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INTRODUCTION

M. le professeur Daniels a indiqué dans une note à la fin de

son livre : Essai de Géométrie sphérique en coordonnées projectives,
que ses coordonnées projectives, en choisissant des faces cristallines

pour déterminer le trilatere sphérique de référence et sa droite-unité.
ne sont autres que les indices de Miller des faces et arêtes du cristal
et a montré en quelques théorèmes combien le calcul vectoriel et

l'emploi de ses coordonnées sphériques rendaient plus simple et plus
élégant le développement des formules de la cristallographie géométrique,

formules généralement compliquées et qu'a établies principalement

Liebisch : Th. Liebisch, Geometrische Kristallographie, Leipzig

1881. M. Daniels a eu l'obligeance de m'indiquer lui-même
un travail de thèse dans le développement de cette note et de

me fournir tous les renseignements nécessaires pour appliquer ses

résultats obtenus en coordonnées projectives sur la sphère aux
indices des faces et arêtes cristallines et traiter ainsi d'une manière

plus simple et plus concise tout ce que Liebisch a traité dans la
première moitié de son ouvrage. C'est ce que j'ai fait dans la
première partie de mon travail.

Sur les indications encore de M. Daniels j'ai développé dans

une seconde partie ou plutôt décrit avec ses propriétés la construction

parallélipipédique de l'assemblage réticulaire de Bravais (réseau
dans l'espace pour Mallard et Wallerant) dont l'étude est aujourd'hui
inséparable du domaine de la Cristallographie géométrique et au

moyen duquel principalement les cristallographes français ont tenté

d'expliquer la structure intime du cristal. Enfin dans une troisième
partie, j'ai montré qu'il n'existe, en tenant compte de la symétrie
de leur réseau spatial primitif, que 6 types différents de complexes
cristallins possibles et du groupe entier de symétrie de ce réseau

primitif qui a la symétrie de la classe holoédrique correspondante,
j'ai déduit par une méthode nouvelle les sous-groupes de symétrie
indépendants, en d'autres termes, l'ensemble des 32 classes possibles
de cristaux.



IV

Ainsi conçu mon travail forme un tout suffisamment homogène
et s'il peut prétendre renfermer la moindre idée utile et nouvelle, il
la doit à M. le professeur Daniels, à qui j'exprime en terminant
mon entière reconnaissance.

Sévérin BAYS.

Les ouvrages auxquels mon travail se réfère ou que j'ai plus ou moins
consultes sont les suivants :

Daniels : Essai de géométrie sphérique : introduction, chapitres I, II, III, IV,
§ 83 et suivants, note 2.

Baumhauer : Die neuere Entwickelung der Kristallographie, page 23-53.

Liebisch : Geometrische Krystallographie, Leipzig, 1881, page 1-98.

Sommerfeld : Geometrische Krystallographie, Leipzig, 1906. Abschnitten II, III,
IV* et V, page 40-91

Bravais : Mémoire sur les systèmes de points distribués régulièrement sur un
plan ou dans l'espace. Etudes cristallographiques, page 101-205.

Encyklopedie der Math. Wissensch., Krystallographie Bd. VI, cahier 3, 1906.

A. page 395429, B. page 437.452.

Schönflies : Krystallsystem und Krystallstructur, Leipzig 1891, page 1-105 et
237-304.

Gibbs : Vector analysis. London 1902, page 260-371.

Gadoliii : Mémoire sur la déduction d'un seul principe de tous les systèmes
cristallographiques. Acta. soc. fenn. 1871.

Sohncke : Entwickelung einer Theorie der Krystallstructur, Leipzig 1879. Bie
unbegrenzten regelmäßigen Punktsysteme, Karlsruhe 1876.

Mallard : Traité de cristallographie géométrique et physique, Paris 1879.

Les articles suivants du : Zeitschrift für Krystallographie :

N° 27, page 1. Viola: Elementare Darstellungen der 32. Krystallclassen.
Page 399. Viola : Beweis der Rationalität einer 3-zähligen Beckaxe.
N° 28, page 36. Fedorow : Beitrag zur Syngonielehre.
N° 30, page 390. Fedorow* : Ein elementarer Beweis des Weiss'schen

Zonengesetzes.
N° 31, page 135. Goldschmidt* : Über Krystallsysteme deren Beftnition

und Erkennung.
N° 32, page 49. Goldschmidt : Über Abteilungen der Krystallsysteme.
N° 33, page 555. Fedorow* : Beiträge sur zonalen Krystallographie.

III. Syngonie Ellipsoïd-Gesetz.
et les 2 suivants du : Neues Jahrbuch für Mineralogie 1896, Beil.-Bd. 10,

page 167-178. Viola: Bie Einführung des geometrischen Rechnens in
der geometrischen Krystallographie,

page 495-532. Viola : Über die Symétrie der Krystalle und Anwen¬
dung der Quaternionen Rechnung..

Ceux qui m'ont plus spécialement servi, sont marqués d'un astérisque.



CHAPITRE I

1. Le cristal, en tant qu'individu, c'est-à-dire exception faite des

agrégats de cristaux, est un complexe de faces et d'arêtes, limitant
un polyèdre convexe. Par le fait le théorème d'Euler nous donne la
relation entre le nombre f de ses faces, s de ses sommets et a de

ses arêtes :

f 4- s a + 2.

Ces faces et arêtes limites du polyèdre n'ayant de déterminé que
leurs directions dans l'espace, leur concentration (en les déplaçant
parallèlement à elles-mêmes) par un point quelconque, peut adéquatement

représenter la forme géométrique du cristal. Dans ce cas
l'ensemble des faces parallèles à une même arête et constituant une zone
du cristal se réduit au faisceau de plans qui a pour support cette
arête ou cet axe zonal, et l'ensemble des arêtes parallèles à une
même face, au faisceau d'arêtes qui a pour support ce plan du
complexe.

Si nous faisons maintenant de ce point de concentration des

faces et arêtes du cristal, le centre O d'une sphère de rayon égal à

l'unité, sur cette surface sphérique obtenue :

Chaque face est adéquatement
représentée par la droite sphérique

(ou grand cercle) correspondante,

et comme telle univoque-
ment déterminée par un vecteur
unité l, partant du centre, normal

à son plan, et dirigé à gauche
du sens positif adopté pour en

parcourir le contour.

Chaque arête est adéquatement
représentée par son point d'affleurement

et comme telle univoque-
ment déterminée par un vecteur
unité t, partant du centre et
passant par ce point.

Chaque multiple positif de ce
vecteur détermine la même arête

ou le même axe zonal ; chaque
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Chaque multiple positif de ce

vecteur détermine la même face,

chaque multiple négatif détermine

la face opposée et parallèle à la

première, c'est-à-dire la face

négative correspondante du cristal.

multiple négatif détermine l'arête

opposée et parallèle à la première,
c'est-à-dire l'arête négative
correspondante du cristal.

-YftH

J- Ul.

M

vc*
Fig. 1.

2. L'angle de 2 faces données

lt et t3, défini par l'angle de leurs
normales est immédiatement fourni

par le produit scalaire :

Kk COS Cp.

L'angle de 2 arêtes données

% et r,, est de même immédiatement

fourni par le produit
scalaire :

rtr2, cos y.

L'angle d'incidence d'une arête r par rapport à une face l. défini

par l'angle ê de l'arête avec le vecteur de la face est également

donné par le scalaire :

lr cos ¦&.

3. Le vecteur d'une face parallèle

à 2 arêtes données rt et r2f

devant être normal au vecteur rt
comme au vecteur r2 est leur produit

vectoriel :

r,t,

Le vecteur d'une arête parallèle

à 2 faces données it L_,

devant être normal au vecteur lt
comme au vecteur U est leur
produit vectoriel :

±Yu„
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Le double signe correspond aux
2 faces opposées qui peuvent être

parallèles aux 2 arêtes.

Le double signe correspond aux
2 arêtes opposées qui peuvent être

parallèles aux 2 faces.

Le vecteur d'une face parallèle à une arête et normale à une
face données r et I, devant être normal au vecteur l comme au
vecteur r, est encore leur produit vectoriel :

Vit
Le double signe correspond encore aux 2 faces

opposées remplissant la condition demandée.

Evidemment rien ne change aux résultats de ces 2 derniers

paragraphes, lorsque les vecteurs l{ et ti cessent d'être vecteurs-
unités ; dans le premier § nous n'avons qu'à tenir compte de leurs
tenseurs, c'est-à-dire de leur valeur absolue, pour appliquer nos 3

formules, et dans le second, peu importe les tenseurs des produits
vectoriels, un vecteur, quelque soit sa valeur absolue, déterminant
toujours la même face ou la même arête.

4. Le vecteur d'une face tauto-
zonale à 2 faces données It et 1.,,

devant être coplanaire avec leurs
vecteurs, est de la forme :

k-XU
et i\ est le rapport de position
de la 3me face par rapport aux
2 premières.

En effet, les faces étant pt, p2,

p3, si t est le tenseur de lt — X t,,
qui n'est pas en général un
vecteur-unité, nous avons d'après les

règles du produit vectoriel :

\{li—^s>)=—$kk=i sin (pip3) r0

11,(^-/1,)=— i lxl2=T sin (p.,p3) r0

et par division :

x __ sin(p1p3)
sin (p,p3)

(P1P2P3)

c. q. f. d.

Le vecteur d'une arête coplanaire

à 2 arêtes données ï1 et r,,
est par le fait même nécessairement

de la forme :

t1 — Ar,

et X est le rapport de position
de la 3me arête par rapport aux
2 premières.

En effet, les arêtes étant nlt n.,,

ns, si t est le tenseur de tx — X t.,

qui n'est pas en général un
vecteur-unité, nous avons d'après les

règles du produit vectoriel :

^r1(ï1—Xï2)=z—X\tlt2=rsin{n1n3)l0

1 fjifo—Xï2)=— \ ïlï.,=Tsin(n.in3)l0

et par division :

/.
sm (z^TZjj)

sin {n.2ns)
: (n^n^n^)

c. q. f. d.
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En remarquant que
sina sin(a4-ji)
——s=——r^—i—ï, cest-a-dire que les rap-sinp sin(/5 4-7i) ^ r

ports de position sont égaux pour 2 faces ou arêtes opposées et
parallèles, la fig. 2 nous montre immédiatement (du moins pour les

arêtes, (ce serait identique pour les
faces) que le rapport de position X

de la 3me face ou arête est positif

quand elle passe dans l'angle
extérieur, et négatif, quand elle
passe dans l'angle intérieur des
2 faces ou arêtes données.

w Ajfl
rjS"

«¦.?Ar,

Fig

5. Trois faces lj sont tautozo-
nales, s'il existe 3 nombres kj tels

que :

k^! -\- k2I2 k3l3 o

puisque dans ce cas le 3me vecteur
est nécessairement coplanaire aux
2 autres.

Trois arêtes ti sont copia-
naires, s'il existe 3 nombres kj
tels que :

k1r14-k2r24-k3ï8 o

puisque dans ce cas le 3me vecteur
est nécessairement coplanaire aux
2 autres.

Encore ici rien ne change aux résultats des § 4 et 5, quand les

vecteurs 1
j et r [ cessent d'être vecteurs-unités ; dans les formes iy — X 12

et tj — Xt2t nous n'avons qu'à les réduire à l'unité pour avoir la
valeur exacte du rapport de position X, et quels que soient leurs
tenseurs, les vecteurs de 3 faces ou de 3 arêtes sont encore coplanaires,
dès que, multipliés par 3 facteurs k;, ils donnent une somme qui est

nulle.

6. Enfin dans le cas de 4 faces

tantozonales :

Pi I2 p., 12

Ps k — * h Pi *i — j" k

nous appelons le quotient des

rapports de position X et ju des faces

Enfin dans le cas de 4 arêtes

coplanaires :

nX — f1 n-2 — J^2

X r., n. u r„71$ Ij 71 *2 7Cy ly fA, *2

nous appelons le quotient des

rapports de position X et /j- des arêtes
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Pa et p4 par rapport aux faces

Pi et p2 :

X
__

sin (giga) sin (ptp4)

fi ' ' sin (p.,p3)
' sin (p2p4)

le rapport anharmonique du couple

des 2 dernières par rapport à
celui des 2 premières et on l'écrit :

J_= (PjjVPl)
i"

" "
(PiPaPé)

(P1P2P3P4)

On voit immédiatement en
gardant unies les 2 faces de chaque
couple, que ce rapport anharmonique

des 2 couples p4 p2 et p3 p4

peut prendre 8 formes différentes ;

mais si l'on prend les quotients
des rapports de sinus représentés

par ces formes, on ne leur trouve

que 2 valeurs distinctes dont la
seconde est l'inverse de la
première :

(P1P2P3P4) =(p2PiP4Ps) (P3P4P1P2)

(P4P3P2P1)

(P2P1P3P4) (PlP2P4P3)= (P4P3P4P2)

(P3P4P'P1)-

ns et nt par rapport aux arêtes

nx et n2 :

X
_

sin {nxn9)
_

sin [n^n^)

fi sin {n.2n3)
' sin (ti2^4)

le rapport anharmonique du couple

des 2 dernières par rapport à
celui des 2 premières et on l'écrit :

X (nxn.,n3

fi -^ (jTjjr^Tiçjj^)
\jtinînt)

On voit immédiatement en
gardant unies les 2 arêtes de chaque

couple, que ce rapport anharmonique

des 2 couples nx n.2 et ns né

peut prendre 8 formes différentes ;

mais si l'on prend les quotients
des rapports de sinus représentés

par ces formes, on ne leur trouve

que 2 valeurs distinctes dont la
seconde est l'inverse de la
première :

[nx ji, jt37t4)= n.2nx n^n3 (n3ninx n.2

(7r47r37r.,7£jJ

(7r27î17r37r4)= {n^n^^nj) (n^n^.,)
(7r37T47r27T1).

Le rapport anharmonique de 4 éléments (faces ou arêtes) se

change en rapport harmonique lorsqu'il a pour valeur — 1. Dans

ce cas, sa valeur inverse devenant égale à sa valeur directe, on peut

non seulement intervertir l'ordre de ses 2 couples ou à la fois l'ordre
des éléments des 2 couples, mais encore l'ordre des éléments d'un

seul de ses couples, sans qu'il cesse d'être harmonique, et on dit

pour cela que ses 2 couples sont alors conjugués harmoniques l'un

par rapport à l'autre.

7. Si par 4 arêtes coplanaires :

n, r., 7r8 =- xx — /r. xx — /ilV2
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passent 4 faces tautozonales :

Pi h P> k Ps k — KU P4 h — t*ok

le rapport anharmonique des faces est égal au rapport anharmonique
des arêtes.

En effet l'arête nx étant sur la face y>x,n.2 sur p2, etc., on a
d'abord :

\xxx o l2r2 o (ïx — Xt2) (lx — y2) o (vx — fit2) {lx — /Mb) o

et si l'on simplifie les 2 dernières équations à l'aide des 2 premières :

V2ri -M hr2 o et ^oljÏ! -f- ^r, o

d'où l'on tire immédiatement :

X0 : /j.0 X : fx. c. q. f. d.



CHAPITRE II

8. Soient données maintenant
3 faces 14 ^ af quelconques, mais

non tautozonales, du complexe
cristallin concentré par le point o.
Leurs intersections donnent 3

arêks, dont les vecteurs sont

d'après le § 3 :

Soient données maintenant 3
arêtes tx quelconques, mais non
coplanaires, du complexe cristallin
concentré par le point o. Leurs
plans de jonction donnent 3 faces
dont les vecteurs sont d'après le

§3:

Ou t

K

Fig. 3.

' l2(8 sin Axvx

U3lt sin A2r2

Hxl2 sin Asï3

et dont, les angles sont d'après
le § 2:

cos &x r2r8
sin A2 sin A3

\ r2r3 sin a^
i t3tx sin a2I2 (1)

Vtjïj =sina3I3
et dont les angles sont d'après
le § 2:

cos Ax=l2l3=]J^-]J^
sin a., sin a¦3



sin A2 sin A3

cos A2 cos A3 ¦ cos Ax
(16&)

sin A2 sin A3

et en permutant pour les 2 autres :

cos Ag cos A4 — cos A2
cos a.,

cos a»

sin A3 sin Ax

cos A4 cos A2 — cos A3
sin Ax sin A2

Il est inutile de faire remarquer
que le triangle des ïx obtenus est
le polaire de celui des lx donnés.

sin a2 sin a3

_ cos a2 cos a3 — cos a4

sin a3 sin a4

et en permutant pour les 2 autres

(J6»8)

cos A2 :

cos A8

cos a3 cos a cos a,

sin a3 sin &x

cos a4 cos a, — cos a3

sin a4 sin a2

Il est inutile de faire remarquer
que le triangle des i { obtenus est

le polaire de celui des ïx domés.

9. D'après le paragraphe 2 nous avons encore, en remarquant
qu'une face normale par ri à la face lx, passe également par le

vecteur l. :

lxxx cos êx sin hL

I2r2 cos $2 sin h.,

hh cos $3 sin hg

l4r2 i4r3 o

i2xx f,r3 0

I!ir1 l8r2 0

(2)

de sorte qu'en multipliant sealairement les équations (1) par li,^,^
et rl5t2>r8> nous obtenons :

sin Ax sin h, sin A2 sin h2 sin A3 sin hs

sin a2 sin h2 sin a3 sin hH

(3)
sin a4 sin h4

et enfin par division :

sin A4 sin A2 sin A3 ix ' l, l3

sin at sin a2 sin a3 ïiY*2r8

c'est-à-dire que le module M du triangle sphérique rxv2tà est égal au

rapport des sinus des angles triédres Ii'i2l3 et ti't,^.1'

M. (4)

1 Le sinus d'un angle plan peut être défini comme la surface d'un parallélogramme

dont les côtés sont l'unité; par analogie le volume du parallélipède construit

avec les 3 vecteurs unités ï i que représente le scalain xl 1 t,t, est le sinus
du trièdre t^t,.



Or dans les 3 couples de triangles sphériques rectangles que
détermine la construction des hi( l'égalité des rapports sin Ai : sin a^

nous donne :

sin hx sin A., sin a3 — sin A3 sin a2

sin h2 sin As sin a4 sin A4 sin a3 (5)

sin hg sin Ax sin a2 sin A,, sin a4

ce qui, substitué dans les équations (3), donne encore :

lx ujs sin Ax sin A2 sin a3 sin A2 sin A3 sin a4 sin A3 sin At sin a2

tx Vr2ts sin a4 sin a, sin A3 sin a2 sin a3 sin a4 sin a3 sin &x sin A2

et si nous posons les expressions équivalentes :

sin A4 sin A2 sin a3 A

sin a4 sin a, sin A3 D

nous avons très simplement, avec égalité des numérateurs et
dénominateurs :

ljl2l3
_

A

MVs D
M (6)

10. Les valeurs A et D des sinus des trièdres peuvent prendre
encore une autre forme. Pour simplifier, posons dorénavant :

cos aik c,k cki

cos Aik Cik Cki

En élevant au carré l'une des

expression A :

sin 2A4 sin 2A2 sin 2a3

et en y substituant la valeur de

sin 2a3, que nous fournit très facilement

l'équation (l6is) correspondante,

nous obtenons après
réduction :

zl2=l-C2-C2-C24-2C1C2C3
et sous forme de déterminant :

CnC12Ci3

.I- (iju3)

puisque G«:

^-'12^'22^J23

Cl3C23C33 j

cos Aii= 1.

sin alk sik

sin Aik Su
— ski

bki

En élevant au carré l'une des

expression D :

sin 2at sin 2a, sin 2A3

et en y substituant la valeur de

sin 2A3, que nous fournit très facilement

l'équation (lWs) correspondante,

nous obtenons après
réduction :

D2 l—c2— c| — cl + 2cic,c3

et sous forme de déterminant :

D*=(rjr2r8)9=:

puisque cr,

c11c12c13

c42c22c23

C13C23C33

cos a;i 1



CHAPITRE III

11. Soit maintenant une
nouvelle face quelconque du même

complexe dont nous allons
déterminer la position par rapport aux
3 faces fondamentales que nous
venons d'établir.

D'une part, cette position est

complètement déterminée si nous
décomposons le nouveau vecteur,
qui n'est pas en général un
vecteur-unité, et que nous écrirons
donc u4l, selon les 3 vecteurs I1(l2,l3

des faces fondamentales, n1(n2,ng,
étant les tenseurs des 3 composantes

;

u4l x\xix 4- n2l2 + n3I3

En introduisant les constantes vit

composantes elles-mêmes par
rapport à ces mêmes 3 faces

fondamentales, du vecteur d'une 5me

face du complexe et par le fait,
différentes de o :

u4l =v1u1l1 -f v^uA^ 4- v3u3i3

Pour tout choix complètement
arbitraire des constantes vit M.
Daniels appelle les valeurs uit
déterminant le vecteur donné, ou
un multiple positif quelconque de

ces valeurs, les coordonnées pro-

Soit maintenant une nouvelle
arête quelconque du même
complexe dont nous allons déterminer
la position par rapport aux 3
arêtes fondamentales que nous
venons d'établir.

D'une part, cette position est

complètement déterminée si nous
décomposons le nouveau vecteur
qui n'est pas en général un
vecteur-unité et que nous écrirons
donc x4r, selon les 3 vecteurs r^t.,^
des arêtes fondamentales, m,, m2

et m3 étant les tenseurs des 3

composantes :

x4r mxxx 4- m2r2 4- m3r3

En introduisant les constantes filt
composantes elles-mêmes par
rapport à ces mêmes 3 arêtes
fondamentales, du vecteur d'une 5me

arête du complexe et par le fait,
différentes de o :

x4r fixxxxx -j- ^2x2r2 4- /^x^.
Pour tout choix complètement

arbitraire des constantes juit M.

Daniels appelle les valeurs x„
déterminant le vecteur donné, ou

un multiple positif quelconque de

ces valeurs, les coordonnées pro-
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jectives de la droite sphérique
correspondante, par rapport au

triangle de référence des droites

sphériques données li.
Elles le sont donc encore si nous

assujettissons ces 3 constantes à

la condition que nous leur avons
posée, et le vecteur que celles-ci

déterminent, est alors celui de la
face-unité du complexe, puisque
ses coordonnées se réduisent
chacune à l'unité :

nh +^-r vsk

12. D'autre part si les longueurs
OH sont les segments qu'intercepte

la nouvelle face donnée,
déplacée parallèlement à elle-même,

sur les axes tt intersections des

3 faces fondamentales (fig. 4), les

longueurs OEi étant les segments
correspondants interceptés par une
5me face du cristal prise comme
face-unité, les rapports :

OE4 OE2 OEg

OHj OH2 OH3

ou un multiple positif quelconque
de leurs valeurs, déterminent
également sa position par rapport aux
3 faces fondamentales et à la face-

unité choisies et sont par rapport
à ce système de référence, les
indices de Miller de cette face

quelconque du cristal.

13. Or le vecteur de cette face

qui est en coordonnées projectives
U4l ^llU^ 4- V2U212 + VgUslg

jectives du point correspondant
sur la sphère, par rapport au
triangle de référence des sommets
donnés tx,x.2,x3.

Elles le sont donc encore si nous
assujettissons ces 3 constantes à
la condition que nous leur avons
posée, et le vecteur que celles-ci
déterminent, est alors celui de

l'arête-unité du complexe, puisque
ses coordonnées se réduisent
chacune à l'unité :

fh*l + /*2r2 + /«8*8

D'autre part, si les longueurs
OK, sont les coordonnées
cartésiennes obliques de la nouvelle
arête donnée par rapport au
système d'axes t; coïncidant avec les
3 arêtes fondamentales (fig. 4), les

longueurs ODi étant les coordonnées

obliques correspondantes d'une 5mo

arête du cristal prise comme arête-
unité, les rapports :

OK4 OK2 OK3

OD4
'

OD2
'

OD3

ou un multiple positif quelconque
de leurs valeurs, déterminent
également sa position par rapport aux
3 arêtes fondamentales et à l'arête-
unité choisies et sont par rapport
à ce système de référence, les

indices de Miller de cette arête

quelconque du cristal.

Or les coordonnées obliques
OKi de cette arête sont les

composantes mêmes de son vecteur
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et donne en le multipliant scalaire-

ment par xx,x.,,xs, d'après les § 2

et 9 : (fig. 4).

u4lr4 u4 cos êx vxux sin hx

u4lr2 u4 cas ¦&., v2u.2 sin h2

u4lr3 u4 cos #3 v.ju3 sin h3

donne également avec les 3 seg"

ments interceptés sur les axes ïi '¦

ft

J
A H

» r,

>3 r>

Fig. 4.

OH4 cos^=OH2cos #2=OH3 cos#3

ou :

OU; : OH2 : OH, 1 1 1

cos #t cos #, cos #3

D'où en comparant les 2 résultats :

OH,: OH,: OH,,:
l'ji^sinh, Vau.sinh. V3u3sinh3

Nous aurions donc aussi pour
la face-unité :

OE. : OE, : OE,
1

v, sin h, v^ sin h2 v sin h3

et enfin pour les indices de notre
face quelconque du cristal :

OEt OE2 OE3

OHt ' OH2 ' OH, u4 : u2 : u3

OE,
ou plus brièvement : t=M- .". u

Uhli

en coordonnées projectives :

x4r /ixxxxx 4- /u.,x.2x2 4- fi.òxax3

ft

K^T ^X
' ft

Fig. 4.

et par le fait :

OK4 : OK2 : OK3 nxxx : /i2x.2 : /%x3

Nous avons donc aussi pour
l'arête-unité :

OD4 : OD, : OD3 /ux : fi, : /i3 (7)

et enfin pour les indices de notre
arête quelconque du cristal :

OKi OK, OK3_
OD1:OD2:ODs~ xi:x*:x*

ou plus brièvement : jr^r .'. x,

Donc les constantes /m étant elles-

mêmes les composantes du vecteur
d'une arête du complexe, les
coordonnées projectives du point sur
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Donc les constantes v-, étant elles-

mêmes les composantes du vecteur
d'une face du complexe, les
coordonnées projectives de la droite

sphérique sont les indices de la
face correspondante, et dès ce
moment pour impliquer en un seul
les 2 concepts, nous appelons les

valeurs u; les indices de la face
du cristal dont ils déterminent le

vecteur :

u4I vxnxlx 4- v2u.2l2 4- v3\\3l3

la sphère, sont les indices de l'arête
correspondante, et dès ce moment

pour impliquer en un seul les 2

concepts nous appelons les valeurs
x-, les indices de l'arête du cristal
dont ils déterminent le vecteur :

x4r fixxxxx 4- fi.2x2x2 -j- /MgXgïg

14. Nous avons donc en multipliant

scalairement par ri,t2,r3 le

vecteur d'une face dont les
indices sont Uj, (les ftt étant les angles
d'incidence de la face par rapport
aux arêtes fondamentales) :

u4lr4 u4 cos êx vxux sin h4

u4lr2 u4 cos &., v2u2 sin h2 (8)

u4lr3 u4 cos &3 v3 u3 sin h3

et donc directement la relation
entre ces indices :

cos êx
m

cos 1% cos #3

vx sin h4 v., sin h2
'

»»g sin h3

[9
Pour une seconde face dont les

indices sont uj :

COS 00 COS &o

u4:u2:u3:

cos »'.
u^:u2:u3—

vx sin hx v2 sm n2 v3 sin h3

et enfin en divisant membre à
membre :

U^ _U2 Ug cosflj cos &.2 cos #3

uî'u2 u3 cos^î '
cos#2 'cOS#3

ou plus brièvement :

U; COS #,

u; cos*;

Nous avons également en multipliant

scalairement par -i^lg le

vecteur de l'arête dont les indices

sont Xi (les &, étant les angles
d'incidence de l'arête par rapport aux
faces fondamentales) :

x4rl4 x4 cos #! fUxxx sin hx

x4rl2 x4 cos ê2 fi.2x2 sin h2 (8)

x4rl3 x4 cos #3 ,a3x3 sin h3

et donc directement la relation
entre ces indices :

cos &x cos &2 cos h3
1- 2' 3

/ux smhx'/i2sinh2'/uBsinh3
[9

Pour une seconde arête dont les
indications sont xj :

cos#î cos #ó COS#3
XXX- ¦= — : : :1' 2' 3 ^iSinhx'/^sinha'yUjsinhg
et enfin en divisant membre à

membre :

xx x2 Xg cos êx
_

cos #2 cos $2

x('x2'x3 cos fr'x 'cos #2 'cos #3

ou plus brièvement :

X; COS#i

x[ cos«?;
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c'est-à-dire que les quotients des

indices de 2 faces sont
proportionnels aux quotients des cos.
des angles d'incidence des arêtes

Xi par rapport à ces faces.

c'est-à-dire que les quotients des

indices de 2 arêtes sont
proportionnels aux quotients des cos. des

angles d'incidence de ces arêtes

par rapport aux faces fondamen-
1 taies.

15. La relation (9) nous donne
immédiatement pour le signe des

indices Ui d'une face quelconque:
est positif l'indice Ui correspondant

à l'arête fondamentale située

par rapport à la face du même
côté quç son vecteur, et négatif
celui du cas contraire ;

Fig. 5.

(Toute face l n'entrant pas dans le
trièdre des faces fondamentales, a donc
seule ses 3 indices de même signe).

et comme cas particulier : toute
face parallèle à l'une des arêtes
fondamentales a son indice u,
correspondant nul.

Toute face tautozonale à l'arête
xx par ex. est donc de la forme ;

r2u2l2 -j- ^3u3l3 ; son vecteur est en
effet coplanaire à l, et 13, et d'a-

La relation (9) nous donne
immédiatement pour le signe des

indices Xj d'une arête quelconque :

est positif l'indice xs correspondant
à la face fondamentale par
rapport à laquelle l'arête est située
du même côté que son vecteur, et

négatif celui du cas contraire ;

Fig. 5.

(Toute arête t passant à l'intérieur du
trièdre des arêtes fondamentales, a donc
seule ses 3 indices de même signe).

et comme cas particulier : toute
arête parallèle à l'une des faces
fondamentales a son indice x,
correspondant nul.

Toute arête coplanaire à la face

lx par ex. est donc de la forme :

fi2x2t2 4- ^3x3r3 ; son vecteur est en
effet coplanaire aux vecteurs r2 et r3,
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près le § 4,

v2u2
est son

rapport de position par rapport à ces

2 faces.

et d'après § 4, — ^3—3- et son rap-
fl2X2

port de position par rapport à ces
2 arêtes.

16. Toute face parallèle à une
arête donnée :

fh^itx +/^x2Ï2 + /"3X3*3

son vecteur devant être normal à

cette arête, a ses indices tels qu'ils
satisfont à la relation :

ifh^ih + /"sx2r2 +j"8X8rg)(j'tUi.l1 +

ou : /tixvx sin h4 x^ 4-
//,r2sinh2.x2u24-,«3r3sinh3.x3u3==o

Toute arête parallèle à une face
donnée :

»•îUi-i 4-v2u2lg + VgUglg

son vecteur devant être normal à
celui de la face, a ses indices tels

qu'ils satisfont à la relation :

(^uJi +r2u2l2 4-v3u3f3)(/i1x1r1 -f
,a2x2r2 4- ^3x,r3) o

ou : fxxvx sin h4 u4x4 4-
/U2v2 sin h2 u2 x2 4- /u3v3 sin h3 .u3x3 o

1g6is. gj i'arete donnée est

coplanaire à la face fondamentale lx

par ex., son indice xx étant nul,
la relation précédente se réduit

aux 2 termes :

fi.2v.2 sin h2.x2u2 4- juBvs sin h3.x3u3=o

Elle n'est donc plus satisfaite

que par une seule valeur du

rapport des 2 indices Ui qu'elle
contient encore, et toute face parallèle

à l'arête donnée a nécessairement

cette valeur pour le rapport
de ses deux derniers indices u2 et u3.

D'une manière générale, pour toutes
les faces tautozonales à une arête

parallèle à l'une des faces

fondamentales, les 2 indices Ui

correspondants, aux 2 autres faces
fondamentales sont constants, c'est-à-
dires sont les mêmes pour toutes les

faces dans le cas d'une même arête.

Si la face donnée est tautozo-
nale à l'arête fondamentale xx par
ex., son indice ux étant nul, la
relation précédente se réduit aux
2 termes :

fi2v2 sin h2.u2x2 4- fi9v9 sin h3.u3x3=o

Elle n'est donc plus satisfaite

que par une seule valeur du rapport

des 2 indices Xi qu'elle
contient encore, et toute arête parallèle

à la face donnée a nécessairement

cette valeur pour le rapport
de ses 2 derniers indices x2 et x3.
D'une manière générale, pour toutes
les arêtes coplanaires à une face

parallèle à l'une des arrêtes
fondamentales, les 2 indices Xi

correspondants aux 2 autres arêtes
fondamentales sont constants, c'est-à-
dire sont les mêmes pour toutes les

arêtes dans le cas d'une même face.



CHAPITRE IV

17. Dans le milieu fermé contre toute perturbation des propriétés
inhérentes à la substance cristalline, la température et la pression
extérieures étant égales et constantes en chaque point, le cristal en
formation, ne garde invariable que la direction
de ses faces et par le fait celle
de ses arêtes, et n'est limité dans

son développement que par la
nature des faces qui peuvent
intervenir.

1° Seuls les angles dièdres et

polyèdres de ses faces sont fixes,
et par le fait les angles plans de

ses arêtes : c'est la loi de la
constance des angles des faces du cristal.

Il en résulte que toutes les

directions parallèles aux intersections

réalisées ou non des faces

présentes ou pouvant intervenir,

de ses arêtes, et par le fait celle
de ses faces, et n'est limité dans

son développement que par la
nature des arêtes qui peuvent
intervenir.

1° Seuls les angles plans de ses
arêtes sont fixes, et par le fait les

angles dièdres et polyèdres de ses
faces : c'est la loi de la constance
des angles des arêtes du cristal.
Il en résulte que tous les plans
parallèles aux plans de jonction
réalisés ou non, des arêtes
présentes ou pouvant intervenir

ou plus simplement, en s'en rapportant à la concentration du

complexe cristallin par le centre o de notre sphère de rayon-unité :

toutes les intersections des faces

pouvant entrer dans le complexe,
sont des arêtes possibles du cristal.

2° Seules peuvent intervenir
dans le développement du cristal,
les faces parallèles à 2 de ses

arêtes, c'est-à-dire appartenant à
2 de ses zones présentes ou
possibles ; c'est la loi des zones, qui
rapportée encore au complexe con¬

cerns les plans de jonction des arêtes

pouvant entrer dans le complexe,
sont des faces possibles du cristal.

