Zeitschrift: Mémoires de la Société Fribourgeoise des Sciences Naturelles.

Géologie et géographie = Mitteilungen der Naturforschenden

Gesellschaft in Freiburg. Geologie und Geographie

Herausgeber: Société Fribourgeoise des Sciences Naturelles

Band: 12 (1945)

Artikel: Les nappes des Préalpes médianes et de la Simme dans la région de la

Hochmatt

Autor: Schwartz Chenevart, Charles

Kapitel: I: Stratigraphie des Médianes plastiques

DOI: https://doi.org/10.5169/seals-307201

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PREMIERE PARTIE

Stratigraphie des Médianes plastiques

GÉNÉRALITÉS. Le terme particulièrement descriptif de « Médianes plastiques » introduit en 1941 dans la nomenclature géologique par M. Lugeon et E. Gagnebin (bibl. 115), s'applique à la zone externe du *Dogger à Zoophycos*. Cette zone comprend la plus grande partie de la région de la Hochmatt et y est représentée par un tronçon de l'anticlinal Vanils-Stockhorn, offrant toute la série stratigraphique du Trias au Flysch paléocène.

De part et d'autre du noyau triasique, les formations y sont inégalement développées: elles atteignent un maximum de puissance dans le flanc SE tandis que le jambage NW présente, dans les étages inférieurs au Bathonien, de sensibles réductions qui, comme nous le verrons, sont plus souvent d'origine tectonique que stratigraphique. Nous en entreprendrons la description en partant du Trias, noyau de l'anticlinal. Nous consacrerons ensuite un chapitre à chacun des étages, étudié d'abord dans un profil-type puis dans ses divers affleurements des flancs SE et NW de l'anticlinal.

LE TRIAS

Introduction

Formation la plus ancienne des Préalpes médianes, le Trias, lorsqu'il est complet, y apparaît sous les trois termes suivants, de bas en haut:

- 1. Gypse
- 2. Cornieule
- 3. Calcaire dolomitique.

Dans la région étudiée, le gypse n'affleure en aucun endroit et sa présence ne peut être déduite de l'existence des quelques entonnoirs que signale V. Chassé (bibl. 21), car, comme le remarquait V. Gilliéron (bibl. 64, p. 107), ces entonnoirs peuvent être dus à la dissolution de la cornieule. Par contre, l'argument, invoqué par ce dernier auteur, qu'il existe au Gros-Mont une source sulfureuse, rend plausible l'existence d'un substratum gypseux et cela d'autant plus que j'ai pu observer d'autres sources, au Petit-Mont et à la Leyte, dont l'analyse m'a révélé une teneur relativement forte en H₂S.

Description des affleurements

Sous l'épaisse couverture morainique, qui de la Villette s'étend jusqu'à la vallée du Motélon, le Trias n'affleure que sporadiquement. Là où ses formations apparaissent, elles ne présentent le plus souvent que des séries incomplètes. Ainsi en est-il à la jonction des deux rios de l'Avoyère, où ne pointent que deux faibles bancs de cornieule; au Bi-Chalet, où le calcaire dolomitique voisine avec des marnes jaunes; à la Fin de Dom Hugon, au Praz, au Motélon, où des masses disloquées de cornieule et de calcaires dolomitiques n'offrent aucune possibilité de discerner une succession stratigraphique. Par bonheur, l'abrupt qui se trouve à l'W du chalet de

LE TRIAS 13

Dom Hugon, sous les pâturages du Contain au pied desquels coule le rio du même nom, m'a livré un affleurement de calcaires dolomitiques et de marnes bigarrées en parfaite continuité avec les formations fossilifères du Rhétien inférieur (v. chapitre II, p. 18).

D'autre part, la construction de la nouvelle route du Toss, près de la Villette, a mis à jour le profil suivant, de bas en haut :

- 1. Argilite jaune, présentant des zones orientées de calcite pure.
- 2. Cornieule.
- 3. Argilite.
- 4. Pseudobrèche entremêlée de cornieule dont une coupe mince renferme un fragment de la couche prismatique d'un *Lamellibranche* ¹.
- 5. Cornieule en gros bancs.
- 6. Marnes dolomitiques jaunes.
- 7. Marnes noires et vertes.
- 8. Marnes dolomitiques, veloutées, entrelardées de bancs de 2 à 10 cm. d'argilite diaclasée.
- 9. Banc de dolomie de couleur grise.
- 10. Marnes vertes panachées de rouge.
- 11. Gros banc compact de dolomie à pâte d'un gris très clair, sillonnée de veinules de calcite. Cassure esquilleuse, surface d'altération jaune.
- 12. Argilite feuilletée alors que les niveaux 1 et 3 et les niveaux supérieurs de cette roche paraissent plutôt diaclasés.
- 13. Marnes noires.
- 14. Calcaire dolomitique passant insensiblement à une argilite.
- 15. Argilite diaclasée d'un jaune très clair.
- 16. Marnes noires et vertes.
- 17. Argilite foncée intensément diaclasée.
- 18. Marnes noires et vertes.
- 19. Argilite foncée à patine roussâtre.
- 20. Calcaire dolomitique blond.

¹ Il s'agit probablement d'un organisme amené là par un courant, comme l'a suggéré E. Gagnebin (bibl. 53) à propos du *Pogocrinus raafensis* nov. gen., nov. sp. découvert par M. de Raaf dans la cornieule du Niesen.

- 21. Argilite d'un jaune clair se délitant irrégulièrement en fragments anguleux.
- 22. Gros bancs de calcaire dolomitique.
- 23. Dolomie pulvérulente.
- 24. Marnes noires.
- 25. Calcaire dolomitique gris compact, dont la surface exposée à l'air est nettement cornieulisée.
- 26. Marnes jaunes et rousses.
- 27. Calcaire dolomitique blond très friable.

