points interceptent jusqu’au point O sur
les 2 arétes qu’ils déterminent :

Vixiry + poxiry ++ pxity) (x i + puxiry 4 pxir,)
=ty tlysina (X5 X5~ 5X5 ), +pgpy sin a, (X ;X7 =X 1 X5 )+ 2y g 5.0, (X 1 X5 —x5x7)L;

nous donne la surface du parallélogramme construit sur ces 2 seg-
ments pour cotés, en fonction des valeurs (x'x”),, (X'X”),, (X"X")s,
nécessairement entiéres puisque les x{,x{ sont entiéres comme coor-
données de points du Gitter, et qui sont les éndices mémes (31) du
plan donné.

Les produits wypgsina, , papy sina, , gy, sinay , n’étant autres
que les surfaces des parallélogrammes élémentaires des plans fonda-
mentaux [, L, I, que nous pouvons appeler parallélogrammes-
unités, nous constatons d’abord, puisque les vecteurs u,u;sina,l;,
sty sin ayly, pqu, sinagls, sont les vecteurs représentant ces parallélo-
grammes-unités, que ces indices entiers du plan ou de la face cristal-
line en question sont en méme temps les composanies du vecteur
d’'un parallélogramme quelconque de cette face par rapport a ceux
des parallélogrammes-unités ; tout comme les indices x; sont les
composantes entieres par rapport aux axes-unités u;r; du segment
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pris sur laréte correspondante a partir du point O, jusqu’a I'un
quelconque des points du Gitter qu’elle supporte.

. . 4, U, U,
S1 nous mettons en facteur le quotient constant {J-fMifi, le pro-

duit vectoriel trouvé s’écrit comme autrefois (§ 31):

Elﬂ}%& lvl (X' x" ) b4 (x7x") L, 40y (x"x"); b (37

et la surface du parallélogramme cherché est représentée par la racine
de la forme quadratique:

H B s

Vel s (3]

72. Or les 2 triples d'indices entiers x; et x{ peuvent prendre,
et cela indépendemment l'un de Tautre, toutes les valeurs entiéres
satisfaisant le couple d’équations :

X1y +X2U2+ X3U3=0 (I)

X{u; 4 xgu, + xfuy =0

ou, ce qui revient au méme le systeme équivalent

X3X3 — X3X5 = ol
des 3 équations: X4x] — XiX§ = pu,
X{X3 — X3X] = ouy

dans lesquelles, les u; étant les indices entiers premiers entre eux
du plan, o doit étre, puisque ces composantes ou; sont entiéres, un
facteur entier quelconque de proportionnalité.

Si done nous donnons un triple quelconque x{, x5, x4 d'indices
entiers premiers entre eux, (c’est-a-dire représentant un paramétre),
satisfaisant son équation correspondante (I), chaque triple x7{, x4, x%,
satisfaisant la seconde équation, combiné avec le premier dans les 3
équations suivantes, fournira une certaine valeur du facteur de pro-
portionnalité o, et son segment correspondant déterminera avec le

arameétre donné un certain parallélogramme dont I'aire a pour mesure:
p 8

I —
0! ifij V(uu)

Or nous venons de voir au § 70 que tous les segments déter-
minant avec un paramétre donné des parallélogrammes égaux, se
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terminent en chaque point de T'une de ses rangées paralleles. Tous
les triples x{ qui, satisfaisant I'équation correspondante (I), donnent
une méme valeur de o, sont done les indices des points d’'une meéme
rangée; et x{, x5, x5, étant les indices donnés de Uextrémité d'un
parametre quelconque, le systeme des 3 équations :

x;xy — x4x5 = Cu,
x;x7 — x7x5 = Cu,
x;x§ —x5x7 = Cuy

représente dans le plan d'indices u; (toujours entiers et premier entre
eux), chacune de ses rangées paralleles. C est un facteur constant
pour la méme rangée, mais prenant successivement toutes les valeurs
entieres ; a 2 valeurs absolues égales, mais de signe contraire, cor-
respondent les 2 rangées paralleles a la méme distance de part et
d’autre du parameétre, c’est-a-dire de 'aréte donnée.

Naturellement pour la plus petite valeur de C qui est C-=—==1,
les x? doivent prendre également parmn d’autres leurs plus petites
valeurs, (en tous cas seules des valeurs premieres entre elles et les
points correspondants ne sauraient étre tous sur une rangée qui ne
serait pas lhmitrophe); et les rangées correspondantes sont les 2
rangeées les plus rapprochées de l'aréte. Les 3 équations:

X3X§ — X3X§ — 4y,
X3X] — XXz =Hu,
X{X; —Xx3xX{==%u,

dans lequel les u; sont les indices entiers et premiers entre eux d'une
face quelconque, est la surface du parallélogramme élémentaire du
résean (u’elle contient.



CHAPITRE XI

73. Appliquons enfin au Raumgitter lui-meéme développé dans
I'espace, son principe de symétrie du § 65, qui vient de nous donner
déja trés simplement les propriétés de ses plans et de ses arétes.

La présence dans le Raumgitter des 3 points quelconques A, B,
C, et du point O, entraine, puisque chacun deux doit étre entouré
d'autres points du Gitter de la méme maniére qu’eux-mémes entou-
rent chacun des 3 autres, celle de 24 autres points du Raumgitter,
répartis de nouveau sur le pourtour du tétracdre des 4 premiers, a
des distances égales aux arétes du tétraedre, comme le montre la
fig. 13. En répétant de 1a in-
définiment P'application du
méme principe, 1l se trouve
donc que dans le Raumgitter
lui-méme, une infinité de ses
points sont distribués paral-
lélipipédiquement dans I'es-
pace, autour du point O, et
sont ' les sommets que four-
nissent les juxtapositions suc-
cessives dans toutes les di-
rections du parallélipipede
construit sur les 3 arétes
OA, OB, OC; ils forment
ainsi un nouveau Raumgitter
de parallélipipede = élémen-
taire (OABCD), totalement
impliqué dans le Raum-
gitter primitif. De méme que
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le réseau primitif d’'un plan implique l'infinité de ses autres réseaux
parallélogrammiques, le Raumgitter dont il a été question juqu’ici,
construit sur les 3 paramétres minima wu;t,, renferme donc égale-
ment une infinité d’autres Raumgitters & maille parallélipipede plus
grande, que déterminent avec le point O chaque triple A, B, C de
points quelconques du premier. Nous l'appelons le Raumgitter primalif
uniquement encore pour le distinguer de ceux qu'il renferme, qui sont
d’ailleurs d’une nature identique, et nous désignerons par les lettres
des sommets de son parallélipipede élémentaire 1'un quelconque de
ceux-cl.

Remarquons que nous ne venons de faire en outre autre chose
que d’établir d’'une maniére générale que 4 points quelconques O,
A, B, C, de l'espace, dont il n'y en a pas 3 coplanaires, exigent a
eux seuls, dés que la condition est posée que chacun d’eux soit en-
touré¢ dans l'espace de la méme maniére que chacun de ses voisins,
la construction parallélipipedique du Raumgitter telle que nous 'avons
établie. Le principe que nous avons appelé la symétrie du Raum-
gitter, au sens large du mot, est donc bien en quelque sorte sa
condition nécessaire et suffisante, ou en d’autres termes, sa propriété
fondamentale qui 'exprime tout entier.

74. Le volume du parallélipipéde élémentaire du nouveau Raum-
gitter quelconque (OABCD) s’obtient immédiatement, étant données
les coordonnées x; , x7,x7 des 3 points A, B, C de 'ancien Gitter
qui le déterminent avec le point O. Ces coordonnées sont en effet
les composantes par rapport aux axes-unités primitifs u;r; des vec-
teurs de ses arétes OA, OB, OC; et si nous appelons tout naturelle-
ment ces vecteurs, en tant que axes-unités d’'un nouveau Raumgitter,
wity, mirs, wiri, ils sont en direction et en valeur absolue les 3
vecteurs que représentent les seconds membres : |

MAT] = XYy M X 5Ty - pgX ity
M5Ts = XY - My X5T — (X 5Ty
pETE = X7ty X5 4 X3,
Leur produit scalaire de la forme :
pimps viVrivg

que nous calculons sans peine, en multipliant scalairement par I'un
deux le produit vectoriel des 2 autres et qui s’écrit tres bien:
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X1 Xz Xj
x| r Vo, (39)

X1 Xy Xj

"
My My g Xy X

est le volume du parallélipipéde cherché.

Si les 3 points A, B, C sont tels que le parallélipipede qu’ils
construisent, ne contient que 8 points du Raumgitter primitif, situés
en chacun de ses sommets, les juxtapositions successives de ce pa-
rallélipipede fournissent exactement les sommets mémes du Raum-
gitter primitif. C’est alors un parallélipipede élémentaire du Gitter
primitif lui-méme, et nous disons dans ce cas que les 3 segments
OA, OB, OC, qui ne peuvent étre dans ces conditions que des para-
meétres, forment un ériple conjugué du Raumgitter primitif.

Tous les parallélipipedes élémentaires d’un Raumgitter sont
égaux. Cela découle directement de la condition qu’ils n’absorbent
que 8 points du Raumgitter, dont un en chacun de leurs sommets,
par un raisonnement identique & celui qui a été fait au § 69 pour
les parallélogrammes élémentaires d’'un réseau. Puisque le produit
scalaire :

Uy Mg rlvrzr:-} = gy 5 D (§ 9)

est le volume de son parallélipipede élémentaire primordial, construit
sur ses 9 axes-unités, 1l doit étre également le volume de chaque
autre de ses parallélipipedes élémentaires; et la condition algébrique
a laquelle doivent satisfaire les coordonnées xi, x7, x7, pour que les
3 sommets A, B, (, déterminent un triple conjugué du Raumgltter

donné, est donc le détermimant équation :

T X& X3

o

" " ”
X{ X3 X3

(40)

14 " e

X7 X% X%

Si T'on jette un coup d’ceil sur le Raumgitter de la fig. 13, au
paragraphe précédent, on voit sans peine que chaque triple non co-
planaire: (OA, OB, OC), (OA, OC, OA’) (OA, OC, OC’), ete. que
fournissent les 6 aretes: OA, OB, OC, AB, BC, CA, du tétraédre
fondamental, détermine également déja son parallélipipéde élémen-

taire. Les coordonnées: (100, 010, 001), (100, 001, 110), (100, 001,
011) des points (A, B, C), (A, C, A”), (A, C, C’), etc., satisfont en effet la

condition posée, et les triples de paramétres correspondants sont done
des triples conjugués du Raumgitter en question.



75. 11 nous est de nouveau tres simple de déterminer tous les
parallélipipedes élémentaires d’'un Raumgitter, et encore ici les résul-
tats trouvés se trouvent en réalité déja contenus sous une autre forme
dans les conclusions du § 68.

Les faces d'un parallélipipede élémentaire ne sauraient étre
d’abord que des parallélogrammes élémentaires, n’absorbant que 4
points du Raumgitter, un en chacun de leurs sommets. Soit donc le
couple conjugué des 2 parametres OT et OT’ et déterminant le paral-
lélogramme  élémentaire et ainsi le réseau primitif du plan (OTT’);
un 3¢ parametre OT” ne pourra former avec eux un friple conjugué
que s1l se termine en un point de l'un ou lautre des 2 réseaux
limitrophes. Sl les dépasse en effet. ce ne peut étre qu’en passant
par un sommet du Gitter, et dans ce cas, ce n'est méme plus un
parameétre ; ou en percant le réseau sur I'un des cotés ou a I'intérieur
de son parallélogramme élémentaire ; mais alors les aretes paralleles
par les sommets T, T" et T”, (T” est le 4™ sommet du parallélo-
gramme OT'T’) le percent également en un point symétrique des paral-
lélogrammes élementaires adjacents, et de quelque maniere que ce soit,
le parallélipipede construit porte nécessairement sur ses faces ou en
son Intérieur un ou deux sommets du Raumgitter de trop pour étre
élémentaire.

A chaque parallélogramme élémentaire d'un Raumgitter, corres-
pond donc une double infinité de parallélipipedes élémentaires; a
chaque couple conjugué de parametres OT et OT’ déterminant ce
meéme parallélogramme élémentaire, une double infinité de triples
conjugués, dont les 3mes parametres se terminent en chaque point
des 2 réseaux lmitrophes. Tous ces parallélipipédes élémentaires ont
le méme volume; ils ont en effet la méme base, le parallélogramme
élémentaire donné, et des hauteurs égales, la distance du plan au
réseau limitrophe. Mais puisque non seulement ces parallélipipedes
élémentaires de méme base, mais tous les parallélipipedes élémentaires
d’'un Raumgitter sont équivalents ; comme 1ls ont d’autre part tous,
pour dimensions, le produit d'un parallélogramme élémentaire par sa
distance au réseau limitrophe, les aires des parallélogrammes élé-
mentaires des plans sont en raison inverse des distances de leurs
réseaux paralleles, ou en dautres termes: la densité des points sur
les réseaux paralleles d’'un Raumgitter est en raison énverse de leur
équidistance.