2° Seules peuvent intervenir
dans le développement du cristal,
les arêtes parallèles à 2 de ses
faces présentes ou possibles ; c'est

l'équivalent pour les arêtes de la
loi des zones pour les faces, qui
rapportée encore au complexe con-
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centré par le point O, peut
s'exprimer plus simplement : seuls les

plans de jonction des arêtes pouvant

entrer dans le complexe sont
des faces possibles du cristal.

centré par le point O, peut
s'exprimer plus simplement : seules les

intersections des faces pouvant
entrer dans le complexe sont des

arêtes possibles du cristal.

18. Or le plus simple complexe
cristallin de faces données et
concentrées par le point O, nous
permettant d'en déterminer zonale-
ment de nouvelles, exige de toute
évidence au moins 4 faces, dont
il n'y en ait pas 3 tautozonales.
En retour, étant données d'un cristal,

4 faces quelconques, mais
remplissant la condition posée, la
dépendance zonale des faces cristallines

nous permet d'en déduire
toutes les autres faces et par le

fait toutes les arêtes présentes et

possibles du cristal.

Or le plus simple complexe
cristallin d'arêtes données et concentrées

par le point O, nous
permettant d'en déterminer zonale-
ment de nouvelles, exige de toute
évidence, au moins 4 arêtes, dont
il n'y en ait pas 3 coplanaires ou

parallèles à la même face. En
retour, étant données d'un cristal,
4 arêtes quelconques, mais
remplissant la condition posée, la
dépendance zonale des arêtes
cristallines nous permet d'en déduire
toutes les autres arêtes et par le

fait toutes les faces présentes et

possibles du cristal.

19. Soient donc 4 faces
quelconques d'un cristal, In,^,^,!,, dont
il n'y en a pas 3 tautozonales.

l^l,,!,, étant prises comme faces

fondamentales, et I0 p0 comme
face-unité :

Po nk -f- vA^ 4- vglg

nous avons pour les vecteurs des

faces suivantes, zonalement
déduites (fig. 6), d'après les cas
particuliers des § 15 et 16, d'abord :

P^J^lä+Vglg

Ps nk + VîU

Soient donc 4 arêtes quelconques

d'un cristal, x0,xx,x2,x3, dont
il n'y en a pas 3 coplanaires.
vx, x2, t8 étant prises comme arêtes
fondamentales et r0 no comme
arête-unité :

7r0 fixxx 4- fi.2x2 4- ,a3r3

nous avons pour les vecteurs des

arêtes suivantes, zonalement
déduites (fig. 6), d'après les cas
particuliers des § 15 et 16, d'abord :

nx /i2Xt 4- faXg

n-i fhh + j"iri
n?> ^,«iri + /"2r2

2
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et ensuite, en partant uniquement
du couple des 2 dernières p2 et p3,

et tenant compte encore que toute
face par l'intersection commune
de 2 autres, a son vecteur de la
forme l4 — Xl2 (§ 4), les 2

systèmes suivants, qui s'établissent

indépendemment l'un de l'autre ;

[mais dont nous faisons directement

dans la fig. 6 concorder les

intersections sur la face p2 ; car
il est en effet très facile de montrer

que pour chacune d'elles, les

vecteurs de 3 quelconques des faces

qui y concourent, multiplié chacun

par le facteur convenable, donnent

une somme algébrique qui s'an-

nule (§ 5)] :

1° en ajoutant p2 à p3, p2 à p3,

p2 à p3, etc., successivement:

pi -=2rA+v2I,+,.nIÄ
p8 2nll +^2
pf 'òvxlx 4- vxl, 4- v3\3

Ps =3^1, + >',12

etc.

2° en retranchant p2 de p3, p2

de p3, p2 de p|, etc., successivement

:

PÎ =»'2^2 — »'3 k

Ps^^h+^1* — v»k

y>'[=v2{, — 2r3l3

Pialli + V-A-2 — Ws
etc.

En mettant en ordre les résultats

qui nous intéressent directement

:

et ensuite, en partant uniquement
du couple des 2 dernières n., et n3,
et tenant compte encore que toute
arête dans le plan commun de 2

autres, a son vecteur de la forme
xx — /r2 (§ 4), les 2 systèmes
suivants, qui s'établissent
indépendemment l'un de l'autre ; [mais
dont nous faisons directement dans
la fig. 6 coïncider les plans de

jonction par l'arête n2 ; il est en
effet très facile de montrer que

pour chacun de ces plans, les

vecteurs de 3 quelconques des

arêtes qui s'y trouvent, multiplié
chacun par le facteur convenable,
donnent une somme algébrique
qui s'annule (§ 5)J :

1° en ajoutant n2 à n3, n2 à n3,
n., à TTg, etc., successivement :

n\ 2/ijÎ! + r^th + Mah

n's =2/*!^ -\- fut»
n\ 3fixXx 4- /u.2X.2-\-/i3t3

ti g 3/ixxx -j- /i.,x.,

etc.

2° en retranchant n.2 de nH, n.2

de n I,, n., de ni, etc., successivement

:

n[ ==jM,r2 — u3x3

"» <"iri + fhh ~~ /*3r3

n"x /ii.2x.2 — 2yt*srs

ni fixtx + u.2x2 — 2/i3r3

etc.

En mettant en ordre les résultats

qui nous intéressent directement

:
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et:

pi =2*!-! +vX^-r.,li
y>l=3vxlx +r2l2+J'3l3
p! =4v1l1-)-J'2l24-j'3l3

etc.

P8=vA +^ — nk
p|=r1t14-v2I2-2»'gl3
p| vxlx 4- v.X, — 3r..l3

etc.

n\ 2JM1r, 4- f.i2x, 4- fisxH

n\ S,«^! + n.2x2 + fi3x.A

n\ 4/ijïi + /M2r2 + ^3r3

etc.

et : Tri /uxxx 4- fux., — uAx..

ni fhXx + fi.2X2 — 2,«31\,

Tig ^ift: + thh — 3//3ï3

etc.

'as

w>

3.1; 1W

Fig. 6. Fig. 6.

20. Nous obtenons donc par cette
déduction zonale des faces du cristal,

la face dont l'un des indices
est le nombre entier m comme
celle dont l'un des indices est le
nombre entier —m, et cela sans
changer leurs 2 autres indices.
Evidemment le même procédé
appliqué maintenant à ces 2
nouvelles faces, par rapport à l'un de

leurs 2 indices encore unités, nous
donnera de même la face

quelconque qui a pour 2 de ses
indices les valeurs entières m et n

Nous obtenons dune par cette
déduction zonale des arêtes du cristal,

l'arête dont l'un des indices
est le nombre entier m, comme
celle dont l'un des indices est le
nombre entier —m, et cela sans

changer leurs 2 autres indices.
Evidemment le même procédé
appliqué maintenant à ces 2

nouvelles arêtes, par rapport à l'un de

leurs 2 indices encore unités, nous
donnera de même l'arête

quelconque qui a pour 2 de ses
indices les valeurs entières m et n
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ou —m et —n. Enfin en le répétant

encore pour le 3me indice unité
restant, nous obtenons sans peine
la face dont les 3 indices sont
entiers quelconques positifs ou

négatifs. D'une part donc, toute
face d'indices entiers (positifs et

négatifs) par rapport au système
de référence des 4 faces données
10, lj,I2,l3, impliquée dans la
déduction zonale qui a ces 4 faces

pour point de départ, est impliquée

par le fait dans le complexe
des faces possibles du cristal.

ou —m et —n. Enfin en le répétant

encore pour le 3me indice unité
restant, nous obtenons sans peine
l'arête dont les 3 indices sont
entiers quelconques positifs ou
négatifs. D'une part donc, toute
arête d'indices entiers (positifs et
négatifs) par rapport au système
de référence des 4 arêtes données

ro>ri>r2','3> impliqué dans la
déduction zonale qui a ces 4 arêtes

pour point de départ, est impliquée

par le fait dans le complexe
des arêtes possibles du cristal.

D'autre part, toute face possible
du cristal, que nous fournit la
déduction zonale partant des 4
faces 10, lx, 12, l3, est une face
d'indices entiers par rapport à ces
faces. En effet supposons que
ta» 1b» U, ld soient les vecteurs de

4 faces d'indices a^b^c^di,
obtenues par la construction du

complexe. D'après le § 3, l'arête
d'intersection des 2 premières est

uaib, et celle des 2 dernières <UdJ

et la nouvelle face possible que
déterminent ces 2 arêtes est leur
produit vectoriel :

qui s'écrit développé :

lJu.lc-0'Ub.L
Chacun de ces vecteurs ayant

la forme du premier :

ridi,!-f »>2d2lä + v8d8l3

D'autre part, toute arête possible
du cristal, que nous fournit la
déduction zonale partant des 4
arêtes X0,XXX.2X3, est une arête
d'indices entiers par rapport à ces
4 arêtes. En effet supposons que
*»> ït>, Te, ïd soient les vecteurs de
4 arêtes d'indices ai,bi,Ci,di,
obtenues par la construction du

complexe. D'après le § 3, la face
de jonction des 2 premières est

Vrar„, et celle des 2 dernières ' rcrd,
et la nouvelle arête possible que
déterminent ces 2 faces est leur
produit vectoriel :

ÏV,AYrA

qui s'écrit développé :

rjvb.-c — r.Vr.rbrd

Chacun de ces vecteurs ayant
la forme du premier:

/ixdxxx 4- fi.2d2x2 4- /igdgXg
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les 2 produits scalaires IdUalb et

UUb se calculent sans peine, et

en se servant d'une abréviation
toute naturelle pour écrire les

déterminants, se réduisent aux 2

expressions :

vxv2v3\eibd\lxn.2l3

vxv2v3\abc\lxn.2[3

En négligeant le facteur constant

vxv.2vHlxH.2l3, le vecteur que
représente le produit vectoriel cherché,

tout en déterminant quand
même la même face, s'écrit très

simplement :

|abd|lc — |abc|L

ou : p.lc — r.ld

Si les indices des 4 faces
données sont entiers, il en est de

même pour les déterminants de

valeur p et r et donc pour les
indices de la nouvelle face qui sont :

pc4 — rd4, pc2 — rd2, pc3— rd3

Or les 4 faces qui servent de

point de départ à toute la
construction zonale, ont les indices
entiers :

111, 100, 010, 001

Il en est donc de même pour
toutes les faces déduites, c'est-à-
dire pour toute face possible du

cristal.

les 2 produits scalaires rd'tarb et

fc'Tafb se calculent sans peine, et

en se servant d'une abréviation
toute naturelle pour écrire les

déterminants, se réduisent aux 2

expressions :

/"1/^2/^3 laD^lri' r2r3

uXlu2ri3\abc\xx\ x2x3

En négligeant le facteur constant

^fi.tfigX^ x2xs, le vecteur que
représente le produit vectoriel
cherché, tout en déterminant quand
même la même arête, s'écrit très

simplement :

|abd]rc — |abc|rd

ou : 7i.rc — Q.xd

Si les indices des 4 arêtes
données sont entiers, il en est de

même pour les déterminants de

valeur n et g et donc pour les
indices de la nouvelle arête qui sont :

TïCi — gdx, nc2 — gd2, tic3 — gd3

Or les 4 arêtes qui servent de

point de départ à toute la
construction zonale, ont les indices
entiers :

111, 100, 010, 001

Il en est donc de même pour
toutes les arêtes déduites, c'est-à-
dire pour toute arête possible du

cristal.

21. Ainsi chaque face dont les

indices sont entiers est une face
Ainsi chaque arête dont les

indices sont entiers est une arête
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du complexe cristallin et chaque
face de ce complexe est une face

dont les indices sont entiers. Toutes
et seules les faces possibles du

cristal sont donc des faces à
indices entiers ; ou en d'autres
termes, par le centre O de notre
sphère de rayon-unité, le complexe
des faces à indices entiers par
rapport au système de référence

que constituent les 4 faces lui
servant de point de départ est

identique au complexe des faces

possibles du cristal.

du complexe cristallin et chaque
arête de ce complexe est une arête
dont les indices sont entiers. Toutes
et seules les arêtes possibles du
cristal sont donc des arêtes à

indices entiers ; ou en d'autres
termes, par le centre O de notre
sphère de rayon-unité, le complexe
des arêtes à indices entiers par
rapport au système de référence

que constituent les 4 arêtes lui
servant de point de départ, est

identique au complexe des arêtes

possibles du cristal.

Le produit de la fusion des 2 lois expérimentales du cristal, lois
des zones et de la constance des angles, est donc la loi mathématique

de la rationnante des indices, qui, bien que difficilement con-
firmable par l'expérience, n'en est pas moins la loi à la base de la

cristallographie : les faces et arêtes à indices entiers sont les seules

faces et arêtes possibles du cristal.
L'ensemble des droites sphériques

correspondantes aux laces du complexe
zonalement déduites, constitue l'extension

donnée par M. Daniels du réseau
de Möbius aux droites sphériques

L'ensemble des points sur la sphère
correspondants aux arêtes du complexe
zonalement déduites, constitue le réseau
de Möbius, et Möbius appelle ces droites
et ces points ou les faces ct arêtes

correspondantes

géométriquement déductibles des 4 faces ou arêtes données et énonce ainsi
la loi des zones : toute face et arête géométriquement déductible des 4 faces ou
arêtes cristallines données est une face ou une arête également possible du cristal.

Naturellement quoique les indices que nous venons d'établir de chaque face

ou arête du complexe cristallin, soient entiers, comme un multiple positif
quelconque de leurs valeurs détermine lu même face et la même arête, il est inutile
même de faire remarquer que toutes les valeurs quelconques ayant entre elles les
mêmes rapports que les 3 nombres entiers représentant les indices donnés, sont
également les indices de la face ou de l'arête déterminée et il serait plus exact de

formuler ainsi la loi établie : toutes les faces et arêtes dont les indices se réduisent
à des rapports de nombre rationnels sont des faces et arêtes possibles du cristal.

Möbius appelle arithmétiquement déductible de 4 faces ou arêtes données
toute face ou arête dont les rapports correspondants OEi :OHi ou OKi :ODi
sont des valeurs rationnelles et exprime ainsi la loi de la rationnalité des indices :

toute face et arête arithmétiquement déductible de 4 faces ou arêtes cristallines
données, est une face ou une arête également possible du cristal.
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22. Enfin de la considération
du complexe total des faces
possibles du cristal que nous venons
de construire, nous avons encore
immédiatement les conclusions
suivantes. Puisque ce complexe des

faces possibles reste évidemment

identique à lui-même, quelles que
soient les 4 de ses faces choisies

comme point de départ pour sa
déduction zonale, il reste également

le complexe des faces dont
les indices sont entiers, quelles
que soient les faces fondamentales
ou la face-unité auxquelles on le

rapporte. Donc pour tout changement

de ces faces fondamentales
ou unité, non seulement les
indices des faces restent entiers,
mais encore ils restent les mêmes,
quoique affectant des faces
différentes, puisqu'ils sont dans chaque
cas toutes les combinaisons
possibles des nombres entiers positifs
et négatifs.

Enfin de la considération du

complexe total des arêtes possibles

du cristal que nous venons
de construire, nous avons encore
immédiatement les conclusions
suivantes. Puisque ce complexe des

arêtes possibles reste évidemment

identique à lui-même, quelles que
soient les 4 de ses arêtes cboisies

comme point de départ pour sa

déduction zonale, il reste également

le complexe des arêtes dont
les indices sont entiers, quelles

que soient les arêtes fondamentales

ou l'arête-unité auxquelles
on le rapporte. Donc pour tout
changement de ces arêtes
fondamentales ou unité, non seulement
les indices des arêtes restent
entiers, mais encore ils restent les

mêmes, quoique affectant des arêtes
différentes, puisqu'ils sont dans

chaque cas toutes les combinaisons

possibles des nombres entiers

positifs et négatifs.



CHAPITRE V

23. Reprenons maintenant les

premiers éléments que nous fournit
la construction zonale du complexe
des faces cristallines, des 4 faces

données pour son point de départ.
Les 3 faces possibles, tautozonales

aux arêtes fondamentales

(fig- 7) :

Pi VA + vsk

Ps^^s-s + nh
Ps nk + *A

donnent par leur intersection deux
à deux, les 3 nouvelles faces
possibles tautozonales aux mêmes
arêtes :

Pi ^v2l2—v3l3
P-- =nk — Mi
Ps =nk —¦»&

et formant avec les premières, les

valeurs : —
v2 v.2

étant égales à

vî v-i

rs fg vx vx

1, (§ 4 et 6)
3 couples de faces harmonique-
ment conjuguées par rapport au

couple correspondant de faces
fondamentales. Leur intersection
commune n0 r0, puisque la somme

Reprenons maintenant les
premiers éléments que nous fournit
la déduction zonale du complexe
des arêtes cristallines, des 4 arêtes
données pour son point de départ.

Les 3 arêtes possibles,
coplanaires aux faces fondamentales

(fig. 7):

nx fi2x2 4- /%r3

7f2 =^3 -f-^ltl
^3=i"iri + Mih

donnent par leur plan de jonction
deux à deux, les 3 nouvelles arêtes

possibles, coplanaires aux mêmes
faces :

n'x fi2X2 — fi3X3

n-2=Msh—Mih
n'i =y"iri — Mih

et formant avec les premières, les

valeurs-^A-^A-^A
/u., /i2 fi3 /% fix /*i

étant égales à — 1, (§ 4 et 6),
3 couples d'arêtes harmonique-
ment conjuguées par rapport au

couple correspondant d'arêtes
fondamentales. Leur plan de jonction
commun p0 In, puisque la somme
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de leurs vecteurs est nulle, est

donc encore une arête possible du

cristal, déterminant ainsi conjointement

avec la face-unité un fai-

M

Fig. 7.

sceau harmonique de faces par
chaque arête fondamentale :

(aaa3p1p0 — 1

(a»a1p2p2)=—1 •

(a1a2p3p8) — 1

et par le fait, (§ 7) un faisceau

harmonique d'arêtes sur chaque
face fondamentale :

(a2a3nxn'x) —1

(a1a17t27r2)= —1
(axCL2n3n3) —1

Nous appellerons simplement
cette arête, dont le point sur la
sphère est le pôle trilinéaire de

la droite sphérique correspondante
à la face-unité, l'arête harmonique

de cette même face-unité.

de leurs vecteurs est nulle, est

donc encore une face possible du

cristal, déterminant ainsi conjointement

avec l'arête-unité un fai-

rt«
-*V^

Fig.

sceau harmonique d'arêtes sur
chaque face fondamentale :

(a,a3nxn[) —1
(a3axn2: -1
(axa.2n3n3 —1

et par le fait, (§ 7) un faisceau

harmonique de faces par chaque
arête fondamentale :

(a2a3p1p'1)= -1
(a8a1p2ps) — 1

(a1a2p8p8) —1

Nous appellerons simplement
cette face, dont la droite sphérique
correspondante est la polaire
trilinéaire du point déterminé sur la
sphère par l'arête-unité, lafacehar-
moniquede cette même arête-unité.
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24. Son vecteur est le produit

vectoriel de 2 quelconques des

vecteurs des 3 faces qui la
déterminent :

\ (V2L—V3ls) {Vgig—vx{x)=
v.,v3 sin A.,ï1 4 Vi sin A,r2 + vt v., sin A3r3

En divisant par le facteur constant

vxv.2v3, le vecteur obtenu

représente encore la même arête :

in A«sin A, sin A.,

vx v2 v3

et ses indices sont les quotients
des tenseurs de ses composantes

par les constantes /^ :

sin Ax sin A2 sin A3

flxVx fl2V2 fi3v3

Son vecteur est le produit
vectoriel de 2 quelconque des

vecteurs des 3 arêtes qui la
déterminent :

i (,u,x2 — u3X3) (fi3X3 — ftti)^
ff.,,«., sin a,^ + ,«;;,«! sin a, L 4 Pith sin a3I3

En divisant par le facteur constant

ïe vecteur obtenu

représente encore ta même face :

sin Ai sin A2 sin A3,
h H " *2 H ^

flx fl.2 jUs

et ses indices sont les quotients
des tenseurs de ses composantes

par les constantes v[ :

sin Ai sin A., sin A3

fixvx
'

/(2C,
'

fl3V3

Or jusqu'ici nous n'avons encore établi aucune relation, entre la
face et Yarêté-unités, c'est-à-dire entre les constantes nx et vi
déterminant leurs vecteurs, et pourtant il nous faut une dépendance fixe
entre ces 2 éléments, si nous voulons donner un sens précis aux
relations qui lient entre elles les faces et les arêtes constituant le

complexe du cristal.

La face-unité étant l'une
quelconque des faces du cristal, nous
choisissons dorénavant comme
arête-unité, son arête harmonique,
c'est-à-dire nous posons dorénavant

entre les constantes lui et v-,

les relations qui suivent :

/ixvx sin A], fi2v2

L'arête-unité étant l'une
quelconque des arêtes du cristal, nous
choisissons dorénavant comme
face-unité sa face harmonique,
c'est-à-dire nous posons dorénavant

entre les constantes ni et vt
les relations qui suivent :

sin A2, figVg — sin A8. (10)

25. Dans ce cas, la relation du § 13 :

OEi : OE2 : OE3
1

l'i sin hi
"

v2sinh2 ' v8sinhg

M étant module —:——- du triangle de référence.
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qui nous donne les longueurs interceptées sur les arêtes fondamentales

(ou les axes) par la face-unité, devient immédiatement, si nous
tenons compte que sin Ai sin h, A— constante, et de la relation

(7) correspondante pour l'arête-unité :

OEi : OE2 : OE:î fix : ^ : uH OD, : OD2 : OD8 (11)

Si donc nous prenons comme
arête-unité, l'harmonique de la
face-unité, ses composantes OD,
sont les segments interceptés sur
les axes par la face-unité déplacée

parallèlement à elle-même, et
celle-ci donnée, nous obtenons
directement celte arête harmonique :

ft

r*y

> r. "
IN

Fis. 8.

Elle est la diagonale principale
du parallèlipipède construit sur
les 3 axes-unités comme arêtes.

Si donc nous prenons comme
face-unité, l'harmonique de l'arête-
unité, les segments OE; qu'elle
intercepte sur les axes sont les

composantes de l'arête-unité, et
celle-ci donnée, nous obtenons
directement cette face harmonique:

* r,

*- u /
V /

^f
Fig. 8.

Elle est le plan diagonal (D,D2D3)
du parallèlipipède construit sur les

composantes OD, comme arêtes.

26. Cette relation posée des,«,^ sin Ai établit d'ailleurs, pour
le cas général, entre les longueurs OHt des segments qu'intercepte
la face d'indices u, sur les arêtes fondamentales, et les composantes
OKi de l'arête d'indices x,, plus de symétrie qu'il n'y en avait
jusqu'ici :

OH,

OK,

OH,

OK,

OH«
Uj u2 u3

OKg ,uxxx : ju2x2 : jli3x3

Les rapports des indices de cette face et de cette arête deviennent

: (§ 14).



ut : u2 : u3 fix cos &x

xx : x2 : x3 vx cos &x

et enfin l'équ?.tion du § 16 :

fixvx sin hj. XiUi
4 !">»':! sin h.,. x2u2 4 f-3v-3 sin h3. x3u3 o

prend immédiatement la forme

simple et élégante :

XiUi 4- x2u2 4- x3u3 o

Toute combinaison de valeurs
entières des indices u x satisfaisant
cette relation, représente une face

parallèle à l'arête Xi ; c'est donc
là sous sa forme définitive, l'équation

de cette arête du cristal.

: u, cos ê2 : fi3 cos #3 .^.
: v2 cos 02 : v3 cos #8

fUxvx sin hi. utXi 4-
fi.2v, sin hj. UjXj 4 f*8v8 s'n n;i u3x;i °

prend immédiatement la forme

simple et élégante :

uxxx 4- u2x2 4- u8x3 — o (13)

Toute combinaison de valeurs
entières des indices x; satisfaisant
cette relation, représente une arête

parallèle à la face Uj ; c'est donc

là sous sa forme définitive l'équation

de cette face du cristal.

27. La face-unité peut être une
face quelconque du cristal. Toute
face du cristal, pouvant donc être
prise comme face-unité, a par
conséquent son arête harmoniquepos-
sible, et construisible par le
procédé de la fig. 8, et, puisque, dans

ce cas, les longueurs OHi
interceptées par la face el les composantes

OKj de l'arête, sur les axes
sont égales (11) :

/i, /U2
_ fo

Ui
'

U,
'

Ug
~ /"iXi : y«2x2 : /%xs nxxx : n2x2 : fi3x-. _ÜL

Ui

et donc : et donc :

Ui : u2 : u3 :_
1

~
Xi

1

x2

1

x8
Xi : x2 xs

1 1

u,
'

u2

c'est-à-dire que les indices d'une
face quelconque du cristal sont
les valeurs inverses de ceux de

son arête harmonique.

L'arête-unité peut être une arête

quelconque du cristal. Toute arête
du cristal, pouvant donc être prise

comme arête-unité, a par conséquent

sa face harmonique possible,
et construisible par le procédé de

de la fig. 8, et, puisque, dans ce

cas, les composantes OK, de

l'arête et les longueurs OHj
interceptées par la face, sur les axes
sont égales (11) :

Mi ih
u,

'
u3

1_

u3

c'est-à-dire que les indices d'une
arête quelconque du cristal sont
les valeurs inverses de ceux de

sa face harmonique.
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27 bis. Remarquons encore que si nous appelons les 4 faces Io,(i>L,fsr

déterminant le complexe des faces, et les 4 arêtes x0,xx,x2,x3,
déterminant celui des arêtes, les 4 faces et arêtes élémentaires du cristal,
l'un quelconque de ces 2 systèmes est maintenant complètement
connu dès que l'autre est donné. Les arêtes fondamentales sont en
effet les intersections des faces fondamentales, l'arête-unité est 1

harmonique de la face-unité, et réciproquement. Par le fait, soit les
valeurs :

sin Aj. sin A2, sin A3 avec celles des rapports vx : v2 : vs

déterminant le système des faces élémentaires,

soit les valeurs :

sin a1( sin a2, sin a3, avec celles des rapports ux : /t2 : /us

déterminant celui des arêtes élémentaires,

déterminent à elles seules le système complet de référence du
complexe cristallin, et pour cette raison, constituent les unes et les autres
au même titre, les éléments du cristal.



CHAPITRE VI

28. Le vecteur :

nuili + v.,uA-\-v3u3l3

n'est pas en général un vecteur-
unité. Pour en trouver la valeur
absolue que nous appelons u4,
nous élevons au carré les 2 membres

de l'équation :

u4I r1u1l1 + v2u2l2 4- vgu3l3

Nous obtenons ainsi, selon les

règles du produit scalaire, la forme

quadratique suivante :

uf=. v\,\i\, + v\ul 4- vlul
4- '%vxv2uxu2 cos A12 4- 2 v2v3

qui peut s'écrire, si nous posons
par abréviation :

ßki EEEE V;Vk COS Aìk ßik.

ui=Qxxui+Q22uï + Q33ul

4-2ß12u,u2 4- 2ß23u2u3 4-2ß3iU3iii

ou plus brièvement encore :

UJ o(utU2U3) ß(uu)

Les expressions :

Oxxux + ß,2u2 4- ßi3u3 Esß'(ui)
fi12Ui 4- ß22u2 4-£?23u3 EEsß'(ll2)

Oxsux 4- ß23u2 + ß83u8 Q'(u3)

Le vecteur :

^iXi^i + n2x.,x2 +ftx3t3
n'est pas en général un vecteur-
unité. Pour en trouver la valeur
absolue que nous appelons x4,
nous élevons au carré, les 2 membres

de l'équation :

x4r fixxxxx 4- /j2x2r2 4- /%x3r8

Nous obtenons ainsi, selon les

règles du produit scalaire, la forme
quadratique suivante :

x\ n\x\ +n\x\ + nlx%
4- 2/Mi^2XiX2 cos a]2 4-

qui peut s'écrire, si nous posons
par abréviation :

ojki /uiru,k cos aik ïee a>Ik.

x| =(MnXj 4- ©j22x2 4- ft>33x3

4- 2w12x,x2 4- 2cu23x,x3 4- 2co3iX3x1

ou plus brièvement encore :

x| w(x,x2x8) eo(xx).

Les expressions :

COxxXx 4- ft>i2X._, 4- w13x3 CO,(Xi)

t012xi + W22X2 + <W23X3 ft>'(x2)

coX3xx + <o23x2 + o)33x.; ~to'(x3)



31

sont les demi-dérivées partielles
de la forme par rapport à ultu2,u3,
et nous donnent pour sa valeur
l'identité suivante :

fl(uu) Ulfl' K) 4 u,Û' K) 4 n,Û'(n,)

Si nous divisons maintenant
notre vecteur :

''lUl-l + ^2U2L + Vsllglg

par la valeur ±vß(uu), nous en
faisons les vecteurs-unités des 2
faces possibles, opposées et parallèles

dont les indices sont Ui par
rapport au système de référence
des 4 faces données l0,li,l2,l3.

sont les demi-dérivées partielles de

la forme par rapport à Xi,x2,x3,
et nous donnent pour sa valeur
l'identité suivante :

CO(XX) 5= XjO) ' (Xj 4 X.«* ' (X>) 4 X;tW ' (X;l)

Si nous divisons maintenant
notre vecteur:

/uxxxxx +/t2x2r2 4- fi3x3xs

par la valeur ±\/w(xx), nous en
faisons les vecteurs-unités des 2

arêtes possibles, opposées et parallèles,

dont les indices sont x, par
rapport au système de référence
des 4 arêtes données to,ïi,Ï2>*s-

29. Connaissant maintenant les tenseurs des vecteurs de la face

d'indices u{ et de l'arête d'indices x,, nous reprenons les résultats,
établis au début, des § 2, 3, 4, 5 et 6, exprimés alors directement
en vecteurs-unités des faces et des arêtes et cherchons ce qu'ils
deviennent pour les valeurs absolues quelconques u4 et x4 de ces
vecteurs, et comment ils s'expriment en fonction de leurs indices.

L'angle cp de 2 faces données
d'indices entiers u, et u- :

u4l Viuji 4- 72U2-2 + ^3u3l3

U4I' =nuili 4- v.,u2U 4-v8u8I8

est donc immédiatement fourni par
le produit scalaire de leurs
vecteurs, pour lequel nous obtenons ;

VjUiUÎ 4-v|u2U2 +VSL1J.UÓ

4- vxv2 cos A12(u1u2 4-u2iii') +
ce qui peut s'écrire, en utilisant
les abréviations du paragraphe
précédent :

ijUiUi +fi22u2u2 4- fl23u3u3

+ 12KU2 +u2uO+

L'angle y> de 2 arêtes données
d'indices x entiers xx et xj :

x4r =/%x1t1 4- ju.2x2x2 4- jOgXgtg

x4r' =/.txx'xxx +Jw2x.,r3 4-^gXg.^r

est donc immédiatement fourni palle

produit scalaire de leurs
vecteurs, pour lequel nous obtenons :

fixxxxx + u'ix.2x', -\-/l?sX3Xs
4- fixfx2 cos a12(x1X2 -\- x2x() 4-

ce qui peut s'écrire, en utilisant
les abréviations du paragraphe
précédent :

coxxxxx[ 4- w22x2x2 4- co88x8x8

4-a)12(x1x2 +x2xî) 4-



et par analogie avec la forme

fi(uu) et son expression en fonction

de ses demi-dérivées partielles,
plus simplement encore :

fi(uu') fi(u'u)

ou:=u1ß(uO + u2ß(u2)4-u3ß(u0

=u(ß(ui) + u2ß(u2)4-u3ß(u1)

les Ui et les uj jouant un rôle

parfaitement symétrique dans ce

produit que nous venons d'obtenir.
Si nous tenons compte des

tenseurs :

u4 — Vß(uu) et u4 =\/ß(u'u')
nous avons donc directement en
fonction des indices :

fl(uu') (14)
COS (p

\lq{uu)q(u u)

et par analogie avec la forme
co(xx) et son expression en fonction

de ses demi-dérivées partielles,
plus simplement encore :

m(xx') co(x'x)

ou: x1co(xi) +x2co(x2)4-x3ft)(x3)
r=x'xw(xx) 4- x2cü(x2)4-x3co(x3)

les Xj et les x[ jouant un rôle
parfaitement symétrique dans ce

produit que nous venons d'obtenir,
Si nous tenons compte des

teneurs :

x4 \Jco(xx) et x/ =\/co(x'x')

nous avons donc directement en
fonction des indices :

COS U)
m(xx ' (14

\lco(xx)m(x'x')

30. L'angle d'incidence & de l'arête :

A*i*i*i + fh-hh + fhXsh

par rapport à la face :

VlUik + V2U2l2 + VgUglg

est également donné par la multiplication scalaire des 2 vecteurs (§ 2),

pour laquelle nous trouvons d'abord :

fixvx sin hi xxux + fi2v2 sin h2 x2u2 -f- u3v3 sin h3 x3u3

et ensuite, par le fait toujours des relations :

UiVi =sin Ai et sin Aj sin \\i=A.
sin Ai sin hi(x1u1 -f- x2u2 + x3u3)

Les tenseurs de ces vecteurs étant \/co(xx) et \/ß(uu)

nous avons encore directement en fonction des indices :

{xxux 4- x2u2 4- x3u8)z< (15)
cos

Vco(xx)ß(uu)
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31. Le vecteur de l'arête
possible parallèle aux 2 faces données :

"iUi-i M^UiL + »-gUglg

n u i I4 4- v.,u2l2 4- v3u8l3

est leur produit vectoriel (§ 3),

pour lequel nous obtenons :

Le vecteur de la face possible
parallèle aux 2 arêtes données :

A'iXiïi 4- fax^ç, 4- /x3x3r3

fh x i ïi + P~2 x 2 r2 + ,M3 Xg tg

est leur produit vectoriel (§ 3),

pour lequel nous obtenons :

»WU2U8—U3U2)^ M3 + V3VX{U3U'X — UiU3)Yl3l, 4- ^^(UiU.2 — u2u{)Vl1I2

/i2^(x2x3—x3x2)Vr2r3 4-i«3ia1(x3xM-XiX3)Vr3r14- /.ix/i2(xxx2~x2x[)\Txxx2

ce qui, en tenant compte de

nouveau des relations wi>x sin Ai et
des équations (1), (§ 8), qui
ensemble nous donnent :

VIA sin A1t1 jM1v1t1, etc.

peut aussi s'écrire :

ce qui, en tenant compte de

nouveau des relations fiy, sin A, et
des équations (1), (§ 8), qui
ensemble nous donnent :

sin AiVr,r, ^sin a,lin~ M.

peut aussi s'écrire :

n— ve »i,eit.