La partie supérieure de ce profil est recouverte par la moraine, mais l'affleurement situé à l'W du chalet de Dom Hugon (v. chap. II, p. 18) présente, à partir de l'horizon 22, la même succession surmontée des calcaires infraliasiques, si bien qu'il m'est permis d'y reconnaître le sommet du Trias.

Conclusions

Les formations triasiques constituent le noyau de l'anticlinal de la Hochmatt. Bien que très développées (ce que laisse présumer la vaste dépression qu'elles déterminent), elles ne se présentent qu'en de rares et petits affleurements, dissimulées qu'elles sont par les dépôts morainiques.

L'examen attentif de ces formations m'incite à faire cependant quelques brèves remarques relatives à la genèse des cornieules.

Je ne reviendrai pas sur la question de savoir si la cornieule de nos Préalpes est un sédiment originel ou une formation épigénique. V. Gilliéron (bibl. 64, p. 110) estimait que « la structure spéciale de cette roche pouvait s'être produite dès l'origine dans les eaux où elle se déposait » et contestait qu'elle fût une « modification de sa congénère la dolomie ». Mais, à la suite de H. Schardt (bibl. 172), les auteurs qui s'occupèrent du sujet, sans prétendre lui apporter une solution définitive, firent cependant admettre que la cornieule était le produit restant de la dolomie CaMg (CO₃)², après dissolution d'un de ses carbonates. Ceci étant admis, la dolomie peut-elle être considérée comme génératrice de la cornieule sans

LE TRIAS 15

qu'interviennent les facteurs qu'invoque W. Brückner (bibl. 11), celui notamment qui a trait à la présence du gypse? L'observation des faits m'autorise à répondre que, dans certains cas, il ne peut être question d'un rôle quelconque joué par le gypse. En effet, j'ai assisté à la mise à jour d'un calcaire dolomitique compact, d'une belle homogénéité apparente, ceci en 1939 lors des travaux de génie civil effectués près de la Villette; j'ai retrouvé ces mêmes assises quelques mois plus tard, puis, en commençant le présent travail, j'en ai noté périodiquement le processus d'altération. Or, il a suffi de 4 ans pour que ce calcaire dolomitique soit parfaitement cornieulisé sur sa tranche exposée aux agents atmosphériques. Il s'agit du niveau 25 du profil décrit ci-dessus, très facilement observable sur la nouvelle route Villette-Toss à la cote 1030. Ce niveau appartient, nous l'avons vu tout à l'heure, au sommet du Trias. Voici ce qu'en révèle l'analyse pétrographique sommaire:

La roche non atteinte par la cornieulisation accuse en coupe mince une structure très fine. Sous un fort grossissement, les éléments composants se différencient, trahissant leur forme anguleuse, mais ils restent en majorité opaques et comme souillés d'intrusions d'une extrême exiguité. Quelques-uns de ces composants apparaissent très clairs et plus réfringents que la masse fondamentale. Comme l'a confirmé l'essai au chromate d'argent, il ne s'agit pas ici de deux carbonates, que ces seuls caractères permettraient de distinguer.

La *masse cornieulisée* présente, autour des cavités, des auréoles beaucoup plus souillées d'intrusions et il est intéressant de constater que la roche ne réagit que faiblement avec HCl, sauf en ces auréoles où elle fait vivement effervescence.

De réactions microchimiques répétées, on peut déduire que cette roche est très dolomitique en ses parties intactes, plus calcaire en ses parties souillées, et qu'elle n'est gypsifère en aucune de ses parties.

Nous n'examinerons pas quelle modalité revêt ici ce que L. Cayeux (bibl. 20) appelle la cornieulisation par la décalcification du calcaire dolomitique. Ce qui importe, c'est que, dans le cas qui nous intéresse, il est indéniable que la cornieule du niveau 25, située au sommet du Trias, hors de toute influence du gypse, dérive directement du calcaire dolomitique sans que les facteurs cités par W. Brückner (op. cit.) concourent à sa formation.

Ayant examiné à Bâle la collection de cet auteur, nous ne contesterons pas que, dans bien d'autres cas, sa théorie puisse se trouver confirmée. Que le gypse active la cornieulisation, qu'il y joue en quelque sorte le rôle de catalyseur, la très grande abondance de la cornieule à la base du Trias supérieur préalpin en fournit peut-être la preuve.

A ce propos, je ferai brièvement remarquer que, dans ma région, cette dernière cornieule, constituant le niveau 2 du profil du Toss, est caractérisée par la forme polyédrique de ses vacuoles et par la disposition orientée de ses cloisons. Comparée au cloisonnement désordonné de la cornieule du niveau 25, la structure à tendance vers la symétrie de cette cornieule, suggère immédiatement l'idée d'une fragmentation préalable de la roche génératrice. Parmi la masse cornieulisée subsistent, en effet, des témoins d'une roche diaclasée puis recimentée que, pour la commodité de la description, j'ai appelé « pseudobrèche ». Il semble donc bien que le facteur tectonique, que W. Brückner (op. cit.) considère, avec H. P. Cornelius (bibl. 25), comme négligeable, ait joué ici un rôle très important.

En résumé, nous dirons qu'une discrimination des cornieules telle que nous venons de l'établir n'est pas toujours possible. Quelques auteurs (bibl. 93, 107, 172, etc.), ont souligné déjà certaines différences de structure, mais elles sont essentiellement dépendantes de conditions locales. Il en est ainsi dans ma région où la cornieule du niveau 25, présentant une structure sans symétrie, dérive directement du calcaire dolomitique, ce qui permet d'admettre que partout où il y a calcaire dolomitique il peut y avoir cornieule; celle du niveau 2, à cloisons orientées, implique par contre des phénomènes plus complexes que la simple dissolution d'un carbonate et elle se trouve localisée à la base des formations triasiques décrites ici.