St au couple conjugué OT et OT’ nous associons un segment,
primitif ou non, se terminant en un point quelconque de l'un ou
lautre des 2mes réseaux paralleles, le parallélipipede qu’ils construi-
sent est naturellement double du parallélipipede élémentaire. Il serait
triple, quadruple, ete., pour les réseaux suivants, et en s’exprimant
d’'une maniere tout a fait générale: a chaque couple conjugué de
parametres, déterminant le parallélogramme élémentaire d’un plan
quelconque du Raumgitter, correspond une double infinité de parallé-
lipipedes anultiples du parallélipipede élementaire. Le volume de
chacun d’eux est le produit scalaire trouvé au § précédent :

4 ’

X{ X, Xjg

" ”

IX{ X3 X3

" " o I i

X7 %7 X%

My s iy rl V r:l r:—’.

et, puisque 1, r,Vr,r, est le volume méme du parallélipipede
élémentaire, les coordonnées xi{, x{, x7 des 3 points A, B, C, qui
les déterminent avec le point O, satisfont done I'égalité ou C est un
multiple entier quelconque :

’

X7 X5 X&

)

x ¢ xil =4
2 x5 xf

Cette équation représente done pour I'un quelconque des 3 couples
conjugués (x;x7), (x7x7), (xix7), chacun de ses réseaux paralléles.
Le multiple G, constant pour un méme réseau, donne le rang de ce
réseau dont il détermine I'équation; & 2 de ses valeurs égales et de
signe contraire correspondent les 2 réseaux paralléles de méme rang
de part et d’autre du plan prinmtif.

Pour C— =1, nous retrouvons la condition algébrique pour que
les 3 points A, B, C, déterminent eux-mémes un parallélipipéde élé-
mentaire, mais avec sa signification complete; pour l'un quelconque
des 3 couples conjugués (x7x7), (x7x{), (xix7), la valeur-unité du dé-
terminant :

X{ X3 Xj
x{ x§ xj =41

mne " "

X7 X3 Xj

est en effet également 'équation de ses 2 réseaux limitrophes.
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76. Les 4 arétes r; ou les 4 faces [; (§ 63) qui ont déterminé
la construction du Raumgitter primitif et ainsi le déploiement dans
Pespace du complexe total des faces et arétes cristallines, étaient 4
arétes et 4 faces absolument quelconques du complexe du cristal.
Cette construction du Raumgitter primitif n’a dépendu d’ailleurs que
de la position relative de ces 4 arétes (s1 nous laissons de coté les
4 faces avec lesquelles on raisonnerait d’'une maniére toute pareille)
élémentaires 'une par rapport aux autres; les 3 arétes fondamentales
ont fourni les directions des arétes du parallélipipede élémentaire, et
I'aréte-unité a déterminé leurs proportions respectives; seule la lon-
gueur de celle-c1 a été fixée arbitrairement, pour préciser les dimen-
sions du Gitter, mais prise plus grande ou plus petite elle aurait
donné un Gitter en tout semblable au premier.

Le Raumgitter quelconque (OABCD), (§ 73), construit avec les 4
arétes du cristal OA, OB, OC, OD, puisque les 4 points A, B, C, D,
sont des points du Gitter primitif, doit donc aussi bien que celui-ci,
représenter la totalité du complexe des faces et arétes cristallines.
D’une part, tous ses points doivent donc étre situés sur les arétes
de 'ancien Gitter: ils le sont en effet, et méme coincident tous avec
des points de l'ancien Gitter, si nous prenons précisément le segment
OD (fig. 13) comme longueur de son aréte-unité. D’autre part, il doit
avoir des points sur chaque aréte du complexe, c’est-a-dire, OD étant
toujours la longueur de son aréte-unité, il doit absorber des points
du Gitter primitif sur chacune de ses arétes.

Réciproquement, 1l n’est pas de Raumgitter possible, représen-
tant ce méme complexe cristallin donné, qui n’ait pas tous ses points
compris, s1 nous fixons convenablement la longueur de son aréte-
unité, dans ceux du Raumgitter primitif. Pour représenter ce com-
plexe, 11 ne peut avoir en effet pour point de départ que 4 de ses
arétes (ou 4 de ses faces), mais comme le parallélipipéde élémentaire
que ces arétes déterminent a nécessairement, dés que nous prenons
pour longueur de l'aréte-unité un segment de l'ancien Gitter, un
point de celui-ci en chacun de ses 8 sommets, le Raumgitler total,
constitué par ses juxtapositions successives, a par le fait également
pour chacun de ses sommets un point du Raumgitter primitif.

Ainsi d’une part, chacun de cette infinité de Raumgitter (OABCD)
impliqués dans le Raumgitter primitif, comme ayant pour point de
départ 4 arétes cristallines, représente également le complexe du eristal ;



_ &7 —

d’autre part, tout Raumgitter représentant ce méme complexe, pour
une certaine longueur de son aréte-unité (ce qui d’ailleurs n’influe
aucunement sur la nature du Gitter et du complexe représenté), a
nécessairement tous ses points compris dans ceux du Raumgitter
primitif.

77. Ce résultat peut s’exprimer sous une autre forme peut étre
plus précise, a condition d’entendre par: supprimer des points sur
une aréte, les supprimer d’abord uniformément tout le long de I'aréte,
en maintenant 'équidistance entre les points qui subsistent, et en-
suite de la méme maniére supprimer les points correspondants sur
chacune des rangées paralléles.

Etant donné un Raumgitter primitif, nous pouvons a volonté
supprimer un nombre quelconque de points sur 3 quelconques de
ses arétes, sans que rien ne soit changé au complexe qu’il représente.
S1 nous appelons A, B, C, le premier point qui demeure sur chacune
des 3 arétes choisies, cela revient en effet & supprimer du Raum-
gitter donné, tous ceux de ses points qui n’appartiennent pas au
Raumgitter de parallélipipede élémentaire (OABCD), c’est-a-dire a
“remplacer le Raumgitter primitif par I'un quelconque des Raumgitter
qull implique. Le nombre de points supprimés de ce fait sur chaque
autre aréte du complexe, est complétement déterminé; les nouveaux
parametres et les nouveaux parallélogrammes élémentaires sont des
multiples entiers des parametres et des parallélogrammes élémen-
taires primitifs.

Etant donné un Raumgitter, nous pouvons a volonté ajouter
(en donnant & ce mot sa signification correspondante) un nombre
quelconque de points sur 3 quelconques de ses aréfes, sans que rien
ne soit encore changé au complexe qu'il représente. Si A, B, C, est le
premier point ajouté a partir du point O sur chacune des 3 arétes
choisies, cela revient inversement a remplacer le Raumgitter donné
par un nouveau Raumgitter primitif, de parallélipipede élémentaire
(OABCD), impliquant en lui tous les points du premier. Le nombre
des points ajoutés de ce fait sur chaque autre aréte du complexe est
complétement déterminé; les nouveaux parameétres et les nouveaux
parallélogrammes élémentaires sont des sous-multiples (fractions dont
le numérateur est 1) des parameétres et paralléelogrammes élémentaires
du Raumgitter donné.
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Enfin puisque les 2 opérations successives n’ont aucune influence
sur la nature du complexe représenté, dans un Raumgitter donné,
nous pouvons a volonté sémullanément supprimer des points sur 3
arétes quelconques et ajouter d’autres points sur 3 autres de ses
arétes. Le Raumgitter obtenu représente encore le méme complexe
que le premier, et les nouveaux parameétres et parallélogrammes élé-
mentaires sont alors des multiples rationnels des parameétres et pa-
rallélogrammes élémentaires primitifs.

Sommerfeld appelle les Raumgitters obtenus dans les 2 premiers cas: ganz-

zahlig commensurabeles Gitter, et le Gitter obtenu dans le dernier cas: rationnal
commensurabeles Gitter, par rapport au Raumgitter donné.

Ainsi, puisque en réalité la présence avec le point O, de 3 som-
mets quelconques A, B, C d’'un Raumgitter donné (mais situé chacun
sur une aréte différente), suffit dans un nouveau Raumgitter, pour
qu’il soit 'un de I'infinité des Gitter représentant le méme complexe
que le premier, le probleme du changement des coordonnées du
Raumgitter se pose maintenant parallelement et exactement pareil a
celui du changement des indices du complexe (chapitre VIII).

Etant données les coordonnées a;, f;, 7;, des 3 sommets A, B, C
d’'un Raumgitter primitif, et les coordonnées ai, g1, i, de ces mémes
sommets dans un Raumgitter de parallélipipede élémentaire encore
inconnu, déterminer successivement :

1° les nouvelles coordonnées x| du sommet quelconque de coord. x ;.
20 les 3 axes-unités du nouveau parallélipipede élémentaire.

3¢ les composantes ui du parallélogramme de composantes u;.
4o les 3 parallélogr.-unités du nouveau parallélip. élémentaire.

78. Les eoordonnées a,, f;, v; et af, pi, yi, données sont en
effet les composantes par rapport aux axes-unités correspondants des
vecteurs que représentent les segments d’arétes OA, OB, OC et en
rapportant successivement ces 3 segments aux axes-unités primitifs
wu;t; et aux axes-unités inconnues que nous appelons tout naturelle-
ment x{r{, nous écrivons les 3 égalités vectorielles en valeurs ab-
solues :

B0y Yy = U@ty + pyagty = pia{t] -+ piaity + piagr]
(41)  pupity - Pty + pgfaty = il + pifiv + pipirs
it = peysts - pysty = puiyit] + uiyivl + uiyirg



Par le fait que les coordonnées a;, ., y; et a{ B 7{, repré-
sentent non seulement les rapports, mais des valeurs absolues des
indices des 3 aretes OA, OB, OC, les facteurs o,, 0., 05, introduits
auparavant dans les équations (24) correspondantes, se réduisent
dans ce cas-ci & 'unité. 11 ne nous est donc plus nécessaire des
indices d’une 4m¢ aréte pour déterminer leurs valeurs, ou en d’autres
termes, comme 1l vient déja d’'étre dit plus haut, les coordonnées
anciennes et nouvelles de 3 sommets quelconques suffisent compleéte-
ment a déterminer le probleme du changement de Raumgitter. Nous
n‘avons done qu’a reprendre successivement les résultats des §§ (48-54),
qui s’écrivent identiquement pour les arétes ce quils ont été établis
avec 4 faces comme éléments donnés, et a y faire partout les facteurs
o;==1; 1l leur résultera d’ailleurs de ce fait une symétrie bien plus
complete que celle qui leur a été obterue dans le cas des indices.

Les vecteurs des axes-unités primitifs u;t; sont en fonction des
nouveaux axes-unités piri: :

Dopy vy = pi|ajasas|v] + uilajasas|vy + pjlajayaq|r;
(42)  Dyuers :Hilaﬂ{aﬂri _I"Hé[alaéa.‘%h; +M§]a1a;a3|t,§
Dopesty == pilajayaf|t] 4 pilogayag|v] + uila azai|r;

St les 3 déterminants de chaque ligne sont divisibles par D, les
nouvelles coordonnées des sommets w;v, sont entieres, c’est-a-dire
les sommets du parallélipipede élémentaire primitif sont en meéme
temps des sommets du nouveau Raumgitter.

Le sommet quelconque de coordonnées x;, dont le segment
correspondant est représenté par le vecteur:

XYy Xty - sy Xl
recoit pour ses nouvelles coordonnées xi :
X; Xy X3 O Xy Xy X3 O X; X X3 O
a, a, ag aj a; a, Az a oy ay a; ag
fi B2 By Bi pr B2 B3 B By By By P
,

Y1 V2 V3 Yi| 5 (Y1 Y2 Y3 ¥s| , (Y1 Y2 Vs V3
D, D, D,

Si les coordonnées x; sont premiéres entre elles, le sommet
correspondant détermine un parameétre du Gitter primitif; pour que
les nouvelles coordonnées x: déterminent sur la méme aréte le para-
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métre du nouveau Gitter, 1l faut également qu’elles soient entiéres et
premieres entre elles. Si nous appelons A le produit des facteurs
communs dans ces conditions aux 3 numérateurs, le nouveau para-

: : D : o
meétre est donc le multiple ramoer,elK(3 du parameéetre primitif.