»Ws |^i(u2u.^ — u3u2)r, 4- fi2(u3u'x — uxu^)t2 4- ^3(utu2 — u2u()r3 j

—^—[^(XaXg — x3x2)li 4- v2(x3x[ — xxx:.)k + vH{xxx!2 — x2x()l3J

ou bien encore, si nous posons
dorénavant symboliquement :

u2u3 —u3u2 :~(uu')i
u.u, — u,u (uu')2

U4U2 — U2UÎ ES (Ull')3

»Wal l"l(»«')l>,l + l"j(UU')»*a + l"s(UUVs

(16)

Les indices de cette arête sont
donc les déterminants ainsi formés
des indices u i et u J des faces qui
la déterminent :

u2

u.
u,
Us

Ug Ui

Ug uî

U i u.

ou bien encore, si nous posons
dorénavant symboliquement :

X2 X 3 Xg X 2

x3x( — xtx8
X|X 2 ^2^-1

:(xx')i
(xx')2

:(XX').3

^'[".(xx'),!, 4 r,_(xx'),l, 4 "3(xx')3l3]

(16)

Les indices de cette face sont
donc les déterminants ainsi formés
des indices x; et x[ des arêtes qui
la déterminent :

X-2 Xg

xó xs

Xi x,
xî x<

3
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et s'écrivent facilement sous la
forme schématique qui s'interprète
à première vue :

«n

u;

U.,U3UiU.,

XXX
u 2 u g u i u 2

Ug

Us

et s'écrivent facilement sous la
forme schématique qui s'interprète
à première vue :

x,

x;

X2X3X!X2
XXX

X 2 X g X \ X -.

x3

X'.

32. La valeur absolue du vecteur
entre parenthèses (16) est d'après
le paragraphe 28 la racine carrée
de la forme :

w[(uu'),(uu').,(uu')3] oj[(uu')(uu')]

La valeur absolue du produit
vectoriel total est donc d'une part:

v1»'2»'3Vw[(uu')(uu')]

et d'autre part le produit des

tenseurs : V ß(uu)£>(u'u') et du sinus
de l'angle a des 2 faces d'indices

il j et u i. L'égalité de ces 2

valeurs nous donne immédiatement

pour le sinus de cet angle :

sin cp
vxv2v3\fco[(uu')(uu')]

V'i2(uu).Q(u'u

Si nous divisons cette expression

de sin cp par celle de cos cp

trouvée au § 29, nous avons, sous
cette forme simple et définitive,
la valeur de l'angle de 2 faces

U; et ui en fonction de leurs
indices :

t?
vxv2v3\/oj[{uu')(uu')]

9 Ohm') [ '

La valeur absolue du vecteur
entre parenthèses (16) est d'après
le paragraphe 28, la racine carrée
de la forme :

.Q[(xx')i(xx')2(xx')3]=ß[(xx')(xx')]

La valeur absolue du produit
vectoriel total est donc d'une part :

-i

^-fixfi2fis\a[{mi')(uu')]

et d'autre part le.produit des

tenseurs : y co(xx) et yoj(x'x') et du

sinus de l'angle y> des 2 arêtes
d'indices x, et xj. L'égalité de ces 2

valeurs nous donnent immédiatement

pour le sinus de cet angle :

sm yi
fix[i.2riH\/u[{xx')(xx')}

MV«(xx)o)(x'x')

Si nous divisons cette expression

de sin tp par celle de cos y
trouvée au § 29, nous avons, sous
cette forme simple et définitive,
la valeur de l'angle de 2 arêtes

Xi et xi en fonction de leurs
indices :

tgip-
/<i^2,«3\'.Q[(xx')(xx')]

M.m(xx')
(17)
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33. Tout vecteur de la forme :

(i'iUili -\-v2u2i2 4-r3u8l3)
— Xfauik + WiU + ^Ugl«),

les Ui et les uj étant les indices
entiers de 2 faces possibles et X

prenant toutes les valeurs rationnelles

de — oc à 4- oc, représente
une face également possible, puisque

ses indices sont entiers et

tautozonale aux 2 premières, puisque

son vecteur est coplanaire aux
2 vecteurs qui le composent.

A chaque couple de faces Ui
et ui du cristal correspond donc

une zone de faces possibles qui
a pour axe leur arête commune,
et pour indices u'i de chacune de

ses faces :

u'x.u2:\i'3=ux—Xu'x:u2—Xu'2:u3—X\î3

34. Désignons, sans trop nous
encombrer de parenthèses, par :

(§4)
„. sin un"

mu u )==- r—sin u u

le rapport de position de cette face

générale u" par rapport aux 2

faces déterminant la zone, et nous
trouvons très facilement sa valeur.

D'une part le vecteur plus haut
peut s'écrire sous cette forme qui
représente la même face :

,vxuAx 4- i»2u,l2 4- r8UsV

Yfî(uu)

\û(u'u')iv1u'1lx+v1>u2l2+v3u3l

Vfi(uu)üuT\ V^(u'u')

Tout vecteur de la forme :

(fixxxxx + fi2x2x2 4- n3x3x3)

—X{fixx'xxx 4- fi2x2t2 4- fisx'Ht3),

les Xi et les xj étant les indices
entiers de 2 arêtes possibles et X

prenant toutes les valeurs rationnelles

de — oc à 4- »=> représente
une arête également possible, puisque

ses indices sont entiers, et

coplanaire avec les 2 premières,
puisque son vecteur est coplanaire
aux 2 vecteurs qui le composent.

A chaque couple d'arête xt et

xi du cristal, correspond donc

un faisceau d'arêtes possibles qui
a pour support leur plan commun,
et pour indices xi' de chacune de

ses arêtes :

x i : x : x. -xx-Xx'x:x2-Xx2:x3-Xx'ó

Désignons, sans trop nous
encombrer de parenthèses, par :

(§ 4)

„, sin xx"
(xx'x -. r—sin x x

le rapport de position de cette arête

générale xi' par rapport aux 2 arêtes
déterminant le faisceau, et nous
trouvons très facilement sa valeur.

D'une part le vecteur plus haut

peut s'écrire sous cette forme qui
représente la même arête :

ifixxxxx + ,M2x2r2 4- ,a3x3rs-.

-X

Vœ(xx

V oj(x'x')fjuxx ; xx+u2x2 x.2+!i3x3 r8

yco(xXX I V'co(x'x')
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et chacun de ses vecteurs
composants étant maintenant un
vecteur-unité, nous avons, d'après ce

qui a été établi pour le coefficient
du second (§ 4) :

,\/.Q{u'u'}

\Jq(uu)
sin uu

sin uu

D'autre part, 1,„ L/, l„» étant les

vecteurs des 3 faces en question,
formons le quotient des valeurs
absolues des 2 produits vectoriels :

JVUu" | \/fl(uu). s/a(u"a"). sin uu"

JWA^Î S/Öfi7^7)- \/ß(u"u")- sin u'u»

Puisque ces vecteurs \ l„lu" et

H„'lu" ont tous deux la même
direction, celle de l'arête commune
aux 3 faces ou de leur axe zonal,
on se rend compte sans peine que
le rapport de leurs valeurs absolues

est le même que celui de

leurs composantes sur chacune des
3 arêtes fondamentales. Ces

composantes, trouvées au § 31,
s'expriment symboliquement: (uu")1(
(uu")2, (uu"), (u'u")i, etc., et l'égalité

posée devient :

\/fî(uu) sin uu" (uu")i

VrXuVJsin u'u" (u'u")i

De la comparaison des 2 résultats

obtenus, nous avons maintenant

l'égalité générale :

(18) X--
(uu"), vVm) sin uu

et chacun de ses vecteurs
composants étant maintenant un
vecteur-unité, nous avons, d'après ce

qui a été établi pour le coefficient
du second (§ 4) :

.\/oj(x'x')
\co(x)XX

sin xx

sin xx

D'autre part, r», rx', r," étant les

vecteurs des 3 arêtes en question,
formons le quotient des valeurs
absolues des 2 produits vectoriels :

]Yr*V' I V/a'(xx^ \Jœ(x"x")- «in xx"

iVïx'ïx"! V'ft,(x'x')- V/ffi>(x"x")- sinx'x"

Puisque ces vecteurs Vrsrx" et

]Jxx'X%" ont tous deux la même
direction, celle du vecteur de la face

commune aux 3 arêtes, on se rend

compte sans peine que le rapport
de leurs valeurs absolues est le
même que celui de leurs composantes

sur chacune des directions
des vecteurs des faces fondamentales.

Ces composantes, trouvées

au § 31, s'expriment symboliquement

: (xx")i, (xx")2, (xx")3, etc.,
et l'égalité posée devient :

\/co(xx sin xx" (xx")j

\Mx'x') sin x x (x'x").

De la comparaison des 2 résultats

obtenus, nous avons maintenant

l'égalité générale :

(u'u")i \/û{u'u') sin u'u'

(xx"), V/ft>(xx) sin xx"
X - -=M (18)

(x'x"), Vffl(x'x') sin x'x"
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35. De ces différentes relations
se déduit très simplement une
nouvelle expression du rapport
des indices de 2 faces quelconques
du cristal (§ 14).

Le couple de faces Ui etuj
détermine donc une zone de faces

possibles dont les indices sont de

la forme, X étant rationnel :

u i — Au ;

Pour la face u1 de cette zone

parallèle à l'arête fondamentale xx

son premier indice étant
nécessairement nul, ils se réduisent aux
2 derniers :

u2 - Xu2 u3 — Xus

Or cette face, en tant que plan
de jonction des 2 arêtes données :

1 0 0

(uu)i (uu)2 (uu)3

a également pour indices d'après
le schema du § 31 :

— (uu')s et (uu')2

c'est-à-dire :

u2ui — u,u2 et u3ui — UiU3

D'où, en comparant les 2 valeurs
de ces indices, le résultat général
du § précédent devient immédiate-
dans ce cas-ci :

2 Ui Vö(uu). sin uu1

11 î S/'i^W). sin u'u1

Il en serait de même pour les
faces u2 et u3 de cette même zone

De ces différentes relations se

déduit très simplement une
nouvelle expression du rapport des

indices de 2 arêtes quelconques
du cristal (§ 14).

Le couple d'arêtes Xi etxj
détermine donc un faisceau d'arêtes

possibles dont les indices sont de

la forme, X étant rationnel :

Xi — Xx[

Pour l'arête x1 de ce faisceau

coplanaire à la face fondamentale lx,

son premier indice étant
nécessairement nul, ils se réduisent aux
2 derniers :

Xt> — /.X 9 • Xtj ""-¦* AX v.

Or cette arête en tant qu'intersection

des 2 faces données :

1 0 0

(xx')t (xx')2, (xx')g

a également pour indices d'après
le schema du § 31 :

— (xx')8 et (xx')-.

c'est-à-dire :

X->X^ — X]X2 C* "8 1 ~~ *M"S

D'où, en comparant les 2 valeurs
de ces indices, le résultat général
du § précédent devient immédiatement

dans ce cas-ci :

;.
\m(xx). sin xx1

Xl V<m(x'x'). sin x'x1

Il en serait de même pour les

arêtes x2 et x3 de ce faisceau co-
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parallèles aux 2 autres arêtes
fondamentales, et des 3 équations

que l'on obtiendrait ainsi résulte
directement cette égalité de

rapports :

ut u2 u8 sinuu1 sinuu2 sinuu3

ui'u2'u3 sinu'u'sinu'u-'sinu'u3

c'est-à-dire que les quotients des

des indices de 2 faces sont
proportionnels aux quotients des sinus
des angles qu'elles font avec la
face de leur zone parallèle à l'arête
fondamentale correspondante.

36. Les 3 faces d'indices entiers:

viu! i -i + v2u 212 4- v3 u 313

v, u î tt 4- k,u212 4- Vgiiglg

Viu'i'l, 4- Vgiiglg + »>8u8l8

sont tautozonales (§ 5) s'il existe
3 nombres kx tels que la somme
des 3 vecteurs posés multipliés
par ces facteurs soit nulle, c'est-

à-dire, chaque li devant avoir pour
cela dans cette somme un coefficient

qui s'annule, tels que :

kiU4 + k2ui -fk8uï 0

kiii2 4- k2u2 + k8u8 0

kjUg + Mg 4-kgUg 0

Or ces 3 équations ne peuvent
être simultanément satisfaites par
des valeurs kt autres que 0, que
si le déterminant de leurs
coefficients s'annule :

tu
» 3

U 2

u8

11., 0

planaire aux 2 autres faces
fondamentales et des 3 équations

que l'on obtiendrait ainsi, résulte
directement cette égalité de

rapport:

X, X.2 X-: sin xx1 sin xx2 sinxx3
Xi x., x. ri"sin x x1 sin x x- sin x xs

c'est-à-dire que les quotients des
indices de 2 arêtes sont
proportionnels aux quotients des sinus
des angles qu'elles font avec l'arête
de leur faisceau coplanaire à la
face fondamentale correspondante.

Des 3 arêtes d'indices entiers :

fixxxtx -\-,u,x.2x2 +/*3X3r3
Hxx'xxx 4- ,u2x2r2 4- /Ugx'stg

fh^îh 4- A<2x2'r2 4- A%x'2r8

sont coplanaires (§ 5) s'il existe
3 nombres k, tels que la somme
des 3 vecteurs posés multipliés
par ces facteurs soit nulle, c'est-
à-dire, chaque r, devant avoir pour
cela dans cette somme un coefficient

qui s'annule, tels que :

k,x, 4- k2xi 4- k3xï 0

kix24-k2x24-k3x'^ 0

k,x3Mk2x34-k3x:3=:0
Or ces 3 équations ne peuvent

être simultanément satisfaites par
des valeurs k, autres que 0, que
si le déterminant de leurs coefficients

s'annule :

:0
Xi xi x,
X, Xa X2

X.3 Xg x8



— 39

Mai si cela est, les 3 facteurs k,
sont possibles ; les fates u, étui
étant données, toute face
d'indices entiers u" satisfaisant cette

égalité, est par le fait tautozonale

aux 2 premières et c'est donc là
le déterminant équation de l'arête
commune en fonction des indices
des 2 faces déterminant cette arête.

Mais si cela est, les 3 facteurs k i
sont possibles; les arêtes x; et xj
étant données, toute arête
d'indices entiers x" satisfaisant cette

égalité, est par le fait coplanaire
aux 2 premières et c'est donc là
le déterminant équation de la face
commune en fonction des indices
des 2 arêtes déterminant cette face.

37. Si enfin nous introduisons
une 4me face u"{, tautozonale
encore aux 3 faces de la même zone

ui( ni etu", nous appelons (§6)
le rapport anharmonique de ces

4 faces, le quotient des rapports
de sinus :

(uu'u"u'"):
sin uu sin uu

et nous servant des relations du

§ 34, X et n étant les paramètres
des indices des 2 dernières en fonction

de ceux des 2 premières, nous
trouvons immédiatement sa valeur:

(19)(uu'u"u'") A_(uu")i4uu'")k
> (u'u")r(u'u'")k

Le rapport anharmonique de 4
faces tautozonales, s'exprimant
donc uniquement en fonction de

leurs indices entiers, est un nombre

rationnel ; c'est un corollaire
direct de la rationnalité des
indices des faces du cristal.

Si enfin nous introduisons une
4me arête x,'", coplanaire encore
aux 3 arêtes dans un même plan

X,, xi et xi', nous appelons le

rapport anharmonique de ces 4

arêtes (§ 6), le quotient des

rapports de sinus :

(xx'x"x"
sin xx sin xx

et nous servant des relations du

§ 34, X et fi étant les paramètres
des indices des 2 dernières en fon-
tion de ceux des 2 premières, nous
trouvons immédiatement sa valeur :

Le rapport anharmonique de 4

arêtes coplanaires, s'exprimant
donc uniquement en fonction de

leurs indices entiers, est un nombre

rationnel ; c'est un corollaire
direct de la rationnalité des

indices des arêtes du cristal.

38. Sur les 3 angles que déterminent entre elles les 3 faces

tautozonales u1( uj et u" ou les 6 angles que déterminent entre elles
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les 4 faces de la même zone Ui, uj, u" et u"[, deux seuls dans le

premier cas et trois seuls dans le second cas sont indépendants l'un
de l'autre. Dans les 2 cas, il suffit donc de tenir compte uniquement
de ceux de ces angles qui sont indépendants et pour lesquels nous
prendrons dès à présent soit les 2 angles uu' et uu", soit les 3 angles
uu', uu" et uu'".

Avec cela le simple rapport de position des 3 faces reste sans

aucune symétrie :

sin uu" sin uu"
sin u'u" sin (u'u-f-uu")

mais le rapport anhormanique des 4 faces :

sin uu" sin uu'"
(uu'u"u'") :

sin u'u" sin u'u"
s'écrit très facilement si nous appelons A sa valeur :

cot uu'" — cot uu'
cot uu" — cot uu'

et nous avons donc entre les angles de 4 faces tautozonales et la
valeur de leur rapport anharmonique la relation générale :

cot uu'" (1—A) cot uu' 4- A cot uu" (20)

Si ce rapport anharmonique a pour valeur —1, c'est-à-dire si
les 4 faces sont conjuguées harmoniques, le couple des 2 dernières

par rapport à celui des 2 premières, la relation se réduit à :

2 cot uu' — cot uu" — cot uu'" 0 (21)

Si enfin nous prenons pour la 3me face ui' la face u1 de la zone

qui est parallèle à l'arête fondamentale r, (§ 35), le paramètre A des

indices de cette face étant alors U; :uj, pour toute valeur rationnelle

p : q du paramètre fi de la 4me face u"', nous aurons pour le rapport
anharmonique correspondant : (19)

A U^
ujp

et la relation générale (20) devient dans ces conditions :

pu i. cot uu'" — qu j. cot uu ' (pu i — qu x cot uu' (22)

Naturellement tout ce qui vient d'être dit des angles de 3 ou
4 faces tautozonales se répéterait pour les angles que forment entre
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elles 3 ou 4 arêtes coplanaires ; l'égalité reliant les valeurs des 3

angles indépendants xx', xx" et xx'" et celle de leur rapport
anharmonique est donc également :

cot xx'" (1—A) cot xx' 4- A cot xx"

Elle devient si la valeur du rapport anharmonique est —1 :

2 cot xx' — cot xx" — cot xx'" 0

et enfin si la 3mo arête x" est l'arête x1 coplanaire à la face

fondamentale lt et la 4me, l'arête x'" de paramètre rationnel p:q,
elle s'écrit d'une manière assez symétrique :

px'i. cot xx'" — qx,. cot xx1 =(pxj — qXj) cot xx'

39. Les résultats de ces derniers paragraphes permettent de

résoudre aisément les 2 petits problèmes suivants que nous appliquons
aux faces tautozonales, mais qui évidemment se poseraient et se

résoudraient d'une manière pareille pour le cas des arêtes coplanaires.

I. Etant donnés les éléments du cristal, les indices des faces

Ui et ui et leur angle uu', toute face de leur zone:

1° son angle uu" connu, a ses indices u" de la forme:

Vfî(uu). sin un"
Ui—>Uii ou X=:—

\/fi(u'u'). sin u'u"

2° ses indiees u" connus, a son angle uu" déterminé par :

sinuu" V/ß(u'u').(uir)i
sin (u'u 4- uu")~~ y/^ij. (u<u").

Si nous appelons tg 0 la quantité connue que représente le
second membre, nous avons par le fait de l'égalité posée :

14- tg <~>_sin(u'u4-uu")4 sinuu" sin^-4-uu )i
u u

1 — ts & sin (u'u — uu") —sinuu" /u'u „\ u'uo \ / pnc L_ mi " I ein(UU „l 1

cos(—_-|_lUi"J sin-

ou encore, en changeant le signe des angles :

tg (™1- uu") tg "^ tg (45° 4- ©)

c'est-à-dire une expression plus directement logarithmique que la première.
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IL Etant donné les indices des faces Uj, ui et ui' et leurs angles
uu' et uu", toute face de leur zone:

1° son angle uu'" connu, a ses indices de la forme (§ 37) :

-
1 (uu"),

u i — /ui ou fi -—, - .- ;.
(uu u u (u U );

2° ses indices u'" connus, a son angle uu'" déterminé par :

cot uu'" (1—A) cot uu' 4- A cot uu"

Mais comme nous pouvons aussi écrire :

sin uu'" 1 sin uu"
sin (u'u + uu'") A 'sin u'u"

nous avons, en opérant d'une manière toute pareille à celle du cas

précédent, si nous posons la quantité connue :

1 sin uu"
A' tr lï->

sin u u

tg(uu:._uu'") tg ^tg (450+0)
c'est-à-dire encore une expression bien plus avantageuse que la
première au calcul par logarithmes.

40. Comme cas particulier, si les 3 faces u,, uj et u" sont les

3 faces tautozonales à l'arête fondamentale r1; d'indices 010, 001 et

011, (c'est-à-dire les 2 faces fondamentales 12 et lg et la face p, (§ 19)

les indices u'J' d'une 4me face quelconque de cette même zone sont
donc de la forme :

U ' A'(u'u")iUi
Or en substituant les indices ui( ui et u" donnés, pour i=l

cette forme se réduit à :

1

«i +XUl
de sorte que nous obtenons pour le rapport des 2 indices u'f
différents de 0 :

4 A.
u3
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On obtiendrait dans les mêmes conditions pour le rapport des

2 indices non nuls d'une face tautozonale à l'arête r2 ou à l'arête r3 :

4 A et ?I A.
Ul u2

et le résultat général peut s'exprimer ainsi :

Pour toute face appartenant à l'une des 3 zones que constituent
les arêtes fondamentales, le rapport de ses 2 indices non nuls est

égal au rapport anharmonique obtenu en accouplant cette 4ine face

au groupe correspondant des 3 faces u,, u[ et u" choisies et
maintenues dans l'ordre qui leur a été donné.



CHAPITRE VII

41. Les indices de l'arête
normale à la face possible :

''lUi^ + »*2U2-2 + ''3U3l3

le vecteur de la face coïncidant

avec celui de l'arête, se déduisent
immédiatement de l'égalité vectorielle

:

Les indices de la face normale
à l'arrête possible :

flxXxXx + fl2X,X., 4- fl3XHX3

le vecteur de l'arête coïncidant
avec celui de la face, se déduisent
immédiatement de l'égalité vectorielle

:

^îu^i + »"2u2l2 4- »Ws-8 ^îXiïi + fi2x2x2 4- /W3x3r3

En effet, en s'en rapportant toujours aux équations du chap. IF
unissant entre eux les vecteurs des faces et des arêtes fondamentales,
si nous multiplions scalairement
les 2 membres de notre égalité
successivement par vxlx, v.2l2, v3l3,

et tenons compte des relations :

ju i v i ^=. sin Ai et sin A i sin h x A

nous obtenons :

Axl v£u, 4 vlv-2u, cos A,., 4 viv3xid cos A13

zlx.2--;i',i>1u1cosA12 4>'jU2 + V8u, cosA13

Axa — V3viui l'osAis+Wi c°s A23 -r-vlu3

ce qui, avec la notation introduite
au § 28, nous donne sous une
forme extraordinaiiement simple
les indices demandés :

(23) x, : x, : x3 ß'(u,) : ß'(u2) : ü'{u3)

si nous multiplions scalairement
les 2 membres de notre égalité
successivement par fixxx, ft.2x2, fi3x3

et tenons compte des relations :

/i i v i — sin A i et sin A j sin h, A,

nous obtenons :

Au1 -=7«pq 4/<i/(>x.> cosa12 4i"n"sxa cosa13

All., ZZ:/H1flLSil COS a,, 4 /*8X2 + i"3l«:lX3 C0S *|8
zlu., zzz/(3fiLxL cosa13 4/';!/(2x2 cosa,3 4 i"»*»

ce qui, avec la notation introduite
au § 28, nous donne sous une
forme extraordinairement simple
les indices demandés :

u, : u, : u, : (u'(x,) : co'(x2) : <w'(x3) (23)

42. Or contrairement à tous ceux dont il a été question jusqu'ici,
ces indices trouvés ne jouissent plus du tout nécessairement de l'es-
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sentielle propriété que nous avons établie au § 20 des indices des
faces et arêtes possibles du cristal. Les constances /*, et vx
déterminant la face et l'arête-unité, et les cos Aik et cos aik des angles
que font entre elles les faces et arêtes fondamentales sont en effet

pour le cas général des quantités irrationnelles quelconques ; les
valeurs fî'(iii) et »'(x,) qui les impliquent, ne sont donc pas elles-
mêmes en général des indices entiers, et par le fait la face ou l'arête
normale à une arête ou une face possible, ne sont pas en général
elles-mêmes une face ou une arête également possible.

Si par contre un complexe
cristallin implique un système de 4

faces, telles que les cos A,* de

leurs angles et les composantes v s

de la face-unité sur les vecteurs
des faces fondamentales *, soient
des quantités rationnelles, les
indices û'(Ui) de l'arête normale à

toute face possible Ui sont également

rationnels. A chaque face de

ce complexe correspond donc une
arête normale possible, et comme
cette arête normale appartient au

complexe, quelles que soient les

4 de ses faces prises pour point
de départ, de sa construction
zonale ses indices sont entiers,
quelles que soient les 4 faces du

complexe auxquelles on le rapporte.
Par le fait pour chaque système

de référence que fournissent 4 faces

quelconques du complexe en question,

les coefficients v\,vxv2 cos Ai2,
etc., des indices fi'(Ui) que nous
avons appelés : (§ 28)

Si par contre un complexe
cristallin implique un système de 4
arêtes, telles que les cos a,k de

leurs angles et les composantes fix
de l'arête-unité sur les vecteurs
des arêtes fondamentales, soient
des quantités tationnelles, les
indices o/(Xi) de la face normale à
toute arête possible Xi sont également

rationnels. A chaque arête de

ce complexe correspond donc une
face normale possible, et comme
cette face normale appartient au
complexe, quelles que soient les
4 de ses arêtes prises pour point
de départ de sa construction
zonale, ses indices sont entiers,
quelles que soient les 4 arêtes du

complexe auxquelles on le rapporte.
Par le fait pour chaque système

de référence que déterminent 4
arêtes quelconques du complexe
en question, les coefficients fx\,fixfi2
cos ai2, etc., des indices co' (x,)
que nous avons appelés : (§ 28)

* Déterminées par les relations ii,Vi sin Ai, les /ii étant les segments
interceptés par la face-unité sur les intersections des faces fondamentales.
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Ì2XX, iì22, 5tf88, iJ{2, '*l$> '*23

doivent être des quantités rationnelles.

ft>n, ft>22, a)33, coX2, col3, o).,3

doivent être des quantités rationnelles.

43. Un seul complexe cristallin réalise totalement la condition
énoncée ; le complexe cubique pour lequel nous avons (§ 85, V)

en choisissant comme faces
fondamentales les 3 faces du cube

générateur et comme face-unité
le plan diagonal déterminant ses

3 arêtes (face de l'octaèdre) :

cos Ax =: cos A2 cos A3 0

v, r., rr v,, 1

en choisissant comme arêtes
fondamentales les 3 arêtes du cube

générateur et comme arête-unité
sa diagonale principale passant

par le point 0 :

cos ax cos a2 cos a3 0

/<i fi2 fi3 1

sin A, sin A.> sin As l

Pour chaque face du complexe
cubique l'arête normale est donc

une arête possible, dont les
indices rO'(ui) se réduisent, dans le

cas particulier du système de

référence choisi, aux valeurs mêmes
des indices de la face :

X] x., : x3 U) : u2 : u3

Pour chaque arête du complexe
cubique la face normale est une
face possible, dont les indices

co'(Xi) se réduisent, dans le cas

particulier du système de référence
choisi, aux valeurs mêmes des

indices de l'arête :

x, x., : x-.

En conséquence, puisque à chaque
couple de faces du complexe, correspond
une zone complète de faces possibles,
leurs arêtes normales, situées chacune
dans le plan commun perpendiculaire à

l'axe zonal, déterminent ainsi une face

possible du complexe. Par le fait,
réciproquement pour chaque axe zonal, c'est-
à-dire pour chaque arête du complexe
cubique, la face normale est également
possible.

En conséquence, puisque à chaque
couple d'arêtes du complexe, correspond
un faisceau complet d'arèles possibles,
leurs faces normales, passant chacune

par l'intersection commune perpendiculaire

au plan du faisceau, déterminent
ainsi une arête possible du complexe.
Par le fait, réciproquement pour chaque
faisceau d'arêtes, c'est-à-dire pour chaque
face du complexe cubique, l'arête normale
est également possible.

Chaque face du complexe cubique fait donc en somme partie
d'un système de 3 faces trinormales, comme chacune de ses arêtes
est comprise dans un système de 3 arêtes perpendiculaires entre
elles. Chaque zone du complexe est telle qu'à chacune de ses faces
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correspond une face normale dans la même zone ; chaque faisceau
ou zone d'arêtes est telle qu'à chacune de ses arêtes correspond une
arête perpendiculaire dans la même face. Fédorow appelle zones
isotropes des zones de faces et d'arêtes cristallines possédant cette
propriété, et ce que nous venons de dire s'exprime plus simplement :

chacune des zones de faces ou d'arêtes du complexe cubique est une
zone isotrope.

44. Deux autres complexes cristallins (voir § 85) réalisent
partiellement la condition du paragraphe 42. En effet, pour le complexe
quadratique,

en choisissant comme faces
fondamentales les 3 faces du prisme
droit générateur à base carrée et

comme face-unité le plan diagonal
déterminant ses 3 arêtes (face de

la protopyramide), les cos Aik et

les constances vx sont les valeurs * :

cos Ai cos A2 cos A,, — 0

vx v2 —v3=l
et les indices ß'(iii) de l'arête
normale à la face possible u i, se

réduisent, pour ce système de

référence choisi, aux rapports des 3

quantités dont la première est
essentiellement irrationnelle (remarque

du § suivant :

x, : x., : xs :i'ïll, u., : u,

en choisissant comme arêtes
fondamentales les 3 arêtes du prisme
droit générateur à base carrée et

comme arête-unité sa diagonale
principale passant par le point 0,
les cos aik el les constances fix
sont les valeurs :

cos a, cos a2 ~ cos8 0

fix fi., -=^-=1
et les indices eo'(x,) de la face
normale à l'arête xx se réduisent,

pour ce système de référence

choisi, aux rapports des 3 quantités

dont la première est
essentiellement irrationnelle (remarque
du § suivant) :

:/<jX, : x2

Pour le complexe hexagonal (§ 85, IV), les

faces fondamentales étant les 3

faces du prisme droit générateur
à base équilatérale, et la face-

unité le plan diagonal déterminant

arêtes fondamentales étant les 3

arêtes du prime droit générateur
à base équilatérale, et l'arête-
unité la diagonale principale pas-

* En désignant simplement par la lettre correspondante celle de ses

constances qui sont irrationnelles.



ses 3 arêtes (face de la protopyramide

hexagonale) les éléments
du système sont :

1
cos A4 ^, cos A2 cos Ag 0

2

1

et les indices ü'iuA de l'arête
normale sont également les rapports
des 3 expressions dont la première
est encore irrationnelle (même
remarque) :

x, : x : x3 v,ut : (uä 4 72"3) : (l/i"j 4 u3)

Pour l'un comme pour l'autre
le premier indice u4 des faces
tautozonales à l'arête fondamentale xx

étant nul, les indices de leurs
arêtes normales se réduisent aux
2 derniers, et sont ainsi des

rapports de quantités rationnelles.
Pour chaque face de la zone
fondamentale xx, l'arête normale est

donc possible, et puisque par cette

arête normale passe une nouvelle
face dans la même zone, cette

zone xx est encore telle, qu'elle
implique une face normale à

chacune de ses faces.

sant par le point 0, les éléments
du système sont :

1
cos ax -y cos a2 cos a3 0

th., /<2=/*3 l
et les indices co'(x') de la face
normale sont également les rapports
des 3 expressions dont la première
est encore irrationnelle (même
remarque) :

ui : u-2 : ":, /'ixi : (x? 4 ';U;,) : (\,x, 4 x3)

de ces 2 complexes,
le premier indice xx des arêtes
coplanaires à la face fondamentale lx

étant nul, les indices de leurs
faces normales se réduisent aux
2 derniers, et sont ainsi des

rapports de quantités rationnelles.
Pour chaque arête du faisceau
fondamental lt, la face normale est
donc possible, et puisque cette face
normale détermine une nouvelle
arête du même faisceau, cette zone
d'arête lx est encore telle, qu'elle
implique une arête normale à

chacune de ses arêtes.

Pour l'un et l'autre des 2 complexes quadratique et hexagonal,
les zones fondamentales de faces et d'arêtes xx et lx sont donc

encore des zones isotropes.
En appelant (Fedorow) zone orthogonale de faces ou d'arêtes

celle qui n'implique qu'un seul couple de faces ou d'arêtes normales*,
on se rend compte en outre sans peine,

* On démontrerait facilement que dès qu'une zone de faces (d'arêtes) possède
deux couples de faces (arêtes) normales, elle possède une face normale à chacune

de ses faces, c'est-à-dire qu'elle est isotrope.
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puisque chacune de leurs arêtes,
c'est-à-dire chacun de leurs arcs
zonaux est nécessairement situé

sur une face de la zone fondamentale

r,, à laquelle correspond une
arête normale, que toutes les
autres zones de faces des 2

complexes sont des zones orthogonales.

puisque chacune de leurs faces,
c'est-à-dire chacune de leurs zones
d'arêtes passe nécessairement par
une arête du faisceau fondamental

Ij, à laquelle correspond une
arête normale, que toutes les
autres zones d'arêtes des 2

complexes sont des zones orthogonales.

45. Les 3 autres complexes cristallins, rhombique, monocline
et tricline (voir toujours § 85) n'ont plus aucun système de référence

avec des éléments rationnels suffisants pour y nécessiter la présence
de zones de faces ou d'arêtes isotropes.

En choisissant toujours comme
faces élémentaires les 3 faces du

parallèlipipède générateur avec la
face déterminant ses 3 arêtes, les
éléments du complexe rhombique
sont (prisme droit à base rectangle,

faces des 3 pinakoïdes et de

la protopyramide) :

cos A, cos A2 : cos A3 0

"i vt > "8

et les indices ß'(Ui) de l'arête
normale sont les rapports des 3

quantités irrationnelles :

xx:x2:x3—v\ux:v\u.2:v\u3
Seules donc les arêtes normales

aux 3 faces dont 2 indices sont
nuls, c'est-à-dire aux 3 faces
fondamentales vxlx, v.2l2, v.A3, sont des

arêtes possibles. Ces 3 faces sont
ainsi les seules faces du complexe
auxquelles corresponde une arête

normale, et on se rend compte
immédiatement que chaque zone

En choisissant toujours comme
arêtes élémentaires les 3 arêtes du

parallèlipipède générateur avec la
diagonale principale passant par 0,
les éléments du complexe rhombique

sont (prisme droit à base

rectangle) :

cos at cos a2 : cos a3 0

fix fi2 fi3

et les indices co'(xi) de la face

normale sont les rapports des 3

quantités irrationnelles :

fi\xx fl2X2 fl3X3Ui : u2 : u3

Seules donc les faces normales

aux 3 arêtes dont 2 indices sont

nuls, c'est-à-dire aux 3 arêtes
fondamentales fivxx, fi2x2, fi3x3, sont des

faces possibles. Ces 3 arêtes sont
ainsi les seules arêtes du complexe
auxquelles corresponde une face

normale, et on se rend compte
immédiatement que chaque zone
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de faces dont l'axe est situé sur
l'une d'elles, est une zone
orthogonale.