LE LIAS

Introduction

Si, comme l'observe Alph. Jeannet (bibl. 72, p. 600), il est difficile de fixer un caractère qui soit commun à l'ensemble du Lias préalpin, on peut néanmoins, partant de quelques faits, le circonscrire dans une définition générale: il constitue dans nos Préalpes l'étage offrant la plus grande variété lithologique.

Ses dépôts de base participent encore de la nature lagunaire du Trias, pour devenir peu à peu franchement marins.

Les sédiments néritiques et bathyaux y sont inégalement répartis car, loin d'être synchroniques sur toute l'étendue des Préalpes, les changements de faciès affectent les formations, latéralement autant que verticalement. Ainsi, par exemple, telle série sinémurienne, à faciès néritique (caractérisé surtout par les calcaires spathiques) sera surmontée de roches pliensbachiennes à faciès typiquement bathyal, alors qu'à une faible distance horizontale, dans cette même série, le faciès néritique subsistera jusqu'au Domérien et atteindra parfois même le Lias supérieur.

La puissance des assises est non moins variable et il arrive même, comme le signale E. Peterhans (bibl. 128, p. 198), que divers indices, tels que surfaces corrodées, trous de *Phollades*, nodules phosphatés, révèlent des lacunes stratigraphiques.

Partant de ces faits, Alph. Jeannet (bibl. 88, p. 457) le premier, émit l'hypothèse de l'existence d'un géanticlinal liasique sur l'aire de sédimentation Tinière-Stockhorn.

Cette notion du géanticlinal considéré comme cause efficiente des variations de faciès, des réductions et des lacunes stratigraphiques du Lias, fut reprise et développée par R. Staub (bibl. 178) et L. Horwitz (bibl. 76 et 78), puis corroborée en quelque sorte par les découvertes stratigraphiques de E. Gagnebin (bibl. 52),

Alph. Jeannet (bibl. 89), E. Gerber (bibl. 89), F. Rabowsky (bibl. 157) et surtout par l'admirable travail de E. Peterhans (bibl. 128).

Ce dernier situe le flanc N d'un géanticlinal à Lias lacunaire dans la région Dt d'Oche-Tinière-Rossinière-Im Fang-Buochserhorn.

La région de la Hochmatt est comprise dans ce secteur. De plus, dans ce même anticlinal du Stockhorn auquel elle appartient, Alph. Jeannet et E. Gerber (bibl. 89) signalent un Lias moyen brèchoïde en contact avec du Trias.

Dans une étude de la région de Jaun contiguë à la mienne, L. Horwitz (bibl. 76, p. 2) décrit un Lias inférieur peu épais mais qui semble être complet dans la vallée de la Jogne, tandis que « des lacunes stratigraphiques, dans le Lias inférieur, réapparaissent avec netteté dans le prolongement oriental du même anticlinal ».

Voyons donc ce qu'il en est dans la région étudiée ici.

A. Infralias: Rhétien-Hettangien

De la Villette à la vallée du Motélon, les affleurements infraliasiques émergent de la couverture morainique de part et d'autre du noyau triasique. Ils ne laissent souvent apparaître qu'un horizon, facilement reconnaissable, mais je n'ai pu saisir le passage du Trias au Rhétien qu'à de rares endroits. Ainsi à 200 m. au NE de la Vagilière de la Générale (vallée du Motélon), de même qu'à l'W du chalet de Dom Hugon (Gros-Mont), le contact entre le Trias et le Rhétien est assez franc; en voici les termes de bas en haut:

TRIAS	a)	Banc compact de calcaire dolomitique	0,30	m.
	b)	Dolomie pulvérulente	0,15	m.
	$\mathbf{c})$	Marnes noires	0,20	m.
	d)	Calcaire dolomitique blond	0,30	m.
	e)	Marnes verdâtres panachées de rouge	0,15	m.
	f)	Calcaire dolomitique très friable (diaclasé) dans sa		
		partie inférieure, compact dans sa partie supérieure		
		et revêtant alors un aspect porcelané et une cou-		
		leur verdâtre	0,40	m.

Rhétien	$\mathbf{g})$	Schistes	noirs, trè	\mathbf{s}	fissiles							0,20 m.
	h)	Calcaire	compact,	g	ris-bleu	ı						0,30 m.
	i)	Schistes	noirs .									0,10 m.
	$\mathbf{j})$	Calcaire	bleu fonc	é,	compa	ct						0,20 m.
	\mathbf{k})	Calcaire	marneux.	1	umach	elli	au	e	-			X m.

Le sommet de l'affleurement disparaît sous la terre végétale. Mais, à 500 m. de là, dans le flanc opposé du même anticlinal, le profil suivant, situé sur la rive droite du rio du Gros-Mont au N

Fig. 1. — Affleurement de l'Infralias complet, sur le chemin des Rouvenesdevant (vallée du Gros-Mont).

Les chiffres renvoient aux niveaux décrits.

du chalet des Rouvenes-devant, présente sur 80 m., une série rhétienne-hettangienne unique dans ma région. Le contact avec le Trias n'y est pas visible.

Profil-type de l'Infralias des Rouvenes-devant (fig. 1).