Le déterminant 4, devient le symétrique du déterminant D, et
les composantes des 3 axes-unités u{ri, rapportés aux axes-unités
primitifs, sont en fonction de 4, exactement ce que plus haut les
composantes des u;r; sont en fonction de D, :

AO‘u,it{ ::/,&1|al'a;ag[l‘1 - /L2|a._,a§a§ Y, -+ H:&]asaéaé Iy
Aopits = pylaiayas|ty + pylajasag|r, —{—,u;;la{a;;a;;[rg (43)

Agpivy = puy|ajasay [ty pylajagay [ty + pylajajag|r,

Les longueurs de ces axes wir{ sont les racines carrées des
formes quadratiques divisées par 4, :

)

1 ;
My = \/w(]a;alaél lajasazl|ajazal))
V]

lazasal

g —41; Veolla,asal]|a,atal

wy = 3-Vollajaga;| [ajaba,] afasay])
0

et si nous faisons le produit scalaire des 3 vecteurs que nous avons
écrit, de la forme:
' ’ r Vi
pipspiriVegrg

il nous donne directement le volume du nouveau parallélipipéde élé-
mentaire. En reprenant le produit scalaire pareil déja effectué au § 74,
et en écrivant le déterminant des coordonnées dont chaque terme est
lui-méme dans ce cas-ci un déterminant de 3™ ordre:
" ay ay ag] |ay aj aj| |ag aj aff r
| ’
A3 |

’

lai aj ay| laf ai a,| |ai af ag

Iai ay a3{1a1 as ag l

on voit aussitot qu’il n’est autre que le produit des 2 déterminants
également de 3¢ ordre:

% Bi 71| }Ai B I7f|
Fe B v A By I
ag ﬂa Vs fAé B; i
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La valeur du second qui est le déterminant-adjoint de 4, est 45 ;
le produit scalare cherché s’écrit done tres simplement:

Mg sty (Ve; 2ty —#11“9#3 1‘ Ve 2Ty

Le nouveau parallélipipede elementalre est encore le multiple

Do da parallélipipede élémentaire primitif.
0

rationnel =

79. Si nous faisons les produits vectoriels deux a deux et mem-
bre & membre des 3 équations (41), il ne nous est plus permis, dans
ce cas-ci ou il s’agit de valeurs absolues, de négliger d’écrire, comme
nous avons négligé dans les équations (29) correspondantes le quo-
tient constant »,v,vy:vivirs, les 2 facteurs qui en tenant compte
toujours des relations p;», =— sin A, se mettent aisément en évidence:

Hilts s Y
M. I

Les vecteurs gv;l; et o'»{l{ sont ainsi les vecteurs représentant
les parallélogrammes-unités (§ 71) primitifs et nouveaux, c’est-a-dire
les faces du parallélipipede élémentaire correspondant, et les 3 éga-
lités que nous fournissent les produits vectoriels effectués sont l'ex-
pression des 3 parallélogrammes construits sur les segments d’arétes
(OA, OB), (OB, OC), (OC, OA), rapportés successivement aux paral-
lélogrammes-unités primitifs or;[; et aux nouveaux parallélogrammes-
unités o'v{l{ : (§ 71, 37)
on Al + ova duyly + ory d3ly = o'y A{L] + @' A5l - o'v; 45
o Bl + onByly + onyB.ly = o'v{Bil{ +ovi Bil; + o'viBily  (44)
oni il + onlhl + ovg Ly — o'v Il + o' v I 15 + o' 131G

Les parallélogrammes-unités primitifs go»;[; sont en fonction des
parallélogrammes-unité o’'»;l]

0=

s
3

za‘?|[ (45)

Door |, = o'v{|ayaja}ll] az|l;
DoQ”zl-z:Q""i{a;aa: [ +Q’v§la{a2a_§|[§
DOQ’V:%[:% —=o'v¢ ia,._ + Q "’2|

Si les 3 déterminants de chaque ligne sont divisibles par D,,
les nouvelles composantes des parallélogrammes ovl, sont entiéres ;
leur surface est donc celle, dans le méme plan, d'un parallélogramme
du nouveau Gitter.

|




Les composantes u{ du parallélogramme quelconque de compo-

santes u; :
onuly 4 ovsul, - orgugly
sont les 3 déterminants divisés par D, :
Uy Oy Uy Gy U0 @) af| o wyoyFuya,tuge; af i‘a,’ ay U ay +0,0, -+ Uz0;
WA+t usfs B3 By A1 wfi+ufytusfs Bi BB ufi+usfytuyfy
Uy +Ugye Ty 75 v3|, (71 Wy H0ys Tugys v (?’; o Uyt 407 T Uy
D, Dy Dy

Si les composantes u; données sont premiéres entre elles, le
paralléelogramme correspondant est un parallélogramme élémentaire
du Gitter primitif; pour que les nouvelles composantes uj déterminent
dans le méme plan le parallélogramme élémentaire du nouveau Gitter,
il faut également qu’elles soient entiéres et premiéres entre elles. Si
nous appelons A le produit des facteurs communs dans ces condi-
tions aux 3 numérateurs, le nouveau parallélogramme élémentaire est

done le multiple rationnel = du parallélogramme élémentaire primitif.

Les composantes des parallélogrammes-unités o'»{l{, rapporlés
aux parallélogrammes primitif o»l, sont de nouveau en fonction de
4, et D, exaclement ce que plus haut les composantes des ol sont
en fonction de D, et A, :

2,011 =ovy jafayay)l; —I_Q”Ilala{aﬂllz + ovs| ey ayaf|l;
4,055 = oy |agayally 4 vy oy ajag|ly + ors|ayasai |l (46)
4,03 = ovi|ajayay 'l |- ovy|ayalay |l 4 ovy |y asallly
Les surfaces de ces parallélogrammes élémentaires sont les ra-
cines carrées des formes quadratiques correspondantes divisées par 4, :

1 .
ovi= 1 VA laia,][aaia][aaai])

)

layayag)

1
V3= A, N|ajayay||oyajas|layayal

1 .
o'vi= A \/Q(\agaga3| aaha
—0

et si nous faisons le produit scalaire des 3 vecteurs que nous avons
écrit, de la forme : '

ERIRARIUE

il nous donne le volume d’'un nouveau parallélipipede construit sur
les 3 vecteurs o'v{l; comme aréles. En écrivant encore, comme au §
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précédent, le déterminant des composantes, dont chaque terme est
lui-méme un déterminant de 3me ordre :

laiopay| |aaias] oy

Ia aa5| a0y a3| |a1

|a5a2a3| layaba; EalaLadl

I

on voit immédiatement qu’il se réduit de nouveau au produit des 2
déterminants :

1 a; B i A1 B, Fl
‘zﬁaé ps ri| Ay By T
ay B 7 A3 B, F::z

La valeur du second qui est le déterminant-adjoint de D, est Dg,
et le produit scalaire cherché sécrit :

g Jr D’
st;*vgvgl{\lgl’_“o vy VaVs j( I V[ Iy

- ’ . . ‘D,
Le parallélipipede en question est donc le multiple ratzonnel Z )

0
du parallélipipede du méme type construit sur les 3 vecteurs ov;l;

comme aréles.

Bravais divise les arétes owli et o'»/li’ de ces 2 derniers parallélipipedes
par la racine cubique du volume du parallélipipede élémentaire correspondant et
appelle les 2 nouveaux Raumgitter dont ils sont dans ces conditions les paralléli-
pipeédes générateurs, les Raumgitter polaires des Raumgitters wv; et wi'ti’.

La transformation de coordonnées traitée dans ces 2 derniers
paragraphes est la transformation générale, effectuée d’un Raum-
gitter donné en un Raumglttel rationnellement commensurable par
rapport au premier. Il n’y aurait aucune difficulté mainténant a
chercher a quelles conditions doivent satisfaire les triples de coor-
données a;, f;, vy, et af, Bi, y{ données pour qu’elles déterminent
les 2 changements spéciaux de coordonnées ol le nouveau Raumglttel
est entiorement commensurable par rapport au premier § 77).
suffit pour cela que les relations entre les a;, f;, v, et af, pi, y,
solent telles que les 9 délerminants coefficients des wir! dans les
équations (42) soient chacun divisible par Dy, ou que les 9 déterminants
coefficients des u,;r; dans les equatlons (43) soient chacun divisible
par A,. D’autre part, on obtient directement ce que deviennent dans
ces 2 cas particuliers les résultats de la transformation générale en
y substituant successivement aux a;, f;, ;. et aux aj, ,31, yi les
valeurs particulieres 100, 010, 001, (le second cas correspond a celui des
§ 51 et 55 du changement des indlces), ¢’est-a-dire en prenant soit

les 3 sommets quelconques af, f{, yi du nouveau Gitter comme som-
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mets du parallélipipéde élémentaire du Gitter primitif, soit les 3 som-
mets quelconques a,;, f;, y;, de ancien Gitter, comme sommets du
parallélipipede élémentaire du nouveau Gitter.

80. La démonstration donnée aux § 69 et 74 de l'égalité des
parallélogrammes et des parallélipipédes élémentaires, basée directe-
ment sur la structure du Gitter, et qui peut d’ailleurs étre rendue
rigoureuse au point de vue mathématique,* doune comme corollaire
direct (§ 74) la valeur-unité du déterminant [x{x7x%/=1 comme con-
dition pour que le parallélipipede construit sur les arétes wir] soit
parallélipipede élémentaire du Gitter primitif. M. Daniéls me permet
d’ajouter ici ce dernier paragraphe ou énversement il montre que la
méme condition |by,by,bys|=1 est nécessaire et suffisante pour quz
les 2 Raumgitters u;t; et uit{ soient équivalents (que le paralléli-
pipéde construit sur wr{ soit parallélipipéde élémentaire du premier
Gitter et inversement), et déduit alors de la une preuve rigoureuse
et compléte de 1'égelité des parallélipipédes et des parallélogrammes.
élémentaires.

1) Pour que la figure (Raumgitter) construite sur les arétes p;1;
soit équivalente a celle construite sur les arétes wir{, leurs relations

— nécessairement a coefficients entiers by, et ~B—'f = fax — étant
Il B
witi=p,by ¥ bt b v By =y - B 0+ 2
. B B .
() wsre=pb,z, ;b + i, by vy et (D) e, =pi~ ti+ ”9 + §’
B B o ;.
pits=p; by ¥, -, byo €, s by vy My 1‘;:.“1‘“1'; + ul 1' 5+ o a“—"t:

il suffit, que le déterminant B des neuf b, en valeur absolue soit
égal a Uunité,
En effet %hube:ab:s.‘s’:1:IB11B22B33I

nous apprend 1° que dans chacune des six équations les trois coef-
ficients entiers sont premiers entre eux, et 2°, qu’a cause des rela-
tions (I—1II)

P X ¥ e Xoly X, —q/‘i(B 1X1+B1>‘{ +B ax%) 1Hus ( ) z‘hu::;(_‘)t:—’s
PiYi¥1+payet z-HLBX‘-;r)—ﬂl(bu}ﬁ+b21)’2+b;1)’“)r1+“ (—)ro+us(—)e,

*) Schinflies, Kristallsysteme und Krystallstructur, pag. 272. Brawais Mémoires
sur les systémes de points distribués réguliérement dans 'espace,



ce qui nous prouve que loul point & coordonnées entiéres du pre-
mier systeme est encore un point @ coordonnées entieres du second
el inversement c. q. f. d.

2) La condition B=1 est encore nécessaire. En effet nous avons
B'bll:B22B33_B23B32:B2(5221333—ﬁ23ﬁ32) ou encore
bll:B'(ﬁ22ﬁ33_ﬂ23ﬁ32) b12:B°(ﬁ3lﬁ28_ﬂ21ﬂ33) blfS:‘B'(ﬁ21ﬂ32_ﬁ3lﬁ22)

Les trois nombres b, b;,b,; ne seraient pas premiers entre eux, si |B|3-1.

3) Corollaire. Multipliant les équations I, nous trouvons a cause
de B—==1

pi g p[ i s ] = Ao o[, 1015
c¢’est-a-dire que les volumes des parallélépipedes équivalents sont égaux.

Nous trouvons absolument de la méme maniére, lorsqu’un plan e
contient les vecteurs-unités o, 0,; 01,04, que les systemes de parallélo-

Q2 <

grammes construits sur les cotés ¢,0,,0,0, d'une part, et sur
(I11) { 6101 —0;by0; + :bys0,
' 0505 = 01by10, + 0:bs50,

d’autre part, ne sont équivalents que lorsque B= |b,;b,,| ==1.

Corollaire. En formant le produit vectoriel des équations III,
nous obtenons B étant 1

UiaéiVQiQé I = 0,0,(by1 by, — b fz)lVQngi = 0102]V91921

c’est-a-dire que les surfaces des parallélogrammes élémentaires équi-
valents sont égales.

Or, les vecteurs 0,0, et 0,0, etant encore
Xty peXoly - pgXaty et Yy - 1o Yets + usysts

la surface du parallélogramme peut encore s’écrire

Vit = ) Gyt - el = PREV Doy, — sy )




CHAPITRE XII

81. Le Raumgitter, comme le complexe cristallin qu’il représente,
ne dépend donc uniquement que des directions relatives dans I'espace
des 4 aretes (4 faces) quelconques prises pour son point de départ.
Au méme complexe correspond une infinité de Raumgitter différents,
construits sur toutes les combinaisons possibles 4 a 4 de ses arétes;
par suite cette infinité de Raumgitter, impliqués chacun pour une
certaine longueur de leur aréte-unité dans le Raumgitter primitif et
dont chacun représente le méme complexe, constitue un fout absolu-
ment éndivis, inhérent aux complexe donné, restant identique a lui-
méme quel que soit celui de ces Gitter pris comme primitif, c’est-a-
dire quelles que soient les 4 arétes du complexe choisies comme
aréles élémentaires.

Sur les 3 directions primitives wu;t;, comme sur toule aréte
quelconque, d'un Raumgitter donné, on peut & volonté supprimer ou
ajonter un nombre quelconque de sommets, sans que rien ne soit
changé au complexe qull représente. En d’autres termes, tant que
les longueurs u; des 3 axes-unités d'un Raumgitter ne varient sur
leurs directions que dans des rapports simplement rationnels, le
complexe représenté reste identique a lui-méme ; les Raumgitter ob-
tenus sont tous compris dans linfinité des Gitter représentant ce
complexe, et on ne fait que changer le Raumgitter primitif par I'un
des Raumgitter qu'il implique..