Pour le complexe monocline,
le prisme est droit à base paral-
lélogrammique quelconque (faces
des 3 pinakoïdes et de l'hémipy-
ramide positive), les éléments du

système sont :

cos Ai cos A2 cos A8 0

"i > V-2 "s

et les indices irrationnels ß'(ui)
s'écrivent, abstraction du facteur

proportionnel :

xx~v\ux
X2 =:V2U24-''2»'.3U3 cos A4

X3 V3V.2U2 COS Ax 4" VHUH

Seule l'arête normale à la face

dont les 2 indices u2 et u3 sont

nuls, est une arête possible. La
face fondamentale lx est donc la
seule face du complexe possédant
une arête normale, et chaque zone
de faces dont l'arête est située sur
cette face, est une zone orthogonale.

d'arêtes dont la face support passe

par l'une d'elles, est une zone

orthogonale.

Pour le complexe monocline
le prisme est droit à base

parallèlogrammique quelconque (arêtes
du prisme, orthodome et clino-
dome), les éléments du système
sont :

cos ai cos a2 :

fix fi2

¦ 0cos a«

et les indices irrationnels o>'(x;)
s'écrivent, abstraction du facteur

proportionnel :

-fi\xxUi

u2 fi2x2 4~ A*2/"3X3 cos a,

U3 fl3fl.2X.2 cos ai 4- y"lx3

Seule la face normale à l'arête
dont les 2 indices x2 et x8 sont
nuls, est une face possible. L'arête

fondamentale r, est donc la
seule arête du complexe possédant
une face normale, et chaque zone
d'arête dont le plan passe par
cette arête, est une zone
orthogonale.

Enfin pour le complexe tricline, les 3 faces du parallèlipipède
générateur sont des parallélogrammes quelconques ; les 6 constantes
de chaque système sont des quantités essentiellement irrationnelles,
et les indices Q'{ux) et m'(xx) restent sans aucune simplification ce

qu'ils ont été trouvés au § 41. Pour aucune valeur des indices Ui
et x1; ils ne peuvent se réduire à un seul ou devenir rationnels;
le complexe tricline est donc le seul complexe cristallin qui n'ait
aucune arête normale à l'une de ses faces.
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Remarque. Le fait que les coefficients Qik et coik, en fonction desquels
s'expriment les indices û'(u,) et ct>'(x, implique chacun un produit ou un carré des

constantes i';, cos Ai ou /i-,, cos ai du complexe, ne permet, semble-t-il, rien
d'absolu en ce qui concerne la propriété que nous venons d'établir des zones et des

complexes cristallins. En principe, il ne serait sans doute aucunement impossible

par exemple que 2 quelconques ou les 3 constantes irrationnelles /j.1, fi2, fiä, (et

par suite v,, v„, j>a) c'est-à-dire les longueurs des axes-unités d'un complexe cristallin

rhombique soient des valeurs de racines carrées quelconques : Va, l/b, ]/c ; ce

complexe rhombique posséderait dans ce cas, comme un complexe quadratique, une
zone isotrope, ou pour chacune de ses faces une arête normale et réciproquement,
comme le complexe cubique. Il en serait de même d'un complexe monocline dans
le cas où ses constantes /ii (ri) seraient des racines carrées et ses cos ai et cos
.-li tels que les coefficients fi.,/iiscos at et v2v3cos Ai soient des quantités rationnelles.

Mais en réalité, pour l'étude du cristal, cette restriction n'a aucune impor-j
tance. Si rien n'empêche que, momentanément, pour une température déterminée,
les axes unités ou les constantes fi, d'un cristal rhombique ou monocline puissent
prendre des valeurs de racines carrées, pour le plus petit changement de température,

les propriétés physiques étant différentes sur chacune des 3 directions de

ces axes, leurs dilatations inégales (positives ou négatives) auront aussitôt ramené
ces constantes à des rapports de nombres irrationnels quelconques. C'est d'ailleurs
la l'essence même de la nature du complexe cristallin : l'irrationnalité des rapports
des constantes d'un cristal n'est qu'un cas spécial de la non-équivalence physique
des directions correspondantes dans la substance cristalline.

Naturellement la même remarque s'applique aux complexes quadratique et

hexagonal; au cas où leur première constante f.ii (par suite vt) serait une valeur
de racine carrée quelconque chacune de leurs zones de faces et d'arêtes pourrait
être isotrope.

46. Le vecteur d'une face
parallèle à une arête et normale
à une face données x, et uh est

d'après le § 3, le produit vectoriel :

V(j"iXi*i 4- ^2X2r2 4-//3x3r3)(v1u1l1 -\-v,u2l2 ¦+¦ v8u8I8)

Le vecteur d'une arête parallèle

à une face et normale à une
arête données u x et x j, est d'après
le § 3, le produit vectoriel :

Ce produit vectoriel s'effectue
très simplement si nous substituons

au vecteur de la face :

vlUlll ~~T~ ^Uglg 4" r3u8l8

le vecteur équivalent de son arête
normale ; en d'autres termes si

nous rapportons, comme le
vecteur de l'arête, le vecteur de la

Ce produit vectoriel s'effectue
très simplement si nous substituons

au vecteur de l'arête :

fixxxxx 4- /^2x2r2 4- fi3x3x3

le vecteur équivalent de sa face
normale ; en d'autres termes si

nous rapportons, comme le
vecteur de la face, le vecteur de l'a-



— 52

face au trièdre des arêtes
fondamentales :

fixQ'{ux)xx 4- fi2Q'{u2)x2 -\-fi3Q'{u3)ts

Cela revient d'ailleurs à chercher

le vecteur de la face coplanaire

aux 2 arêtes d'indices Xj
et fi'(ui) ; ses indices sont en effet

(§ 31) les déterminants de 2me

ordre :

Xj Xg

ß'K)fl'(u„)|,
x3 x1

fi'(u3)ß'K)
Xl *ï
fi'(Ul)ß'(u,)

que nous donnerait également le

produit vectoriel posé.

Naturellement la même réserve est à

faire ici que dans les paragraphes
précédents. Cette face normale n'est une
face possible que lorsque ses indices
c'est-à-dire lorsque les valeurs ö'(Uj)
sont des quantités rationnelles. Pour les
faces du complexe cubique, les faces des

zones isotropes du complexe hexagonal
et quadratique, les 3 faces fondamentales
du complexe rhombique et la face lL du

complexe monocline, la face normale

passant par une arrête quelconque est
donc toujours une face possible. C'est
d'ailleurs ce qui a déjà été dit sous une
autre forme en parlant des zones
orthogonales.

réte au trièdre des vecteurs des

faces fondamentales :

vxco'(xx)lx 4- v'2co'(x2)l2 4- v3oj'{x3)[3

Cela revient d'ailleurs à chercher

le vecteur de l'arête
intersection des 2 faces d'indices u-L

et co'(Xi) ; ses indices sont en effet

(§ 31) les déterminants de 2me

ordre :

u2 u3

|o)'(x,)co'(x.,)
"s ui

0>'(X.,)(0'(X1)

Ul U2

ja)'(Xj)<a'(xä)

que nous donnerait également le

produit vectoriel posé.

Naturellement la même réserve est à

faire ici que dans les paragraphes
précédents. Cette arête normale n'est une
arête possible que lorsque ses indices
c'est-à-dire lorsque les valeurs ro'(xi)
sont des quantités rationnelles. Pour les

arêtes du complexe cubique, les arêtes
des zones isotropes du complexe
hexagonal et quadratique, les 3 arêtes
fondamentales du complexe rhombique et
l'arête ïL du complexe monocline, l'arête
normale coplanaire à une face quelconque
est donc toujours une arête possible.
C'est d'ailleurs ce qui a déjà été dit
sous une autre forme en parlant des

zones d'arêtes orthogonales.



CHAPITRE Vili

47. De la simple considération du complexe total des faces et

arêtes possibles du cristal, nous avons déjà tiré la conclusion au
dernier paragraphe du chap. IV (§ 22), que les indices de ces faces

et arêtes restent entiers quelles que soient les 4 d'entre elles (faces

ou arêtes) auxquelles on les rapporte. Si donc les a1,/?i,j'1,<51, sont
les indices de 4 faces ou de 4 arêtes du complexe par rapport à un
premier système, et les a'x,ß\,y[,d\ leurs indices par rapport à un
second système de référence (§ 27Ms), ceux-ci sont entiers comme les

premiers ; et puisque 4 faces ou 4 arêtes, dont il n'y en ait pas 3

tautozonales ou coplanaires, sont nécessaires et suffisantes pour
déterminer complètement un complexe de faces et arêtes cristallines,
le problème du changement des indices se pose ainsi d'une manière
tout à fait générale: Etant donnés les 4 couples d'indices ax,ßx,yi(^i
et <*[, ß[,y[,6[, et les éléments complets du 1er système de référence,
déterminer successivement :

1° les nouveaux indices ui de toute face d'anciens indices u,.
2° les éléments du système des nouvelles faces élémentaires.
3° les nouveaux indices x\ de toute arête d'anciens indices Xi.
4° les éléments du système des nouvelles arêtes élémentaires.

Nous ne traitons que le cas où les indices donnés sont ceux de

4 faces, dont il n'y en a donc pas trois tautozonales ; le cas où ils
seraient les indices de 4 arêtes, non 3 à 3 coplanaires, se traiterait
d'une manière identique et en tout parallèlement au premier.

48. Les 3 premières faces rapportées successivement au système
connu I0, I,, l2, l8 et au système inconnu Io, li, l2, l8, (mais par
rapport auquel nous connaissons cependant leurs indices), nous
donnent, les facteurs gx, g2, g3 satisfaisant aux équations :

Q (aa) q\Q> (a'a'), Q (ßß) Q\ Q' [ß'ß'), Q (yy) glQ> (//)
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et par le fait rendant égaux les tenseurs des 2 membres correspondants,

les 3 égalités vectorielles suivantes :

»Wi +v2a2l2-^v.4a.il3=,gx(via[l'x 4-v2a2l2 + vjajlj)
viM 4- y,ßtU + v,ßA e,{y[ßiii + riß'Si + *ißili) (24)

"lyilj -\-v2y\2 +v3y3l3~g:i(v\y[{\ -\-v'2y'2['2 4- v^glg)
Désignons un peu arbitrairement, il est vrai, mais d'une manière

avantageuse pour rendre claire et simple notre transformation, par
les symboles |aia2a3', ]ga'xa2a.à\ ]ga2a2a3l, etc., les déterminants de 3me

ordre :

Do

«1«2«3

ßißißs

Yir->y-.i

gxa2a2a3

Q-iß'ißiß-i

Q-aYìYìY-ò

etc.,
gxax a.2a3

g2ß'xß2ß3

QsYÌY-ìYs

et. multiplions successivement nos 3 égalités par les déterminants
mineurs dans D0 de ax, /?,, yx, de a.,, ß2, y.,, et de a3, ß3, y's. Nous
obtenons ainsi sans aucune difficulté 3 nouvelles équations qui sont
l'expression directe des vecteurs lj et des constantes vit composantes
de la première face-unité, en fonction des vecteurs lj et des composantes

ri de la nouvelle face-unité:

EVi-i =v'\ |e«i«2«3l U 4- v'î \ga'2a.2a3\ I3 + v'z \Qa3a.,a3\ l8

Do^L vi i«i£»aia3| li + v'ì l«ii?aia3| l2 4- v[, \axga'3a.A\ l8 (25)
Do»'3t.3:=»'i \axa.2ga\\[[ -\-v2 !«,a2ea2jl2 -\-v's \axa2ga3\l3

Si nous substituons, dans le vecteur de la face d'indices

quelconques u, par rapport au premier système :

Do^iUil, 4~ vi»ik + »'3U313)

aux valeurs D^iii celles que nous venons de trouver, nous obtenons
le vecteur de cette même face rapporté au système des l[ :

v'x{ux \ga[a2a3\ 4- u2 |a1ßaia8|4-u8 [aia2gai|)l;
4"',2(ui \ga2a.,a3\ -\-U.2 \axga2a3\ -j-u3 ala2Qa2\)l',

+ vî{Uii |ea3a2a,i 4~ U2 \axga3a3\ 4- u3 |«ia2pa3| l8

Et ainsi les quantités entre parenthèses ne sont autres que les

nouveaux indices ni cherchés, qui d'ailleurs sous forme développée,
s'écrivent très bien en déterminant de 4mc ordre :

u,' : u2 : u.'t

U, U2 Ug o

a1a2asgxa'1

ßißtßaQißi
YiYvYsQxYÎ

ux u2 u3 o

ain.,a3gla2
ßißißsQvß'i

YiYiYzQ-ût

U, U2 Ug o

axa.2a3gia^

ßißißsQiß's

YiYrfsQsYs
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49. Reste à déterminer maintenant les facteurs gx, g2, g3, autrement

que par les 3 équations qui nous ont servi à les poser, et
dans lesquelles les formes Q'(a'a'), etc. sont pour le moment du

moins également inconnues, et cela en utilisant précisément le couple
d'indices <5j et r5 i de la 4nlli face donnée. Ainsi la première question
du problème sera complètement résolue.

Puisque les ô[ sont les nouveaux indices de la face ôlt ils
doivent donc vérifier l'égalité proportionnelle que nous venons de

trouver :

ô[:ô'2:ô3

<5, ò2 ôH o

«i <h aa Qxa'x

ßi ß-2 ßa Qiß'i

h Y-2 ïs QaY'i

<\ ^2 °3 0

«1 «2 «3 Ql^-2

ßl A ß3 Q-2ß'-2 •

r. Y-2 Va QsY2

<5, Ò, Ò3 0

«1 «2 a3 gxa3

ßi A ß-i Qtß's

Yi 72 Ys QbYs

et qui, abstraction faite d'un facteur de proportionnalité, se décompose

par rapport aux inconnues ßi en 3 équations partielles, dont nous
écrivons encore symboliquement les déterminants-coefficients :

^i=ei«i \oßy\ -r-Qiß'i ìòy <A 4-feri \aaß\
6'2=Qla'2 \ößy\ -\-g,ß2 \Òya\ + Qsy'2 \daß\
°s=Qi<*3 \oßy\-T-Q2ß's \àya\ -T-QsYa \daß\

Ces 3 équations se résolvent immédiatement, mais comme en
réalité, en tant que provenant d'une égalité de rapports, elles ne
sont que deux à deux indépendantes l'une de l'autre, nous n'avons
le droit d'en tirer de même que les rapports des quantités g-,, pour
lesquels nous avons donc en multipliant par le déterminant commun
l«W! :

\ö'ß'y'\
_

\ò'y'a'\ \ò'a'ß'\
Q\ ¦ e-2- Qs

\ô ß y\- \ô y a\- \ô a ß\
(26)

Cela nous suffit d'ailleurs pleinement ; dans la proportion plus
haut des indices ui, les facteurs g-, jouant le même rôle dans chacun
des indices et le premier ternie de leur colonne étant nul, leurs
rapports seuls entrent en ligne de compte. De même dans les proportions

que nous trouverons plus loin les impliquant encore, ce ne
sera toujours que le rapport de leurs valeurs qu'il nous sera nécessaire

de connaître.
Introduisons donc notre résultat dans les déterminants de 4me

ordre du § précédent, et nous obtenons directement sous leur forme
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définitive les indices ui de toute face u, uniquement en fonction des

indices de 4 faces rapportées successivement aux 2 systèmes de

référence :

(26

\ußy\\o'ß'y'\ \uya\\ò'y'a'\ Q, <uaß\\o'a'ß'\
ai ~\ ŒZTi ßi H lÄTäi Yi\6ßy\

w* „7 - i»fol<WL, j_ \uya\<ò'y'a'\ af \uaß\\d'a'ß'\ „,

\ußy\\d'ßY
m\

«2 +
\ôya\

i\\à'y
\ôya

\daß\

¦ßi +
\uya\\ôya'\a'i+~ \ôya\

ß* +
\daß\

uaß\o'a'ß'
\aaß.

Yî

Y s

50. Les g, ou du moins leurs rapports étant donc établis une
fois pour toutes, les autres questions du problème ne présentent
maintenant plus aucune difficulté. Continuons à désigner par les

expressions \ga{ ga'2 ga3\ \ax ga2 ga3\ \a2 ga2 ga3', etc., les déterminants

de 3me ordre :

->i«i 0i«2 Qi<*s «j gxa'2 Qia'a eu. gxa2 01« 8

A0 g2ß[ g,ß'2 g,ß'3 ßi Qißi g2ß's A g2ß!2 Q-ißs

QaY'i e@Yi QaY'i J Yi QaYi QaYa ' Y-2 QaY-2 QsYs

et inversement de ce que nous avons fait pour notre première
transformation, multiplions successivement les 3 égalités vectorielles
primitives par les déterminants mineurs dans A0 de gxa'x g.2ß\ Qsy.î,
de k»,a2, g.,ß',, gsy2, et de gxa's, g2ß's, gay's. Nous obtenons de

nouveau sans aucune peine ces 3 équations, qui sont la contrepartie
des équations (25) :

A0i>'xl'x zzzvx\axgct2ga3\lx -\- v.2\a2ga'.2ga3 \\2 -\- v3\a3ga'.2ga3\[3

A^Aï =rilöaiaiöa3!h 4" i'2\ga'xa2ga3\l2 -{- v3\ga'xa3ga3\l3
^ov3^3 Vi\sai6a2ai^i -'r v2\QaÌQa'2a-2\h ~\~ va\°aiQa-2aaila

(27)

et nous donnent immédiatement les indices des nouvelles faces
fondamentales cherchées, rapportées au système connu de référence, et

en les élevant au carré, le rapport des composantes v[ de la
nouvelle face-unité, que nous écrivons, en faisant encore abstraction du

facteur de proportionnalité :

v'x2=Q^axga2ga3\ a.2ga2ga3\ \a3ga',ga3i)
v22=Q(\ga'xaxga3\ \ga'xa.2ga'3\ |oaia3ga3j) (28)

va2=Q(\ea'iQa2ai\ \eaiSa2a-2\ \Qa'iQa2a3^
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Le calcul de ces dernières formes quadratiques quoique un peu

long, n'offre aucune difficulté; les constantes vx et les cos Aik sont
les éléments donnés du système des Ij, et il est facile de voir que
dans ce cas-ci comme aussi pour les indices précédents des faces lj,
il suffit toujours de la substitution des seuls rapports des facteurs gi
trouvés au § précédent.

51. Avant de passer aux 2 autres questions du problème,
appliquons nos résultats au cas particulier où les nouveaux indices«;,
ß{, y[, ò[ sont les valeurs 100, 010, 001 111 c'est-à-dire au cas
où les 4 faces données ai, ßu yx, òx sont prises elles-mêmes comme
faces fondamentales du nouveau système de référence.

Les déterminants des équations (27) se réduisent immédiatement,
comme cela doit être, aux simples indices a,, ßit yx des 3 nouvelles
faces fondamentales données ; les déterminants \d'ß'y'\ |^Va'|
\o'a'ß'\ des égalités (26b8S) se ramenant à l'unité, toute face d'anciens
indices u i, reçoit pour ses nouveaux indices u J :

„, „,_ WßY\ Iu7«| \uaß\
1 ' '"W '\àya\ -\aaß\

et enfin les formes quadratiques (28) se simplifiant considérablement,
les composantes v\ de la nouvelle face-unité, d'anciens indices ôit
deviennent d'abord, en sortant de la forme correspondante les
facteurs gxgk :

v;2:v22: v^zzzgîgiQlaa) : glg'(Ü(ßß) : g'ig22Q{yy)

et ensuite, en divisant le second membre par le produit g'ig'ig'l et

substituant aux gx les valeurs trouvées de leurs rapports :

v{ : v'.2 : v3=\dßy\\Jü(aa): \òya\\jÜ(ßß) : \oaß\\J Q{yy)

Au cas où les indices a, /?j yit ôi seraient réduites, c'est-à-

dire telles que les tenseurs \J Q(aa), \Q(ßß), \'Q(yy) des vecteurs des

faces correspondantes se réduisent à l'unité, le rapport des composantes

v\ se réduirait également au seul rapport des 3 déterminants

que constituent les indices.

52. Les deux dernières questions que nous nous sommes posées
se traiteront maintenant sans aucune peine et par le même procédé

que nous avons mis à traiter les 2 premières, dès que nous aurons
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établi, parallèlement aux égalités (24) entre les vecteurs des 3

premières faces données, 3 égalités correspondantes entre les vecteurs
des arêtes qui déterminent les intersections de ces 3 faces.

Pour cela, multiplions vectoriellement deux à deux et membre à

membre ces égalités (24). Si nous appelons A, ,Bl,Ti les mineurs
du déterminant D0, (§ 48), correspondants aux ax, /?,, yx et R^i R2Bj
R3 r\, ceux du déterminant A0, (§ 50), correspondants aux gxa[, g2ß[,
g3y[ ; si nous tenons compte également, comme nous l'avons déjà
fait au § 31, des équations (1), (§ 8), et de la relation fondamentale
entre les composantes de la face et de l'arête-unité dans chacun des

2 systèmes de référence :

/t1j'1=sinAi fi[v[ =sin Ai ;

si enfin nous négligeons d'écrire aux premiers membres le facteur
constant: vxv2v3:v'xv'2v'3, complètement inutile dans tout ce que nous
voulons établir, nous obtenons sans difficulté, entre les vecteurs des

arêtes demandées, les 3 nouvelles égalités, complètement homologues
des 3 égalités vectorielles (24) :

fixAxxx 4- fi.2A.2x2 + fi3A3x3 Ri {fi'xA[x{ -\~ fi2A2x2 4- fi3A3x3)
(29) fixBxxx +fi2B.2x.2 -\-ft:,B:ix3z=R2 [fi'xB[x'x + t^B2x:2 -\-fi'3B'3x'3)

fixrxxx 4- ,a2r2r2 4- )U3r3xH r3 {fi'xr'xxrx 4- fi2r:2x:2 4- /t3r3r3)

53. Reprenons naturellement pour les déterminants la notation
symbolique employée dans la première partie et multiplions
successivement ces 3 égalités vectorielles par a, ßl, yx par a2, ß2, y2 et

par a3, ß3, y3. Nous avons aussitôt, parallèlement aux équations
(25), les 3 équations suivantes, qui sont l'expression immédiate des

vecteurs ti et des constantes fi{, composantes de la première arête-
unité, en fonction des vecteurs r; et des composantes fi\ de la
nouvelle arête-unité :

Yy^fi^Xy^r-fi'^ \aiga2gri3\x[^/i2\ga[aigci3\X2-\-fi'i\ga'xga2aXjX3
D0//2r2==/aija2oaißa3]ri+//2|ßa[a2rta3jr24-/<'Jßaii|a2a2!l3 (30)
D0/i3t,=/ti\a3ga'2gu3{X'X-\-fi2 ga'xa3ga3\x'2-\-fi3\ga{Qa2a3\t'B

En substituant dans le vecteur de l'arête d'indices quelconques

x, par rapport au système des r, :

D0 (/^XiTi 4- fl.2X2X2 4- fl.òX3X3)

aux valeurs Do/^r, celles que nous venons de trouver, nous obtenons
le vecteur de cette même arête rapportée au système des x[ :
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fi'x(xx\axga'2ga'3\-\-x2\a2ga2ga'3\-\x3\a3ga'2ga3\X'x
4- /i2(^i'Qa'xaxga3\-\-x2\gaia2ga3\-\-x3\ga'1a3ga3\x2
4" fi3{xx[ga[ga'2ax\-]-x.2\ga{ga!2a2\-\-x3\ga'xga2a3\x3

et entre parenthèses ses nouveaux indices x, cberchés qui s'écrivent
d'ailleurs très bien, en les développant, sous forme de ces déterminants

de 3"'° ordre :

xt:x2
xi«i 4- x2a2 4" x3a3 gxa2 gxa3

XiA 4- x2A 4- XgA g,ß'i g-ißa

*iYi + X.,)'2 4- X3y3 g3y'2 g3y'3

gxa'x

x» —

Ql «3

e»ßi

QsYs

gxa'x xxax -\- x2a2 -\- x3a3

Qiß[ XiA 4- x2"A 4- x8A
QsYi *iYi + x2/2 4- x3j>3

gxa2 Xiö^Xa^ 4-x.(a3

g,p\ g.,ß:2 XiA 4- x2ß2 4- x3ß3

QaY'i QaYÏ Wi + X2y2 4" Ws
Comme dans les deux cas des valeurs des indices uj et des

constantes v[, ce n'est toujours que les rapports des q{ qu'il nous
est nécessaire de connaître, et nous pourrions, comme pour les

indices uj écrire nos déterminants en y introduisant en place des gi
les quotients (26) représentant leurs valeurs; mais cette substitution
est inutile et le résultat est plus élégant de le garder sous cette

forme.

54. Si enfin, à l'inverse de nouveau de cette première transformation,

nous multiplions successivement les 3 égalités (29) parlai,
Qiß'i, QaYi, Par S?ia2> Qißi, QaY'i et Par Qiaâ, Qiß'a, ßs^s». nous obtenons

parallèlement encore aux équations (27), ces 3 dernières égalités :

A0fi[X'x =/«i |.j>aia2a8| r, ~\- fi-> otißaia3j r2 -\- fi3 \a^a2ga'x\ r3

(31) A0fi2X2 fix \ga'2a2n3\ Xx -\- fi2 'a{ga'.2a3\ X2 -\- fi:i \axa.,ga2 \ r3

Afjfi'zX3 fix \ga'3a.2a3\ Xx -\- fi2 l^gOgOgl r2 -\- fi3 \axa2ga3\ X3

Elles nous donnent immédiatement les indices des nouvelles
arêtes fondamentales cherchées par rapport au système connu de

référence, el en les élevant au carré le rapport des composantes fi-,
de la nouvelle arête-unité, que nous écrivons de nouveau en faisant
abstraction du facteur proportionnel :

fi'x2^co(\ga[a2a3\ \axga'xa3\ \axa2ga{\)
/.i',2 m (\ga2a.,aH\ \axga'2a3\ \ala2ga2\) (32)

tlâ'2=<»{\ga';ia2ai\ i«ie«3«3l \<*i<h8a3\)
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Comme celles qui représentent les carrés des constantes v[, ces

dernières formes quadratiques ne présentent aucune difficulté de calcul

; les constantes fii et les cos* aik sont les éléments donnés du

système des vecteurs xir et dans ce cas-ci encore il est clair à
première vue que ce sont seuls les rapports des facteurs gx qu'il importe
de connaître.

55. En terminant, comme nous l'avons fait pour la première
partie, appliquons nos résultats au cas particulier où les indices a[,
ßi, Yi, °'i, prennent de nouveau les valeurs 100, 010, 001, 111,
c'est-à-dire au cas où les intersections des 3 premières faces données

«i« ßi, Yi sont ies arêtes fondamentales elles-mêmes du nouveau
système de référence, et son arête-unité, l'arête harmonique de la
4me face donnée òim

Dans ces conditions, les déterminants du § 53 qui sont les
indices xi de l'arête d'indices donnés x,, se réduisent aux expressions
suivantes :

Xi : x2 : x3
Q2g){xxax 4- x2a2 4- x3«3) : g3gx(x1ßx -\-x,ß2 -\- x3ß3) : gxg2{xxyx 4- x.,y.2 + xsy3)

qui, divisées par le produit gxg2g3, prennent en substituant leurs
valeurs aux gi qui restent en dénominateurs, la forme définitive:

xx : x2 : x3
\dßy\ (x,^ 4 x.,a, + x3a3) : \ôya\ {x,ß1 ¦+ x.J, + x.J3) : \daß\ (xl7i + x.,y2 + xa7:i)

Les 3 équations (31) qui nous donnent les indices des nouvelles
arêtes fondamentales, deviennent chacune comme il doit en être, une
égalité représentant le vecteur d'une arête en fonction des indices
donnés des 2 faces dont elle est l'intersection : (§ 31)

-^A, fi[X[^fix(ß2y3 — ß3y2)xx-\-fi.2{ß3yx~ ßxy3)X2A-fi3(ßxy2 - ß2yx)X3

^,/ist'ì=/il(yia8— y302)ri+/^(}'8«i— Yi<h)h+th(Yi<h — <hYt)h
Ü2

7-^oyW8r8=ft(«2A — a8A)ri+i"ä(osA — aißs)h+Maiß2—«iA)r3

Enfin par ce fait le rapport des composantes fi\ se simplifie de

la même manière ; il s'écrit d'abord :

' 2 ' 2 ' 2fix fi.2 fi3 —
elaißiYs—ßsYt--) ¦ qW{y.2a3—y3a2....) : glm(a2ß3—a3ß2...)
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et en substituant aux g2 leurs valeurs, il devient le rapport des

quotients de ces formes quadratiques par le carré du déterminant
correspondant :

(Q(ßiYa—ßaY-2--) w(y2«3—y3<x2....)
_

co(a2ß3—a3ß2....)

\oßy\2 ' "
\ôya\2 \oaß\2



CHAPITRE IX

56. Les coordonnées projectives de la droite ou du point sur la
sphère ne sont les indices de la face et de l'arête correspondante (§
13) qu'autant que les constantes vs (et /¦;) déterminent elles-mêmes

une face (et une arête-unité) prises dans le complexe des faces et
arêtes possibles du cristal. Pour tout autre choix purement arbitraire
de ces constantes, les valeurs u, et x, n'ont donc plus rien de

l'essentielle propriété des indices que constitue leur rationnalité, mais
restent néanmoins pour la face et l'arête qu'elles déterminent ce

qu'elles sont pour la droite sphérique et le point correspondant : les

simples coordonnées projectives de cette face et de cette arête,
rapportées au trièdre des 3 faces fondamentales avec des constantes vL (et

fi\ arbitrairement choisies.)
Or tout ce qui a été établi jusqu'ici des indices, en dehors

précisément de ce qui touche à leur rationnalité qui seul exige expressément

pour sa démonstration que la face (et l'arête-unité) soient

une face (et une arête du complexe), est complètement indépendant
des valeurs vt et fi{ à la seule condition que celles-ci satisfassent

aux relations essentielles fi^vi =sinAj. Les résultats des §§ (23—
55) subsistent donc intégralement pour toutes les combinaisons filvi
satisfaisant à cette condition, c'est-à-dire pour chacun de cette infinité
de systèmes possibles de coordonnées projectives auxquels nous
pouvons rapporter notre complexe du cristal.

57. Un seul de ces systèmes nous offre ici un intérêt particulier;
celui pour lequel nous choisissons les constantes :

fi i 1 v i sin A i

qui remplissent donc ainsi la condition nécessaire fi\Vx sin Aj. Le
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point-unité sur la sphère étant alors le barycentre * du triangle
sphérique que déterminent les r, (la droite-unité est sa polaire trili-
néaire ou le grand cercle parallèle à la circonférence circonscrite à

ce même triangle), on obtient ainsi directement les coordonnés bary-
centriques de Möbius de la droite et du point sur la sphère**, tandis

que pour la face et l'arête correspondante les valeurs Uj et x, ne

sont autres que ce que Liebisch appelle tout court les coordonnées
des faces et arêtes du cristal.

Eu effet dans ce cas, les rapports des valeurs u, et Xi que
nous fournit le § 26, se réduisent à :

u, : u2 : u3 cos#! : cos#2 : cos#3 (33)

x, : x2 : Xg sin A, cos#t : sin A2 cos#2 : sin A3 cos#3

Les coordonnées d'une face sont donc les cosinus des angles
d'incidence de cette face par rapport aux arêtes fondamentales, ou

un multiple positif quelconque de ces valeurs ; les coordonnées d'une
arête sont les cosinus, multiplié chacun par le sin A i*** correspondant,

des angles d'incidence de cette arête par rapport aux faces
fondamentales, ou un multiple positif quelconque de ces valeurs.

58. La relation fondamentale /^r, =sin A, étant donc satisfaite,
quoique non contenues l'une et l'autre dans le complexe des faces et

arêtes possibles, l'arête-unité, ou plutôt la droite menée du point 0

au point-unité sur la sphère, n'en est pas moins l'harmonique de la
face-unité, c'est-à-dire du plan du grand cercle qui est la droite-

sphérique unité, et réciproquement. La relation :

uxxx 4" u2x2 4" u3x3 0

qui est l'équation en indices entiers de la face u x ou de l'arête x i,
reste l'équation en coordonnées quelconques de cette même face et

*) Si les vecteurs-unités ït t2 t8 déterminent les 3 sommets d'un triangle
sphérique, le vecteur : tL 4 X, 4 f3 détermine son barycentre, puisqu'il représente
un point situé sur chacune des droites joignant un sommet au milieu du côté

opposé.
**) M. Daniels : Essai de géométrie sphérique en coordonnées projectives p. 45.

*""*) Liebisch multiplie par le sin a* correspondant, mais ce sont les mêmes
coordonnées puisque nous avons sin Ai • sin ai, la seule différence qui en
résulte est que plus loin nous trouverons la valeur A, sinus du trièdre des U (§ 9),
où Liebisch trouve la valeur D du sinus du trièdre des ïit puisque A MD.
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de cette même arête ; enfin identiquement au résultat du § 27, les

coordonnées d'une face quelconque du cristal sont les valeurs
inverses de celles de son arête harmonique, et celles d'une arête les

valeurs inverses de celles de sa face harmonique,

Les coordonnées de l'arête
intersection des 2 faces de

coordonnées Uj et uj, sont encore les

déterminants de second ordre :

u2 u3

u2 u3

u3 nx

u3 ui
Ui u2

u,' u2

Celles d'une 3me face tautozonale

aux 2 faces données, sont

également de la forme :

Ui —Xu'i

mais le paramètre X a perdu, comme
les valeurs Uj et u\, sa propriété
d'être nécessairement rationnel.

Enfin celles des 4 faces
tautozonales Ui, ui, u'i, u'i', satisfont

encore l'égalité (19) :

X_ (uu"), (uu'")k
'

fi
~(UU'U"U'") :

(u'u"), ' (u'u'")k

et, quoique valeurs quelconques,
représentent par ce rapport de leurs

quotients ainsi constitués, la
valeur rationnelle du rapport
anharmonique des 4 faces.