RHÉTIEN

- 1. Bancs de 30 à 50 cm. d'un calcaire gris-bleu, très compact. Certains de ces bancs sont encore dolomitiques et renferment des fragments rappelant les bone-beds. Ils alternent avec des calcaires plus foncés qui enchâssent des lamelles argileuses d'un noir lustré.
- 2. Petits bancs (3 cm.) de calcaire noir, entrelardés de schistes.
- 3. Alternance de marnes foncées et de calcaires compacts gris, coupés, parallèlement à la stratification, d'innombrables veinules de calcite et présentant, sur les surfaces altérées, de menus débris d'organismes indéterminables.

RHÉTIEN (suite)

4. Lumachelles en gros bancs, formant un surplomb sur la dépression qui souligne le niveau 3. Les fossiles, en gros fragments, quoique se détachant distinctement sur un ciment plus clair, sont rendus généralement indéterminables par l'état d'agrégation avancé de la roche. A 10 cm. du sommet, la roche devient cependant plus marneuse et, les organismes faisant moins corps avec la gangue, on peut y reconnaître

Terebratula gregaria Suess Placunopsis alpina Winkl.

- 5. Calcaire lithographique bleuâtre à cassure conchoïde, happant fortement à la langue. Une altération de couleur jaune, pouvant atteindre une profondeur de 2 cm., fait ressortir tout un réseau de veinules excessivement ténues de calcite pure.
- 6. Calcaire bitumeux noir, légèrement lumachellique.
- 7. Calcaire grenu, très compact, formant un socle à travers le pâturage et renfermant

Avicula contorta Port Terebratula gregaria Suess Plicatula intusstriata Emm.

- 8. Le calcaire 7 passe insensiblement à une roche plus finement litée et plus marneuse.
- 9. Calcaire lithographique semblable à 5.
- 10. Calcaire gréseux avec de rares éléments d'*Echinodermes* qui le rendent, par endroit, finement spathique. On y trouve encore

Avicula contorta Port

- 11. Calcaire à pâte très finement grenue, d'un gris clair, à patine jaune, remarquable par d'innombrables ponctuations pyriteuses. Sous le microscope, la matière fondamentale apparaît d'une grande homogénéité, composée d'éléments argileux aux contours irréguliers d'où se détachent, à côté de fréquentes intrusions calcaires, des zones de pyrite disposées en arcs plus ou moins réguliers qui rappellent, par leur forme, des débris d'organismes.
- 12. Calcaire gréseux, compact, gris, à patine rousse, renfermant quelques éléments très distincts de plaques colonnales d'*Encrines* dont les coupes transversales accusent la structure réticulée.

Ce calcaire passe graduellement à la roche suivante que, en raison de sa faune, je considère comme la base de l'Hettangien. HETTANGIEN. 13. Grès calcaire d'un brun roux très caractéristique. C'est une roche compacte, à cassure esquilleuse, aux arêtes tranchantes, renfermant

Pecten valoniensis Defrance

Sous le microscope, elle se révèle typiquement détritique. Enfermés dans un ciment calcaire teinté d'hématite, ses éléments clastiques sont des grains de quartz anguleux qui en constituent la masse principale, des galets de calcite et, plus rarement, des galets de dolomie.

- 14. Calcaire gréseux gris, moucheté de taches rousses.
- 15. Calcaire gréseux que la présence de glauconie rend verdâtre. Finement spathique. Ce dernier caractère apparaît mieux sur les surfaces altérées. Il m'a livré un fragment d'huitre, mais son équivalent sur la rive gauche en renferme de nombreux et très distincts (voir page 25).
- 16. Calcaire compact gris-clair, ressemblant au Malm.
- 17. Gros banc de 1 m. d'un calcaire compact, traversé de nombreuses intrusions de calcite.
- 18. Calcaire semblable à 17, mais disposé en petits bancs fortement diaclasés.
- 19. Calcaire oolithique finement lité à la base, puis formant des bancs de 30-50 cm.
- 20. Calcaire oolithique et spathique, très compact et d'un gris clair. On y discerne, sous l'objectif, un ciment de calcaire spathique et des sphérolithes de dimensions diverses. La participation des organismes à la formation des oolithes, selon le processus décrit par L. Cayeux (bibl. 20), est rendue ici particulièrement évidente. Nom bre d'oolithes embrassent de leurs cercles concentriques des débris organiques, parmi lesquels on distingue nettement des radioles d'Oursins, des fragments de Crinoïdes ou des tests calcaires.

J'ai adopté ce niveau 20 de calcaire oolithique comme limite supérieure de l'Hettangien. La légère perturbation qui l'affecte dans ce profil est purement tectonique et n'apparaît que le long du chemin. Au fond du ravin, elle n'est déjà plus observable. Je n'ai trouvé aucun indice qui permette de supposer une émersion entre ce calcaire oolithique et les assises qui le surmontent. Ces assises forment un complexe schisto-calcaire absolument stérile, mais leur nature pétrographique, comme nous le verrons tout à l'heure, les apparente au Sinémurien.

Dans ses tableaux stratigraphiques de la «Geologie der Schweiz» Alph. Jeannet, s'inspirant des travaux d'Horwitz (bibl. 74 et 75), prend également ce calcaire oolithique comme limite supérieure de l'Hettangien du massif des Bruns.

Dans les régions de Spiez et d'Iberg, ce calcaire oolithique a livré le *Schlotheimia angulata* Quenst. caractéristique de la partie supérieure de l'Hettangien.

Quant à la base de ce profil de l'Infralias, je considère l'horizon 1 comme l'équivalent de l'horizon h de l'affleurement de Dom Hugon, décrit à la page 19.

Si bien qu'il m'est permis de reconnaître dans le profil des Rouvenes une coupe complète allant de la base du Rhétien au sommet de l'Hettangien et présentant une continuité stratigraphique parfaite.