Enfin en introduisant encore une derniére notion, celle de Raum-
gitter symétrique, en donnant ici au mot: symétrie son sens plus
exactement géométrique, que nous allons d'ailleurs préciser, il nous
sera facile maintenant avec ces données de déterminer dans le com-
plexe cristallin général étudié jusqu'ici, les différents fypes de com-
plexes possibles qui seront exactement les complexes des 6 systémes
cristallins tels que la plupart des cristallographes les établissent en
cristallographie (Baumhauer: Neuere Entwicklung des Kristall).
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82. Nous dirons qu'un Raumgitter posséde un degré plus ou
moins grand de symélrie, s’il existe un ou plusieurs mouvements de
ce Raumgitter autour du point O tels que le mouvement effectué,
chacun de ses sommets ait repris exactement la place qu’occupait
un autre sommet avant le mouvement. Puisque le point O reste fixe,
en vertu du principe connu de mécanique, ces mouvements se ra-
meénent dans tous les cas a une rotation autour d'un axe passant
par le point O; nous appelons un tel axe un axe de rotation ou de
symétrie du Raumgitter donné et son angle de rotation, le plus
petit angle « dont il faut tourner le Raumgitter autour de cet axe
pour que chacun de ses sommets ait repris le lien d’'un sommet pri-
mitif. |

Le point O est lui-méme un centre de symétrie du Raumgitter,
c¢'est-a-dire qu’a chaque point du Gitter correspond un autre point
sur la demi-aréte opposée a la méme distance que le premier du
point O; lopération qui consiste a remplacer ainsi chaque point du
Gitter par son point énverse, s’appelle I'inversion. Comme la rotation
elle transforme également le Raumgitter en lui-meéme.

Enfin on démontrera plus loin trés simplement (§ 93) que des
qu'un Raumgitter posséde un axe de symétrie binaire (a=—=1809), il
posséde également par le fait de la présence du centre O de symétrie,
un plan de symétrie normal, c’est-a-dire un plan partageant le Raum-
gitter en deux parties telles que l'une est la réflexion de 'autre dans
le plan donné. Réciproquement ce plan de symétrie, combiné au cen-
tre de symétrie, exige l'axe binaire normal ov mieux: le plan de
symétrie, le centre de symétrie et 'axe binaire normal sont 3 élé-
ments tels que la présence de 2 d'entre eux nécessite toujours le
troisieme et qu’ils constituent un groupe (§ 89 et 93). De la sorte,
il suffit de connaitre les axes de symétrie d'un Raumgitter pour con-
naitre également ses plans de symétrie et ainsi sa symétrie compléte.

83. Un Raumgitter symélrique exige dans le complexe qu’il
représente, une face avec une aréte normale.

Soit en effet donné un axe de symétrie d’'un Raumgitter passant
par le point O; puisque les espaces séparant les sommets du Gitter.
sont de dimensions finies, pour amener une nouvelle coincidence de
ces sommets, son angle de rotation @ ne saurait étre en tout cas
d’ordre infiniment petit.
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Soit un sommet A de situation quelconque par rapport a l'axe.
Ses positions successives coplanaires A’, A”, A”, etc. (fig. 14), cor-
respondant & chaque rotation d’angle @, sont donc elles-mémes des
sommets du Raumgitter ; et puisque chaque autre point du Gitter
(§ 65) doit étre dans une situation identique & celle des points A,
A’, A7, etc., par le point O doivent passer les arétes OB’, OB”, ete.,
telles que AA’=0B’, AA”=0B", et., et dont les rangées AA’, AA”,
etc., sont des rangées paralléles. Le plan (OB’B”) comme le plan (AA’A”)
est évidemment normal & I'axe de rotation; les points du Raumgitter
quil contient forment un réseau parallélogrammique, et 1'ensemble
des points du Raumgitter total se réduit au systeme (§ 68) de ré-
seaux superposés paralléles et équidistants, de parallélogramme élé-
mentaire identique et normaux a l'axe de symétrie donné.

4
| |
: b T —
% v
\ l ')
' e el s s kv ) \ Tl s
B~ TR CE
" /, \“\\ /( /./
B @ O - - - - -
,A s 1\
/’ (i____ _‘1’ | |\
G'vr’ | \
i \
o _‘bn T/ o \ T

Fig. 14. Fig. 15.

Au cas ot a=180° Ila rotation du point A ne produit que son symétrique-
Af, et la rangée AA] ou l'aréte paralléle par le point O ne suffisent plus a déter-
miner le plan normal; mais en prenant un 3"¢ sommet C quelconque du Gitter,
les points C et C’/ exigent une seconde aréte OC| par le point O, et les points
0, Bf, C{, déterminent également le plan normal et ses réseaux paralléles.

L’axe de rotation est lui-méme une aréfe du Raumgitter. En
effet dans cette rotation, chacun de ces réseaux parallélogrammiques
normaux & l'axe doit coincider avec lui-méme et cela n’est possible
déja pour le réseau limitrophe supérieur, que si cet axe le perce en
un sommet (fig. 15 en traits continus), au centre ou sur le milieu
d'un coté du parallélogramme élémentaire (fig. 15 en traits pointillés).
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S’il le perce en un sommet, c’est une aréte du complexe; s’il le
perce sur le milieu de 'un des cotés ou au centre du parallélogramme
élémentaire, ou ce qui revient au méme sur le milieu de l'un quel-
conque des 3 cotés O;T; du triangle fondamental (O,T,T{), puisque
dans ces conditions T'T,=T,T”, l'intersection T” de la rangée TT,
et de I'axe OT” est un nouveau sommet du Gitter appartenant au
second réseau paralléle, et I'axe de rotation, passant par un sommet,
est encore une aréte du complexe.

Exceptionnellement dans le cas ou la maille du réseau est le losange & angle
au sommet de 60° (§ 85 VI), 'axe normal peut percer le réseau limitrophe au
centre du triangle équilatéral fondamental, c’est-a-dire au liers de la grande dia-
gonale dun losange élémentaire. Dans ce seul cas 'axe de symétrie n’atteint qu’an

3me réseau parallele I'un des sommets du Raumgilter, et est ainsi également une
aréte du complexe. ;

84. Le complexe cristallin qui ne possede aucune aréte normale
a l'une de ses faces, ne peut donc impliquer en lui-méme aucun
groupe de 4 arétes (ou 4 faces) déterminant un Raumgitter symé-
trique. C'est le complexe du systéme cristallin éricline ; ses 3 arétes
fondamentales sont en effet, quelles qu’elles soient, inclinées chacune
sur le plan des 2 autres. Le parallélipipéde élémentaire de ses Gutter
est un parallélipipede oblique quelconque; leur seul élément de symé-
trie est constitué par la présence du centre O de symétrie: c'est
exactement la symétrie des cristaux de la classe holoédrique du sys-
teme (§ 92). |

Inversement étant posée une face avec une aréte normale, a
chacun des 5 ({ypes essentiels de complexes qui peuvent s’établir
dans cette condition, correspond un Raumgitter primitif plus ou moins
symélrique. Les 5 types de complexes sont ceux des 5 autres sys-
temes cristallins d’espéce symétrique, et la symétrie des Raumgitters
primitifs correspondanls est celle des classes holoédriques établies
plus loin de chacun de ces systémes (§ 92—98).

Sotent en effet 'aréte normale et 2 arétes quelconques dans le
plan donné prises comme arétes fondamentales du complexe. En
vertu de la seconde remarque faite en commencant (§ 81), pour ob-
tenir des complexes différents, l'aréte-unité ne peut déterminer (par
la construction du parallélipipede élémentaire) sur ces 3 directions
que des segments uy, m,, u;, qui sont entre eux égauax ou dans des
rapports érrationnels. D’autre part la maille du réseau primitif que
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déterminent les paramétres minimas u, et u;, comme celle de toul
réseau parallélogrammique d’ailleurs, ne peut étre qu'un parallélo-
gramme quelconque ou 'une des 4 modalités spéciales de plus en
plus régulieres du parallélogramme : le rectangle, le losange, le lo-
sange avec angle au sommet de 60° (sa petite diagonale est égale
au coté) et le carré; ou mieux encore le triangle fondamental (OTT’),
fig. 15, ne peut étre que l'un des 5 types différents: scalene, rec-
tangle, isocele, équilatéral, ou rectangle-isocele. Le parallélipipéde
générateur du Raumgitter est le prisme droét (OTT'T”) a base pa-
rallélogrammique correspondante ; ses 3 arétes ¥y, u,t,, usty, dé-
terminent a elles seules la position de tous les points du Gitter, et
autant de fois le triedre qu’elles constituent peut se couvrir avec
elles-mémes, leurs prolongements ou des arétes égales (complexe hexa-
gonal § 85, IV), autant de fois le Raumgitter coincide également
tout entier avec lui-méme. Les rotations possibles du triedre fonda-
mental déterminent donc exactement celles du Raumgitter lu1 -méme
et ainsi les éléments de sa symétrie compléte.

85. 1. Systéme cristallin ou complexe monocline.
Raumgitter binaire.

Le parallélipipede élémentaire du Raumgitter est le prisme droit
a base parallélogrammique quelconque (OTTT”), fig. 15. Les 2 para-
métres minimas OT et OT’ ne peuvent se couvrir qu'avec leurs pro-
longement OT, et OT} ; 'aréte normale OT” est donc un axe binaire
du Raumgitter total, et par suite le plan donné OTT’ un plan de
symétrie. Ce sont les seuls éléments de symétrie du Raumgitter ; sl
existait en effet un autre axe de rotation, le parametre OT” qui est
la distance méme des réseaux paralléles, devrait se couvrir avec un
segment du plan OTT’, et dans ce cas les 2 parameétres minimas du
plan OT et OT’- ne pourrait atteindre ni l'un ni l'autre le réseau
limitrophe. D’ailleurs les 3 axes-unités étant entre eux dans des rap-
ports érrationnels, le plan fondamental OTT’ est la seule face du
complexe possédant une arréte normale (§ 45).

On se rend compte sans peine (la fig. 15 en pointillé est faite pour le second
cas) que en centrant par un nouveau sommet T{" le centre de figure du paralléli-
pipéde droit générateur ou par les nouveaux sommets T, et T/ 2 de ses faces
latérales opposées, c'est-d-dire en intercalant entre chaque couple de réseaux sue-
cessifs paralléles au plan OTT” un nouveau réseau de nature identique disposé de
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maniére que I'axe normal perce son parallélogramme élémentaire en son centre ou
sur le milieu de 'un des cotés, le Raumgitter obtenu de parallélipipéde élémentaire
(OTT'T,) ou (OTT'T]) posséde également I'axe binaire OT” et le plan de symétrie
normal. Il est dailleurs, les nouveaux:sommets étant intercalés & égale distance
entre 2 sommets primitifs, un de linfinité des Gitters représentant le méme com-
plexe que le premier.

II. Complexe (systéme ecristallin) rhombique.
Raumgitter terbinaire.

Le parallélipipede élémentaire du Raumgitter est le prisme droit
a base rectangulaire ; les 3 axes-unités OT, OT’, OT” sont entre
eux dans des rapports érrationnels et forment un triédre trirectangle
dont chaque aréte se trouve dans les mémes conditions par rapport
a I'ensemble des points du Gitter: elles passent chacune par les som-
mets de réseaux paralleles successifs a maille rectangulaire. Ces 3
arétes fondamentales sont ainsi des axes binaires et par suite chaque
plan fondamental est un plan de symétrie du Raumgitter total. Par
le méme raisonuement que pour le Gitter précédent, ce sont la les
seuls éléments de symétrie du Raumgitter trouvé, et d’ailleurs, les 3
axes-unités étant entre eux dans des rapports irrationnels, seuls les
3 plans fondamentaux du complexe possédent une aréte normale (§ 45).

S1 le parallélogramme élémentaire du réseau fondamental OTT’
est losange, en centrant d'un nouveau sommet chacune de ses mailles,
ce réseau fondamental devient rectangulaire, et les cotés du rectangle
étant 1rrationnels, le complexe représenté est encore un complexe
rhombique. Le Raumgitter correspondant posséde d’ailleurs la méme
symétrie que le Raumgitter trouvé; il revient en effet inversement a
centrer les 2 bases rectangulaires du prisme droit générateur du Raum-
gitter terbinaire, et cela, on le voit aussitot, n’influe en rien sur la
présence des 3 axes binaires obtenus.

On peut done centrer les 2 bases, c’est-a-dire 2 faces latérales opposées quel-
conques du prisme rectangulaire droit (O TT'T~); on peut également ou bien le
centrer en son centre de figure, ou bien sur chacune de ses 6 faces rectangulaires.
Dans chacun des 3 cas, on s’en rend compte facilement en projetant sur le plan

du résean OTT’ le systéme de ses réseaux paralléles, le Raumgitter obtenu posséde
la symétrie terbinaire et naturellement représente le méme complexe que le premier.

III. Complexe quadratique. Raumgilter quaternaire.

Le parallélipipéede élémentaire du Raumgitter est le prisme droit
a base carrée; des 3 axes-unités irrationnels du complexe rhombique
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2 quelconques OT et OT” deviennent égaua. Par suite 'axe binaire
normal OT” devient un axe qualernaire (a —=90°) et dans leur plan
les diagonales du carré élémentaire sont 2 nouveaux axes binaires
du Raumgitter total. La symétrie compléte se trouve ainsi constituée
d’'un axe quaternaire, 4 axes binaires dans le plan normal, formant
entre eux des angles de 45°, et 5 plans de symétrie dont 4 passant
par I'axe quaternaire et le 5™ normal a cet axe. On voit d’ailleurs
de nouveau immédiatement que ce sont l1a les seuls éléments de sy-
métrie du Gitter, parce qu’ils représentent les seules maniéres pos-
sibles de faire se couvrir avec ses arétes mémes ou les arétes in-
verses le triedre trirectangle OTT'T” dont 2 arétes sont égales.

Si I'on centre le prisme droit obtenu en son centre de figure, chacun des

axes de rotation trouvés subsiste, et le nouvean Gitter représentant le méme com-
plexe que le premier, posséde également la symétrie quaternaire.