Les coordonnées de la face-
jonction des 2 arêtes de coordonnées

x, et xi, sont encore les

déterminants de second ordre :

x2 x3

x2 x3

X3 Xi

> |Xg xi
X] x3

xi x2

Celles d'une 3me arête coplanaire

aux 2 arêtes données, sont

également de la forme :

Xi — Xx i

mais le paramètre À a perdu, comme
les valeurs Xj et xi, sa propriété
d'être essentiellement rationnel.

Enfin celles des 4 arêtes coplanaires

x,, xi, x", x'i', satisfont

encore l'égalité (19) :

i „ „a __ i _ (xx'Qj. (xx'")k
^XX X X j f tfl (xx"), (x'x'")k

et, quoique valeurs quelconques,
représentent par ce rapport de leurs
quotients ainsi constitués, la
valeur rationnelle du rapport
anharmonique des 4 arêtes.

59. Il serait facile de continuer à développer ainsi ce parallélisme

complet entre les coordonnées et les indices des faces et arêtes
du cristal pour les problèmes du § 38 et pour les autres résultats
des chapitres précédents ; ce parallélisme est d'ailleurs naturellement
le fait, comme nous l'avons dit, de chacun de l'infinité de systèmes
possibles de coordonnées projectives auxquels nous pouvons rapporter
le complexe du cristal. Il est par contre une particularité intéressante
dans le système des coordonnées et y apportant une simplification
qui ne se retrouve pour aucun autre système :
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Le tenseur u4 du vecteur de la
face quelconque de coordonnées u. :

''lUlh + ''2U2I 4" »"rjU.jI;,

qui nous est fourni dans le cas

général par la racine carrée de la
forme quadratique ß(uu), nous est

en outre donné dans ce cas-ci,
directement et sous une forme bien

plus simple, par les 3 relations
du § 14:

ut cos #1 Vju, sin h,

u4 cos &., -¦= v.,u2 sin h.,

u, cos $3 i'..u3 sin h3

Si nous y substituons en effet

aux valeurs n; les coordonnées

cos ßi, chacune des 3 équations
nous donne également :

u4 ---\JQ{uu) A

ou mieux, pour éviter toute
confusion, en écrivant dans la forme Ü,
dont les coefficients Vj sont les

valeurs sin Ai, les expressions
mêmes cos #; :

A \/û(cos ff cos ») (34)

Donc si les valeurs u, et Xi sont les coordonnées cos ïïx et

sin A-, cos ßi des faces et arêtes du cristal, la racine de la fonction

quadratique de ces coordonnées \/„y(uu) et ya>(xx), (nous écrivons Ui
et Xi, également dans le paragraphe suivant, uniquement pour
simplifier l'écriture), qui est le tenseur des vecteurs déterminant chaque
face et chaque arête, est une quantité constante, indépendante de

ces coordonnées u -, et x,, et égale au sinus du trièdre des vecteurs
des faces fondamentales.

60. Dans ces conditions, les résultats des §§ 29, 30, 32, etc.,

exprimés en coordonnées, nous donnent également les propriétés ou

les simplifications suivantes.

Le tenseur x4 du vecteur de

l'arête quelconque de coordonnées x^
fixxxxx 4- /u.2x2x2 4- /tgx8r3

qui nous est fourni dans le cas

général par la racine carrée de la
forme quadratique a>(xx), nous est

en outre donné dans ce cas-ci,
directement et sous une forme bien

plus simple, par les 3 relations
du § 14:

x4 coso, fixxx sin h,

x4 cos ¦&., z= fi.,x2 sin h2

x4 cos ff-t /t3x3 sin h;ì

Si nous y substituons en effet

aux valeurs Xi les coordonnées
sin A; cos ¦&!, chacune des 3 équations

nous donne également :

x4 \œ(xx) A

ou mieux, pour éviter toute
confusion, en écrivant dans la forme co,

dont les coefficients fi, sont les

valeurs fi-, 1, les expressions
mêmes sin Ai cos êi :

A yco(sin A cos &. sin A cos ff) (34)
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Pour toute arête x j non coplanaire à la face u {, la fonction
linéaire de leurs coordonnées ainsi constituée :

uxxx 4" u2x2 4" u3x3 A cos & (35)

est constamment égale au produit du sinus du trièdre des I, par
le cosinus de l'angle d'incidence de l'arête par rapport à la face.

Le cosinus et le sinus de l'angle

cp de 2 faces de coordonnées

U; et ui deviennent; en d'autres
termes, entre le cosinus ou le

sinus de l'angle cp de 2 faces, leurs

cos #i et cos ¦&[ correspondants,
et les constantes angulaires du

complexe, il existe les 2 relations
suivantes :

û(uu')
cos cp- J2

sin cpzzz
MA/q>[(uu')(uu')Ì

Le paramètre X des coordonnées
de la 3me face ui' tautozonale aux
2 faces données ut et uj, est

indépendant des tenseurs \Jü(uu) et

\/ß(u'u' des vecteurs de ces faces :

sin uu"
sin u'u"

Enfin la fonction linéaire
suivante, constituée des coordonnées
d'une face et de celles de son
arête normale:

u1ß'(u1)4-u2u'(u2)4-u3ß'(u3)=ß(uu)

est également une constante, et
si nous remarquons que les
valeurs ß'(uj) sont les valeurs
absolues Axx (§41), la fonction des

Le cosinus et le sinus de l'angle

tp de 2 arêtes de coordonnées

Xi et xj deviennent; en d'autres
termes, entre le cosinus ou le

sinus de l'angle y de 2 arêtes, leurs

cos #i et cos #; correspondants,
et les constantes angulaires du

complexe, il existe les 2 relations
suivantes :

to(xx')
cosy

Siili

A2

V/ß[(xx')(xx')]
M.zl2

Le paramètre X des coordonnées
de la 3me arête x\ coplanaire aux
2 arêtes données x; et xi, est

indépendant des tenseurs yco(xx) et

\/co(x'x') des vecteurs de ces arêtes :

sin xx
sin x x

Enfin la fonction linéaire sui
vante, constituée des coordonnées
d'une arête et de celles de sa
face normale :

x1co'(x1)4-x2co'(x2)4-x8«w'(x8)=a)(xx)

est également une constante, et
si nous remarquons que les
valeurs tt)'(xj) sont les valeurs
absolues Jiii (§41), la fonction des
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seules coordonnées (cos ir, et sin A,
cos &i):

u,Xi 4~ u2x2 4" u8x3 A (36)

est encore une constante égale au
sinus A des vecteurs des faces

fondamentales.

seules coordonnées (sin Af cos $,
et cos ffj :

XiUi 4" x2u2 + x3u3 A (36)

est encore une constante égale au
sinus A des vecteurs des faces

fondamentales.

61. Tout ce qui vient d'être dit des coordonnées trouve son

application immédiate dans le cas même des indices du premier
complexe cristallin. En choisissant comme faces fondamentales les
3 faces du cube et" comme face-unité la face de l'octaèdre dont l'arête
harmonique possible est la diagonale du cube passant par le point 0

et détermine le barycentre du triangle sphérique des ti, les constantes
du complexe cubique satisfont en effet les conditions du système des

coordonnées :

/tj — 1 vx — sin Ai 1

cos a i 0 A 1 cosAi=0
Pour le système de référence choisi, les indices entiers des

faces et arêtes du complexe cubique et leurs coordonnées sont donc
les mêmes valeurs.

Pour chaque face du complexe,
les cos #i de ses angles d'incidence

par rapport aux arêtes
fondamentales, sont donc entre eux
dans le rapport de 3 nombres
entiers quelconques :

cos #i : cos &2 : cos #3 m : n : p

Pour chaque face du complexe,
sa forme quadratique ü{cos & cos §)

correspondante, ainsi simplifiée
puisque sin Aj 1 et cos A i 0,

se réduit à l'unité :

COS2)?! 4" COS2#2 4- COS2 #3 1

Pour chaque arête du complexe,
les cos #i de ses angles d'incidence

par rapport aux faces fondamentales

(puisque sin A i 1), sont donc
entre eux dans le rapport de 3

nombres entiers quelconques :

cos &x : cos #2 : cos #3 m : n : p

Pour chaque arête du complexe,
sa forme quadratique co(cos ê cos #)

correspondante, ainsi simplifiée
puisque sin A{ 1 et cos ai 0,

se réduit à l'unité :

cos2»?! 4" cos2#2 4- cos2#3 1

C'est la relation originelle entre la somme des carrés des cosinus-
directeurs d'un vecteur quelconque par rapport au système d'axes

rectangulaires passant par son origine.
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Les indices de chaque face du
complexe cubique sont ceux de son arête
normale (§ 43). Les angles d'incidence
de chaque face par rapport aux arêtes
fondamentales étant les angles d'incidence

de l'arête normale par rapport
aux faces fondamentales avec le système
de référence choisi, les coordonnées c'est-
à-dire les cos di de chaque face du
complexe cubique sont également les
coordonnées ou les cos &i de son arête
normale. Leur fonction linéaire de la forme
(36) a donc encore pour valeur A c'est-
à-dire l'unité.

Les indices de chaque arête du
complexe cubique sont ceux de sa face
normale (§ 43). Les angles d'incidence de

chaque arête par rapport aux faces
fondamentales étant les angles d'incidence
de la face normale par rapport aux arêtes

fondamentales avec le système de

référence choisi, les coordonnées c'est-à-
dire les cos di de chaque arête du
complexe cubique sont également les
coordonnées ou les cos ßi de sa face
normale. Leur fonction linéaire de la forme
(36) a donc encore pour valeur A c'est-
à-dire l'unité.

Le cos d de l'angle d'incidence d'une face et d'une arête

quelconque est la fonction des cos ê, de cette face et de cette arête :

cos# COSÌTX. cos #, 4" cos 1%. COS 1% 4" cosftj. COS 1%

Le cosinus et le sinus de l'angle

de 2 faces sont les fonctions
de leurs cos #, et cos ê \ :

cos<p=(2os{ilcosli[-\-e.os,ê'2cosê'2 4cos#3c.#3

sin9)=\/(cosô2cos#3—cos#3c.iK)24( )"4( )'"

Le cosinus et le sinus de l'angle

de 2 arêtes sont les fonctions
de leurs cos êx et cos ê, '

:

cosi/>=cos#,cosö; 4 cos#.,cosi9„4cos#3c.#3

sin iii=\l\\-.ös&.2coselt-cos&ac.{)'2y+ )''+( )2

Enfin puisque les coordonnées du complexe cubique sont également

ses indices (naturellement uniquement toujours pour le système
de référence choisi), le paramètre X de ces coordonnés est une quantité

rationnelle et puisque nous avons : (§ précédent)

X
SUI uu
sin u u

le rapport de position de chaque

face du complexe cubique par
rapport à 2 autres quelconques qui
lui sont tautozonales, est une quantité

rationnelle. Ce paramètre
rationnel peut donc valoir 1 ou —1;

par le fait pour chaque couple de

faces d'une zone quelconque du

complexe cubique, la face bissectrice

est une face possible et

appartenant au complexe.

sin xx
sin x'x"

le rapport de position de chaque
arête du complexe cubique par
rapport à 2 autres quelconques qui
lui sont coplanaires, est une quantité

rationnelle. Ce paramètre
rationnel peut donc valoir 1 ou —1:

par le fait pour chaque couple
d'arêtes d'une zone quelconque
d'arêtes du complexe cubique, l'arête
bissectrice est une arête possible
et appartenant au complexe.



CHAPITRE X

62. Sur la surface de la sphère de rayon-unité, les 4 droites

sphériques qu'y découpent 4 faces quelconques du complexe cristallin,
ou les 4 points d'affleurement de 4 quelconques de ses arêtes, nous
fournissent donc par déduction zonale, le réseau complet des droites
et points d'affleurement du complexe total, c'est-à-dire par le fait les

directions dans l'espace de toutes les faces et arêtes possibles du
cristal. Rapporté au système de référence de ces 4 faces ou arêtes
élémentaires, le faisceau de ces directions est le faisceau (au sens
ligure) des faces et arêtes à indices rationnels ; mais comme jusqu'ici
seuls les rapports des constantes fit et vt et des indices u-, et Xj
entraient en ligne de compte, ni les longueurs des 3 axes-unités suites

arêtes fondamentales, ni les tenseurs des arêtes et des vecteurs
des faces ne sont encore déterminés d'une manière absolue.

Puisque la longueur des arêtes et la grandeur des faces du cristal
n'est en principe limitée en aucune manière, fixons donc arbitrairement

la longueur de l'arête-unité ou la grandeur du triangle découpé

sur la face-unité déplacée parallèlement à elle-même (fig. 8), et
développons maintenant dans l'espace le noyau du complexe cristallin
constitué de ses faces et arêtes élémentaires, et représentant son
système complet de référence, tel que nous l'avons établi au chapitre V.

63. La déduction zonale partant
des 4 faces élémentaires l(),l,, I2,l3,

nous donne successivement (fig. 7),

en ne tenant compte que des faces,
les faces p,, p2, p.. ; puis pi, p2, p3
harmoniquement conjuguées avec
les premières par rapport au couple

correspondant de faces fonda-

La déduction zonale partant des

4 arêtes élémentaires r0, r,, r2, r3

nous donne successivement (fig, 7),

en ne tenant compte que des arêtes,
les arêtes nx, n2, n3 puis n{ n'.,,n'3,
harmoniquement conjuguées avec
les premières par rapport au couple

correspondant d'arêtes fonda-
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mentales et dont l'intersection
commune est l'arête harmonique r0,

choisie comme arête-unité du
système. L'aire fixée du triangle
découpé sur la face-unité (déplacée

parallèlement à elle-même),
déterminant la grandeur de ce déplacement,

et par le fait les longueurs
absolues des 3 axes-unités, le

complexe élémentaire de la fig. 7 fournit

dans l'espace, pour peu qu'on
suive ce développement on s'en
rend compte sans peine, précisément

tous les éléments du

parallèlipipède que nous allons
construire. Les 3 flèches sont dans la
direction des plans pi et pi, au
point du croisement des arêtes ni
et n[ ; les 3 arêtes intermédiaires
(P2P3). (p3Pi), (P1P2) sont les 3 gran-

mentales, et dont le plan commun
est la face harmonique I0, choisie

comme face-unité du système.
La longueur fixée de l'arête-

unité, déterminant par le fait les

longueurs absolues des 3 axes-
unités et ainsi les dimensions
relatives des faces et arêtes déduites,
le complexe élémentaire de la fig. 7

fournit dans l'espace, pour peu
qu'on suive ce développement on
s'en rend compte sans peine,
précisément tous les éléments du

parallèlipipède que nous allons
construire. Les 3 flèches sont au point
de croisement des arêtes nx et n[
et dans la direction des plans p,
et pi ; les 3 plans intermédiaires
(n2ns), (nsnx), (nxn2) sont les 6 plans

triangulaires (2 à 2 parallèles) au.

Arêtes ji3 et jr3 harmon. conjug. avec r, et X2

et plans p3 et p3 harmon. conjug. avec lt et l2

Fig. 9.

Arêtes 71., et n'.„
harmon. conjug. à t, et

rx et plans p., et p2
harmon. conjug. à l3

et lr

-a.

r\Ì

4

Arêtes .Tj et n\ harmon. conj. avec t., et r3
et plans p, et pî harmon. conj. avec l2 et J3.
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des diagonales autres que r0, qui
est elle-même l'arête-unité,
intersection commune des 3 plans pj.

très que le plan diagonal (ABC),
qui est lui-même la face-unité,

plan commun des 3 arêtes n[.

Juxtaposons ensuite sur les 6 faces de ce parallèlipipède primordial

6 parallélipipèdes identiques, et de là continuons à les entasser
à l'indéfini dans toutes les directions possibles. Les sommets de tous

ces parallélipipèdes constituent un assemblage de points régulièrement
distribués dans l'espace sur les 3 directions parallèles aux arêtes
fondamentales du parallèlipipède primitif. Les longueurs de ces arêtes
étant prises comme axes-unités, tous ces points ont des coordonnées

numériques entières, et de toute évidence ce sont là les seuls points
jouissants de cette propriété par rapport à ces axes. Nous appellerons
désormais un Raumgitter* un tel assemblage de points dans l'espace,
et le parallèlipipède primordial qui l'engendre, le parallèlipipède
élémentaire du Raumgitter.

64. Faisons pour le moment abstraction de toutes les arêtes et

diagonales parallèles des parallélipipèdes et ne laissons subsister que
le faisceau de droites partant du point 0 dans toutes les directions
et le réunissant à chaque sommet du Gitter. Tous les points dont
les coordonnées numériques ont entre elles les mêmes rapports se

trouvent évidemment sur la même droite, et le premier point sur
chaque droite à partir du point 0 a nécessairement pour ses 3
coordonnées des nombres premiers entre eux, sinon elles seraient
divisibles par un facteur commun, et nous aurions sur la même droite

un point plus rapproché que le premier du point 0.

Or toute arête possible du cristal est représentée par le vecteur :

/h^ih +i"2X2t2 4- /«8X8ïg

dans lequel, les fix étant précisément les longueurs prises pour axes-

*) J'ai employé le terme allemand : Raumgitter ou Gitter tout court au lieu
des termes français équivalents : assemblage réticulaire ou réseau spatial et me suis
réservé le mot français : réseau tout court pour signifier la même chose dans le

plan (§ 67) au lieu des termes : plan réticulaire ou réseau plan, uniquement pour
avoir à ma disposition 2 mots très courts essentiellement distincts pour les répéter
dès maintenant aussi souvent qu'il sera nécessaire dans la suite de mon travail
en toute facilité et sans crainte de confusion. J'emploierai indifféremment les

expressions : points et sommets pour signifier les points constituant le Raumgitter.
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unités des 3 arêtes fondamentales, les indices Xj ne sont autre chose

que les coordonnées numériques des différents points de cette arête

rapportée à ces mêmes axes. Mais ces indices x, sont rationnels pour
toutes les arêtes du cristal et uniquement pour elles ; c'est-à-dire sont
entiers pour certains points de ces arêtes et des fractions ayant
entre elles les mêmes rapports que ces nombres entiers pour les points
intermédiaires. Puisque les sommets du Gitter sont tous les points
et les seuls de coordonnées numériques entières, il s'ensuit très clairement

que toutes les arêtes du cristal el seules ces arêtes passent par
ces points, et donc que ce faisceau (au sens large) de droites joignant
le point O à tous les points du Gitter, n'est autre que le faisceau

ou le complexe même des arêtes possibles du cristal.
D'après ce que nous venons de dire plus _haut, chacune de ces

arêtes est ainsi le support d'une infinité de sommets du Raumgitter,
dont le premier à partii du point O a pour ses coordonnées
numériques, c'est-à-dire pour indices x,, des nombres premiers entre eux.
Le segment OT qui est la distance du point O à ce premier point
sur chaque arête, mesure en outre la distance constante entre 2 points
successifs quelconques de cette même arête ; en effet, ces points
successifs sont obtenus à partir du premier en multipliant par 2, par 3, etc,,
ses coordonnées numériques premières entre elles, c'est-à-dire en
doublant, triplant, etc., ses composantes sur les axes-unités et par le fait
sa propre distance au point O. Nous appelons ce segment OT le

segment primitif ou le paramètre de l'arête qui le supporte, et sa

longueur nous est immédiatement donnée par la racine carrée de la
forme quadratique ".»(xx), les indices x, y prenant les valeurs absolues
entières et premières entre elles, correspondantes au premier point
sur cette arête.

Enfin puisque seuls tous les plans de jonction de 2 quelconques
de ses arêtes, sont des faces possibles du cristal, seuls tous les plans

que déterminent avec le point O, 2 sommets quelconq s du Gitter,
sont ces faces possibles, et en un mot, le complexe des faces et

arêtes cristallines n'est autre que celui des droites et des plans
passant par le point O, et déterminés par chaque sommet ou cliaque
couple de sommets du Raumgitter.

65. La situation du point O est absolument celle de tous les

points du Gitter; chacun de ces points est en effet le sommet com-
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mun de 8 parallélipipèdes élémentaires, sur lesquels s'entassent à

l'indéfini dans toutes les directions des parallélipipèdes identiques. Le

groupement dans l'espace des sommets du Gitter est donc le même

autour de chaque point qu'il est autour du point O ; en d'autres

termes, chaque point doit être entouré par les autres d'une manière
absolument pareille à celle dont est entouré son voisin. Ce principe,
évident à première vue, qui n'est en quelque sorte que l'expression
même de la construction parallélipipédique du Raumgitter et que nous

pourrions appeler le principe de la symétrie du Gitter (en prêtant

pour l'instant au mot : symétrie, un sens plus large qu'un sens

exactement géométrique), est la source de toutes ses autres propriétés
qui en découlent d'ailleurs sans aucune difficulté.

66. Sur chaque arête l'un quelconque A des points qu'elle
supporte (fig. 10), exige de concert avec le point O, puisque chacun d'eux
doit être entouré sur cette arête de la même manière que l'autre, un
autre point dans chaque sens à une distance égale à la distance des

2 premiers, et par le fait une infinité d'autres points successifs, à

la même distance sur chacune des demi-droites indéfinies que constitue

l'arête partagée par le point O. Si c'est le sommet T le plus
rapproché de O, qui est pris avec lui comme points de départ, nous

avons ainsi l'infinité même des sommets du Raumgitter situés sur les

2 demi-droites de l'arête, à distance constante égale au paramètre,
comme nous venons déjà plus ou moins de l'établir au § précédent ;

les indices X[ des points que supporte la demi-droite opposée sont
les indices pris en signe contraire des points de la demi-droite directe.

K 8 T A A'

Fig. 10.

Puisque maintenant chaque autre point du Raumgitter doit être
dans une situation identique à celle du point O et des différents

points de l'arête considérée, chaque autre sommet du Gitter doit donc

se trouver sur une rangée parallèle de points de même equidistance.
L'ensemble des points du Raumgitter total est donc complètement
représenté par un faisceau (au sens propre du ternie) d'un nombre
indéfini de rangées de points équidistants, toutes parallèles et

identiques à la rangée de points que constitue l'une des arêtes quelconques
du complexe.
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67. Sur chaque plan P les 3 points qui le déterminent, les 2

points quelconques A et B du Gitter et le point O, nécessitent à eux
trois, puisque chacun d'eux doit être entouré dans ce plan de la
même manière qu'ils entourent chacun des 2 autres, 9 autres points
répartis sur le pourtour du triangle des 3 premiers, à des distances

égales aux côtés du triangle (fig. 11) et parle fait une infinité d'autres
points sur ce même plan, distribués régulièrement comme les sommets

de parallélogrammes identiques, juxtaposés dans toutes les

directions, et formant ainsi une sorte de réseau à maille parallélo-
grammique, qui est pour le plan qui le supporte exactement ce qu'est
le Raumgitter pour l'espace qu'il remplit.

Si nous prenons comme points de départ avec le point O, les
2 sommets du plan qui en sont les plus rapprochés, sans être
évidemment sur la même droite avec le point, les sommets du réseau

parallélogrammique obtenu doivent absorber sans exception tous
les points du Raumgitter situés sur ce plan. S'il existait en effet en
quelque endroit du plan, un point du Gitter localisé à l'intérieur ou
sur l'un des côtés du parallélogramme générateur, en vertu du principe

de la symétrie, ce point se retrouverait pour chacun des

parallélogrammes identiques (fig. 12), et de quelque manière que ce soit,
nous aurions un point plus rapproché du point O que les 2 sommets
T et T'.
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N.g/ V &----N---"T» N. v

/ ^ \ / N
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Fig. 11 et 12.

Le réseau parallélogrammique construit sur les 2 paramètres
minima du plan, implique donc à lui seul l'infinité des réseaux pa-
rallélogrammiques à maille plus grande, que détermine avec le point O
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chaque autre couple de points quelconques A et B situés dans ce

plan. Nous l'appellerons, simplement par rapport aux autres et pour
l'en distinguer, le réseau primitif du plan P, et son parallélogramme
générateur, celui dont les juxtapositions successives fournissent tous
les sommets du réseau, le parallélogramme élémentaire du même

plan.
Si nous prenons comme réseau primitif du plan P, le réseau

parallélogrammique de la fig. 11, en y supposant que les points A
et B sont les points T et T', on voit sans peine déjà que chaque
couple de côtés (OA, OB), (BO, OC), (OC, OD) du triangle OTT'
détermine également ce parallélogramme élémentaire. Tous les couples
de paramètres, dont le parallélogramme correspondant fournit ainsi

par ses juxtapositions successives tous les sommets du réseau, seront
appelés les couples conjugués du réseau primitif donné.

68. Les mêmes conclusions sont à tirer ici qu'à la fin du
paragraphe précédent. Puisque la situation du point O et des différents
points du réseau primitif du plan P, doit être de nouveau celle de

tous les points du Gitter, chacun d'eux doit être sommet d'un réseau
de même direction dans l'espace et en tout pareil au premier. La

superposition d'un nombre indéfini de réseaux parallèles et identiques
au réseau primitif d'un plan quelconque du complexe, représente
donc également l'ensemble des points du Raumgitter total.

Dans un même plan, les rangées
parallèles à la même arête sont

équidistantes (§ 66).
Si nous prenons en effet le

point B, (fig. 11), le plus
rapproché de O, sur l'arête OB doit
exister le point B' tel que OB
OB', et pour chaque arête menée

par le point O, les 2 rangées
parallèles passant par B et B' en
seront équidistantes. La même

preuve se répète pour les points
B, B" et O, et ainsi de suite.
Toutes les rangées]; d'un réseau

parallèles à la même arête, sont

Dans l'espace, les réseaux
parallèles au réseau primitif d'un
même plan sont équidistants.

Sur une arête menée par le

point O en un point B quelconque
du premier réseau supérieur, nous
avons un point B' à égale
distance en sens contraire, et pour
chaque plan passant par le point
O, les 2 réseaux parallèles par
B et B' en sont équidistants. La
même preuve se répète pour les

points B, B" et O, et ainsi de

suite. Tous les réseaux d'un Raumgitter,

parallèles au même plan,
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donc équidistantes, et les 2 rangées j sont donc équidistants et les 2

répassant par B et B', étant les

plus rapprochées de l'arête, sont

appelées ses 2 rangées
limitrophes.

seaux contenant B et B', étant les

plus rapprochés du plan, sont

appelés ses 2 réseaux plans
limitrophes.

L'ensemble de tous les points qui constituent le Raumgitter
peut donc se concevoir sous une double infinité de formes que l'on
se représente sans peine, et chaque élément du complexe détermine
l'une de ces formes.

A chaque arête correspond le faisceau constitué du nombre
indéfini de ses rangées parallèles et identiques de points équidistants ;

la distance de ces rangées est indéterminée, mais dans un même plan
elles sont équidistantes ; et si nous donnons avec le point O, la
position du point A déterminant l'arête et son paramètre, et celle d'un

point B quelconque de l'une de l'infinité des rangées limitrophes qui
l'entourent, il est facile de se rendre compte que le réseau primitif
lui même du plan (OAB) est entièrement déterminé (§ 70).

A chaque plan correspond le système de ses réseaux parallèles
en nombre indéfini, dont la maille a ses côtés parallèles et égaux à

ceux du parallélogramme élémentaire du plan. Ces réseaux parallèles
sont équidistants ; et si, avec les 3 points O, A el B déterminant le

plan et son réseau primitif, nous donnons la position d'un 4me point
C quelconque de l'un des réseaux limitrophes, la position de tous
les réseaux parallèles et ainsi de tous les points du Gitter, est par
le fait encore complètement déterminée (§ 75).

69. Si nous revenons maintenant aux définitions données à la
fin du § 67, l'unique condition à laquelle doit satisfaire un parallélogramme

d'un réseau pour être élémentaire, est donc qu'il ne renferme
à lui seul que 4 points du Gitter situés en chacun de ses sommets ;

ses juxtapositions successives reproduisent en effet dans ce cas
nécessairement tous les sommets du réseau.

De cette condition découle immédiatement que les aires de tous
les parallélogrammes élémentaires d'un réseau sont égales. En effet sur
une certaine surface indéfinie* du réseau suffisamment grande, à chaque

*) Cette démonstration donnée dans; Sommerfeld, Geometrische Cristallographie,

ji. 84, telle quelle, n'est pas rigoureuse au point de vue mathématique. Voir
plus loin § 80.
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parallélogramme élémentaire p', comme à chaque parallélogramme
élémentaire p, correspond exactement 4 sommets du Gitter. Le nombre
des sommets contenus dans cette surface considérée étant naturellement
le même qu'elle soit constituée de parallélogrammes p ou de

parallélogrammes p', il s'ensuit que le nombre des parallélogrammes p
constituant cette surface est égal au nombre des parallélogrammes p'
constituant la môme surface, et donc que les aires de ces parallélogrammes

sont équivalentes, comme il fallait le démontrer.

70. La même condition nous permet d'ailleurs de déterminer
très facilement tous les parallélogrammes élémentaires, c'est-à-dire
tous les couples conjugués d'un réseau parallélogrammique donné ;

et l'on verra sans peine que les résultats trouvés se trouvent en
réalité impliqués déjà dans les conclusions du § 68.

Les côtés d'un parallélogramme élémentaire ne sauraient être
d'abord que des segments primitifs ou des paramètres du réseau.
Soit donc un paramètre quelconque OT ; un autre paramètre ne

pourra former avec lui un couple conjugué que s'il se termine sur
l'une ou l'autre de ses 2 rangées limitrophes. S'il dépasse en effet
l'une de ses 2 rangées, ce ne peut être qu'en passant par un sommet

du réseau, et dans ce cas ce n'est plus un paramètre, ou en

coupant la rangée entre 2 de ses points successifs, mais alors le côté

parallèle par le sommet T la coupe également entre les 2 points
suivants, et le parallélogramme, enfermant un point dans son
intérieur, n'est plus élémentaire.

A chaque paramètre d'un réseau correspond donc une double
infinité de parallélogrammes élémentaires, ou une double infinité de

paramètres conjugués, se terminant en chaque point des 2 rangées
limitrophes. Sans même qu'il nous soit nécessaire de tenir compte
de la preuve du § précédent, tous ces parallélogrammes élémentaires
ont déjà la même surface ; ils ont en effet la même base, le
paramètre de l'arête, et des hauteurs égales, la distance de l'arête à la

rangée limitrophe.
Mais si nous la faisons intervenir, puisque toutes les aires égales

des parallélogrammes élémentaires du réseau sont comprises entre un
paramètre quelconque et ses 2 rangées limitrophes, les longueurs-
des paramètres sont en raison inverse de la distance des rangées
parallèles, ou en d'autres termes : la densité des points sur les
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rangées parallèles d'un réseau est en raison inverse de leur
equidistance.

Naturellement si au paramètre OT, nous accouplons un segment,
primitif ou non, se terminant en un point quelconque de l'une de

ses 2mes rangées parallèles, le parallélogramme qu'ils déterminent est
double du parallélogramme élémentaire. Il serait triple, quadruple,
etc., pour les rangées suivantes, et en s'exprimant encore d'une
manière générale.

A chaque paramètre du réseau correspond une double infinité de

parallélogrammes multiples du parallélogramme élémentaire ; le nombre

qui représente ce multiple donne le rang de la rangée parallèle qui
porte le côté du parallélogramme opposé au paramètre.

71. Nous obtenons sans peine la surface d'un parallélogramme
quelconque et celle du parallélogramme élémentaire d'un plan, dès

que nous sont donnés ses indices.
En effet soient xi et x" les indices ou coordonnées de 2 points

quelconques du réseau d'un plan représentant une face cristalline
donnée. Le tenseur du produit vectoriel des 2 vecteurs coïncidant

avec les segments que ces 2 points interceptent jusqu'au point O sur
les 2 arêtes qu'ils déterminent :

\ViXiri 4 f^-x-'ih + th^sh) (ftxi'v, + /*2x^r2 4- figX^xA

=/i2/i3sinaJx2X3-X3X2)li4/^3/^isina2(X3Xi-x;x3)l24/*i/^s.a.1(xixMx2xi')l3

nous donne la surface du parallélogramme construit sur ces 2

segments pour côtés, en fonction des valeurs (x'x")i (x'x")2 (x'x")3,
nécessairement entières puisque les xi,x" sont entières comme
coordonnées de points du Gitter, et qui sont les indices mêmes (31) du

plan donné.
Les produits fi2fi3 sin at fisfix sin a2 (ixfi2 sin a3 n'étant autres

que les surfaces des parallélogrammes élémentaires des plans
fondamentaux lx, L, lg, que nous pouvons appeler parallélogrammes-
unités, nous constatons d'abord, puisque les vecteurs fi2fi3 sin axix,

fi3fix sina2l2, fixfi2 sin a3l3, sont les vecteurs représentant ces

parallélogrammes-unités, que ces indices entiers du plan ou de la face cristalline

en question sont en même temps les composantes du vecteur
d'un parallélogramme quelconque de cette face par rapport à ceux
des parallélogrammes-unités ; tout comme les indices xt sont les

composantes entières par rapport aux axes-unités fixxx du segment
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pris sur l'arête correspondante à partir du point O, jusqu'à l'un
quelconque des points du Gitter qu'elle supporte.

Si nous mettons en facteur le quotient constant '"'(fi'"3, le

produit vectoriel trouvé s'écrit comme autrefois (§ 31) :

th th th
M.

^ [v, (x'x"), l, 4- y, (x'x")212 + v-a (x'x")3131 (37

et la surface du parallélogramme cherché est représentée par la racine
de la forme quadratique :

fi\ fi-, fi3
M. V^[(x'x") (x'x")]

72. Or les 2 triples d'indices entiers xj et x" peuvent prendre,
et cela indépendemment l'un de l'autre, toutes les valeurs entières
satisfaisant le couple d'équations :

xiuj +x2u24- XgUg 0
m

x?Ul 4-x'2,u24-xiiu3 0 U

ou, ce qui revient au même le système équivalent

x2x3 — x3x2 gux
des 3 équations: x3xi'— xixg gu2

x[x2 — x2xi' gu3

dans lesquelles, les u, étant les indices entiers premiers entre eux
du plan, g doit être, puisque ces composantes gui sont entières, un
facteur entier quelconque de proportionnalité.

Si donc nous donnons un triple quelconque xi, x2, x3 d'indices
entiers premiers entre eux, (c'est-à-dire représentant un paramètre),
satisfaisant son équation correspondante (I), chaque triple xi',x2, x3,
satisfaisant la seconde équation, combiné avec le premier dans les 3

équations suivantes, fournira une certaine valeur du facteur de

proportionnalité g, et son segment correspondant déterminera avec le

paramètre donné un certain parallélogramme dont l'aire a pour mesure :

th th th
9 M. \/(uu)

Or nous venons de voir au § 70 que tous les segments
déterminant avec un paramètre donné des parallélogrammes égaux, se
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terminent en chaque point de l'une de ses rangées parallèles. Tous
les triples x" qui, satisfaisant l'équation correspondante (I), donnent

une même valeur de g, sont donc les indices des points d'une même

rangée; et x{ x2, x.'. étant les indices donnés de l'extrémité d'un

paramètre quelconque, le système des 3 équations :

x2X;i — x3x2 Cu,

x.'.x" — x,'x3 Cu2

xjx2 — x2xi' -—Cu:!

représente dans le plan d'indices u, (toujours entiers et premier entre
eux), chacune de ses rangées parallèles. C est un facteur constant

pour la même rangée, mais prenant successivement toutes les valeurs
entières ; à 2 valeurs absolues égales, mais de signe contraire,
correspondent les 2 rangées parallèles à la même distance de part et

d'autre du paramètre, c'est-à-dire de l'arête donnée.