Autres affleurements.

FLANC NW DE L'ANTICLINAL. a) Si, de la Villette, on gravit le coteau morainique de Bi-Chalet, le Rhétien apparaît une première fois au coude de la route militaire, à l'W des deux fermes de Bifang. Un petit affleurement pointe parmi les herbes et l'on y reconnaît, en fouillant un peu le sol, un calcaire marneux avec des débris de lumachelles.

b) A 150 m. à l'W du Bi-Chalet, s'étale un petit plateau, coté 1200 m. En dévalant vers le N l'abrupt boisé, on constate que le socle de ce plateau est constitué par un magnifique calcaire oolithique de l'Hettangien. Ce calcaire est fragmenté en gros blocs isolés, mais en un endroit j'ai pu le surprendre reposant sur un calcaire gréseux de même âge, tandis que son toit a été violemment mis en contact avec les formations du Bajocien. Il y a là une conséquence manifeste de l'intense phénomène tectonique qui affecte, dans ma région, tout l'Infralias et souvent le Sinémurien et dont je reparlerai (voir p. 27 et 58).

INFRALIAS 23

c) De là, l'Infralias n'apparaît plus, dans le flanc NW de l'anticlinal, que sur l'autre rive du rio du Gros-Mont. Du N du chalet de Dom Hugon jusqu'au pied du Contain, l'irruption des roches triasiques a imprimé à l'ensemble des sédiments de l'Infralias et du Lias inférieur la forme d'un arc de cercle dont l'extrémité la plus proche du Gros-Mont est orientée E-W, tandis que l'autre rentre dans la parallèle à la direction générale SW-NE de l'anticlinal. L'Infralias y est extraordinairement fragmenté et présente de remarquables contacts avec les formations supérieures, contacts dont il sera question dans le chapitre de la tectonique. Vers le milieu de l'abrupt surplombant le rio du Contain, le Rhétien n'est que très faiblement représenté par le calcaire lithographique de l'horizon 9. Je l'ai figuré sur ma carte par un mince liséré. On le voit disparaître entre le Trias et l'Hettangien dont le contact se fait ici par le calcaire dolomitique et un calcaire gréseux gris, renfermant

Pecten valoniensis Defrance

et que je fais correspondre au niveau 14 du profil de la page 21.

- d) L'Hettangien borde ensuite la moraine des Poutes-Paluds, sous laquelle il disparaît au point 1379 (N du Revers).
- e) A l'endroit où il émerge à nouveau (au NE de la Vagilière de la Générale), son niveau supérieur de calcaire oolithique présente un contact très net avec le Trias, pour disparaître ensuite sous l'effet de la poussée plus violente de ce dernier, lequel chevauche ici le Lias moyen.
- f) Aux confins du territoire de ma carte, à l'E de la Vagilière de la Générale, après une nouvelle apparition des séries supérieures de l'Hettangien reposant tectoniquement sur les calcaires dolomitiques du Trias, le Rhétien pointe à la lisière de la forêt qui dévale les pentes du Motélon. Cet affleurement, entrevu par Schardt (bibl. 172) a déjà été très exactement décrit par V. Chassé (bibl. 21). Le niveau c de Chassé, correspondant à mon niveau 5 (calcaire lithographique bleuâtre) «transgresse» ici sur le Trias dolomitique. Comme le note Chassé, la roche y est cependant plus calcaire et renferme de minuscules débris dolomitiques et quelques rares galets calcaires. Ce niveau est surmonté d'un calcaire noirâtre, légèrement lumachellique, et des assises hettangiennes.

Affleurements du flanc SE de l'anticlinal. g) A 150 m. de ce dernier affleurement et lui faisant face, le Rhétien et l'Hettangien semblent complets quoiqu'ils n'affleurent franchement comme tels que dans les profondes coupures d'érosion qui s'échelonnent entre la Vagilière et la butte 1386, encore que le contact avec le Trias ne soit très net que dans l'une d'elles, à 200 m. NE du pt. 1291 (voir ci-devant p. 18). Je n'ai pourtant pas hésité à les carter jusqu'à la moraine des Poutes-Paluds, car leur passage est nettement souligné par des pointements de certains de leurs niveaux et, en les décapant par-ci, par-là, de leur faible couverture végétale, j'ai pu en établir, d'une façon presque certaine, toute la succession. Le caractère dolomitique de la roche y est plus accentué et subsiste au delà du premier banc lumachellique. Ce fait avait été constaté sur la rive gauche du Motélon par Schardt (bibl. 172), Chassé (bibl. 21) et Wengen (bibl. 206). Il les fait supposer que les bancs dolomitiques, considérés comme constituant la partie supérieure du Trias, pourraient, en maints endroits, représenter déjà le Rhétien. En conséquence, Wengen (op. cit.) n'ayant pas trouvé un Rhétien typique dans l'anticlinal de Tsermont, l'incorpore au Trias et tire la limite inférieure du Lias à la base de l'Hettangien. Ce procédé, justifiable dans certains cas, ne peut être appliqué ici, la présence des lumachelles m'autorisant à différencier le Rhétien du Trias également là où se manifeste une récurrence des dolomies lagunaires au-dessus des formations marines.

Je signalerai encore l'aspect particulier que revêt le calcaire oolithique hettangien du socle rocheux qui se trouve à 100 m. au SE du chalet «Vagilière de la Générale». Les oolithes y sont très allongés; leurs contours sont soulignés par de la dolomie que sa couleur jaunâtre et sa compacité distinguent de la matière contenue dans l'oolithe et font que ces contours apparaissent en saillies sur les surfaces altérées.