IV. Complexe hexagonal. Raumgitter sénaire.

Si T'on construit le réseau primitif OTT’ (fig. 16) lorsque sa
maille est le losange a angle au sommet de 60° ou mieux son triangle
fondamental, le triangle équilatéral OT'T’, on voit immédiatement
que I'axe normal OT” est un axe sénaire (a=—60°) et que dans le
plan du réseau les 6 directions des cotés el des hauteurs du triangle
fondamental sont des axes binaires d’abord du réseau primitif lui-
méme, et par suite en construisant le Raumgitter de prisme droit
élémentaire (OTT'T”), du Raumgitter total.

~

Fig. 16. Fig. 17.

L’axe-unité OT” étant drrationnel par rapport aux 2 axes égaux
OT et OT’, (dailleurs il en sera de méme également dens le cas
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contraire, § suivant), ce sont la les seules rotations possibles qui
fassent se couvrir le (riedre élémentaire OTT'T” avec des arétes
égales, et la symétrie compléete du Raumgitter sénaire est ainsi con-
stituée d'un axe sénaire, 6 axes binaires dans le plan normal, for-
mant entre eux des angles de 30° et 7 plans de symétrie.

En intercalant entre chaque couple de réseaux successifs paralléles au réseau
hexagonal OTT’, 2 nouveaux réseaux de nature identique disposés de maniére que
I'axe sénaire les perce I'un au tiers et le second au ?/, de la grande diagonale du
losange élémentaire (centres des 2 triangles équilatéraux opposés constituant le
losange), ou ce qui revient au méme: en ajoutant a distances égales 2 nouveaux
sommets sur la diagonale principale passant par O du prisme droit & base rhom-
bique générateur du Raumgitter sénaire, on se rend compte facilement, en effec-
tuant les projections des réseaux paralléles sur le réseau fondamental OTT’, que
pour le nouveau Gitter obtenu I'axe sénaire devient une axe ternaire (o = 120°)

avec 3 axes binaires (par suite 3 plans de symétrie) au lieu de 6 dans le plan
des réseaux.

(C’est le Raumgitter fernaire, dont la symétrie est un sous-groupe caractéris-
tique de la symétrie sénaire (§ 98). Son parallélipipéde élémentaire est un rhom-
boédre quelconque, et en ajoutant maintenant & ce Gitter ternaire le Raumgitter
terquaternaire du complexe cubique qui reste & trouver, on établit facilement en
procédant un peu autrement (Bravais, Sohncke et d’autres), qu’il n'est pas d’autres
types possibles de Raumgitters symétriques que les 6 ainsi obtenus: binaire, ter-
binaire, quaternaire, sénaire, ternaire, et terquaternaire.

V. Complexe cubique. Raumgitter terquaternaire.

Le parallélipipede générateur du Raumgitter est un cube: les 3
axes-unités 1rrationnels du complexe rhombique deviennent égauc,
et se trouvent ainsi chacun dans des conditions identiques a celles de
l'axe OT” dans le Raumgitter quaternaire. Leurs 3 directions sont
donec des axes quaternaires, et dans chaque plan fondamental les
diagonales du carré élémentaire sont des axes binaires. En outre les
grandes diagonales passant par le point O des 8 cubes qui y sont
juxtaposés (fig. 17), en d’autres termes les 4 diagonales principales
du cube genérateur sont des axes fernaires (a=—120°) du Raumgitter.
Ce sont la en effet toutes les rotations possibles qui peuvent faire
se couvrir avec lui-méme ou les axes inverses le triple élémentaire
trirectangle d’axes égaux (OTT’T”, et par suite faire coincider avec
lui-méme le Raumgitter total. En y ajoutant les 3 plans de symétrie
fondamentaux et les 6 plans de symétrie normaux aux axes binaires,
passant 2 a 2 par chaque axe quaternaire, nous avons ainsi la sy-
métrie complete du Raumgitter terquaternaire.
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Il est facile de nouveau de voir que aucun de ces éléments de symétrie ne
disparait en centrant d'un nouveau sommet le centre de figure, ou d’un nouveau
sommet chacune des 6 faces carrées dun cube élémentaire; les 2 Gitters obtenus
sont les seuls de linfinité des Gitters impliqués dans le complexe cubique qui
possédent la symétrie terquaternaire.

86. Les 5 complexes précédents étant étabiis, qui sont les com-
plexes des 5 systémes cristallins symeétriques, il est encore en réalité,
dans cette condition d’'une face donnée avec une aréte normale, 2
autres types de complexe que nous avons négligés: le complexe mo-
nocline dans le cas ou l'axe-unité vertical u, serait égal a I'un des
2 autres irrationnels u, ou u;, et le complexe hexagonal dans lequel
les 3 axes-unités seralent égauwx. La différence essentielle qui fait
que ces 2 derniers complexes, au point de vue cristal, ne doivent
étre que des cas particuliers des 2 complexes monocline et hexagonal,
est que les Raumgitters primitifs des 2 complexes nommés a cette
variation de leur premier parameétre ¢, ne gagnent awucune symétrie
nouvelle. 11 serait inutile méme de le montrer par une maniére de
raisonner analogue encore a celle employée déja pour chacun des
complexes au § précédent.

Complexe monocline. Si w, = u,, dans une rotation le para-
meétre p, peut coincider avec u,; dans ce cas ou bien le second
parametre u; reste dans son plan et pour cela u, et uy; devraient
étre perpendiculaires, ou bien u, et pu; sortent de leur plan et
atteignent des points du

L réseau limitrophe, mais

b, alors u, coincide avec p,

et les 2 positions avant

9. > et apres la rotation de la

‘ ) b fig. 18 montrent 1mmé-
A

diatement quil devrait
Fig, 18 exister dans le réseau li-

mitrophe et par suite dans le plan fondamental un segment TT" ou

OT; normal avec u, et plus court que le paramétre minima ;.

Complexe hexagonal. St pu, = p, — uy, une nouvelle rotation,
autre que celles du Raumgitter sénaire, n'est possible que dans I'une
des 2 conditions suivantes: ou bien 'un des 2 axes-unités u, ou g
reste dans leur plan; dans ce cas w, doit lui rester normal (fig. 16)
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et ne peut se couvrir avec un parameétre du plan (u,u;); ou bien les
2 axes w, et wuy; sortent de leur plan; 'un ne peut alors que coincider
avec u, et I'autre ne peut évidemment pas atteindre le réseau supérieur.

Le fait que ces 2 variations des complexes monocline et hexa-
gonal ne sont pas des complexes correspondants a des systémes
cristallins déterminés, comme les b premiers types trouvés, est done
connexe au fait que les Gitters correspondants ne gagnent a cette
variation aucune symétrie. La répartition parallélipipedique dans
I'espace des sommels du Raumgitter est donc intimement liée a la
nature de la substance cristalline, et si momentanément, pour une
température donnée; le complexe d'un cristal monocline ou hexagonal
peut posséder les propriétés qu’entraine cette variation de son para-
metre vertical, la nature de la substance du cristal ne change pas,
pas plus que la symétrie du Gitter primitif correspondant.

87. Pour toute face d'un complexe a laquelle correspond une
aréte normale, chacun de l'infinité des Gitters qui peuvent se cons-
truire sur I'arete normale et 2 aréetes quelconques de la face comme
arétes fondamentales, a donc cette face comme plan de symétrie, et
I'aréte normale comme axe binaire, quaternaire ou sénaire, selon la
nature du réseau primitif de la face. Si nous ne considérons plus les
sommets de ces Gitters, mais simplement les arétes du complexe qui
les supportent, la face donnée est par suite également un plan de
symétrie et son aréte normale en tout cas un axe binaire du com-
plexe lui-méme.

De la, avec ce qui a été établi de la perpendicularité des faces
et des arétes (§ 43-45), découle immédiatement :

Chaque face du complexe cubique posséde une aréte normale ;
chaque face du complexe cubique est donc un plan de symétrie du
complexe total et par suite chaque aréte est non seulement un axe
binaire, mais en tant qu’axe zonal d’une infinit¢ de plans de symé-
trie *, est un axe de rotation autour duquel le complexe peut se
couvrir une infinité de fois sur lui-méme.

Le complexe cubique posséde donc la symétrie sphérique; en
d’autres termes la distribution dans l'espace autour du point O des

*) 2 plans de symétrie successifs faisant un angle a équivalent & une rota-
tion d’angle 2 « autour de leur droite d’intersection.
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arétes et des faces du complexe est la méme dans toutes les direc-
tions, comme l'est la répartition de la masse sphérique autour de son
centre.

Pour les complexes hexagonal et quadratique, en plus des faces
fondamentales [, et [;, seules les faces de leur zone isotrope [, pos-
sédent une aréte normale ; seules donc ces faces sont plans de symétrie
de ces complexes. Leurs arétes normales coplanaires a la face [, en
sont des axes binaires et seul I'axe v, = OT” de leur zone isotrope
est un axe de rotation autour duquel ils peuvent se couvrir une
infinité de fois sur eux-mémes.

L’ellipsoide de révolution représente donc la symétrie de ces 2
complexes et la répartition dans l'espace de leurs faces et arétes
autour du point O.

Seules les 3 faces fondamentales du complexe rhombique et la
face fondamentale [, du complexe monocline possédent encore une
aréte normale. La symétrie du complexe rhombique est donc celle de
Uellipsoide, c'est-a-dire celle du Raumgitter lui-méme correspondant ;
celle des complexes monocline et tricline, comme celle des Gitters
correspondants, se réduit a un plan de symétrie avec 'axe binaire
normal ou & l'unique présence du centre O de symétrie.

Cette gradation de la symétrie complexiale des systémes cris-
tallins établis par Fedorow, est désignée par lui: Syngonie Syme-
trisches Ellipsoid-Gesetz.



CHAPITRE XIII

28. Le Raumgitter, c’est-a-dire cette distribution parallélipipedique
de sommets sur les arétes du complexe cristallin, résultat direct de
la construction zonale du complexe et donc des 2 lois expérimentales
du erislal : constance des angles et lo1 des zones, traduites mathé-
matiquement par celle de la rationnalité des indices, a donc été con-
sidéré et étudié jusqu’ici & un point de vue purement théorique. La
notion, prise encore a ce méme point de vue, de Raumgitter symé-
trique a établi dans le dernier chapitre une distinction essentielle
entre le complexe cristallin n'impliquant aucune face avec aréte nor-
male et qui est le complexe du systéme cristallin tricline, et celui
qui en possede. Par rapport toujours a la syméirie du Raumgitter
primitif correspondant, les 7 types de complexes possibles dans la
donnée d’une face avec aréte normale, se réduisent essentiellement
a b qui sont les complexes des 5 autres systemes cristallins, c’est-a-
dire des 5 catégories, telles que la plupart des eristallographes les
établissent entre les cristaux d’espéce symétrique ; en d’autres termes
leurs éléments (arétes fondamentales et face-unité) représentent exac-
tement les divers systemes d’awes cristallographiques auxquels on
rapporte d’ordinaire la position des faces et arétes cristallines.

Mais 1l est maintenant surtout une 3= loi du cristal établie par
I'expérience, celle de sa symétrie expérimentale, qui donne au role
du Raumgitter dans l'étude du cristal toute sa valeur. Rapporté a la
symétrie des Raumgitters primitifs trouvés de chacun des systémes,
en tenant compte de ce qui sera dit ensuite, elle s’énonce tres
clairement : |

St dans le cristal en formation apparait une face de Uun des
complexes établis, apparaissent simullanément toutes les faces avec
lesquelles se couvre la premiére par le groupe entier des opérations
de symétrie du Rawmgitter correspondant, ou par Uun quelconque des
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leurs sous-groupes. Mais ce n'est 1a que le caracteére superficiel ; la
symétrie de la substance méme du cristal (reconnu entre autres par
la méthode des figures de corrosion, présence des autres propriétés
physiques, cohésion, dilatation, etc.) est celle du groupe complet ou
d’un sous-groupe quelconque des opérations du Gitter.

89. Les seules opérations de symétrie qui effectivement font se
superposer par un seul mouvement un Raumgitter symétrique avec
lui-meéme, sont done ses rotations autour de ses axes de symétrie ;
on les appelle ses opérations de symétrie de premiére espéce. Mais
le Raumgitter posséde par sa nature méme un centre de symétrie,
c’est-a-dire une opération de symétrie d’'un toul autre genre, I'inver-
sion; en remplacant par une infinité de mouvements chaque sommet
du Gitter par son sommet inverse le Raumgitter se retrouve en effet
apres cette opération, bien que chacun de ses sommets ait perdu sa
place primitive, de nouveau identique & lui-méme. Si donec nous
faisons suivre de I'inversion chaque rotation d’un Raumgitter symé-
trique, le Gitter se retrouvera chaque fois aprés les 2 opérations
successives encore ldentique a lui-méme.

L’opération unique qui ameénerait chaque sommet du Gitter a la
place ou 1l se trouve par ces 2 opérations successives, transforme
donc également le Raumgitter en lui-méme; on 'appelle une opéra-
tion de symétrie du Gitter de seconde espeéce (réflexion ou réflexion
combinée a une rotation: axe de symétrie de seconde espece). En
comptant 1'identité, c’est-a-dire I'absence de mouvement, comme opé-
ration de symétrie de premiére espece, par opposition a l'inversion,
opération de symétrie de seconde espéce, la symétrie d'un Raumgitter
(et ainsi celle des classes holoédriques correspondantes, § 94-100), est
don¢ constituée d'un nombre égal d’opérations de symétrie de pre-
miere espéce et d'opérations de symétrie de seconde espéce. Elles
sont évidemment toutes les opérations et les seules qui transforment
le Raumgitter en lui-méme; par le fait leur ensemble constitue un
groupe et en posseéde la propriété caractéristique : 'opération unique
équivalente & 2 opérations successives quelconques du groupe, est
toujours une opération du groupe.