Naturellement pour la plus petite valeur de C qui est C ±l,
les xi' doivent prendre également parmi d'autres leurs plus petites
valeurs, (en tous cas seules des valeurs premières entre elles et les

points correspondants ne sauraient être tous sur une rangée qui ne
serait pas limitrophe) ; et les rangées correspondantes sont les 2

rangées les plus rapprochées de l'arête. Les 3 équations :

x2x3 X;'jX2 =± Ui

xiix? — x,'x3 =± u2

x'xx2 — X 2 x 'Ì ± u8

représente donc les 2 rangées limitrophes, et le produit MM'\/ß(uu)

dans lequel les u, sont les indices entiers et premiers entre eux d'une
face quelconque, est la surface du parallélogramme élémentaire du
réseau qu'elle contient.



CHAPITRE XI

des distances égales

73. Appliquons enfin au Raumgitter lui-même développé dans
l'espace, son principe de symétrie du § 65, qui vient de nous donner
déjà très simplement les propriétés de ses plans et de ses arêtes.

La présence dans le Raumgitter des 3 points quelconques A, B,
C, et du point O, entraîne, puisque chacun d eux doit être entouré
d'autres points du Gitter de la môme manière qu'eux-mêmes entourent

chacun des 3 autres, celle de 24 autres points du Raumgitter,
répartis de nouveau sur le pourtour du tétraèdre des 4 premiers, à

aux arêtes du tétraèdre, comme le montre la
fig. 13. En répétant de là
indéfiniment l'application du
même principe, il se trouve
donc que dans le Raumgitter
lui-même, une infinité de ses

points sont distribués paral-
lélipipédiquement dans

l'espace, autour du point O, et
sont les sommets que
fournissent les juxtapositions
successives dans toutes les
directions du parallèlipipède
construit sur les 3 arêtes
OA, OB, OC; ils forment
ainsi un nouveau Raumgitter
de parallèlipipède élémentaire

(OABCD), totalement
impliqué dans le Raumgitter

primitif. De même que
Fig. 13.

~-¥D
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le réseau primitif d'un plan implique l'infinité de ses autres réseaux

parallélogrammiques, le Raumgitter dont il a été question juqu'ici,
construit sur les 3 paramètres minima fiiX^ renferme donc également

une infinité d'autres Raumgitters à maille parallèlipipède plus
grande, que déterminent avec le point 0 chaque triple A, B, C de

points quelconques du premier. Nous l'appelons le Raumgitter primitif
uniquement encore pour le distinguer de ceux qu'il renferme, qui sont
d'ailleurs d'une nature identique, et nous désignerons par les lettres
des sommets de son parallèlipipède élémentaire l'un quelconque de

ceux-ci.

Remarquons que nous ne venons de faire en outre autre chose

que d'établir d'une manière générale que 4 points quelconques O,

A, B, C, de l'espace, dont il n'y en a pas 3 coplanaires, exigent à

eux seuls, dès que la condition est posée que chacun d'eux soit
entouré dans l'espace de la même manière que chacun de ses voisins,
la construction parallélipipèdique du Raumgitter telle que nous l'avons
établie. Le principe que nous avons appelé la symétrie du Raumgitter,

au sens large du mot, est donc bien en quelque sorte sa

condition nécessaire et suffisante, ou en d'autres termes, sa propriété
fondamentale qui l'exprime tout entier.

74. Le volume du parallèlipipède élémentaire du nouveau Raumgitter

quelconque (OABCD) s'obtient immédiatement, étant données

les coordonnées x[ x" x"' des 3 points A, B, C de l'ancien Gitter
qui le déterminent avec le point O. Ces coordonnées sont en effet
les composantes par rapport aux axes-unités primitifs nixl des

vecteurs de ses arêtes OA, OB, OC ; et si nous appelons tout naturellement

ces vecteurs, en tant que axes-unités d'un nouveau Raumgitter,
fi'xx[ fi'2x2, fi3x3 ils sont en direction et en valeur absolue les 3

vecteurs que représentent les seconds membres :

flxXx flxXxXx -f- fl2X2X2 4~ A*3X8Ï8

fi'2x'2 =fixx'[xx 4- jUjxfo 4- lH*Vh,
/^3*3 th^-l^i T A*2X2Ï2 4" ^Xgïg

Leur produit scalaire de' la forme :

fi\fi2fi% ïi.VÏ2Ï3

que nous calculons sans peine, en multipliant scalairement par l'un
deux le produit vectoriel des 2 autres et qui s'écrit très bien :
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fix fi2 fi3

X l X 2 X 8

xr xg xi
x'x x"2 x8

tjhh (39)

est le volume du parallèlipipède cherché.
Si les 3 points A, B, C sont tels que le parallèlipipède qu'ils

construisent, ne contient que 8 points du Raumgitter primitif, situés

en chacun de ses sommets, les juxtapositions successives de ce

parallèlipipède fournissent exactement les sommets mêmes du Raumgitter

primitif. C'est alors un parallèlipipède élémentaire du Gitter

primitif lui-même, et nous disons dans ce cas que les 3 segments
OA, OB, OC, qui ne peuvent être dans ces conditions que des

paramètres, forment un triple conjugué du Raumgitter primitif.
Tous les parallélipipèdes élémentaires d'un Raumgitter sont

égaux. Cela découle directement de la condition qu'ils n'absorbent

que 8 points du Raumgitter, dont un en chacun de leurs sommets,

par un raisonnement identique à celui qui a été fait au § 69 pour
les parallélogrammes élémentaires d'un réseau. Puisque le produit
scalaire :

fixfi2fi3xxyx.2x3=fixfi2fi3'D (§ 9)

est le volume de son parallèlipipède élémentaire primordial, construit

sur ses 3 axes-unités, il doit être également le volume de chaque
autre de ses parallélipipèdes élémentaires ; et la condition algébrique
à laquelle doivent satisfaire les coordonnées xi, x", x"', pour que les
3 sommets A, B, C, déterminent un triple conjugué du Raumgitter
donné, est donc le déterminant équation :

X i X 2 X g

XI X -> X ;;

m „m r/,
X1 A 2 A 3

1 (40)

Si l'on jette un coup d'œil sur le Raumgitter de la fig. 13, au
paragraphe précédent, on voit sans peine que chaque triple non
coplanaire : (OA, OB, OC), (OA, OC, OA') (OA, OC, OC), etc. que
fournissent les 6 arêtes : OA, OB, OC, AB, BC, CA, du tétraèdre

fondamental, détermine également déjà son parallèlipipède élémentaire.

Les coordonnées : (100, 010, 001), (100, 001, lTO), (100, 001,

Oil) des points (A, B, C), (A, C, A'), (A, C, C'), etc., satisfont en effet la
condition posée, et les triples de paramètres correspondants sont donc
des triples conjugués du Raumgitter en question.
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75. Il nous est de nouveau très simple de déterminer tous les

parallélipipèdes élémentaires d'un Raumgitter, et encore ici les résultats

trouvés se trouvent en réalité déjà contenus sous une autre forme
dans les conclusions du § 68.

Les faces d'un parallèlipipède élémentaire ne sauraient être
d'abord que des parallélogrammes élémentaires, n'absorbant que 4

points du Raumgitter, un en chacun de leurs sommets. Soit donc le

couple conjugué des 2 paramètres OT et OT' et déterminant le

parallélogramme élémentaire et ainsi le réseau primitif du plan (OTT') ;

un 3me paramètre OT" ne pourra former avec eux un triple conjugué
que s'il se termine en un point de l'un ou l'autre des 2 réseaux

limitrophes. S'il les dépasse en effet, ce ne peut être qu'en passant

par un sommet du Gitter, et dans ce cas, ce n'est même plus un

paramètre ; ou en perçant le réseau sur l'un des côtés ou à l'intérieur
de son parallélogramme élémentaire ; mais alors les arêtes parallèles

par les sommets T, T' et T'", (T'" est le 4ine sommet du parallélogramme

OTT') le percent également en un point symétrique des

parallélogrammes élémentaires adjacents, et de quelque manière que ce soit,
le parallèlipipède construit porte nécessairement sur ses faces ou en

son intérieur un ou deux sommets du Raumgitter de trop pour être
élémentaire.

A chaque parallélogramme élémentaire d'un Raumgitter, correspond

donc une double infinité de parallélipipèdes élémentaires ; à

chaque couple conjugué de paramètres OT et OT' déterminant ce

même parallélogramme élémentaire, une double infinité de triples
conjugués, dont les 3mes paramètres se terminent en chaque point
des 2 réseaux limitrophes. Tous ces parallélipipèdes élémentaires ont
le même volume ; ils ont en effet la même base, le parallélogramme
élémentaire donné, et des hauteurs égales, la distance du plan au
réseau limitrophe. Mais puisque non seulement ces parallélipipèdes
élémentaires de même base, mais tous les parallélipipèdes élémentaires
d'un Raumgitter sont équivalents ; comme ils ont d'autre part tous,

pour dimensions, le produit d'un parallélogramme élémentaire par sa
distance au réseau limitrophe, les aires des parallélogrammes
élémentaires des plans sont en raison inverse des distances de leurs
réseaux parallèles, ou en d'autres termes : la densité des points sur
les réseaux parallèles d'un Raumgitter est en raison inverse de leur
equidistance.
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Si au couple conjugué OT et OT' nous associons un segment,
primitif ou non, se terminant en un point quelconque de l'un ou
l'autre des 2mes réseaux parallèles, le parallèlipipède qu'ils construisent

est naturellement double du parallèlipipède élémentaire. Il serait
triple, quadruple, etc., pour les réseaux suivants, et en s'exprimant
d'une manière tout à fait générale : a chaque couple conjugué de

paramètres, déterminant le parallélogramme élémentaire d'un plan
quelconque du Raumgitter, correspond une double infinité de

parallélipipèdes multiples du parallèlipipède élémentaire. Le volume de

chacun d'eux est le produit scalaire trouvé au § précédent :

th th th

xi
xï

x2

x'j

x»

x8

Xg fiVr2r3

et, puisque fixfi2fi3 xx\x2x3 est le volume même du parallèlipipède
élémentaire, les coordonnées xi, x", x'" des 3 points A, B, C, qui
les déterminent avec le point O, satisfont donc l'égalité où C est un
multiple entier quelconque :

x,

v'"A

x8

x8

Xfl

c.

Cette équation représente donc pour l'un quelconque des 3 couples
conjugués {x"x"{), (x'fxi), (xixi'), chacun de ses réseaux parallèles.
Le multiple C, constant pour un même réseau, donne le rang de ce

réseau dont il détermine l'équation ; à 2 de ses valeurs égales et de

signe contraire correspondent les 2 réseaux parallèles de même rang
de part et d'autre du plan primitif.

Pour C ±l, nous retrouvons la condition algébrique pour que
les 3 points A, B, C, déterminent eux-mêmes un parallèlipipède
élémentaire, mais avec sa signification complète ; pour l'un quelconque
des 3 couples conjugués (x'[x"{), (x'^xj), (xjxî), la valeur-unité du
déterminant :

xi x2 x3

Xi' X2 Xg =±1
Xl x2 x3

est en effet également l'équation de ses 2 réseaux limitrophes.
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76. Les 4 arêtes tj ou les 4 faces I, (§ 63) qui ont déterminé
la construction du Raumgitter primitif et ainsi le déploiement dans

l'espace du complexe total des faces et arêtes cristallines, étaient 4
arêtes et 4 faces absolument quelconques du complexe du cristal.
Cette construction du Raumgitter primitif n'a dépendu d'ailleurs que
de la position relative de ces 4 arêtes (si nous laissons de côté les
4 faces avec lesquelles on raisonnerait d'une manière toute pareille)
élémentaires l'une par rapport aux autres ; les 3 arêtes fondamentales
ont fourni les directions des arêtes du parallèlipipède élémentaire, et
l'arête-unité a déterminé leurs proportions respectives ; seule la

longueur de celle-ci a été fixée arbitrairement, pour préciser les dimensions

du Gitter, mais prise plus grande ou plus petite elle aurait
donné un Gitter en tout semblable au premier.

Le Raumgitter quelconque (OABCD), (§ 73), construit avec les 4
arêtes du cristal OA, OB, OC, OD, puisque les 4 points A, B, C, D,
sont des points du Gitter primitif, doit donc aussi bien que celui-ci,
représenter la totalité du complexe des faces et arêtes cristallines.
D'une part, tous ses points doivent donc être situés sur les arêtes
de l'ancien Gitter : ils le sont en effet, et même coïncident tous avec
des points de l'ancien Gitter, si nous prenons précisément le segment
OD (fig. 13) comme longueur de son arête-unité. D'autre part, il doit
avoir des points sur chaque arête du complexe, c'est-à-dire, OD étant
toujours la longueur de son arête-unité, il doit absorber des points
du Gitter primitif sur chacune de ses arêtes.

Réciproquement, il n'est pas de Raumgitter possible, représentant

ce même complexe cristallin donné, qui n'ait pas tous ses points
compris, si nous fixons convenablement la longueur de son arête-
unité, dans ceux du Raumgitter primitif. Pour représenter ce

complexe, il ne peut avoir en effet pour point de départ que 4 de ses

arêtes (ou 4 de ses faces), mais comme le parallèlipipède élémentaire

que ces arêtes déterminent a nécessairement, dès que nous prenons
pour longueur de l'arête-unité un segment de l'ancien Gitter, un
point de celui-ci en chacun de ses 8 sommets, le Raumgitter total,
constitué par ses juxtapositions successives, a par le fait également

pour chacun de ses sommets un point du Raumgitter primitif.
Ainsi d'une part, chacun de cette infinité de Raumgitter (OABCD)

impliqués dans le Raumgitter primitif, comme ayant pour point de

départ 4 arêtes cristallines, représente également le complexe du cristal ;
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d'autre part, tout Raumgitter représentant ce même complexe, pour
une certaine longueur de son arête-unité (ce qui d'ailleurs n'influe
aucunement sur la nature du Gitter et du complexe représenté), a
nécessairement tous ses points compris dans ceux du Raumgitter
primitif.

77. Ce résultat peut s'exprimer sous une autre forme peut être

plus précise, à condition d'entendre par : supprimer des points sur
une arête, les supprimer d'abord uniformément tout le long de l'arête,
en maintenant l'équidistance entre les points qui subsistent, et
ensuite de la même manière supprimer les points correspondants sur
chacune des rangées parallèles.

Etant donné un Raumgitter primitif, nous pouvons à volonté

supprimer un nombre quelconque de points sur 3 quelconques de

ses arêtes, sans que rien ne soit changé au complexe qu'il représente.
Si nous appelons A, B, C, le premier point qui demeure sur chacune
des 3 arêtes choisies, cela revient en effet à supprimer du Raumgitter

donné, tous ceux de ses points qui n'appartiennent pas au

Raumgitter de parallèlipipède élémentaire (OABCD), c'est-à-dire à

remplacer le Raumgitter primitif par l'un quelconque des Raumgitter
qu'il implique. Le nombre de points supprimés de ce fait sur chaque
autre arête du complexe, est complètement déterminé ; les nouveaux
paramètres et les nouveaux parallélogrammes élémentaires sont des

multiples entiers des paramètres et des parallélogrammes élémentaires

primitifs.
Etant donné un Raumgitter, nous pouvons à volonté ajouter

(en donnant à ce mot sa signification correspondante) un nombre

quelconque de points sur 3 quelconques de ses arêtes, sans que rien
ne soit encore changé au complexe qu'il représente. Si A, B, C, est le

premier point ajouté à partir du point O sur chacune des 3 arêtes
choisies, cela revient inversement à remplacer le Raumgitter donné

par un nouveau Raumgitter primitif, de parallèlipipède élémentaire

(OABCD), impliquant en lui tous les points du premier. Le nombre
des points ajoutés de ce fait sur chaque autre arête du complexe est

complètement déterminé ; les nouveaux paramètres et les nouveaux
parallélogrammes élémentaires sont des sous-multiples (fractions dont
le numérateur est 1) des paramètres et parallélogrammes élémentaires
du Raumgitter donné.
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Enfin puisque les 2 opérations successives n'ont aucune influence

sur la nature du complexe représenté, dans un Raumgitter donné,

nous pouvons à volonté simultanément supprimer des points sur 3

arêtes quelconques et ajouter d'autres points sur 3 autres de ses

arêtes. Le Raumgitter obtenu représente encore le même complexe

que le premier, et les nouveaux paramètres et parallélogrammes
élémentaires sont alors des multiples rationnels des paramètres et

parallélogrammes élémentaires primitifs.
Sommerfeld appelle les Raumgitters obtenus dans les 2 premiers cas:

ganzzahlig commensurabeles Gitter, et le Gitter obtenu dans le dernier cas : rationnai
commensurabeles Gitter, par rapport au Raumgitter donné.

Ainsi, puisque en réalité la présence avec le point O, de 3 sommets

quelconques A, B, C d'un Raumgitter donné (mais situé chacun

sur une arête différente), suffit dans un nouveau Raumgitter, pour
qu'il soit l'un de l'infinité des Gitter représentant le même complexe

que le premier, le problème du changement des coordonnées du

Raumgitter se pose maintenant parallèlement et exactement pareil à

celui du changement des indices du complexe (chapitre VIII).
Etant données les coordonnées ax, ßx, ylt des 3 sommets A, B, C

d'un Raumgitter primitif, et les coordonnées «i, ß\, y[, de ces mêmes
sommets dans un Raumgitter de parallèlipipède élémentaire encore
inconnu, déterminer successivement :

1° les nouvelles coordonnées x J du sommet quelconque de coord, x,.
2° les 3 axes-unités du nouveau parallèlipipède élémentaire.
3° les composantes u[ du parallélogramme de composantes u,.
4° les 3 parallélogr.-unités du nouveau parallélip. élémentaire.

78. Les coordonnées ax, ßi} 7, et a[, ß[, y[, données sont en
effet les composantes par rapport aux axes-unités correspondants des

vecteurs que représentent les segments d'arêtes OA, OB, OC et en

rapportant successivement ces 3 segments aux axes-unités primitifs
/titj et aux axes-unités inconnues que nous appelons tout naturellement

fi[x[, nous écrivons les 3 égalités vectorielles en valeurs
absolues :

fixaxXx + fi2a.2X2 + fis<hh—f*i.ai*'i 4- fi'2a'2X'2 -\- fi'3a'3X'3

(41) flxßxXx 4- fl2ß2X2 4- flgßgtg =/t{ßiti + ÄßM + /"308ÏS

MiYih + thYih + thY3h=,"iYÎ*'i + f*sY'i*î +/*»r'»*s
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Par le fait que les coordonnées au ß-t, y. et a[ ß[ y[,

représentent non seulement les rapports, mais des valeurs absolues des

indices des 3 arêtes OA, OB, OC, les facteurs gx, g.2, gs, introduits
auparavant dans les équations (24) correspondantes, se réduisent
dans ce cas-ci à l'unité. Il ne nous est donc plus nécessaire des

indices d'une 4me arête pour déterminer leurs valeurs, ou en d'autres
termes, comme il vient déjà d'être dit plus haut, les coordonnées
anciennes et nouvelles de 3 sommets quelconques suffisent complètement

à déterminer le problème du changement de Raumgitter. Nous
n'avons donc qu'à reprendre successivement les résultats des §§ (48-54),

qui s'écrivent identiquement pour les arêtes ce qu'ils ont été établis

avec 4 faces comme éléments donnés, et à y faire partout les facteurs

Qi=l; il leur résultera d'ailleurs de ce fait une symétrie bien plus
complète que celle qui leur a été obtenue dans le cas des indices.

Les vecteurs des axes-unités primitifs /^ t r i sont en fonction des

nouveaux axes-unités fi[x[ :

^of-i^i ==Ati|aia2a3|ri 4"/M2|a2a2a3|r2 4~ tl'a\a3a2aa\ra
(42) D0fi.2X.2 fi'x\axa'xa3\x'x 4-/*2laia2a3|r2 4~itt3|aiaüas|r3

Do/^ïg =:^l|ala»aî|rî + /*a |«1«2«2 lr2 *f-^s|«la2a8|ï8

Si les 3 déterminants de chaque ligne sont divisibles par D0, les
nouvelles coordonnées des sommets filxi sont entières, c'est-à-dire
les sommets du parallèlipipède élémentaire primitif sont en même

temps des sommets du nouveau Raumgitter.
Le sommet quelconque de coordonnées xt, dont le segment

correspondant est représenté par le vecteur :

fixxxxx —j— /*2x2r2 —p /*3x3r3

reçoit pour ses nouvelles coordonnées xj :

X] x2 x8 0

a, «2 a3 u[
ßi ß, ßa ßi
Yi Yi Y a Yi

D,

Xl x2 X;; 0

ai a 2 a3 a2

ß, ßt ß, ßi
Yi Y-2 Ys Y<2

Dn

Xl x2 x3 0

«1 «2 «8 a.3

ßi ß. ßs ßi
Yi Yi Ya Yâ

Do

Si les coordonnées x. sont premières entre elles, le sommet

correspondant détermine un paramètre du Gitter primitif; pour que
les nouvelles coordonnées xi déterminent sur la même arête le para-
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mètre du nouveau Gitter, il faut également qu'elles soient entières et

premières entre elles. Si nous appelons A le produit des facteurs

communs dans ces conditions aux 3 numérateurs, le nouveau

paramètre est donc le multiple rationnel ~~ du paramètre primitif.

Le déterminant A0 devient le symétrique du déterminant D0, et

les composantes des 3 axes-unités fi\x\, rapportés aux axes-unités

primitifs, sont en fonction de A0 exactement ce que plus haut les

composantes des fixx{ sont en fonction de D0 :

A0fi'xx[ =/t1|ciia2a3jr1 -}- /i2|a2a2a8|ta 4-At3|«8a2a3|r3
4)j"2r2 =^llai«la3|ri -h Mi\a'laia's\^S +/*3 j«Ì«S«slr3 (43)

Aofi'a^'a =y"i|aia2ai|ïi -|-y"a |«i«2«2 [r2 4~ /" 3 « i « 2 « s ]r :s

Les longueurs de ces axes fi[x'x sont les racines carrées des

formes quadratiques divisées par A0 :

fi'x — -~ \Jro(\axa'2a'3\ \a2a'2a'3\ |a3a2a3|)

fi2 =-rV/ft)(laiaia3| |«i«2«3| |«ia3a3|)

fi3 — -r-\Jio{\a'xa'2ax\ \a[a'2ci2\ \a'xa2a3\)

et si nous faisons le produit scalaire des 3 vecteurs que nous avons
écrit, de la forme :

fi'xfi'2fi3x'x)Jx2x:à

il nous donne directement le volume du nouveau parallèlipipède
élémentaire. En reprenant le produit scalaire pareil déjà effectué au § 74,
et en écrivant le déterminant des coordonnées dont chaque terme est

lui-même dans ce cas-ci un déterminant de 3me ordre :

1

AÌ i«i a.

a, a,

|«2 «2 a8|

|«i «2 «si

\°i «2 «2!

on voit aussitôt qu'il n'est autre que le produit des 2 déterminants
également de 3me ordre :

1
«1 ßi Yi Ai B[ n
«, ßi Yì A'2 B'-2 n
«3 ßa Ya A, Bi n
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La valeur du second qui est le déterminant-adjoint de A0 est Al ;

le produit scalaire cherché s'écrit donc très simplement :

fi{fi^fi3x'xh'2x'3 =iu1/*2/u3-4r1Vr2ï3

Le nouveau parallèlipipède élémentaire est encore le multiple

rationnel M du parallèlipipède élémentaire primitif.

79. Si nous faisons les produits vectoriels deux à deux et membre

à membre des 3 équations (41), il ne nous est plus permis, dans

ce cas-ci où il s'agit de valeurs absolues, de négliger d'écrire, comme
nous avons négligé dans les équations (29) correspondantes le quotient

constant vxv2v3 :v[v2v3, les 2 facteurs qui en tenant compte
toujours des relations fixvx sin A., se mettent aisément en évidence:

frjf-if-a f'if'if'ae— M. e ~ W.
Les vecteurs gvA{ et q'v'A[ sont ainsi les vecteurs représentant

les parallélogrammes-unités (§ 71) primitifs et nouveaux, c'est-à-dire
les faces du parallèlipipède élémentaire correspondant, et les 3
égalités que nous fournissent les produits vectoriels effectués sont
l'expression des 3 parallélogrammes construits sur les segments d'arêtes
(OA, OB), (OB, OC), (OC, OA), rapportés successivement aux
parallélogrammes-unités primitifs Qvili et aux nouveaux parallélogrammes-
unités e'v'A'. : (§ 71, 37)

QViAh + Qv2A.2l2 4- gv3A3l3 g'v'xA'xl'x 4- g'v'2A'2[:2 4- g'v'3AA'3
gvxBxlx + gv2B2[2 4 gv3BA3 g'v'xB'x['x + g'v^B2l'2 4- q'*'sB',H (44)
gvxrxix 4- gv2r2i2 4- gv3r.A3z=g'vxrxix + g'v'2r2v2 4- 6'var8l'a

Les parallélogrammes-unités primitifs gvA^ sont en fonction des

parallélogrammes-unité g'v'A'x :

Do^ih Q'v'i \<h<*i*'t 'U 4- Q'vi \ai<h<ii |l2 4- g'v'3\a'xa'2ax\\'3

L><,gvA2z= g'v'x\a2a'2a3\i'x -\- Q'v'^a^a'^ 4- eVs |«i«2«2 i^s (45)
L)ngvA3-=g'v'x\a3a'2a'3\['x 4- Q'v2\a'xa3a'3\V2 -\- g'v3\a'xa'2a3\[3

Si les 3 déterminants de chaque ligne sont divisibles par D0,

les nouvelles composantes des parallélogrammes gv-X sont entières;
leur surface est donc celle, dans le même plan, d'un parallélogramme
du nouveau Gitter.
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Les composantes u{ du parallélogramme quelconque de composantes

Ui :

gvxuxl, 4 Qv2uîh ~r~ Qvsu3h

sont les 3 déterminants divisés par D0 :

Uia14u2a24u:1q3 a2 a'3

uxßx+u2ß2+u3ß3 ßi ß'3

»lYi+»ìYì+»3YsYÌ Y a

a'x u1a1+u2a2+u8a3 a3

ßi uxßx+u.,ß.2+u3ß:iß3
Y'! utfi+u.^+Ugygy'g

\a[ a2 Uia14u2a24u3a3
\ßi ßi uxßx+u2ß.2+uHß3
\y'i YÌUiYiJr"2Y-2+u3y3

D« Do D0

Si les composantes u, données sont premières entre elles, le

parallélogramme correspondant est un parallélogramme élémentaire
du Gitter primitif; pour que les nouvelles composantes u[ déterminent
dans le même plan le parallélogramme élémentaire du nouveau Gitter,
il faut également qu'elles soient entières et premières entre elles. Si

nous appelons A le produit des facteurs communs dans ces conditions

aux 3 numérateurs, le nouveau parallélogramme élémentaire est

donc le multiple rationnel —£ du parallélogramme élémentaire primitif.
Les composantes des parallélogrammes-unités g'v'A[, rapportés

aux parallélogrammes primitif gv\„ sont de nouveau en fonction de

A0 et D„ exactement ce que plus haut les composantes des gv\-, sont
en fonction de D0 et A0 :

àoQ'v'tK ==Qvi[a'ìa2a3\lx-\-gvx\axa'xcx.i\l2-\--gv3\axa.2a'x\lì
A0g'v'A2 gvx\a2a2a3\lx -\- gv2\axa2a3\l2 4~ e»'3|«ia2a2|I3 (46)

A0g'v3l3 £>v, \a3a2a3lx -\-gv31axa',a3112 4- ê*>",s |otxot2«.^ [I;î

Les surfaces de ces parallélogrammes élémentaires sont les
racines carrées des formes quadratiques correspondantes divisées par A0 :

P'vî= A~\/ü{\aia-2aa\\aia'ia3\laia-2(*'i\)

Q'v'2—-j-yO(\a'2a2a3\\axa^as\\a1a2a'2\)

g'v3= 2"VQ(\a3a2a3\'axa3a3\\axa.2a'g\)

et si nous faisons le produit scalaire des 3 vecteurs que nous avons
écrit, de la forme :

Q'3viv2vaVjl'2ls

il nous donne le volume d'un nouveau parallèlipipède construit sur
les 3 vecteurs q'v\{[ comme arêtes. En écrivant encore, comme au §
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précédent, le déterminant des composantes, dont chaque terme est
lui-même un déterminant de 3me ordre :

1
|ai«2«3l
l«2a2«al

|a3a2a8|

i«l«2«s|
!al«2al|
Ial02a2|

!«la2a3l

on voit immédiatement qu'il se réduit de nouveau au produit des 2

déterminants :

a2

ai

ßi
ßi
ßi

ri
ri
ri

i Bx A
2 B2 r-2

3 B., A
La valeur du second qui est le déterminant-adjoint de D0 est Do,

et le produit scalaire cherché s'écrit :

j58j'i»'.'>3li' i l'A'i,=g'ivxv2v.i-.^\x» l.,I3
di -

' D \ 2

Le parallèlipipède en question est donc le multiple rationnel M2 j
du parallèlipipède du même type construit sur les 3 vecteurs gvA-^

comme arêtes.

Bravais divise les arêtes onli et oV/l/ de ces 2 derniers parallélipipèdes

par la racine cubique du volume du parallèlipipède élémentaire correspondant et

appelle les 2 nouveaux Raumgitter dont ils sont dans ces conditions les parallélipipèdes

générateurs, les Raumgitter polaires des Raumgitters /.liti et in'x,'.

La transformation de coordonnées traitée dans ces 2 derniers
paragraphes est la transformation générale, effectuée d'un Raumgitter

donné en un Raumgitter rationnellement commensurable par
rapport au premier. Il n'y aurait aucune difficulté maintenant à
chercher à quelles conditions doivent satisfaire les triples de
coordonnées a,, ßit yit et a[, ß[, y[ données pour qu'elles déterminent
les 2 changements spéciaux de coordonnées où le nouveau Raumgitter
est entièrement commensurable par rapport au premier (§ 77). Il
suffit pour cela que les relations entre les «,, /?i; yx et «i, ßi, yi
soient telles que les 9 déterminants coefficients des fiix[ dans les
équations (42) soient chacun divisible par D0, ou que les 9 déterminants
coefficients des ultl dans les équations (43) soient chacun divisible
par A0. D'autre part, on obtient directement ce que deviennent dans
ces 2 cas particuliers les résultats de la transformation générale en
y substituant successivement aux a,, ßx, y{. et aux a\, ß[, y\ les
valeurs particulières 100, 010, 001, (le second cas correspond à celui des

§ 51 et 55 du changement des indices) ; c'est-à-dire en prenant soit
les 3 sommets quelconques a\, ß[, y\ du nouveau Gitter comme som-
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mets du parallèlipipède élémentaire du Gitter primitif, soit les 3
sommets quelconques ait ßit ylt de l'ancien Gitter, comme sommets du
parallèlipipède élémentaire du nouveau Gitter.

80. La démonstration donnée aux § 69 et 74 de l'égalité des

parallélogrammes et des parallélipipèdes élémentaires, basée directement

sur la structure du Gitter, et qui peut d'ailleurs être rendue

rigoureuse au point de vue mathématique, * donne comme corollaire
direct (§ 74) la valeur-unité du déterminant jxix2x'3|=l comme
condition pour que le parallèlipipède construit sur les arêtes /^JrJ soit

parallèlipipède élémentaire du Gitter primitif. M. Daniels me permet
d'ajouter ici ce dernier paragraphe où inversement il montre que la
même condition [b11b22b38|=l est nécessaire et suffisante pour qus
les 2 Raumgitters /*,rj et /tiri soient équivalents (que le parallèlipipède

construit sur /*ir; soit parallèlipipède élémentaire du premier
Gitter et inversement), et déduit alors de là une preuve rigoureuse
et complète de l'égalité des parallélipipèdes et des parallélogrammes
élémentaires.

1) Pour que la figure (Raumgitter) construite sur les arêtes /ttxx
soit équivalente à celle construite sur les arêtes fiix[, leurs relations

— nécessairement à coefficients entiers blk et ^~ßik — étant

t» o p
^îr;=^1bXIr14ftb12r24^b1:)r;, ftr^K^tl+Mfti+ ri^t'i

R R R
(I) ^r;=ftb21r,4A«..b,2r24^b23r:) et (II) ^2t3=^^?ri4i«5-^t',-r-^,3^2«

^t,az=fllh3it1+ii2b:ì2t.2+/i,b3rlt3 ^t1=l":-gîr:4,«',I|i}r:>4/''3^^•:•;

il suffit, que le déterminant B des neuf bik en valeur absolue soit
égal à l'unité.

En effet jb11b22b33|=rl=|B11B22B33|

nous apprend 1° que dans chacune des six équations les trois
coefficients entiers sont premiers entre eux, et 2°, qu'à cause des
relations (I—II)
^iX1r1+^2X2r24/*3x3r3=//i(B,,x,4Bi2x24Bi3x3)i'i4^2(—)ti+fii{—)ts
i"iyiïi+^2y2Ï24/"3x3r2=/«i(Oiiyi + b2iy24b3iy3)r14,M2(—)«2+^3(—Ks

*) Schönflies, Kristallsysteme und Krystallstructur, pag. 272. Brawais Mémoires
sur les systèmes de points distribués régulièrement dans l'espace,
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ce qui nous prouve que tout point à coordonnées entières du
premier système est encore un point à coordonnées entières du second
et inversement c. q. f. d.

2) La condition B=l est encore nécessaire. En effet nous avons

B.bu=B22Bgg—Bt3B32=B2{ß22ßSg—ßi3ß32) ou encore

bii=B.(/J227?38 —ßwßai) b12=B.(/?81/?2g—ßnß33) b13=B.(ß21ß32—ß91ß22)

Les trois nombres bub12bl3 ne seraient pas premiers entre eux, si IB^I-

3) Corollaire. Multipliant les équations I, nous trouvons à cause
de B=^±l

fi[fiifii[t'xx:2x:A==±fixfi.2fi3[xxx2x3]

c'est-à-dire que les volumes des parallélépipèdes équivalents sont égaux.