- h) Un autre affleurement barre transversalement le pâturage « au Praz » (à l'W du Gros-Mont). Les calcaires de l'Hettangien supérieure qui le constituent forment ensuite la première des corniches d'où part le gros éboulement de la forêt d'Hugon.
- i) Plus en aval, l'Infralias réapparaît plus complet; cependant son aspect rend fort difficile l'établissement d'une succession stratigraphique. Des pitons de style tourmenté semblent jaillis du sol

INFRALIAS 25

et les blocs qui les environnent, souvent sans en provenir, s'égaillent au gré de la pente. Devant l'alternative de carter le tout comme roche en place ou comme masse éboulée, le géologue reste perplexe. J'y ai reconnu les horizons suivants du profil des Rouvenes:

- 1. Calcaire gris-bleu, très compact.
- 4. Lumachelles.
- 5. Calcaire lithographique.
- 7. Calcaire grenu très compact, avec une faune remarquablement abondante où l'on reconnaît:

Avicula contorta Port. Avicula inæquivalvis Sow. Terebratula gregaria Suess Pecten Favrii Stop. Plicatula intusstriata Emm.

- 10. Calcaire gréseux, légèrement spathique.
- 11. Calcaire à pâte finement grenue.
- 13. Calcaire gréseux, d'un brun roux avec d'innombrables

Pecten valoniensis Defrance

15. Calcaire gréseux renfermant des tests très distincts d'huitres. Je les rapporte à l'espèce décrite par Jeannet (bibl. 88, p. 280),

Ostrea sp. Stop.

20. Calcaire oolithique.

Sur ma carte, je n'ai indiqué la roche en place qu'au sommet de la pente où pointent surtout les horizons 1, 7, 10, 11 et 20.

j) Passons outre à l'affleurement des Rouvenes décrit comme profil-type (fig. 1) et remontons les pentes de la rive droite du rio du Gros-Mont. L'attention est éveillée par la présence, dans la moraine, d'assez fréquents débris de lumachelles. Le gisement dont ils proviennent n'a pas été facile à découvrir, perché qu'il est sur les pentes escarpées de la forêt du Rustoz, au SE du chalet de Schoplan. L'Infralias existe ici sous un plaquage de terre végétale d'épaisseur variable et n'est visible qu'en fin de saison, le long des chables (longs dévaloirs à forte déclivité) dont le fond est raboté jusqu'au roc par le charriage des bois d'automne. J'ai reconnu là, exactement tous les

niveaux des Rouvenes, à partir de l'horizon 10 du Rhétien. Je signalerai cependant une formation que je n'ai pas trouvée aux Rouvenes. C'est un calcaire assez riche en *Pecten valoniensis* Defr. et dont la structure spathique présente une curieuse juxtaposition de plages tantôt grises, tantôt d'un roux mordoré, assez différents du niveau 14, auquel cependant sa position me permet de le rattacher.

k) C'est le prolongement oriental de cet affleurement qu'on retrouve partiellement au sommet de la crête triasique de Schoplan (à l'E du Gros-Mont). Le Rhétien y présente les indices d'une intense compression, réduit qu'il est à quelques centimètres et surmonté de quelques fragments du calcaire à Pecten signalé dans le profil j.

Résumé.

Il ressort de l'examen des profils que l'Infralias est représenté, dans la région de la Hochmatt, par un Rhétien plutôt marneux passant insensiblement à un Hettangien gréseux. Une limite entre ces deux étages ne peut être établie sur des considérants purement pétrographiques et, seule, l'apparition du *Pecten valoniensis* Defrance dans le niveau 13 m'a permis de les différencier nominalement à cet endroit. Les individualiser, en les traitant séparément, m'a paru arbitraire par suite de leur étroite connexion, laquelle rend l'attribution des horizons stériles 11 et 12 à l'un ou à l'autre, tout à fait conventionnelle.

Quoique réduit, l'Infralias présente ici une série stratigraphique complète. La continuité des dépôts est manifeste dans le profil des Rouvenes (p. 19) et dans celui de la Vagilière (prof. g, p. 24) ; elle l'est non moins sur le flanc opposé de l'anticlinal, dans l'affleurement décrit à la page 18 et situé à l'W du chalet de Dom Hugon. L'interpolation des termes supérieurs est justifiée par leur existence dans le voisinage immédiat.

Une confirmation de cette continuité stratigraphique peut être trouvée dans les affleurements g et j dont l'apparition n'est condi-

INFRALIAS 27

tionnée, en somme, que par la présence ou l'absence des formations récentes.

Quant aux autres affleurements, si leur faible distance des coupes complètes ne suffisait pas à faire rejeter l'existence des lacunes stratigraphiques, l'observation des faits nous convaincrait de la nature tectonique du phénomène qui a provoqué la disparition de certaines formations. L'aspect des affleurements b et c du flanc NW et de l'affleurement i du flanc SE est fort explicite à cet égard. La fragmentation des roches, leur disposition désordonnée, ne peuvent être que le fait d'une pression mécanique ayant déterminé leur brusque irruption.

Cependant, étant donné que cette manière d'être de l'Infralias se manifeste de part et d'autre de l'axe anticlinal (quoique beaucoup plus remarquable sur le flanc NW), il faut admettre qu'elle ne peut résulter de la seule poussée tangentielle de l'ensemble des couches, mais qu'elle procède également d'une poussée verticale des couches sous-jacentes, en l'occurrence des formations triasiques. De fait, nulle part ailleurs le diapirisme du Trias n'apparaît mieux qu'ici. On en discerne surtout un des effets qui constituent une particularité de cette tectonique en diapire : les blocs épars de l'Infralias de Dom Hugon côtoient la masse chaotique des cornieules et des calcaires dolomitiques de telle manière que ces derniers entrent indifféremment en contact avec les niveaux 4, 7 et 10. On peut même présumer que les formations triasiques qui, dans leur mouvement ascendant ont fait se déverser les calcaires oolithiques sur le Bajocien du Bi-Chalet, se juxtaposent, sous la moraine, à cette dernière formation et probablement même au Bathonien, au S du Gros-Toss (v. planche II, profil 8).