Naturellement, comme nous le verrons d’ailleurs, certaines de
ces opeérations du groupe, se nécessitant 'une l'autre, constituent &
leur tour, dans le groupe lui-méme, un sous-groupe ndépendant,
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possédant pour son propre compte la propriété qui vient d’étre énoncée.
Le probleme qui se pose maintenaut est précisément de déterminer
dans chaque symétrie de Raumgitter trouvée tous ces sous-groupes
d’opérations possibles ; les cristaux dont ils représenteront la symétrie,
constituent les différentes classes du systéeme cristallin correspondant.

Bravais, Sohncke, Mallard et d’autres ont basé sur cette structure
parallélipipedique du Gitter l'explication de la nature intime de la
substance cristalline ; Bravais place en chaque sommet du Raumgitter
symétrique un polyédre moléculaire dont la symétrie est celle du
groupe complet ou des sous-groupes indépendants des opérations’ du
Gitter. Comme quil en soit, les 3 lois expérimentales de la cristallo-
graphie établissent done, surtout celle de la symétrie du cristal, une
corrélation idéale entre la structure du Gitter et la symétrie du milieu
cristallin. Jusqu'a quel point nous permet-elle de pénétrer dans la
nature intime du cristal? Nous sommes trop peu aulorisé pour le
dire 1c1; nous n'avons eu d’autre but dans ce travail que de montrer
cette corrélation en établissant avec les différents types de complexes
la symétrie des Gitters primitifs correspondants, pour y adapter en-
suite la lo1 de symétrie et en déduire par une méthode nouvelle et
intéressante les 32 classes possibles de cristaux.

90. Si nous prenons 3 vecteurs-unités i, i, k, formant un systéme
trirectangulaire d’axes et que par une opération de symétrie de pre-
miere ou de seconde espece autour du point O, ces 3 vecteurs coin-
cident avec le nouveau systeme trirectangulaire ', i’, k', la somme
conventionnelle des 3 dyades *, formée chacune de la simple juxta-
position de ces 2 vecteurs:

b =iiij -+ kk
constitue un dyadic* représentant 1'opération donnée.

En effet soit un vecteur quelconque B déterminant le point P
de Tespace et décomposé selon les directions des 3 vecteurs-unités
i, 1, k:

R=xi+yj+zk

") Vectoranalysis: Gibbs. Le mot anglais «dyadic » pourrait se traduire en
francais dyadique (féminin) comme le mot anglais <« quadric» se traduit par le
mot francais quadrique. Comme pour le mot « dyade » j'ai gardé simplement le
mot anglais plus court « dyadic »; cela m’a paru sans aucune importance.
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Faisons ce que Gibbs appelle le produit scalaire du vecteur £
par le dyadic @ et qu’il écrit ainsi :
(xi - yi -+ 7h)- (i’ + i’ -+ ki)
¢’est-a-dire multiplions scalairement chaque composante du vecteur R

par le vecteur antécédent de chaque terme du dyadic (voir la re-
marque). Nous obtenons le nouveau vecteur:

R =xi"+yi + 2k

dont la position par rapport aux nouveaux axes i, {’, k" est iden-
tiquement celle du vecteur ® par rapport aux premiers. Le dyadic @
employé comme opérateur sur le vecteur B d’un point quelconque
de l'espace, lui fait donc subir autour du point O la méme opération
qui a amené i, §, k en i, {’, k’. Il est ainsi I'expression algébrique
de l'opération donnée et les positions extrémes des vecteurs-unités
i, {, k, déterminant T'opération en elle-méme, déterminent également
completement le dyadic qui la représente.

Remarque. La juxtaposition des 2 vecteurs qui constituent la dyade est pour
Gibbs une 3m¢ sorte de produit qu’il appelle produit indéfini de 2 vecteurs. Le
produit scalaire est une quantité pure et n'impose aux 2 vecte.rs qui le forment
qu'une condition: le produit de leurs tenseurs par le cos de leur angle. Le pro-
duit vectoriel est un vecteur et leur impose 3 conditions: le produit de lears ten-
seurs par le sinus de leur angle, le plan dans lequel ils se trouvent et leur posi-
tion réciproque. Le produit indéfini représente 2 vecteurs et leur impose 5 conditions:
la direction et le sens de chacun et le produit de leurs tenseurs. La dyade posséde
en effet la propriété associative ; il suffit de le montrer pour les 2 sortes de
produits, produits scalaires de dyades par vecteur et de dyades par dyades, qui
nous sont nécessaires ici. Si d’une maniére générale :

a, b, r, d, sont 4 vecteurs-unités quelconques et a—a’a”, le produit scalaire
de vecteur par dyade, c¢'est-d-dire le produit scalaire du vecteur par le vecteur
antécédent de la dyade pris comme coefficient du vecteur conséquent:

r-asb=r-a'aa’b=r.a”aa’'b=a’a”(r-a)b;

le produit scalaire de dyade par dyade, ¢’est-d-dire le produit scalaire des vecteurs
moyens pris comme coefficient de la dyade formée des vecteurs extrémes :

-anb—=rcd-a'na’b—rd-a”na’b=—a’a”(a d)cb
Donc: anb—a'na’b—=a”na’b—nab etec.

Pour cette raison si I'un des vecteurs est négatif, la dyade est négative; si
le coefficient de la dyade est nul, celui de chacun de ses vecteurs est également nul.

La dyade posséde également la propriété distributive, mais on ne peut
changer I'ordre des vecteurs qui se juxtaposent, c’est-a-dire:
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a (b4 ¢)==ab} ar
En effet: [ (b4 ¢)]=r-(ab 4 ar)
parce que: a(b+rc)—1r-.ab-4r- ac

On le démontrerait de méme pour le produit scalaire de dyade par dyade.

91. Soient maintenant les 2 opérations successives :

B, =i’ + i’ -+ hk’
D, =i+ kb

Si nous faisons le produit scalaire des 2 dyadics qui s’écrit:
(iif _I__ iif -_'_ hk!) . (ifif! + ifif/ _I_ hfk”)
et qui naturellement consiste dans la multiplication scalaire de chaque

dyade du premier par chaque dyade du second (remarque précédente),
nous obtenons le nouveau dyadic:

b, =" 4+ {i” + kk”

c’est-a-dire le dyadic qui représente l'opéralion unique équivalente
aux 2 opérations successives données. Les combinaisons d’opérations
de symélrie successives qui peuvent avoir lieu autour du pomnt O
s'expriment done par les produits scalaires des dyadies équivalents,
et si ces opérations sonl telles qu'elles constituent un groupe, le
groupe de leurs dyadics jouit de la propriété caractéristique : que le
produit scalaire de deux d’entre eux est toujours un dyadic du groupe.

Remarque. Naturellement les vecteurs i’, {’, k’; i”, {”, k” peuvent étre rap-
portés trés bien aux 3 axes trirectangulaires i, i, k et le dyadic:

&, =i’ +i{j’ + kK’
s'écrit également :
t(x1i+yii+ z1R) 4§ (x3i 4 y3§ -+ z5k) + R (x3i 4 yii + z5k)
Puisque la dyade posséde la propriété distributive et associative, il se déve-
loppe en nonion Form (Gibbs) représentant toujours le méme dyadic:

xiii4yiij+z{ik
+xGii yiii+ ik
+ xjki+ yiRi+ zikk
Le dyadic i’t” 4 {’{” 4+ k’k” rapporté aux axes i, {, k se développerait de la

méme maniére en nonion Form et inversement la nonion Form obtenue se réduirait
a la somme des 3 dyades, représentant encore le dyadic donné :

X7 xGxixg) i 4-(x [y f x5y S 4x3y5) i+ () R =]+ K[
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Les vecteurs des grandes parenthéses sont ainsi les nouvelles positions que
prennent les vecteurs i, i, k par I'o ération donnée i'i” + {’j” + W’k”. Rapporter
les positions successives i, {’, k', i”, {”, k”, etc., aux axes fondamentaux i, i, k,
de position fixe dans l'espace, revient donc & rapporter tous les dyadies a ces
axes, c’est-d-dire a4 donner & toutes les opérations équivalentes les positions pri-
mitives  {, {, k, pour point de départ. C’est ce que nous ferons pour chacun des
groupes de dyadics, représentant le groupe entier d’opérations du Gitter primitif
correspondant & chaque complexe, que nous allons écrire. D’ailleurs, sauf pour le
Gitter hexagonal dont les opérations d’ordre sénaire exigent des dyadics de forme
un peu moins facile, tout y est bien plus simple que ce qui vient d’étre dit d'une
maniére plutot générale.

Si nous écrivons en effet par ordre de symétrie de leurs Gitters les 5 com-
plexes ou systémes ecristallins : tricline, monocline, rhombique, quadratique et cu-
bique, on se rend compte immédiatement que les groupes d’opérations correspon-
dants : centre de symétrie, binaire, terbinaire, quaternaire, et terquaternaire, sont
impliqués chacun dans celui du systéme supérieur. Puisque le groupe d’opérations
de la symétrie terquaternaire se réduit en fait aux 48 maniéres possibles de
couvrir 3 vecteurs-unités triperpendiculaires {, {, k avec eux-mémes ou avec —ij,
—i» —hk, (les 3 arétes du cube élémentaire ne peuvent se couvrir qu'avec elles-
mémes ou les arétes inverses), les dyadies représentant les opérations de symétrie
de ces 5 premiers systémes se réduisent done chacun & 3 dyades de coefficient 1
ou —1 et dont i, {, h, dans un ordre ou un autre, sont & la fois les vecteurs an-
técédents et les vecteurs conséquents. Le produit de 2 quelconques de ces dyadies
revient donc uniquement & multiplier chaque dyade de I'un par la seule dyade de
l'autre qui a pour vecteur antécédent le vecteur conséquent de la premiére, et les
coefficients des nouvelles dyades sont également 1 ou —1 selon que les 2 dyades
dont elles résultent sont de méme signe ou de signe contraire.

Si nous appelons dyadics pairs ceux de ces dyadies qui ont un nombre pair
(0 ou 2) de dyades négatives et dyadies ¢mpairs ceux qui en ont un nombre im-
pair (1 ou 3) nous avons immédiatement cette propriété qui nous servira a préciser
les sous-groupes de ces dyadics: Le produit de 2 dyadics pairs ou de 2 dyadics
impairs est toujours un dyadic pair et le produit de 2 dyadics de parité différente
est toujours un dyadic impair. C’est une conséquence directe du fait que les com-
binaisons de signes 4+ et — — donne le signe positif et les combinaisons + —
et —+ donnent le signe négatif, et cela se démontre trés simplement. Le produit
des 2 dyadics, ou plutot en n’écrivant que les signes des dyades, des 2 rangées
de signes: e

+
(en multipliant done chaque signe de la premiére par un seul signe de la seconde)
donne comme résultat 3 dyades c'est-a-dire 3 signes positifs. Dés que I'on introduit
dans l'une des rangées un signe — en place d'un signe +, le produit posséde un
signe — ; si on en introduit un second dans la méme ou dans l'autre rangée, ou
bien il annule le premier ou bien donne un second signe —. Par le fait on en
introduisant un 3m¢ le résultat aura 1 ou 3 signes négatifs, et ainsi de suite. Si
donc la somme des signes négatifs introduits dans les 2 rangées est paire, en
d’autres termes si les 2 dyadics donnés sont de méme parité, le résultat a un
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nombre pair de signes négatifs; si cette somme est impaire ¢’est-a-dire si les 2
dyadies sont de parité différente, le résultat a un nombre impair de signes néga-
tifs, ¢. q. f. d.

Nous n’éerirons pour les 5 premiers systémes chaque dyadic qu'une fois,
c’est-d-dire que pour chaque systéme supérieur nous n’'écrirons que les dyadics
représentant les opérations nouvelles. La classe possédant la symétrie du groupe
complet des opérations du Gitter est la classe holoédrique du systéme. Selon que
le nombre des opérations ou des dyadics des sous-groupes obtenus est la demie,
le quart ou méme le huititme du nombre des dyadics du groupe enlier de symé-
trie, la classe correspondante est une hémiédrie ou hémimorphie, une tétartoédries
ou méme une octaédrie de cette classe holoédrique. Les dénominations ajoutées
entre parenthéses sont les dénominations maintenues aux classes par différents
cristallographes et empruntées généralement au nom de la forme cristalline normale
correspondante.

92. Systeme fricline. Son Raumgitter ne posséde ni axe de sy-
métrie et par le fait ni plan de symétrie; les seules opérations qui
le fassent coincider avec lui-méme sont l'identité et I'inversion autour
du point O:

L'identité est indépendante et détermine une classe: l'inversion
multipliée par elle-méme exige I'identité. Nous avons ainsi les 2 classes:

I. Classe tricline-hémiédrique (asymétrique). 1.
II. Classe tricline-holoédrique (pinakoidale). 1. 2.

93. Systeme monocline. Son Raumgitter (et d’ailleurs le com-
plexe lui-méme) posséde un axe binaire et par le fait un plan de
A symétrie normal. En effet si t et | sont
K p 2 vecteurs-unités perpendiculaires dans le
! plan normal a I'axe binaire et k le vec-
teur-unité coincidant avec cet axe, le dya-
dic 3, équivalent a l'axe binaire, multi-
pli¢ par linversion donne le dyadic 4,
qui est le plan de symétrie normal (fig.