Nous trouvons absolument de la même manière, lorsqu'un plan e

contient les vecteurs-unités g\,Q2\Q\,gi, que les systèmes de parallélogrammes

construits sur les côtés oxgx,o2g2 d'une part, et sur

(III) a'lQx =öiD"-,i + a-J°i2Q2

\ a'2g:2=raxhngx-\-a2\i2.2g2

d'autre part, ne sont équivalents que lorsque B |bnb22j=±l.
Corollaire. En formant le produit vectoriel des équations III,

nous obtenons B étant 1

oi ö2 iV^. i ^31 aj a.2(b,, b22 — b?,)|Ve1e2|==a1a2|Veiea|

c'est-à-dire que les surfaces des parallélogrammes élémentaires
équivalents sont égales.

Or, les vecteurs oxgx et o.2g2 étant encore

fixxxxx 4- fi2x2x2 4- fi3x3x3 et fixyxxx 4- fi2y2x2 4- fi3j3Xs

la surface du parallélogramme peut encore s'écrire

\\J(fixxxxx 4- ....M/Wi 4- ....)\ =/^V/ß(x2y:,-X3y, )•



CHAPITRE XII

81. Le Raumgitter, comme le complexe cristallin qu'il représente,
ne dépend donc uniquement que des directions relatives dans l'espace
des 4 arêtes (4 faces) quelconques prises pour son point de départ.
Au même complexe correspond une infinité de Raumgitter différents,
construits sur toutes les combinaisons possibles 4 à 4 de ses arêtes ;

par suite cette infinité de Raumgitter, impliqués chacun pour une
certaine longueur de leur arête-unité dans le Raumgitter primitif et

dont chacun représente le même complexe, constitue un tout absolument

indivis, inhérent aux complexe donné, restant identique à lui-
même quel que soit celui de ces Gitter pris comme primitif, c'est-à-
dire quelles que soient les 4 arêtes du complexe choisies comme
arêtes élémentaires.

Sur les 3 directions primitives fiitli comme sur toute arête

quelconque, d'un Raumgitter donné, on peut à volonté supprimer ou
ajonter un nombre quelconque de sommets, sans que rien ne soit
changé au complexe qu'il représente. En d'autres termes, tant que
les longueurs fix des 3 axes-unités d'un Raumgitter ne varient sur
leurs directions que dans des rapports simplement rationnels, le

complexe représenté reste identique à lui-même ; les Raumgitter
obtenus sont tous compris dans l'infinité des Gitter représentant ce

complexe, et on ne fait que changer le Raumgitter primitif par l'un
des Raumgitter qu'il implique..

Enfin en introduisant encore une dernière notion, celle de Raumgitter

symétrique, en donnant ici au mot : symétrie son sens plus
exactement géométrique, que nous allons d'ailleurs préciser, il nous
sera facile maintenant avec ces données de déterminer dans le
complexe cristallin général étudié jusqu'ici, les différents types de

complexes possibles qui seront exactement les complexes des 6 systèmes
cristallins tels que la plupart des cristallographes les établissent en

cristallographie (Baumhauer : Neuere Entwicklung des Kristall).
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82. Nous dirons qu'un Raumgitter possède un degré plus ou

moins grand de symétrie, s'il existe un ou plusieurs mouvements de

ce Raumgitter autour du point O tels que le mouvement effectué»

chacun de ses sommets ait repris exactement la place qu'occupait
un autre sommet avant le mouvement. Puisque le point O reste fixe,
en vertu du principe connu de mécanique, ces mouvements se

ramènent dans tous les cas à une rotation autour d'un axe passant

par le point O ; nous appelons un tel axe un axe de rotation ou de

symétrie du Raumgitter donné et son angle de rotation, le plus
petit angle a dont il faut tourner le Raumgitter autour de cet axe

pour que chacun de ses sommets ait repris le lien d'un sommet
primitif.

Le point O est lui-même un centre de symétrie du Raumgitter,
c'est-à-dire qu'à chaque point du Gitter correspond un autre point
sur la demi-arête opposée à la même distance que le premier du

point O ; l'opération qui consiste à remplacer ainsi chaque point du

Gitter par son point inverse, s'appelle l'inversion. Comme la rotation
elle transforme également le Raumgitter en lui-même.

Enfin on démontrera plus loin très simplement (§ 93) que dès

qu'un Raumgitter possède un axe de symétrie binaire (a=180°), il
possède également par le fait de la présence du centre O de symétrie,
un plan de symétrie normal, c'est-à-dire un plan partageant le Raumgitter

en deux parties telles que l'une est la réflexion de l'autre dans
le plan donné. Réciproquement ce plan de symétrie, combiné au centre

de symétrie, exige l'axe binaire normal ou mieux :, le plan de

symétrie, le centre de symétrie et l'axe binaire normal sont 3
éléments tels que la présence de 2 d'entre eux nécessite toujours le

troisième et qu'ils constituent un groupe (§ 89 et 93). De la sorte,
il suffit de connaître les axes de symétrie d'un Raumgitter pour
connaître également ses plans de symétrie et ainsi sa symétrie complète.

83. Un Raumgitter symétrique exige dans le complexe qu'il
représente, une face avec une arête normale.

Soit en effet donné un axe de symétrie d'un Raumgitter passant

par le point O ; puisque les espaces séparant les sommets du Gitter
sont de dimensions finies, pour amener une nouvelle coïncidence de

ces sommets, son angle de rotation a ne saurait être en tout cas

d'ordre infiniment petit.
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Soit un sommet A de situation quelconque par rapport à l'axe.
Ses positions successives coplanaires A', A", A'", etc. (fig. 14),
correspondant à chaque rotation d'angle a, sont donc elles-mêmes des
sommets du Raumgitter ; et puisque chaque autre point du Gitter
(§ 65) doit être dans une situation identique à celle des points A,
A', A", etc., par le point O doivent passer les arêtes OB', OB", etc.,
telles que AA' OB', AA"~OB", eU, et dont les rangées AA'.AA",
etc., sont des rangées parallèles. Le plan (OB'B") comme le plan (AA'A")
est évidemment normal à l'axe de rotation ; les points du Raumgitter
qu'il contient forment un réseau parallélogrammique, et l'ensemble
des points du Raumgitter total se réduit au système (§ 68) de

réseaux superposés parallèles et équidistants, de parallélogramme
élémentaire identique et normaux à l'axe de symétrie donné.

A.-

>2

-.&.

1

/; /
\ ¦ t:

v<'-*'-
- - -^—

7\ \

if x

/ « 4

Fig. 14. Fig. 15.

Au cas où o= 180°, la rotation du point A ne produit que son symétrique^
A{, et la rangée AA{ ou l'arête parallèle par le point O ne suffisent plus à détci-
miner le plan normal; mais en prenant un 3"ie sommet C quelconque du Gitter,
les points C et C exigent une seconde arête OCJ par le point O, et les points
O, BJ, C[, déterminent également le plan normal et ses réseaux parallèles.

L'axe de rotation est lui-même une arête du Raumgitter. En
effet dans cette rotation, chacun de ces réseaux parallélogrammiques
normaux à l'axe doit coïncider avec lui-même et cela n'est possible
déjà pour le réseau limitrophe supérieur, que si cet axe le perce en
un sommet (fig. 15 en traits continus), au centre ou sur le milieu
d'un côté du parallélogramme élémentaire (fig. 15 en traits pointillés).
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S'il le perce en un sommet, c'est une arête du complexe ; s'il le

perce sur le milieu de l'un des côtés ou au centre du parallélogramme
élémentaire, ou ce qui revient au même sur le milieu de l'un
quelconque des 3 côtés OiT, du triangle fondamental (OiTjTi), puisque
dans ces conditions TTi^TiT", l'intersection T" de la rangée TT]
et de l'axe OT" est un nouveau sommet du Gitter appartenant au
second réseau parallèle, et l'axe de rotation, passant par un sommet,
est encore une arête du complexe.

Exceptionnellement dans le cas où la maille du réseau est le losange à angle
au sommet, de 60° (§ 85 VI), l'axe normal peut percer le réseau limitrophe au
centre du triangle equilateral fondamental, c'est-à-dire au tiers de la grande
diagonale du losange élémentaire. Dans ce seul cas l'axe de symétrie n'atteint qu'au
3mo réseau parallèle l'un des sommets du Raumgitter, et est ainsi également une
arête du complexe.

84. Le complexe cristallin qui ne possède aucune arête normale
à l'une de ses faces, ne peut donc impliquer en lui-même aucun

groupe de 4 arêtes (ou 4 faces) déterminant un Raumgitter
symétrique. C'est le complexe du système cristallin tricline; ses 3 arêtes
fondamentales sont en effet, quelles qu'elles soient, inclinées chacune

sur le plan des 2 autres. Le parallèlipipède élémentaire de ses Gitter
est un parallèlipipède oblique quelconque ; leur seul élément de symétrie

est constitué par la présence du centre O de symétrie : c'est

exactement la symétrie des cristaux de la classe holoédrique du
système (§ 92).

Inversement étant posée une face avec une arête normale, à

chacun des 5 types essentiels de complexes qui peuvent s'établir
dans cette condition, correspond un Raumgitter primitif plus ou moins

symétrique. Les 5 types de complexes sont ceux des 5 autres
systèmes cristallins d'espèce symétrique, et la symétrie des Raumgitters
primitifs correspondants est celle des classes holoédriques établies

plus loin de chacun de ces systèmes (§ 92—98).
Soient en effet l'arête normale et 2 arêtes quelconques dans le

plan donné prises comme arêtes fondamentales du complexe. En
vertu de la seconde remarque faite en commençant (§ 81), pour
obtenir des complexes différents, l'arête-unité ne peut déterminer (par
la construction du parallèlipipède élémentaire) sur ces 3 directions

que des segments fix, fi2, fi3, qui sont entre eux égaux ou dans des

rapports irrationnels. D'autre part la maille du réseau primitif que
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déterminent les paramètres minimas fi.2 et fo, comme celle de tout
réseau parallélogrammique d'ailleurs, ne peut être qu'un parallélogramme

quelconque ou l'une des 4 modalités spéciales de plus en

plus régulières du parallélogramme : le rectangle, le losange, le

losange avec angle au sommet de 60° (sa petite diagonale est égale

au côté) et le carré ; ou mieux encore le triangle fondamental (OTT'),
fig. 15, ne peut être que l'un des 5 types différents : scalène,

rectangle, isocèle, equilateral, ou rectangle-isocèle. Le parallèlipipède
générateur du Raumgitter est le prisme droit (OTT'T") à base

parallélogrammique correspondante; ses 3 arêtes fixxx, fi.2x2, foX3,
déterminent à elles seules la position de tous les points du Gitter, et

autant de fois le trièdre qu'elles constituent peut se couvrir avec
elles-mêmes, leurs prolongements ou des arêtes égales (complexe
hexagonal § 85, IV), autant de fois le Raumgitter coïncide également
tout entier avec lui-même. Les rotations possibles du trièdre
fondamental déterminent donc exactement celles du Raumgitter lui-même
et ainsi les éléments de sa symétrie complète.

85. I. Système cristallin ou complexe monocline.
Raumgitter binaire.

Le parallèlipipède élémentaire du Raumgitter est le prisme droit
à base parallélogrammique quelconque (OTT'T"), fig. 15. Les 2
paramètres minimas OT et OT' ne peuvent se couvrir qu'avec leurs
prolongement OT2 et OT2 ; l'arête normale OT" est donc un axe binaire
du Raumgitter total, et par suite le plan donné OTT' un plan de

symétrie. Ce sont les seuls éléments de symétrie du Raumgitter ; s'il
existait en effet un autre axe de rotation, le paramètre OT" qui est

la distance même des réseaux parallèles, devrait se couvrir avec un
segment du plan OTT', et dans ce cas les 2 paramètres minimas du

plan OT et OT' ne pourrait atteindre ni l'un ni l'autre le réseau

limitrophe. D'ailleurs les 3 axes-unités étant entre eux dans des

rapports irrationnels, le plan fondamental OTT' est la seule face du

complexe possédant une arrête normale (§ 45).

On se rend compte sans peine (la fig. 15 en pointillé est faite pour le second

cas) que en centrant par un nouveau sommet T"' le centre de figure du parallèlipipède

droit générateur ou par les nouveaux sommets T, et T" 2 de ses faces

latérales opposées, c'est-à-dire en intercalant entre chaque couple de réseaux
successifs parallèles au plan OTT' un nouveau réseau de nature identique disposé de
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manière que l'axe normal perce son parallélogramme élémentaire en son centre ou

sur le milieu de l'un des côtés, le Raumgitter obtenu de parallèlipipède élémentaire

(OTT'T,) ou (OTT'T,') possède également l'axe binaire OT" et le plan de symétrie
normal. Il est d'ailleurs, les nouveaux sommets étant intercalés à égale distance
entre 2 sommets primitifs, un de l'infinité des Gitters représentant le même
complexe que le premier.

IL Complexe (système cristallin) rhombique.
Raumgitter terbinaire.

Le parallèlipipède élémentaire du Raumgitter est le prisme droit
à base rectangulaire ; les 3 axes-unités OT, OT', OT" sont entre

eux dans des rapports irrationnels et forment un trièdre trirectangle
dont chaque arête se trouve dans les mêmes conditions par rapport
à l'ensemble des points du Gitter : elles passent chacune par les sommets

de réseaux parallèles successifs à maille rectangulaire. Ces 3
arêtes fondamentales sont ainsi des axes binaires et par suite chaque
plan fondamental est un plan de symétrie du Raumgitter total. Par
le même raisonnement que pour le Gitter précédent, ce sont là les
seuls éléments de symétrie du Raumgitter trouvé, et d'ailleurs, les 3
axes-unités étant entre eux dans des rapports irrationnels, seuls les
3 plans fondamentaux du complexe possèdent une arête normale (§ 45).

Si le parallélogramme élémentaire du réseau fondamental OTT'
est losange, en centrant d'un nouveau sommet chacune de ses mailles,
ce réseau fondamental devient rectangulaire, et les côtés du rectangle
étant irrationnels, le complexe représenté est encore un complexe
rhombique. Le Raumgitter correspondant possède d'ailleurs la même

symétrie que le Raumgitter trouvé ; il revient en effet inversement à

centrer les 2 bases rectangulaires du prisme droit générateur du Raumgitter

terbinaire, et cela, on le voit aussitôt, n'influe en rien sur la
présence des 3 axes binaires obtenus.

On peut donc centrer les 2 bases, c'est-à-dire 2 faces latérales opposées

quelconques du prisme rectangulaire droit (OTT'T"); on peut également ou bien le
centrer en son centre de figure, ou bien sur chacune de ses 6 faces rectangulaires-
Dans chacun des 3 cas, on s'en rend compte facilement en projetant sur le plan
du réseau OTT' le système de ses réseaux parallèles, le Raumgitter obtenu possède
la symétrie terbinaire et naturellement représente le même complexe que le premier.

III. Complexe quadratique. Raumgitter quaternaire.
Le parallèlipipède élémentaire du Raumgitter est le prisme droit

à base carrée; des 3 axes-unités irrationnels du complexe rhombique
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2 quelconques OT et OT' deviennent égaux. Par suite l'axe binaire
normal OT" devient un axe quaternaire (a 90°) et dans leur plan
les diagonales du carré élémentaire sont 2 nouveaux axes binaires
du Raumgitter total. La symétrie complète se trouve ainsi constituée
d'un axe quaternaire, 4 axes binaires dans le plan normal, formant
entre eux des angles de 45°, et 5 plans de symétrie dont 4 passant
par l'axe quaternaire et le 5me normal à cet axe. On voit d'ailleurs
de nouveau immédiatement que ce sont là les seuls éléments de

symétrie du Gitter, parce qu'ils représentent les seules manières
possibles de faire se couvrir avec ses arêtes mêmes ou les arêtes

inverses le trièdre trirectangle OTT'T" dont 2 arêtes sont égales.

Si l'on centre le prisme droit obtenu en son centre de figure, chacun des

axes de rotation trouvés subsiste, et le nouveau Gitter représentant le même
complexe que le premier, possède également la symétrie quaternaire.

IV. Complexe hexagonal. Raumgitter sénaire.

Si l'on construit le réseau primitif OTT' (fig. 16) lorsque sa

maille est le losange à angle au sommet de 60° ou mieux son triangle
fondamental, le triangle equilateral OTT', on voit immédiatement

que l'axe normal OT" est un axe sénaire (a=60°) et que dans le

plan du réseau les 6 directions des côtés et des hauteurs du triangle
fondamental sont des axes binaires d'abord du réseau primitif lui-
même, et par suite en construisant le Raumgitter de prisme droit
élémentaire (OTT'T"), du Raumgitter total.

Fig 16.

v -r"

-»r

Fig. 17.

L'axe-unité OT" étant irrationnel par rapport aux 2 axes égaux
OT et OT', (d'ailleurs il en sera de même étalement dßns le cas
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contraire, § suivant), ce sont là les seules rotations possibles qui
fassent se couvrir le trièdre élémentaire OTT'T" avec des arêtes

égales, et la symétrie complète du Raumgitter sénaire est ainsi
constituée d'un axe sénaire, 6 axes binaires dans le plan normal,
formant entre eux des angles de 30° et 7 plans de symétrie.

En intercalant entre chaque couple de réseaux successifs parallèles au réseau

hexagonal OTT', 2 nouveaux réseaux de nature identique disposés de manière que
l'axe sénaire les perce l'un au tiers et le second au 2/« de la grande diagonale du

losange élémentaire (centres des 2 triangles équilatéraux opposés constituant le

losange), ou ce qui revient au même : en ajoutant à distances égales 2 nouveaux
sommets sur la diagonale principale passant par O du prisme droit à base rhombique

générateur du Raumgitter sénaire, on se rend compte facilement, en
effectuant les projections des réseaux parallèles sur le réseau fondamental OTT', que
pour le nouveau Gitter obtenu l'axe sénaire devient une axe ternaire (a 120")

avec 3 axes binaires (par suite 3 plans de symétrie) au lieu de C dans le plan
des réseaux.

C'est le Raumgitter ternaire, dont la symétrie est un sous-groupe caractéristique

de la symétrie sénaire (§ 98). Son parallèlipipède élémentaire est un
rhomboèdre quelconque, et en ajoutant maintenant à ce Gitter ternaire le Raumgitter
torquaternaire du complexe cubique qui reste à trouver, on établit facilement en

procédant un peu autrement (Bravais, Sohncke et d'autres), qu'il n'est pas d'autres

types possibles de Raumgitters symétriques que les 6 ainsi obtenus : binaire, ter-
binaire, quaternaire, sénaire, ternaire, et terquaternaire.

V. Complexe cubique. Raumgitter terquaternaire.

Le parallèlipipède générateur du Raumgitter est un cube : les 3

axes-unités irrationnels du complexe rhombique deviennent égaux,
et se trouvent ainsi chacun dans des conditions identiques à celles de

l'axe OT" dans le Raumgitter quaternaire. Leurs 3 directions sont
donc des axes quaternaires, et dans chaque plan fondamental les

diagonales du carré élémentaire sont des axes binaires. En outre les

grandes diagonales passant par le point O des 8 cubes qui y sont

juxtaposés (fig. 17), en d'autres termes les 4 diagonales principales
du cube générateur sont des axes ternaires (a=120°) du Raumgitter.
Ce sont là en effet toutes les rotations possibles qui peuvent faire
se couvrir avec lui-même ou les axes inverses le triple élémentaire

trirectangle d'axes égaux (OTT'T", et par suite faire coïncider avec
lui-même le Raumgitter total. En y ajoutant les 3 plans de symétrie
fondamentaux et les 6 plans de symétrie normaux aux axes binaires,
passant 2 à 2 par chaque axe quaternaire, nous avons ainsi la
symétrie complète du Raumgitter terquaternaire.
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Il est facile de nouveau de voir que aucun de ces éléments de symétrie ne
disparaît en centrant d'un nouveau sommet le centre de figure, ou d'un nouveau
sommet chacune des 6 faces carrées du cube élémentaire ; les 2 Gitters obtenus
sont les seuls de l'infinité des Gitters impliqués dans le complexe cubique qui
possèdent la symétrie terquaternaire.

86. Les 5 complexes précédents étant établis, qui sont les

complexes des 5 systèmes cristallins symétriques, il est encore en réalité,
dans cette condition d'une face donnée avec une arête normale, 2

autres types de complexe que nous avons négligés : le complexe
monocline dans le cas où l'axe-unité vertical fix serait égal à l'un des

2 autres irrationnels /t2 ou fo, et le complexe hexagonal dans lequel
les 3 axes-unités seraient égaux. La différence essentielle qui fait
que ces 2 derniers complexes, au point de vue cristal, ne doivent
être que des cas particuliers des 2 complexes monocline et hexagonal,
est que les Raumgitters primitifs des 2 complexes nommés à cette
variation de leur premier paramètre /(, ne gagnent aucune symétrie
nouvelle. Il serait inutile même de le montrer par une manière de

raisonner analogue encore à celle employée déjà pour chacun des

complexes au § précédent.

Complexe monocline. Si fix=zfi2, dans une rotation le
paramètre fix peut coincider avec fi2 ; dans ce cas ou bien le second

paramètre fo reste dans son plan et pour cela fi2 et fo devraient
être perpendiculaires, ou bien fi2 et fo sortent de leur plan et

atteignent des points du

réseau limitrophe, mais
alors fi2 coincide avec fix
et les 2 positions avant
et après la rotation de la

U>
n. fig. 18 montrent immé
^*>4 diatement qu'il devrait

F'S- 1° exister dans le réseau

limitrophe et par suite dans le plan fondamental un segment TT' ou

OT; normal avec fo et plus court que le paramètre minima fo.

Complexe hexagonal. Si /ix fo fo, une nouvelle rotation,
autre que celles du Raumgitter sénaire, n'est possible que dans l'une
des 2 conditions suivantes : ou bien l'un des 2 axes-unités fi2 ou fo
reste dans leur plan ; dans ce cas fix doit lui rester normal (fig. 16)
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et ne peut se couvrir avec un paramètre du plan (fofo) ; ou bien les

2 axes fi2 et fo sortent de leur plan ; l'un ne peut alors que coïncider

avec /ix et l'autre ne peut évidemment pas atteindre le réseau supérieur.
Le fait que ces 2 variations des complexes monocline et hexagonal

ne sont pas des complexes correspondants à des systèmes
cristallins déterminés, comme les 5 premiers types trouvés, est donc

connexe au fait que les Gitters correspondants ne gagnent à cette

variation aucune symétrie. La répartition parallélipipèdique dans

l'espace des sommets du Raumgitter est donc intimement liée à la
nature de la substance cristalline, et si momentanément, pour une

température donnée, le complexe d'un cristal monocline ou hexagonal
peut posséder les propriétés qu'entraîne cette variation de son
paramètre vertical, la nature de la substance du cristal ne change pas,

pas plus que la symétrie du Gitter primitif correspondant.

87. Pour toute face d'un complexe à laquelle correspond une
arête normale, chacun de l'infinité des Gitters qui peuvent se
construire sur l'arête normale et 2 arêtes quelconques de la face comme
arêtes fondamentales, a donc cette face comme plan de symétrie, et

l'arête normale comme axe binaire, quaternaire ou sénaire, selon la
nature du réseau primitif de la face. Si nous ne considérons plus les

sommets de ces Gitters, mais simplement les arêtes du complexe qui
les supportent, la face donnée est par suite également un plan de

symétrie et son arête normale en tout cas un axe binaire du
complexe lui-même.

De là, avec ce qui a été établi de la perpendicularité des faces

et des arêtes (§ 43-45), découle immédiatement :

Chaque face du complexe cubique possède une arête normale ;

chaque face du complexe cubique est donc un plan de symétrie du

complexe total et par suite chaque arête est non seulement un axe
binaire, mais en tant qu'axe zonal d'une infinité de plans de symétrie

*, est un axe de rotation autour duquel le complexe peut se

couvrir une infinité de fois sur lui-même.
Le complexe cubique possède donc la symétrie sphérique; en

d'autres termes la distribution dans l'espace autour du point O des

*) 2 plans de symétrie successifs faisant un angle a équivalent à une rotation

d'angle 2 a autour de leur droite d'intersection.
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arêtes et des faces du complexe est la même dans toutes les directions,

comme l'est la répartition de la masse sphérique autour de son
centre.

Pour les complexes hexagonal et quadratique, en plus des faces

fondamentales l2 et 13, seules les faces de leur zone isotrope lx

possèdent une arête normale ; seules donc ces faces sont plans de symétrie
de ces complexes. Leurs arêtes normales coplanaires à la face I, en

sont des axes binaires et seul l'axe xx OT" de leur zone isotrope
est un axe de rotation autour duquel ils peuvent se couvrir une
infinité de fois sur eux-mêmes.

L'ellipsoïde de révolution représente donc la symétrie de ces 2

complexes et la répartition dans l'espace de leurs faces et arêtes

autour du point O.

Seules les 3 faces fondamentales du complexe rhombique et la
face fondamentale l: du complexe monocline possèdent encore une
arête normale. La symétrie du complexe rhombique est donc celle de

l'ellipsoïde, c'est-à-dire celle du Raumgitter lui-même correspondant ;

celle des complexes monocline et tricline, comme celle des Gitters
correspondants, se réduit à un plan de symétrie avec l'axe binaire
normal ou à l'unique présence du centre O de symétrie.

Cette gradation de la symétrie complexiale des systèmes
cristallins établis par Fedorow, est désignée par lui : Syngonie Syme-
trisches Ellipsoid-Gesetz.



CHAPITRE XIII

88. Le Raumgitter, c'est-à-dire cette distribution parallélipipèdique
de sommets sur les arêtes du complexe cristallin, résultat direct de

la construction zonale du complexe et donc des 2 lois expérimentales
du cristal : constance des angles et loi des zones, traduites
mathématiquement par celle de la rationnalité des indices, a donc été
considéré et étudié jusqu'ici à un point de vue purement théorique. La
notion, prise encore à ce même point de vue, de Raumgitter
symétrique a établi dans le dernier chapitre une distinction essentielle
entre le complexe cristallin n'impliquant aucune face avec arête
normale et qui est le complexe du système cristallin tricline, et celui

qui en possède. Par rapport toujours à la symétrie du Raumgitter
primitif correspondant, les 7 types de complexes possibles dans la
donnée d'une face avec arête normale, se réduisent essentiellement
à 5 qui sont les complexes des 5 autres systèmes cristallins, c'est-à-
dire des 5 catégories, telles que la plupart des cristallographes les

établissent entre les cristaux d'espèce symétrique ; en d'autres termes
leurs éléments (arêtes fondamentales et face-unité) représentent
exactement les divers systèmes d'axes cristallographiques auxquels on

rapporte d'ordinaire la position des faces et arêtes cristallines.
Mais il est maintenant surtout une 3me loi du cristal établie par

l'expérience, celle de sa symétrie expérimentale, qui donne au rôle
du Raumgitter dans l'étude du cristal toute sa valeur. Rapporté à la
symétrie des Raumgitters primitifs trouvés de chacun des systèmes,
en tenant compte de ce qui sera dit ensuite, elle s'énonce très
clairement :

Si dans le cristal en formation apparaît une face de l'un des

complexes établis, apparaissent simultanément toutes les faces avec
lesquelles se couvre la première par le groupe entier des opérations
de symétrie du Raumgitter correspondant, ou par l'un quelconque des
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leurs sous-groupes. Mais ce n'est là que le caractère superficiel ; la
symétrie de la substance même du cristal (reconnu entre autres palla

méthode des figures de corrosion, présence des autres propriétés
physiques, cohésion, dilatation, etc.) est celle du groupe complet ou
d'un sous-groupe quelconque des opérations du Gitter.

89. Les seules opérations de symétrie qui effectivement font se

superposer par un seul mouvement un Raumgitter symétrique avec
lui-même, sont donc ses rotations autour de ses axes de symétrie ;

on les appelle ses opérations de symétrie de première espèce. Mais
le Raumgitter possède par sa nature même un centre de symétrie,
c'est-à-dire une opération de symétrie d'un tout autre genre, l'inversion;

en remplaçant par une infinité de mouvements chaque sommet
du Gitter par son sommet inverse le Raumgitter se retrouve en effet

après cette opération, bien que chacun de ses sommets ait perdu sa

place primitive, de nouveau identique à lui-même. Si donc nous
faisons suivre de l'inversion chaque rotation d'un Raumgitter
symétrique, le Gitter se retrouvera chaque fois après les 2 opérations
successives encore identique à lui-même.

L'opération unique qui amènerait chaque sommet du Gitter à la

place où il se trouve par ces 2 opérations successives, transforme
donc également le Raumgitter en lui-même ; on l'appelle une opération

de symétrie du Gitter de seconde espèce (réflexion ou réflexion
combinée à une rotation : axe de symétrie de seconde espèce). En

comptant l'identité, c'est-à-dire l'absence de mouvement, comme
opération de symétrie de première espèce, par opposition à l'inversion,
opération de symétrie de seconde espèce, la symétrie d'un Raumgitter
(et ainsi celle des classes holoédriques correspondantes, § 94-100), est

donc constituée d'un nombre égal d'opérations de symétrie de

première espèce et d'opérations de symétrie de seconde espèce. Elles
sont évidemment toutes les opérations et les seules qui transforment
le Raumgitter en lui-même ; par le fait leur ensemble constitue un

groupe et en possède la propriété caractéristique : l'opération unique
équivalente à 2 opérations successives quelconques du groupe, est

toujours une opération du groupe.
Naturellement, comme nous le verrons d'ailleurs, certaines de

ces opérations du groupe, se nécessitant l'une l'autre, constituent à

leur tour, dans le groupe lui-même, un sous-groupe indépendant,
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possédant pour son propre compte la propriété qui vient d'être énoncée.

Le problème qui se pose maintenaut est précisément de déterminer
dans chaque symétrie de Raumgitter trouvée tous ces sous-groupes
d'opérations possibles ; les cristaux dont ils représenteront la symétrie,
constituent les différentes classes du système cristallin correspondant.

Bravais, Sohncke, Mallard et d'autres ont basé sur cette structure
parallélipipèdique du Gitter l'explication de la nature intime de la
substance cristalline ; Bravais place en chaque sommet du Raumgitter
symétrique un polyèdre moléculaire dont la symétrie est celle du

groupe complet ou des sous-groupes indépendants des opérations du

Gitter. Comme qu'il en soit, les 3 lois expérimentales de la cristallographie

établissent donc, surtout celle de la symétrie du cristal, une
corrélation idéale entre la structure du Gitter et la symétrie du milieu
cristallin. Jusqu'à quel point nous permet-elle de pénétrer dans la
nature intime du cristal? Nous sommes trop peu autorisé pour le

dire ici ; nous n'avons eu d'autre but dans ce travail que de montrer
cette corrélation en établissant avec les différents types de complexes
la symétrie des Gitters primitifs correspondants, pour y adapter
ensuite la loi de symétrie et en déduire par une méthode nouvelle et
intéressante les 32 classes possibles de cristaux.

90 Si nous prenons 3 vecteurs-unités i, j, k, formant un système
trirectangulaire d'axes et que par une opération de symétrie de
première ou de seconde espèce autour du point O, ces 3 vecteurs
coïncident avec le nouveau système trirectangulaire i', j', k', la somme
conventionnelle des 3 dyades *, formée chacune de la simple
juxtaposition de ces 2 vecteurs :

0 H 4- jj 4- kk

constitue un dyadic* représentant l'opération donnée.

En effet soit un vecteur quelconque §1 déterminant le point P
de l'espace et décomposé selon les directions des 3 vecteurs-unités

t, j, k:
$ xi 4- yj 4- zk

*) Vcctoranalysis : Gibbs. Le mot anglais « dyadic » pourrait se traduire cn
français dyadique (féminin) comme le mot anglais « quadric » se traduit par le
mot français quadrique. Comme pour le mot « dyade » j'ai gardé simplement le
mot anglais plus court « dyadic » ; cela m'a paru sans aucune importance.
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Faisons ce que Gibbs appelle le produit scalaire du vecteur $

par le dyadic 0 et qu'il écrit ainsi :

(xt4-yj4-zk)-(tt'4-ii'4-fcfO
c'est-à-dire multiplions scalairement chaque composante du vecteur $
par le vecteur antécédent de chaque terme du dyadic (voir la
remarque). Nous obtenons le nouveau vecteur :

r xi'+ yj'+ zk'

dont la position par rapport aux nouveaux axes i', j', k' est

identiquement celle du vecteur $ par rapport aux premiers. Le dyadic 0
employé comme opérateur sur le vecteur fl d'un point quelconque
de l'espace, lui fait donc subir autour du point O la même opération
qui a amené t, j, k en i', j', k'. Il est ainsi l'expression algébrique
de l'opération donnée et les positions extrêmes des vecteurs-unités
i, j, k, déterminant l'opération en elle-même, déterminent également
complètement le dyadic qui la représente.

Remarque. La juxtaposition des 2 vecteurs qui constituent la dyade est pour
Gibbs une 3",e sorte de produit qu'il appelle produit indéfini de 2 vecteurs. Le

produit scalaire est une quantité pure et n'impose aux 2 vecte rs qui le forment
qu'une condition : le produit de leurs tenseurs par le cos de leur angle. Le produit

vectoriel est un vecteur et leur impose 3 conditions : le produit de leurs
tenseurs par le sinus de leur angle, le plan dans lequel ils se trouvent et leur position

réciproque. Le produit indéfini représente 2 vecteurs et leur impose 5 conditions :

la direction et le sens de chacun et le produit de leurs tenseurs. La dyade possède

en effet la propriété associative ; il suffit de le montrer pour les 2 sortes de

produits, produits scalaires de dyades par vecteur et de dyades par dyades, qui
nous sont nécessaires ici. Si d'une manière générale :

0, b, t, b, sont 4 vecteurs-unités quelconques et a a'a", le produit scalaire
de vecteur par dyade, c'est-à-dire le produit scalaire du vecteur par le vecteur
antécédent de la dyade pris comme coefficient du vecteur conséquent :

r aab r- a'aa"b r- a"„a'b a'a"(r-a)b ;

le produit scalaire de dyade par dyade, c'est-à-dire le produit scalaire dos vecteurs

moyens pris comme coefficient de la dyade formée des vecteurs extrêmes :

tò- aob cb- a'na"b=ci>-a"(ia'b a'a"(a b) cb

Donc: anb a'oa"b — a"ita'b=:uab etc.

Pour cette raison si l'un des vecteurs est négatif, la dyade est négative; si
le coefficient de la dyade est nul, celui de chacun de ses vecteurs est également nul.

La dyade possède également la propriété distributive, mais on ne peut
changer l'ordre des vecteurs qui se juxtaposent, c'est-à-dire :
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n(b4- f)= »b 4- at
En effet: x ¦ [a (b 4-1)} x - (ab + ne)

parce que : x ¦ a (b 4- c) r • ob 4- r- ot

On le démontrerait de même pour le produit scalaire de dyade par dyade.