Ce sont ces mêmes circonstances, observées sur une plus grande échelle par P. Termier (bibl. 189) dans la fameuse formation de Suzette, qui ont révélé l'existence, dans les Alpes françaises, de la tectonique salifère du Trias dolomitique. Comme le relève également M. Gignoux (bibl. 62), le Trias s'y trouve en contact avec les terrains les plus variés, du Lias au Miocène inclusivement.

Pour ce qui a trait à l'affleurement f (p. 23), l'examen que j'en ai fait m'autorise à ne voir dans ce que Chassé appelle la «transgression» du niveau 5 sur le Trias, que la conséquence du

même phénomène tectonique qui affecte localement l'Infralias de la Hochmatt.

Les lacunes stratigraphiques du Rhétien ou de l'Hettangien sont donc absolument inexistantes dans cette région.

B. Lias inférieur : Sinémurien-Lotharingien

Dans la région décrite ici, c'est au Lias inférieur que s'applique le plus exactement la définition générale donnée dans l'introduction à ce chapitre. Le Sinémurien s.l. offre effectivement une très grande variété lithologique et, pour en saisir le caractère, il suffit de comparer les profils entre eux.

A cet effet, je décrirai d'abord un affleurement offrant une série complète, celui du Gros-Mont, et procéderai ensuite de la même manière que ci-devant en examinant chacun des affleurements du flanc NW de la Villette au Motélon, puis ceux du flanc SE, du Motélon à la Villette.

Profil-type du Lias inférieur du Gros-Mont (fig. 2).

Le calcaire oolithique (niv. 20) de l'Hettangien des Rouvenes (fig. 1) est surmonté des formations suivantes, mises à jour par la construction de la route du Gros-Mont:

21.*	Calcaire schisteux d'un gris noirâtre			•		. :		0,10 m.
22.	Calcaire à pâte foncée siliceuse		•			V .		0,15 m.
23.	Schistes marneux noirs	•	•		•			0,10 m.
24.	Calcaire très siliceux							0.40 m.

^{*} Les chiffres font suite à ceux du profil de l'Infralias des Rouvenes (fig. 1).

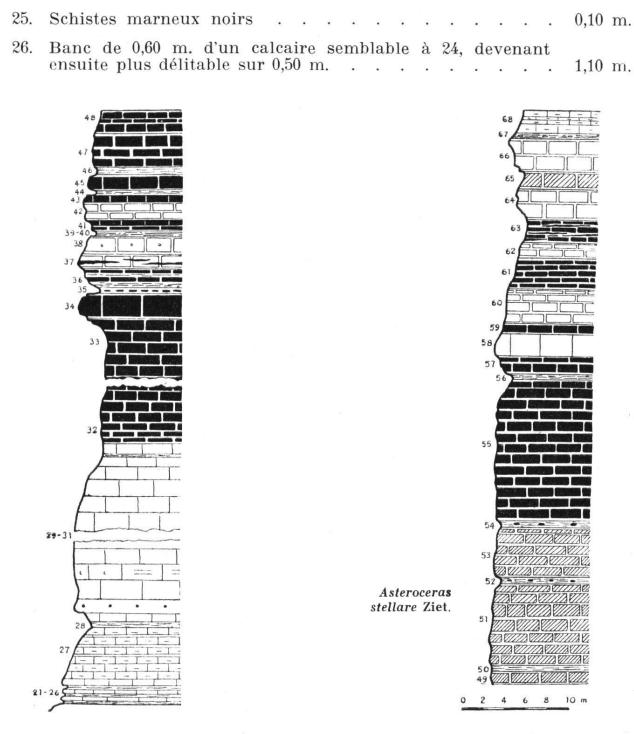


Fig. 2. — Coupe stratigraphique du Lias inférieur (Sinémurien-Lotharingien) du Gros-Mont.

27.	Alternance de schistes et de calcaire marneux, grumeleux, vers le sommet	5,00 m.
28.	Schistes marneux noirs	0,80 m.
29.	Complexe de calcaire en bancs de 0,20 à 0,30 m., tantôt très compacts, siliceux, sans intercalations schisteuses, tantôt très délitables, marneux, localement noduleux et	
	entrelardés de schistes	30,00 m.

	A 10 m. en amont de la base de ce niveau, se trouvent, disséminés dans la masse calcaire, des <i>blocs sphériques</i> pouvant atteindre 15 cm. de diamètre et qui ne semblent pas être des concrétions, étant de même nature pétrographique que leur gangue. Ces mêmes formations apparaissent d'une façon beaucoup plus nette, un peu en dehors de mon terrain, à l'entrée de la vallée de Motélon. ¹
30.	Une légère perturbation a plissé les couches. La roche, fragmentée en polyèdres, revêt un aspect bréchoïde. La masse reste siliceuse, mais des lits de calcite pure s'en détachent
	Ce plissement n'est que superficiel et, au fond de la cluse, on retrouve une série siliceuse continue qui forme un seuil sur le complexe précédent et détermine une chute de la rivière.
31.	Les bancs de calcaire siliceux redeviennent paisibles et, avant de disparaître sous la moraine, ils présentent d'innombrables veinules de calcite
32.	Calcaire spathique. Ce premier banc de calcaire à <i>Crinoides</i> est partiellement recouvert par la moraine qui, de là, s'étend sur 30 m. jusqu'au niveau 34 non compris. Il est cependant aisé d'examiner ce tronçon du profil en contre-bas du chemin, le long du ruisseau. On y observe une succession de bancs finement lités passant insensiblement à l'horizon 33.
33.	Calcaire plus grossièrement spathique que le précédent et renfermant des «galets» ² dolomitiques en quantité de plus en plus grande à mesure que l'on s'élève. Puissance totale des niveaux 32 et 33
34.	Bancs de 20-35 cm. d'un calcaire spathique très dur, avec peu d'éléments dolomitiques
§5.	Calcaire spathique, très friable, contenant de nombreux «galets» dolomitiques 0,10 m.
36.	Bancs de 10-30 cm. de calcaire spathique coupé de fines intercalations schisteuses