19).

Lol
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Chacun de ces dyadics multiplié par lui-méme donne I'identité
et détermine une classe; multipliés 'un par lautre, ils exigent l'in-
version et représentent la symétrie de la classe holoédrique du systeme :

I1I. Classe monocline-hémimorphe (sphénoidique).
IV. Classe monocline-hémiédrique (domatique).
V. Classe monocline-holoedrique (prismatique).

94, Systeme rhombique. Le Raumgitter posséde avec l'axe bi-
naire k les 2 axes binaires perpendiculaires i et | dans le plan de
symétrie normal; les dyadics b et 6 équivalents, multiphés par l'in-
version, donnent les 2 autres plans de symétrie 7 et 8 correspondants
a ces axes:

5 Mol Bl
6. i ii— hk
7

==t 1§ -
8, it — i + kk
Les nouvelles classes sont immédiatement :
4 dyadics pairs 5. 6. 3. 1.
2 dyadics pairs et 2 impairs 7. 8. 3. 1.
Groupe holoédrique 5. 6. 7. 8 4. 3. 2. 1.

Toute autre combinaison par eux-mémes ou 2 a 2 de ces nou-
veaux dyadics détermine l'une des classes déja obtenues au systéme
précédent, sinon le groupe holoédrique des 8 dyadics donnés. Nous
avons donc les 3 nouvelles classes:

VI. Classe rhombique-hémiédrique (bisphénoidique).
VII. Classe rhombique-hémimorphe (pyramidale).
VIII. Classe rhombique-holoédrique (bipyramidale).

Pour ces 3 premiers systémes la forme des dyadics se réduit donc aux 8
variations que peuvent fournir les 3 signes des dyades de la forme générale :
ii + i + hh
L’identité est done en quelque sorte le dyadic fype de leurs opérations et si
nous multiplions par 'une d’elles I'un des dyadics quelconque des 5 autres iypes
qu'impliqueront les opérations des 2 systémes suivants (ce qui fait pour le systeme
cubique 6 types a 8 variations chacun = 48 dyadics), cette multiplication ne peut

que changer les signes du dyadic donné et le produit sera ainsi un dyadic du
méme type.
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95. Systeme quadratique ou tétragonal. L’axe binaire k devient
un axe quaternaire, et dans le plan normal aux 2 axes binaires i et |
s'ajoutent les 2 axes binaires diagonaux (fig. 19) i’ et j'. Les diadics
9. 10. 11. et 12. représentent les nouvelles rotations et multipliés par
I'inversion, exigent l'axe quaternaire de 2m¢ espeéce 13. et 14. (axe
quaternaire de 1r¢ espéce combiné a une réflexion dans le plan nor-
mal) et les 2 plans de symétrie normaux aux axes binaires 15 et 16:

! I[ s }I -+ Rk 1°* mouv.
10. —ij-Fiji -+ kk 3¢ mouv.
1. if =i hk
12, —ij —ii —hk

} axe (uat.

axes binaires i’ et |/

13. —ij+ii—Kkk 3me mouv., | axe quat.
14 ij —ji—kk 1¢* mouv. }Qe espéce
15, —ij—ji+ Rk plans desymétrienor-
16. ij + it + kk mauxaux axes i’ etj’.
Le dyadic-type : ij + ji + kk multiplié par lui-méme donne I'iden-
tite : (if + it 4+ kk)> =1i + {j + kk,

tandis que multiplié par I'un des 8 dyadics précédents, il donne (re-
marque précédente) l'une de ses 8 variations que nous venons d’écrire.
Les 2 dyadics impairs 9 et 10, comme les 2 dyadics pairs 13 et 14,
exigent donc les 2 variations paires de ['identité dont la dyade kk
est positive :

9. 10. 3. 1. puissances du dyadic 9.

13. 14. 3. 1 puissances du dyadic 13.

Les 2 groupes réunis exigent en outre les 2 variations impaires
de I'identité dont la dyade kk est négative:

9. 10. 13. 14. 4, 3. 2. 1.

Remarquons d’abord que le groupe suivant des 4 dyadics 11.
12. 15. et 16. représente de nouveau dans le systeme quadratique la
symétrie du systéme précédent, et qu’il est donc inutile de le prendre
a part pour retrouver les classes déja obtenues. En introduisant 11.
ou 15. dans le 1°* groupe trouvé, il faut y introduire 12. ou 16. par
le fait de la présence de 3.; nous obtenons ainsi soit leg,4 variations
impaires du nouveau type exigeant les 4 variations paires de 1'iden-
tité, soit les 4 variations du nouveau type dont la dyade kk est positive
exigeant les 4 variations de I'identité dont kk est également positif :
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9. 10. 11. 12, 5 6 3. 1
9. 10. 16, 16 7. & 3. 1,

En introduisant 11. ou 15. dans le 2me groupe trouvé, 1l faut y
introduire encore 12. ou 16. par le fait toujours de la présence de 3.;
nous obtencns soit les 4 nouvelles variations dont kk est négatif exi-
geant les 4 variations de I'identité dont kk est positif, soit le groupe
des 8 dyadics pairs compris dans les 16 dyadics donnés :

13. 14. 11. 12. 7. 8 3. 1.
13. 14. 15. 16. 5. 6. 3. 1.

Mais on voit immédiatement que ces 2 derniers groupes repré-
sentent la méme symétrie: l'axe quaternaire de 2° espece, 2 plans
de symétrie perpendiculaires passant par cet axe alternant avec 2
axes binaires perpendiculaires dans le plan normal.

Dés que l'on introduit maintenant dans I'un des groupes a 8
dyadics, I'un quelconque des dyadics donnés qu’il ne contient pas
encore, on obtient le groupe entier des 16 dyadics donnés, représen-
tant la symétrie du Gitter quaternaire et celle de la classe holoédrique
du systeme. Nous avons donc:

IX. Classe tetragon.-hémiédrique-hémimorphe (pyramidale).

X. Classe tetragon.-sphénoidique-tetartoédrique (bisphénoidique).
XI. Classe tétragon.-pyramidale -hémiédrique (bipyramidale).
XII. Classe tétragon.-trapézoédrique -hémiédrique (trapézoédrique).

XIII. Classe tétragon.-holoédrique-hémimorphe (ditetr. pyramidale).
XIV. Classe tétragon.-sphénoidique-hémiédrique (scalénoédrique).
XV. Classe tetragon.-holoédrique (ditétrag. bipyramidale).

96. Systeme cubique ou régulier. Les axes i et | sont également
quaternaires. A l'un et I'autre est donc attaché le systeme de dyadics
représentant la symétrie quaternaire correspondante, et ces 2 systéemes
s’écrivent immédiatement en donnant successivement a i et a i le
role de k dans les dyadics du § précédent:

Axe quaternaire i et axes binaires Axe quaternaire | et axes binaires
diagonaux dans le plan (jh) diagonaux dans le plan’ (ik)
17, did-jk—k 25, —ik-|-jj-|-ki
18, ii—ih 4k 26. ik ij— ki
19, — i+ ik - ki 97. ik — i+ ki

20. —ii—ik ki 98. — ik — {j — ki
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Multipliés par l'inversion :

Axe quaternaire i de 2v¢ espéce et Axe quaternaire i de 2" espéece et
plans de symétrie diagonaux pas. par 'axe. plans de symétrie diagonaux pas. par I'axe.
21, —ii — jk -+ ki 29. ik — - ki
22, —ii 4 jh — kj 30. — ik — jj -+ ki
23, ii— jk — ki 31. — ik - ij— ki
24 ii L ik ki 32, ik - i 4 ki

Les directions des 4 diagonales principales du cube élémentaire
sont en outre des axes ternaires (fig. 17), dont les 2 mouvements qui
ne sont pas lidentité s'écrivent immédiatement (fig. 19); multipliés
par I'inversion ils deviennent les 2 dyadics de 2me espéce qui sont
les 1¢* et 5me mouvement d’axes sénaires de 2me espece (axes sénaires
de 1'¢ espece combinés & une réflexion dans le plan normal, leur
3me mouvement est 'inversion) coincidant avec les axes ternaires.

1re axe 2me gxe
(en sens inverse des aiguilles d'une montre) (en remplacant dans le 1°% j par j et j par -{)
33, ij ik ki 37. —ik — ji 4+ kj
4. ik + i -+ ki 38, — ij+ ik —ki
35, — ij— jh— ki 39. ikt ik
36, — ik — ji—kj 4. i ik ki
3me gxe 4me gxe
(en remplacant dans le 1¢7 § p. -j et j par -{)  (en remplacant dans le 1¢7 { p. -j et { par -{)
M. ij— ik — ki 4. ik — i —k
42 — ik ji — ki 46— ij — ik - ki
43. - ij - jk - ki 47, — ik - ji -+ ki
4. ik — ik 48. i ik — ki

Il est inutile d’abord de chercher de nouveaux groupes de dyadics
pris exclusivement dans l'une seule des symétries quaternaires: ils
ont été déja trouvés au systéme précédent; comme aussi des groupes
impliquant un seul axe ternaire ou un seul axe sénaire de 2m¢ espéce :
il se retrouveront plus simplement et a plus juste titre dans les dyadies
du systeme suivant.

Les 4 axes ternaires sont tous des dyadics pairs dont les 2
formes types, multipliées chacune par elle-méme, exige la seconde, et
multipliées 'une par l'autre, exigent l'identité :
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(if -+ ik -+ ki)* = ik + {i +- ki
(il +- i 4 ki) = ij -+ ik |- ki
(i i -+ ki) - (ik - {i - ki) = ii +-ij + bk,

La présence de 2 quelconques de ces axes entraine donc celle
des 2 autres, et par le fait les 4 varations paires de l'identité :

33. 34. 37. 38. 41. 42. 45. 46.
5. 6. 3. 1.

Les 4 axes sénaires de 2m° espéece sont les variations impaires
des 2 types; la présence de 2 d’entre eux exige celle des 2 axes
ternaires correspondants et par suite le groupe complet des dyadies
des 2 types avec les variations paires et impaires de l'identité:

33 a 48
1 a8.

Deux quelconques des 3 types quaternaires donne comme pro-
duit un axe ternaire; et si l'on accouple un type quaternaire & l'un
ou l'autre des types ternaives, 1ils exigent les 2 autres types quater-
naires :

(it + ik -+ ki) - (ik 4 1§ + ki) = 1] |- jh - ki
(ik -+ §i + ki) - (it 4= ik 4 ki) =1k 431 + ki
(ik 4 §i + ki) - (if + ik + ki) =1l + jk 1 kj
(ih -+ i+ hi) - ik + §i - bi) = ij + fi + bk

Il n'existe donc pas de combinaisons de 2 types qualernaires
sans dyadics ternaires et on obtiendra les sous-groupes qui restent a
trouver en introduisant les dyadics quaternaires dans les 2 groupes
de types ternaires obtenus.

Si l'on introduit dans le groupe des 4 axes ternaires un dyadic
quaternaire impair, ses combinaisons avec les dyadics pairs des axes
ternaires fournissent les dyadies impairs des 3 types quaternaires, et
les produits de ces derniers sont soit & nouveau les dyadics pairs
des axes ternaires (combinaisons de 2 types), soit les 4 variations
paires de l'identité (combinaisons d'un méme type):

9. 10. 11. 12. 17. 18. 19. 20. 25. 26. 27. 28.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

St l'on introduit dans ce groupe des 4 axes ternaires un dyadic
quaternaire pair, ses produits avec les dyadies pairs des axes ter-
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naires sont les dyadics pairs des 3 types quaternaires, et les combi-
naisons de ceux-ci fournissent encore soit & nouveau les dyadics pairs
des axes ternaires, soit les 4 variations paires de 'identité :

13. 14. 15. 16. 21. 22. 23. 24. 29. 30. 31. 32.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Par contre dés que l'on introduit dans le groupe des 4 axes
sénaires de 2m¢ espece un dyadic quaternaire quelconque, ses com-
binaisons avec toutes les variations paires et impaires des 2 types
ternaires sont les dyadics pairs et impairs des 3 types quaternaires,
et les produits de ces derniers comme ceux des types ternaires entre
eux, exigent les variations paires et impaires de l'identité. Nous ob-
tenons ainsi le groupe entier des 48 dyadics donnés, représentant
les 48 opérations possibles couvrant les 3 vecteurs-unités triperpen-
diculaires i, j, k avec eux-mémes ou — i, —{, —k, cest-a-dire le
groupe de symétrie de la classe holoédrique du systeme cubique. Les
5 nouvelles classes sont dans l'ordre trouvé:

XVL Classe réguliére-tétartoédrique (létraédr. pentagondodé
caédrique).
XVIIL Classe pentagonale-hémiédrique (dyakisdodecaédrique).
XVIIIL Classe gyroédrique-hémiédrique (pentagon.-icositetraédr.).
XIX. Classe tétraédrique-hémiédrique (hexakistetraédrique).
XX. Classe réguliére-holoédrique (hexakisoctaédrique).