91. Soient maintenant les 2 opérations successives :

$x \ï + jj' 4-bk'
<2>2-M't"4-j'j"4-k'k"

Si nous faisons le produit scalaire des 2 dyadics qui s'écrit:

(it'4-ij' + kk').(i't"4-i'i" + h'k")

et qui naturellement consiste dans la multiplication scalaire de chaque
dyade du premier par chaque dyade du second (remarque précédente),

nous obtenons le nouveau dyadic :

<Ê3=tt"-HJ"+kk"
c'est-à-dire le dyadic qui représente l'opération unique équivalente
aux 2 opérations successives données. Les combinaisons d'opérations
de symétrie successives qui peuvent avoir lieu autour du point O

s'expriment donc par les produits scalaires des dyadics équivalents,
et si ces opérations soni telles qu'elles constituent un groupe, le

groupe de leurs dyadics jouit de la propriété caractéristique : que le

produit scalaire de deux d'entre eux est toujours un dyadic du groupe.

Remarque. Naturellement les vecteurs t', j', fc' ; i", j", ft" peuvent être
rapportés très bien aux 3 axes trirectangulaires i, j, k et le dyadic :

<2>i 3= ii' 4- jj' 4- hk'
s'écrit également :

i(xi't 4- yij 4- zi'k) -f- j (x2t 4- y2j 4- zi>k) 4- k (xjt 4- y3j 4- z8k)

Puisque la dyade possède la propriété distributive et associative, il se
développe en nonion Form (Gibbs) représentant toujours le même dyadic :

xi tt~L yitj -f- ziik
+ x^t4-y2jj-{-z2jh
4-x3kt4-y3kj4-z3kk

Le dyadic i't" 4 )'l" + fc'fc" rapporté aux axes i, j, k se développerait de la
même manière en nonion Form et inversement la nonion Form obtenue se réduirait
à la somme des 3 dyades, représentant encore le dyadic donné :

t[(xixi'4-x.,x;'4-x:ixï)t4-(xiyi'+x.2y:;4-x^y;;)j4-(....)k]4-j[....]4-k[....]
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Les vecteurs des grandes parenthèses sont ainsi les nouvelles positions que
prennent les vecteurs i, j, h par l'o ération donnée i'i" 4 i'i" + k'k". Rapporter
les positions successives j', j', k', i", \", k", etc.. aux axes fondamentaux i, j, k,

de position fixe dans l'espace, revient donc à rapporter tous les dyadics à ces

axes, c'est-à-dire à donner à toutes les opérations équivalentes les positions
primitives i, j, k, pour point de départ. C'est ce que nous ferons pour chacun des

groupes de dyadics, représentant le groupe entier d'opérations du Gitter primitif
correspondant à chaque complexe, que nous allons écrire. D'ailleurs, sauf pour le
Gitter hexagonal dont les opérations d'ordre sénaire exigent des dyadics de forme
un peu moins facile, tout y est bien plus simple que ce qui vient d'être dit d'une
manière plutôt générale.

Si nous écrivons en effet par ordre de symétrie de leurs Gitters les 5

complexes ou systèmes cristallins : tricline, monocline, rhombique, quadratique et
cubique, on se rend compte immédiatement que les groupes d'opérations correspondants

: centre de symétrie, binaire, terbinaire, quaternaire, et terquaternaire, sont

impliqués chacun dans celui du système supérieur. Puisque le groupe d'opérations
de la symétrie terquaternaire se réduit en fait aux 48 manières possibles de

couvrir 3 vecteurs-unités triperpendiculaires j, j, k avec eux-mêmes ou avec —i,
—j, —k, (les 3 arêtes du cube élémentaire ne peuvent se couvrir qu'avec elles-
mêmes ou les arêtes inverses), les dyadics représentant les opérations de symétrie
de ces 5 premiers systèmes se réduisent donc chacun à 3 dyades de coefficient 1

ou —1 et dont j, j, k, dans un ordre ou un autre, sont à la fois les vecteurs
antécédents et les vecteurs conséquents. Le produit de 2 quelconques de ces dyadics
revient donc uniquement à multiplier chaque dyade de l'un par la seule dyade de

l'autre qui a pour vecteur antécédent le vecteur conséquent de la première, et les
coefficients des nouvelles dyades sont également 1 ou — 1 selon que les 2 dyades
dont elles résultent sont de même signe ou de signe contraire.

Si nous appelons dyadics pairs ceux de ces dyadics qui ont un nombre pair
(0 ou 2) de dyades négatives et dyadics impairs ceux qui en ont un nombre
impair (1 ou 3) nous avons immédiatement cette propriété qui nous servira à préciser
les sous-groupes de ces dyadics : Le produit de 2 dyadics pairs ou de 2 dyadics
impairs est toujours un dyadic pair et le produit de 2 dyadics de parité différente
est toujours un dyadic impair. C'est une conséquence directe du fait que les
combinaisons de signes 4+ et donne le signe positif et les combinaisons -j
et —|- donnent le signe négatif, et cela se démontre très simplement. Le produit
des 2 dyadics, ou plutôt en n'écrivant que les signes des dyades, des 2 rangées
de signes : 4 + +

+ + +
(en multipliant donc chaque signe de la première par un seul signe de la seconde)
donne comme résultat 3 dyades c'est-à-dire 3 signes positifs. Dès que l'on introduit
dans l'une des rangées un signe — en place d'un signe 4> 'e produit possède un
signe — ; si on en introduit un second dans la même ou dans l'autre rangée, ou
bien il annule le premier ou bien donne un second signe —. Par le fait on en
introduisant un 3me le résultat aura 1 ou 3 signes négatifs, et ainsi de suite. Si
donc la somme des signes négatifs introduits dans les 2 rangées est paire, en
d'autres termes si les 2 dyadics donnés sont de même parité, le résultat a un
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nombre pair de signes négatifs ; si cette somme est impaire c'est-à-dire si les 2

dyadics sont de parité différente, le résultat a un nombre impair de signes négatifs,

c. q. f. d.

Nous n'écrirons pour les 5 premiers systèmes chaque dyadic qu'une fois,
c'est-à-dire que pour chaque système supérieur nous n'écrirons que les dyadics
représentant les opérations nouvelles. La classe possédant la symétrie du groupe
complet des opérations du Gitter est la classe holoédrique du système. Selon que
le nombre des opérations ou des dyadics des sous-groupes obtenus est la demie,
le quart ou même le huitième du nombre des dyadics du groupe entier de symétrie,

la classe correspondante est une hémiédrie ou hémimorphie, une tétartoédrie>
ou même une octaédrie de cette classe holoédrique. Les dénominations ajoutées
entre parenthèses sont les dénominations maintenues aux classes par différents
crislaliographes et empruntées généralement au nom de la forme cristalline normale
correspondante.

92. Système tricline. Son Raumgitter ne possède ni axe de
symétrie et par le fait ni plan de symétrie ; les seules opérations qui
le fassent coïncider avec lui-même sont l'identité et l'inversion autour
du point O :

1. fi + jj-fkk
2. — ti — jj — kk

L'identité est indépendante et détermine une classe ; l'inversion
multipliée par elle-même exige l'identité. Nous avons ainsi les 2 classes :

I. Classe tricline-hémiédrique (asymétrique). 1.

IL Classe tricline-holoédrique (pinakoidale). 1. 2.

93. Système monocline. Son Raumgitter (et d'ailleurs le

complexe lui-même) possède un axe binaire et par le fait un plan de

symétrie normal. En effet si t et j sont
2 vecteurs-unités perpendiculaires dans le

plan normal à l'axe binaire et k le

vecteur-unité coïncidant avec cet axe, le dyadic

3, équivalent à l'axe binaire, multiplié

par l'inversion donne le dyadic 4,

qui est le plan de symétrie normal (fig.
19).

M

3.

4.

it — jj 4- kk

it 4- Ü — kk
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Chacun de ces dyadics multiplié par lui-même donne l'identité

et détermine une classe ; mullipliés l'un par l'autre, ils exigent
l'inversion et représentent la symétrie de la classe holoédrique du système :

III. Classe monocline-hémimorphe (sphénoidique).
IV. Classe monocline-hémiédrique (domatique).
V. Classe monocline-holoedrique (prismatique).

94. Système rhombique. Le Raumgitter possède avec l'axe
binaire k les 2 axes binaires perpendiculaires i et j dans le plan de

symétrie normal ; les dyadics 5 et 6 équivalents, multipliés par
l'inversion, donnent les 2 autres plans de symétrie 7 et 8 correspondants
à ces axes :

5. it — jj — kk
6- — ii 4- H — kk

7. -ii4-ji + kk
8. ü - jj + kk

Les nouvelles classes sont immédiatement :

4 dyadics pairs
2 dyadics pairs et 2 impairs
Groupe holoédrique 5. 6. 7. 8. 4. 3. 2. 1.

Toute autre combinaison par eux-mêmes ou 2 à 2 de ces
nouveaux dyadics détermine l'une des classes déjà obtenues au système
précédent, sinon le groupe holoédrique des 8 dyadics donnés. Nous

avons donc les 3 nouvelles classes :

VI. Classe rhombique-hémiédrique (bisphénoidique).
VII. Classe rhombique-hémimorphe (pyramidale).

VIII. Classe rhombique-holoédrique (bipyramidale).

Pour ces 3 premiers systèmes la forme des dyadics se réduit donc aux 8

variations que peuvent fournir les 3 signes des dyades de la forme générale :

H + jj 4 kk

L'identité est donc en quelque sorte le dyadic type de leurs opérations et si

nous multiplions par l'une d'elles l'un des dyadics quelconque des 5 autres types
qu'impliqueront les opérations des 2 systèmes suivants (ce qui fait pour le système
cubique 6 types à 8 variations chacun 48 dyadics), cette multiplication ne peut
que changer les signes du dyadic donné et le produit sera ainsi un dyadic du

même type.

5. 6. 3. 1.

7. 8. 3. 1.

5. 6. 7. 8.
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95. Système quadratique ou tetragonal. L'axe binaire k devient

un axe quaternaire, et dans le plan normal aux 2 axes binaires i et j
s'ajoutent les 2 axes binaires diagonaux (fig. 19) i' et j'. Les diadics
9. 10. 11. et 12. représentent les nouvelles rotations et multipliés par
l'inversion, exigent l'axe quaternaire de 2"'° espèce 13. et 14. (axe

quaternaire de 1re espèce combiné à une réflexion dans le plan
normal) et les 2 plans de symétrie normaux aux axes binaires 15 et 16:

9. tj — jt 4" kk Ie' mouv.
10. — ij 4- ji 4- kk 3 )axe quat.

11. tj-Hi — kk

12. -ij —ji —kk axes binaires j' et j'

13. — i| —j— |i — kk 3me mouv. \ axe quat.
14. {î ij ({({ 1er mouv. j 2e espèce

15. — tj —- ji -f- kk plans de symétrie nor-

\ß jj _1_ ij _L JiJj mauxauxaxes i'etj'.

Le dyadic-type : t| -f- jt -J— hk multiplié par lui-même donne l'identité

: (ij 4- ji 4- kk)2 ti 4- n 4- kk,

tandis que multiplié par l'un des 8 dyadics précédents, il donne

(remarque précédente) l'une de ses 8 variations que nous venons d'écrire.
Les 2 dyadics impairs 9 et 10, comme les 2 dyadics pairs 13 et 14,

exigent donc les 2 variations paires de l'identité dont la dyade kk

est positive :

9. 10. 3. 1. puissances du dyadic 9.

13. 14. 3. 1. puissances du dyadic 13.

Les 2 groupes réunis exigent en outre les 2 variations impaires
de l'identité dont la dyade kk est négative :

9. 10. 13. 14. 4, 3. 2. 1.

Remarquons d'abord que le groupe suivant des 4 dyadics 11.

12. 15. et 16. représente de nouveau dans le système quadratique la
symétrie du système précédent, et qu'il est donc inutile de le prendre
à part pour retrouver les classes déjà obtenues. En introduisant 11.

ou 15. dans le 1er groupe trouvé, il faut y introduire 12. ou 16. par
le fait de la présence de 3. ; nous obtenons ainsi soit les^4 variations
impaires du nouveau type exigeant les 4 variations paires de l'identité,

soit les 4 variations du nouveau type dont la dyade kk est positive
exigeant les 4 variations de l'identité dont kk est également positif :



116 —

9. 10. 11. 12. 5. 6. 3. 1

9. IO. 15. it;. 7. 8. 3. L

En introduisant 11. ou 15. dans le 2me groupe trouvé, il faut y
introduire encore 12. ou 16. par le fait toujours de la présence de 3.;
nous obtenons soit les 4 nouvelles variations dont kk est négatif
exigeant les 4 variations de l'identité dont kk est positif, soit le groupe
des 8 dyadics pairs compris dans les 16 dyadics donnés :

13. 14. 11. 12. 7. 8. 3. 1.

13. 14. 15. 16. 5. 6. 3. 1.

Mais on voit immédiatement que ces 2 derniers groupes
représentent la même symétrie : l'axe quaternaire de 2e espèce, 2 plans
de symétrie perpendiculaires passant par cet axe alternant avec 2

axes binaires perpendiculaires dans le plan normal.
Dès que l'on introduit maintenant dans l'un des groupes à 8

dyadics, l'un quelconque des dyadics donnés qu'il ne contient pas
encore, on obtient le groupe entier des 16 dyadics donnés, représentant

la symétrie du Gitter quaternaire et celle de la classe holoédrique
du système. Nous avons donc :

IX. Classe tetragon.-hémiédrique-hémimorphe (pyramidale).
X. Classe tetragon.-sphénoidique-tetartoédrique (bisphénoidique).

XL Classe tetragon.-pyramidale hémiédrique (bipyramidale).
XII. Classe tetragon.-trapézoédrique hémiédrique (trapézoédrique).

XIII. Classe tetragon.-holoédrique-hémimorphe (ditetr. pyramidale).
XIV. Classe tetragon.-sphénoidique-hémiédrique (scalénoédrique).
XV. Classe tetragon.-holoédrique (ditétrag. bipyramidale).

96. Système cubique ou régulier. Les axes i et j sont également
quaternaires. A l'un et l'autre est donc attaché le système de dyadics
représentant la symétrie quaternaire correspondante, et ces 2 systèmes
s'écrivent immédiatement en donnant successivement à i et à j le
rôle de k dans les dyadics du § précédent :

Axe quaternaire i et axes binaires Axe quaternaire j et axes binaires
diagonaux dans le plan (jk) diagonaux dans le plan (th)

17.» it -h jk — kj 25. — ik4-jj4-ki
18. ti —jk-f-kj 26. tk-J-jj-kt
19. _ü-fjk4hj 27. tk —jj4-ki
20. -ii — jk — kj 28. — ih — jj — kt
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Multipliés par l'inversion :

Axe quaternaire i de 2",<! espèce et Axe quaternaire j de 2m<! espèce et

plans de symétrie diagonaux pas. par l'axe, plans de symétrie diagonaux pas. par l'axe.

21. — ii — jk + kj 29. ih —jj —ht
22. — ii4-jk —kj 30. — ik —jj4-ki
23. ii-jk —kj 31. — ih + jj-hi
24. ii4-jh4-hj 32. th4-jj4-ki

Les directions des 4 diagonales principales du cube élémentaire
sont en outre des axes ternaires (fig. 17), dont les 2 mouvements qui
ne sont pas l'identité s'écrivent immédiatement (fig. 19) ; multipliés
par l'inversion ils deviennent les 2 dyadics de 2me espèce qui sont
les 1er et 5me mouvement d'axes sénaires de 2",e espèce (axes sénaires
de lre espèce combinés à une réflexion dans le plan normal, leur
3me mouvement est l'inversion) coïncidant avec les axes ternaires.

lre axe 2me axe
(en sens inverse des aiguilles d'une montre) (en remplaçant dans le 1er i par j et j par -i)

33. tj + jk -f- hi 37. — ih—)i4-hj
34. ik 4- ji 4- kj 38. — ij + jk — ki

39. ik -f ji — kj
40. ij — jh 4- ki

4",e axe
et j par -j) (en remplaçant dans le 1er i p. -j et j par -j)

35. — ij — jk --Iti
36. — ik — ji —

3mo axe

kj

(en remplaçant dans le 1er t p. -ici

41. ij - jk - ht

42.- — tk+ ji- kj

43. -ij + ik-f-l;i
44. th — ji 4- kj

45.
46.

ih — ji — kj
— ii — jh 4- ht

47.

48.
— ih + ji 4- hj

tj 4- jh — ht

Il est inutile d'abord de chercher de nouveaux groupes de dyadics
pris exclusivement dans l'une seule des symétries quaternaires : ils
ont été déjà trouvés au système précédent; comme aussi des groupes
impliquant un seul axe ternaire ou un seul axe sénaire de 2me espèce :

il se retrouveront plus simplement et à plus juste titre dans les dyadics
du système suivant.

Les 4 axes ternaires sont tous des dyadics pairs dont les 2

formes types, multipliées chacune par elle-même, exige la seconde, et

multipliées l'une par l'autre, exigent l'identité :
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(ij-Hk + ki)2=Mk4ji4-ki
(Ìh4-it4-ki)2 ij + jk4-ht

(tj4- Jh4-ht)-(ih4-it4-ki) it4-ii4-kk.

La présence de 2 quelconques de ces axes entraîne donc celle
des 2 autres, et par le fait les 4 variations paires de l'identité :

33. 34. 37. 38. 41. 42. 45. 46.
5. 6. 3. 1.

Les 4 axes sénaires de 2me espèce sont les variations impaires
des 2 types ; la présence de 2 d'entre eux exige celle des 2 axes
ternaires correspondants et par suite le groupe complet des dyadics
des 2 types avec les variations paires et impaires de l'identité :

33 à 48
1 à 8.

Deux quelconques des 3 types quaternaires donne comme produit

un axe ternaire ; et si l'on accouple un type quaternaire à l'un
ou l'autre des types ternaires, ils exigent les 2 autres types quaternaires

:

(ii 4- jk 4- kj) • (ik 4- jj + kt) tj 4- jk 4 ki

(ik -4 jj + ht) • (it 4- jh 4- kj) ih -f- ji + kj

(ik 4- jj + ki) - (ij -f jk 4- kt) ti + jk f kj
(ik-f- Ü 4- kt) • (ih + it 4- kj) tj + ji + kk

11 n'existe donc pas de combinaisons de 2 types quaternaires
sans dyadics ternaires et on obtiendra les sous-groupes qui restent à

trouver en introduisant les dyadics quaternaires dans les 2 groupes
de types ternaires obtenus.

Si l'on introduit dans le groupe des 4 axes ternaires un dyadic
quaternaire impair, ses combinaisons avec les dyadics pairs des axes
ternaires fournissent les dyadics impairs des 3 types quaternaires, et

les produits de ces derniers sont soit à nouveau les dyadics pairs
des axes ternaires (combinaisons de 2 types), soit les 4 variations
paires de l'identité (combinaisons d'un même type) :

9. 10. 11. 12. 17. 18. 19. 20. 25. 26. 27. 28.

1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Si l'on introduit dans ce groupe des 4 axes ternaires un dyadic
quaternaire pair, ses produits avec les dyadics pairs des axes ter-
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nahes sont les dyadics pairs des 3 types quaternaires, et les
combinaisons de ceux-ci fournissent encore soit à nouveau les dyadics pairs
des axes ternaires, soit les 4 variations paires de l'identité :

13. 14. 15. 16. 21. 22. 23. 24. 29. 30. 31. 32.
1. 3. 5. 6. 33. 34. 37. 38. 41. 42. 45. 46.

Par contre dès que l'on introduit dans le groupe des 4 axes
sénaires de 2me espèce un dyadic quaternaire quelconque, ses
combinaisons avec toutes les variations paires et impaires des 2 types
ternaires sont les dyadics pairs et impairs des 3 types quaternaires,
et les produits de ces derniers comme ceux des types ternaires entre
eux, exigent les variations paires et impaires de l'identité. Nous
obtenons ainsi le groupe entier des 48 dyadics donnés, représentant
les 48 opérations possibles couvrant les 3 vecteurs-unités triperpen-
diculaires i, j, h avec eux-mêmes ou — i, — j, — k, c'est-à-dire le

groupe de symétrie de la classe holoédrique du système cubique. Les
5 nouvelles classes sont dans l'ordre trouvé :

XVI. Classe régulière-tétartoédrique (létraédr. pentagondodé
caédrique).

XVII. Classe pentagonale-hémiédrique (dyakisdodecaédrique).
XVIII. Classe gyroédrique-hémiédrique (pentagon.-icositetraédr.).

XIX. Classe tétraédrique-hémiédrique (hexakistetraédrique).
XX. Classe régulière-holoédrique (hexakisoctaédrique).

97. Système hexagonal. Soient i et j 2 vecteurs-unités
perpendiculaires pris sur 2 axes binaires du réseau fondamental et k le

vecteur-unité normal au plan de

la fig. 20 et coïncidant avec l'axe
sénaire du Raumgitter. L'unité
étant le côté du triangle equilateral

élémentaire, les nouvelles
positions i', j', k' que prennent
les vecteurs i, j, k par le 1er

mouvement de l'axe sénaire sont
immédiatement :

•f 13 1- iM + Tl Ii'
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et le dyadic représentant le mouvement s'écrit :

i4i4-l/| j) + i(-1/|-i+|i)4-kk
Le second mouvement (rotation de 120°) change t et j en j" et — i" ;

son dyadic s'écrit pareillement :

i Vu., vu. iM—Ï-+ 2"l) + l(- yi— yl) + kk

Le 3me mouvement est celui de l'axe binaire impliqué dans l'axe
sénaire ; son dyadic est le dyadic 3 (§ 93). De là, pour les 2 autres
mouvements qui restent avant l'identité, les positions des vecteurs
i et j sont exactement les valeurs négatives de leurs positions après
le 1er et le 2me mouvement ; il suffit donc de changer les signes des

2 premiers termes des dyadics trouvés pour obtenir leurs dyadics
équivalents.

Le premier axe binaire i" change les vecteurs t et j en i' et —j'
et k en — h ; son dyadic correspondant est donc :

1 VU .VU 1

t(yt+ yl) + l( 2-t-yj)-hk
Le second axe binaire t' change inversement i en j" et j en i",

son dyadic s'écrit :

i Vu.. .vu. ii(-yt+ yl)4-l( y»4-yl) —kk

L'axe binaire j comme l'axe binaire i sont les 2 axes binaires
du complexe rhombique impliqués dans la symétrie du Gitter hexagonal

et représentés par les dyadics 5 et 6 (§ 94). Enfin les 2 autres

axes binaires j" et j', par le fait qu'ils sont normaux aux 2 premiers
axes binaires i" et i', donnent par leur mouvement à i et à j les

directions inverses de celles que leur donnent les axes i" et i', leurs
dyadics sont donc de nouveau les 2 dyadics trouvés avec leurs 2

premiers termes pris en signe contraire.
Dans chaque dyadic obtenu, nous faisons les produits indéfinis,

c'est-à-dire nous formons les dyades comme il a été fait dans la

remarque du § 91 ; nous appelons pour simplifier les dyadics à 2

termes (dyadics planaires) :

9>i=ii + Ü 9?s ÌÌ4-ÌÌ «1=2

<p2=U — jj <^ ij —ji E2~V\
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Nous multiplions par l'inversion ces opérations de lre espèce

pour obtenir celles de seconde espèce en changeant simplement les

signes des dyadics, et nous avons ainsi réuni en 24 dyadics le groupe
complet des opérations représentant la symétrie du Raumgitter
hexagonal et de la classe holoédrique correspondante :

Les 6 mouvements de l'axe sénaire. Les 6 axes binaires j", j', j, j", j', j.

1' ei<Pi s s2<Pi i kk 13' exip2 4" s2<Pa — kk

2' hi'i + e-2<Pi + kk 14' — Ei<p-2 4" E'2fa — kk

3' — n 4- kk L;V — co2 — hk

4' — ^ltyl —^29rl ~~M "" 16' ^19^2 ^29^3 ^"
5' «in — «2?'4 4" kk 17' ^19^2 ^29*2 "R

6' <px 4- kk 18' <p2 - kk

Multipliés par l'inversion :

(mais en partant de 4' et 16' pour plus d'homogénité).

Les 6 mouvements de l'axe sénaire combinés

cbaeun avec une réflexion dans
le plan normal.

6i*>i 4" e2<Pi — kk

ei<pi -\- e-2<pi — kk

— qix — kk

•£iri — s-2<Pi — kk

exipx — e2</)4 — hk

</>i — kk

T
8'
9'

10'
11'
12'

Les 0 plans de symétrie normaux aux
axes i", i'. i', l", i', j et dont les traces sur
le réseau fondam. sont donc j", \ ,\, j", j',j.

19' ex<p2 4- £2<pa 4~ kk
20' — excp2 4- e2V3 4- hk

21' — <p2 4- kk
22' — sx<P2— e2<p3 + kk

24' ç>24-kk

98. Nous appelons dyadics sénaires les dyadics numérotés d'un
chiffre impair et dyadics ternaires les dyadics numérotés d'un chiffre
pair. Les différentes formes des dyadics sénaires, abstraction faite de

leur dernière dyade kk indépendante des 2 premiers termes dont les

dyadics ne renferment que les vecteurs i et j, sont uniquement :

sxcpx 4- E2cpi excp.2 4- e.2cp3

«i9?i — E-2<Pi E\<P-2 — E-2<Pa

— <Pi — <P-2

En multipliant chacune des 4 premières de ces formes par elle-
même et chacune des 3 autres, nous obtenons les 16 produits que
voici, dont les seconds membres sont uniquement chacune des 6

formes correspondantes des dyadics ternaires :
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(e1(p1 4 r.2<pi)- — rt<pl 4 e.,^4 («l9)s 4 t.,r3)J — <p,

(esipt — e2ipkf — e1ip1 — s.,iPl (rlV., — e2<psY — Vl
(s1<p1 4 s2<pi).(e1<pl — e,9?4) — os, (f,^., 4 £,9?.,) (e^ — «,<?>.,) —«^, 4 e2ç>4

(«,97, — «^J.fo?, 4 «>fl) fl («1 f2 — «2fs) («1 f2 + «>f :l) —«if1 — «2f4

(«ifi + «sfj («ifs + «sfa) —«ifs + «sfa («if i — «sfj («if» + ««fa) f«
(«if2 + «2f8l («ifi + «sfJ <P-2 («if,. + «>f:i)-(«if i — h<Pi) — —«if2 + «afa

(«if + «üf4) («if2 — «sfa) f2 («if 1 — «sf l)-(«lf2 — «îfs)= ~«if2 ~ «sfa
(«if2 — «2f:>) («ifi + «sfj) —«if 2 — «sfa («if2 —«sfa) («if i — «»fé) f2

Ces produits s'effectuent très simplement : les combinaisons scalaires cp, <pk

étant trouvées une fois pour toutes (les combinaisons cptcpk r-zz <pk car cpl est
l'identité planaire (ij)), chaque produit se fait comme le produit de 2 binômes
algébriques.

Ainsi : (e1<p1 4 e.2(pA- e\<p\ 4 2 e1si<p1<pi 4 «if! («? — «2) f1 + «2f4 —«if1

4 «>f j- D'ailleurs les résultats des 6 premiers produits peuvent être donnés à

priori : les puissances du 1er mouvement de l'axe sénaire sont évidemment les 5

autres rotations différentes qu'il implique, celles du dyadic 2', les dyadics 4' et 6'
qui sont les 2 autres mouvements de l'axe ternaire, et la seconde puissance d'un

axe binaire doit donner l'identité. Les résultats trouvés ne sont qu'une confirmation

par le calcul en dyadics de ce qui se déduit déjà dans ce cas-ci plus simplement

par le raisonnement seul. D'ailleurs à vrai dire, à condition d'établir d'abord les

dépendances qui existent entre les éléments de symétrie : centre, axes et plans de

symétrie, toute cette déduction par les dyadics de la symétrie des 32 classes
cristallines de celle des 6 classes holoédriques se fait bien plus simplement au moins

pour certaines classes par le seul raisonnement en supprimant successivement les
éléments de symétrie dans chaque classe holoédrique. Les dyadics ont l'avantage
d'être l'expression même algébrique des opérations de symétrie, d'en impliquer
par le fait en eux-mêmes les dépendances mutuelles et de fournir ainsi directement,

par leurs combinaisons réciproques, les combinaisons mêmes de ces opérations sans
en laisser échapper aucune.

Naturellement si l'un des dyadics facteurs des 1ers membres

change de signe, chaque terme ou chaque dyade du produit change
de signe et le second membre doit être pris en signe contraire ; par
suite si les 2 dyadics facteurs changent de signe à la fois, le résultat
ne change pas comme pour un produit ordinaire.

D'autre part, le dyadic — qox ne fait que changer le signe du

dyadic planaire (ij) qu'il multiplie (celui dont les dyades ne renferment

que les vecteurs-unités i et j et dont l'opération équivalente a

lieu ainsi dans le plan de ces vecteurs) ; le dyadic — q>2 change cpx

en —cp.2, cpi en ±953 (c'est-à-dire <p2qji qj3 et <piq>2 — 95,), et

inversement change cp2 en —cpx, ç>8 en ±ç>4. On se rend donc compte
sans peine que toute combinaison de l'une quelconque des 6 formes
sénaires écrites, avec elle-même ou chacune des 5 autres, est toujours
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l'une des 6 formes ternaires correspondantes. Mais puisque les formes
des dyadics ternaires sont précisément celles des dyadics sénaires

prises en signe contraire, en vertu de ce qui vient d'être dit du

changement de signe, et en considérant encore une fois les résultats
des produits effectués, les combinaisons des 6 formes sénaires et les

signes de la dernière dyade kk, nous obtenons immédiatement les 2

principes suivants dans le groupement des 24 dyadics donnés, qui
nous fournissent aussitôt les 11 sous-groupes indépendants d'opérations
de la symétrie sénaire.

Le produit de 2 dyadics ternaires ou de 2 dyadics sénaires est

toujours un dyadic ternaire, tandis que le produit d'un dyadic
ternaire et d'un dyadic sénaire est toujours un dyadic sénaire.

Le produit de 2 dyadics d'une même colonne, ï à 12' ou 13'
à 24', (d'une même rangée, ï à 6' avec 13' à 18' ou 7' à 12'
avec 19' à 24') est toujours un dyadic de la première colonne

(rangée), tandis que le produit de 2 dyadics pris un dans chaque
colonne (rangée) est toujours un dyadic de la seconde.

En effet dans ces conditions, chacun des groupes de dyadics qui
suivent est tel que le produit de 2 quelconques de ses dyadics ne

peut être que l'un des dyadics du groupe :

1' à 6' 13' à 18M groupe holoédrique des 24 dyadics sénaires et ter-
v ÌT à 12' 19' à 24' / naires.

1' à 6' 7' à 12' Ie produit de 2 dyadics de la 1" colonne est toujours
un dyadic de cette colonne : axe sénaire et plan de

symétrie normal.

1' à 6' 13' à 18' Ie produit de 2 dyadics de la 1" rangée ne peut être
qu'un dyadic de cette rangée : axe sénaire ct 6 axes

binaires.
1' à 6' 19' à 24' les 2 principes simultanément: axe sénaire et 6 plans

de symétrie.
1 a O axe sénaire; puissances du dyadic 1'.

2' 4' 6' 14' 16' 18'
8' 10' 12' 20' 22' 24

1 variation du groupe précédent : les dyadics sénaires
2 4 6 14 16 18 7', 9', etc., exigent également les dyadics ternaires
7' 9' 11' 19' 21' 23' 2', 4', etc., et inversement leurs produits avec ces

J derniers les reproduisent eux-mêmes.
Cette autre variation remplit aussi les mêmes conditions :

2' 4' 6' 13' 15' 17' mais représente à première vue la
7' 9' 11' 20' 22' 24' même symétrie que la précédente.

f groupe complet des 12 dyadics ternaires.
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2' 4' 6' 8' 10' 12' dyadics ternaires de la 1" colonne : axe ternaire et

plan de symétrie normal.

2' 4' 6' 7' 9' 11' axe sénaire de seconde espèce.

2' 4' 6' 14' 1 fl' 18' variations de ces 2 groupes représentant encore à
première vue les mêmes symétries :

2' 4' 6' 20' 22' 24' 2' 4' 6' 13' 15' 17'
et 2' 4' 6' 19' 21' 23'

2 4 6 axe ternaire; puissances de 2'.

Ce sont donc là 12 groupes indépendants d'opérations de la
symétrie sénaire, en négligeant naturellement les groupes de symétrie
binaire et terbinaire inclus dans la symétrie sénaire et fournis par
exemple par chaque dyadic de la 2me colonne multiplié par lui-même
ou chaque couple de ces dyadics dont les formes planaires (i j) sont
de signe contraire. Si inversement on établit d'abord, comme il a été

plutôt fait pour les systèmes précédents, les 5 classes inférieures qui
se laissent immédiatement déterminer dans les 12 dyadics de la lre
colonne et introduit ensuite successivement dans les groupes trouvés
les dyadics de la seconde colonne qui exigent nécessairement ceux
de la lre, de manière à ne laisser de côté aucune classe, on se rend

compte de suite que, à part ces groupes de symétrie binaire et ter-
binaire, il n'est pas d'autre groupe indépendant possible que les 12

établis, et qui représentant la symétrie des 12 classes suivantes
dans l'ordre trouvé :

XXI. Classe hexagonal-holoédrique (dihexagonal-bipyram.)
XXII. Classe hexag. pyramidale-hémiédrique (hexagon.-bipyram.).

XXIII. Classe hexag. trapezoédrique-hémiédrique (hexag.-trapezoéd.).
XXIV. Classe hexag. holoédrique-hémimorphe (dihexag.-pyram.).
XXV. Classe hexag. pyram.-hémiédr.-hémimorphe (hexag.-pyram.).

XXVI. Classe trigonale-hémiédrique (ditrigonale-bipyram.).
XXVII. Classe rhomboédrique-hémiédr. (ditrigonale-scalénoédrique).

XXVIII. Classe trigonale-tetartoédrique (trigonale-bipyramidale).
XXIX. Classe rhomboédrique-tétartoédrique (rhomboédrique).
XXX. Classe trapezoédrique-tétartoédrique (trigon.-trapézoédrique).

XXXI. Classe rhomboédrique-hémimorphe (ditrig.-pyramidale).
XXXII. Classe hexagon.-octaédrique (trig.-pyramidale).

L'ordre des classes dans les systèmes étant en réalité sans aucune importance,

nous nous sommes permis de dénommer ces classes directement dans l'ordre
où nous les avons trouvées.
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