97. Systéme hexagonal. Soient i et | 2 vecteurs-unités perpen-
diculaires pris sur 2 axes binaires du réseau fondamental el k le
vecteur-unité normal au plan de
la fig. 20 et coincidant avec I'axe
sénaire du  Raumgitter. L’unité
étant le coté du triangle équila-
téral élémentaire, les nouvelles
positions i, {’, kK* que prennent
les vecteurs i, {, k par le fer
mouvement de l'axe sénaire sont
immeédiatement :

. 3., 1. S
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et le dyadic représentant le mouvement s’écrit :

13 l.s

i =" 514 5i)+ bk

Le second mouvement (rotation de 1200) change i et jeni”et —1i”;
son dyadic s’écrit pareillement:

Vs,
9}

i (-5

(e 2=V 2= L 4w

Le 3me mouvement est celui de I'axe binaire impliqué dans I'axe
sénaire ; son dyadic est le dyadic 3 (§ 93). De la, pour les 2 autres
mouvements qui restent avant l'identité, les positions des vecteurs
i el | sont exactement les valeurs négatives de leurs positions apres
le 1er et le 2m¢ mouvement ; il suffit donc de changer les signes des
2 premiers termes des dyadics trouvés pour obtenir leurs dyadies
équivalents.

Le premier axe binaire i” change les vecteurs i el jeni’ et —
et k en —k; son dyadic correspondant est donec:

VB v ¢ V83 1,
‘(2 4" gil+il gt—~gi)—~Hik
Le second axe binaire i’ change inversement i en {” et | en i”,
son dyadic s’écrit :

(=gt S+ i S g —

L’axe binaire { comme l'axe binaire i sont les 2 axes binaires
du complexe rhombique impliqués dans la symétrie du Gitter hexa-
gonal et représentés par les dyadics b et 6 (§ 94). Enfin les 2 autres
axes binaires {” et |’, par le fait qu’ils sont normaux aux 2 premiers
axes binaires i” et i’, donnent par leur mouvement a i et & i les
directions inverses de celles que leur donnent les axes i” et i’, leurs
dyadics sont donc de nouveau les 2 dyadics trouvés avec leurs 2
premiers termes pris en signe contraire.

Dans chaque dyadic obtenu, nous faisons les produits indéfinis,
¢’est-a-dire nous formons les dyades comme 1l a été fait dans la re-
marque du § 91: nous appelons pour simplifier les dyadics a 2
termes (dyadics planaires):

LR v =i gy =

V3,

- - 0

gt — 1 pu =i —ii fn=V3



— 121 —

Nous multiplions par l'inversion ces opérations de 1t espece
pour obtenir celles de seconde espeéce en changeant simplement les
signes des dyadics, et nous avons ainsi réuni en 24 dyadices le groupe
complet des opérations représentant la symétrie du Raumgitter hexa-
gonal et de la classe holoédrique correspondante :

Les 6 mouvements de I'axe sénaire. Les 6 axes binaires {7, ', |, 1", {’, i
v e + 294 1 RR 13’ e1py + Egs — KR

2" —egr+ gpu + kR 14" — e1pp +&ags — Rk

3’ — s kK 15’ o’ — Kk

4 — ey —eqy 1 kR 16" — &gy — &5 —kk

5’ eigr — &gy 1 kR 17 &g — £200 — kK

6 v, -+ kk 18’ "

Multipliés par I'inversion :

(mais en partant de 4’ et 16/ pour plus d’homogénité).

Les 6 mouvements de I'axe sénaire combinés . Les 6 plans de symétrie normaux aux
chacun avee une réflexion dans axes {”,{'.1',1”, i’,{ et dont les traces sur
le plan normal. le réseau fondam. sont donc §”, 1, i, i”, i’,i.
r ’
1 &1 + &4 — kR 19 &1z -+ &y -+ RR
8  — &g+ eaps —hR 20" — &gy + &5+ kR
9 oy — kK 21/ g hk
10" —e&q — &9, —hk 22" — &gy —&ps 1 kR
11’ &1pr — €2y — RR 23 &1y — &ap5 -+ kR
19/ o1 — kR 2 va - Rk

98. Nous appelons dyadics sénaires les dyadies numérotés d’un
chiffre impair et dyadics ternaires les dyadics numérotés d’un chiffre
pair. Les différentes formes des dyadics sénaires, abstraction faite de
leur dernieére dyade kk indépendante des 2 premiers termes dont les
dyadics ne renferment que les vecteurs i et {, sont uniquement :

&) + &y &Pz T &3
&P — &y §1P2 — &
— ¢ — @

En multiphant chacune des 4 premiéres de ces formes par elle-
méme et chacune des 3 autres, nous obtenons les 16 produits que
voici, dont les seconds membres sont uniquement chacune des 6 for-
mes correspondantes des dyadics ternaires :
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(69, + &0)° = — &0, + 5,9, (5,92 + 695)° = @,

(& Py — 829?4)2 — 5 — &y, (e, 0, — &,9,)° = 9y

(g0, + & @) (6,9, — £9,) = @, (&9 + &9,) (6,9, — &,9) = —&,0, + 5,9,
(8.9, — 696,90, + &9) =@, (219 — &) (69, + 8:005) = —&,9, — &,
(8,95 + £9,) (2,00 + 89) = @, (&9, + £:0,)-(8, 9y — &,00,) =—¢,, + &,
(e, 9y + &9,) (6,9, — &05) =@, (8,0 — &:@,) (6,0, — &,05) = —&,0, — &0,
(81(}9._, - ‘9290:!) (81‘?71 + 32904) =59, T &Py (81qj-g —Sg(f’;}) (81(7)1 - 8«3974) —

Ces produits s’effectuent trés simplement: les combinaisons scalaires ¢ ¢y
étant trouvées une fois pour toutes (les combinaisons ¢, ¢ = ¢k, car ¢, est li-
dentité planaire (if)), chaque produit se fait comme le produit de 2 binomes algé-
briques.

Ainsi: (2,9, + &,0,)" = &lgi + 25,600, + 39l = (6] — ) ¢, + &0, = —&,9,
+ &,¢,. Dailleurs les résultats des 6 premiers produits peuvent étre donnés a
priori : les puissances du 1°* mouvement de 'axe sénaire sont évidemment les 5
autres rotations différentes qu’il implique, celles du dyadic 2/, les dyadics 4' et 6’
qui sont les 2 autres mouvements de l'axe ternaire, et la seconde puissance d'un
axe binaire doit donner l'identité. Les résultats trouvés ne sont qu'une confirmation
par le calenl en dyadics de ce qui se déduit déja dans ce cas-ci plus s:mplement
par le raisonnement seul. D’ailleurs a vrai dire, & condition d’établir d’abord les
dépendances qui existent entre les éléments de symétrie : centre, axes et plans de
symétrie, toute cette déduction par les dyadics de la symétrie des 32 classes eris-
tallines de celle des 6 classes holoédriques se fait bien plus simplement an moins
pour certaines classes par le seul raisonnement en supprimant successivement les
éléments de symétrie dans chaque classe holoédrique. Les dyadies ont I'avantage
d’étre l'expression méme algébrique des opérations de symétrie, d’en impliquer
par le fait en eux-mémes les dépendances mutuelles et de fournir ainsi directement,
par leurs combinaisons réciproques, les combinaisons mémes de ces opérations sans
en laisser échapper aucune.

Naturellement si I'un des dyadics facteurs des 1¢ membres
change de signe, chaque terme ou chaque dyade du produit change
de signe et le second membre doit étre pris en signe contraire; par
suite si les 2 dyadies facteurs changent de signe a la fois, le résultat
ne change pas comme pour un produit ordinaire.

D’autre part, le dyadic — ¢, ne fait que changer le signe du
dyadic planaire (ij) qu’il multiplie (celui dont les dyades ne renfer-
ment que les vecteurs-unités i et | et dont l'opération équivalente a
lieu ainsi dans le plan de ces vecteurs); le dyadic — ¢, change ¢,
en —@,, ¢, en +g@; (cest-a-dire @y, =@y et @0, — — @), et -
versement change ¢, en — ¢, @3 en 4+ ¢, On se rend donc compte
sans peine que toute combinaison de I'une quelconque des 6 formes
sénaires écrites, avec elle-méme ou chacune des 5 autres, est toujours
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I'une des 6 formes ternaires correspondantes. Mais puisque les formes
des dyadics ternaires sont précisément celles des dyadics sénaires
prises en signe contraire, en vertu de ce qui vient d’étre dit du
changement de signe, et en considérant encore une fois les résultats
des produits effectués, les combinaisons des 6 formes sénaires et les
signes de la derniére dyade kk, nous obtenons immédiatement les 2
principes suivants dans le groupement des 24 dyadics donnés, qui
nous fournissent aussitot les 11 sous-groupes indépendants d’opérations
de la symétrie sénaire.

Le produit de 2 dyadics lernaires ou de 2 dyadics sénaires est
toujours un dyadic lernaire, tandis que le prodwil d'un dyadic
ternaire et d'un dyadic sénaire est towjours un dyadic sénaire.

Le produwit de 2 dyadics d’'une méme colonne, 1° a 12" ou 13’
a 24", (d'une méme rangée, 1" a 6 avec 13" a4 18 ou 7 a 12’
avec 19" a 24') est toujours un dyadic de la premiére colonne
(rangée), tandis que le produit de 2 dyadics pris un dans chaque
colonne (rangée) est toujours un dyadic de la seconde.

En effet dans ces conditions, chacun des groupes de dyadics qui

suivent est tel que le produit de 2 quelconques de ses dyadics ne
peut élre que l'un des dyadies du groupe :

7 a12 19 a 24 naires,

1’ a4 6 7' a 12" le produit de 2 dyadics de la 1 colonne est toujours
un dyadic de cette colonne: axe sénaire et plan de
symétrie normal.

-

1" a 6 13" a 18 } groupe holoédrique des 24 dyadics sénaires et ter-

1’ & 6 13’ a 18 le produit de 2 dyadics de la 1™ rangée ne peut étre
qu'un dyadic de cette rangée: axe sénaire et 6 axes

binaires.
17 a6 19" a 247  les 2 principes simultanément: axe sénaire et 6 plans

de symétrie,
17 a ¢ axe sénaire; puissances du dyadic 17,
! ’ ’ ’ ’ !’
52%’ 140’ 61 9 ;ﬁ’ ;g’ ;i’ } groupe complet des 12 dyadics ternaires.
variation du groupe précédent: les dyadics sénaires
2" 4 6 14 16" 1¥ 17’, V', ete, exigent également les dyadics ternaires
79 117 19 21’ 23/ J 2", 4’, ete.,, et inversement leurs produits avee ces
derniers les reproduisent eux-mémes.
Cette antre variation remplit aussi les mémes conditions:
2" 4 6 13’ 15’ 17’ mais représente a premiére vue la
79 117 200 227 24’ méme symétrie que la précédente.
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2 4 6 & 10° 12/ dyadies ternaires de la 1% colonne: axe ternaire et
plan de symétrie normal,

2 4 6 79 11 axe sénaire de seconde espece,

¥ & 6 14 16 18 variations de ces 2 groupes représentant encore a
' premiére vue les mémes symétries :

2! 4/ 6! 20; 22; 24; 9r 4/ 6 13" 15/ 17"

et 2 4 6 19 21" 28

)’ ’ ’ . .
2" 4 6 axe ternaire; puissances de 2’.

Ce sont done la 12 growpes indépendants d’opérations de la
symétrie sénaire, en négligeant naturellement les groupes de symétrie
binaire et terbinaire inclus dans la symétrie sénaire et fournis par
exemple par chaque dyadic de la 2me colonne multiplié par lui-méme
ou chaque couple de ces dyadics dont les formes planaires (i{) sont
de signe contraire. Si inversement on établit d’abord, comme il a été
plutot fait pour les systemes précédents, les 5 classes inférieures qui
se laissent immédiatement déterminer dans les 12 dyadies de la 1re
colonne et introduit ensuite successivement dans les groupes trouvés
les dyadics de la seconde colonne qui exigent nécessairement ceux
de la 1re, de maniére a ne laisser de coté aucune classe, on se rend
compte de suite que, a part ces groupes de symétrie binaire et ter-
binaire, il n’est pas d’autre groupe indépendant possible que les 12
établis, et qui représentant la symétrie des 12 classes suivantes
dans l'ordre trouvé:

XXI. Classe hexagonal-holoédrique (dihexagonal-bipyram.)

XXII. Classe hexag. pyramidale-hémiédrique (hexagon.-bipyram.).
XXIII. Classe hexag. trapezoédrique-hémiédrique (hexag.-trapezoéd.).
XXIV. Classe hexag. holoédrique-hémimorphe (dihexag.-pyram.).

XXYV. Classe hexag. pyram.-hémiédr.-hémimorphe (hexag.-pyram.).
XXVI. Classe trigonale-hémiédrique (ditrigonale-bipyram.).

XXVII. Classe rhomboédrique-hémiédr. (ditrigonale-scalénoédrique).
XXVIIIL Classe trigonale-tetartoédrique (trigonale-bipyramidale).

XXIX. Classe rhomboédrique-tétartoédrique (rhomboédrique).

XXX. Classe trapezoédrique-tétartoédrique (trigon.-trapezoédrique).
XXXI. Classe rhomboédrique-hémimorphe (ditrig.-pyramidale).
XXXII. Classe hexagon.-octaédrique (trig.-pyramidale).

L'ordre des classes dans les systémes étant en réalité sans aucune impor-
tance. nous nous sommes permis de dénommer ces classes directement dans I'ordre

ol nous les avons trouvées.
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