Dans une excursion avec MM. les professeurs E. Gagnebin et N. Oulianoff et avec mon camarade A. de Spengler, nous avons retrouvé des blocs assez semblables (miches) dans le Lias supérieur de la «Baye de Montreux». L'un d'eux renfermait une Ammonite.

² Nous plaçons le terme de galet entre guillemets pour les raisons exposées à la page 60.

LIAS INFÉRIEUR

37.	Calcaire spathique avec intrusions siliceuses	1,20	m.
38.	Calcaire marneux d'aspect noduleux, peu spathique	2,50	m.
39.	Schistes argileux noirs	0,20	m.
40.	Calcaire finement spathique avec peu de «galets» dolomitiques	0,80	m.,
41.	Calcaire grossièrement spathique avec peu de «galets» dolomitiques	0,60	m.,
42.	Calcaire très finement spathique	2,50	m.
43.	Calcaire grossièrement spathique	0,20	m.
44.	Schistes argileux noirs	0,20	m.
45.	Calcaire grossièrement spathique avec peu d'éléments dolomitiques	1,30	m.
46.	Schistes argileux noirs	0,30	m.
47.	Calcaire grossièrement spathique; les éléments dolomitiques augmentent	3,00	m.
48.	Alternance de bancs de 50 cm. et de bancs de 2 cm. d'un calcaire spathique où les «galets» dolomitiques deviennent si nombreux qu'ils l'emportent par la quantité sur les éléments calcaires	2,20	m
49.	Calcaire spathique devenant plus clair que celui généralement foncé des assises inférieures	1,20	
50.	Schistes argileux noirs	0,15	- 1
51.		0,15	111.
91.	Calcaire spathique semblable à 49, dans lequel j'ai trouvé	8,00	m.
52.	D'innombrables «galets» dolomitiques, noyés dans une marne noire, y dessinent des taches jaunes qui donnent à ces schistes marneux un aspect moucheté très caractéris-		
	tique	0,10	
	Calcaire spathique, semblable à 51	5,00	m.
54.	Marnes plus argileuses que 52 et renfermant également d'innombrables «galets» dolomitiques de dimensions va- riables. J'en ai observés qui atteignaient 1 cm. de diamètre.		
	Dans ces marnes s'intercale un feuillet de 3 mm. d'épaisseur de calcite pure	0,25	m.
55.	Calcaire spathique foncé avec énormément de «galets» dolomitiques	14,00	m.
56.	Schistes argileux	0,30	m.

57.	Calcaire foncé, finement spathique, dont la base contient peu d'éléments dolomitiques. Ces derniers abondent de nouveau vers le sommet dans un banc peu épais, puis le calcaire spathique passe insensiblement à 58.	1,50 m.
58.	Calcaire siliceux	2,00 m.
59.	Calcaire grossièrement spathique dans lequel réapparaissent en grand nombre les «galets» dolomitiques	1,00 m.
60.	Calcaire foncé, peu ou pas spathique	3,00 m.
61.	Petits bancs de calcaire spathique	3,00 m.
62.	Calcaire semblable à 60 mais renfermant des «galets» dolomitiques	1,50 m.
63.	Petits bancs de calcaire spathique, parsemés de rognons siliceux	2,00 m.
64.	Calcaire peu ou pas spathique en bancs plus épais et plus compacts que 63. Alors que dans ce dernier niveau, la silice se concentre en rognons, elle est ici plus uniformément répartie dans toute la masse	3,00 m.
65.	Calcaire grossièrement spathique	1,50 m.
66.	Calcaire compact semblable à 64	3,50 m.
67.	Calcaire marneux, révélant, sous l'objectif, une assez forte teneur en pyrite	0,20 m.
68.	4 bancs d'un calcaire marneux noir d'où la pyrite a disparu et mesurant respectivement 0,80, 0,50, 0,30 et 0,50 m	2,10 m.
	Puis les calcaires devenant franchement siliceux, j'en ai fait la base du Pliensbachien pour les raisons que j'exposerai plus loin.	

Ainsi comprises, les formations du Lias inférieur atteignent au Gros-Mont une puissance excédant un peu 150 mètres.

Les niveaux 21-28 forment une limite pétrographique absolument nette avec le calcaire oolithique, équivalent de la zone à Schlotheimia angulata mais ne se distinguent du complexe supérieur que par leur nature un peu plus marneuse. Je les assimile donc à ce complexe 29-30, vers lequel ils présentent, du reste, tous les passages.

Cette assise de près de 50 m. est absolument stérile. J'ai pu constater sa présence tout le long du flanc SE de l'anticlinal de la Hochmatt, de la forêt du Rustoz au Motélon. Sa partie inférieure détermine la dépression que l'on trouve presque toujours au-dessus des petits abrupts de l'Hettangien oolithique. Il est particulièrement bien visible au Praz, où sa partie supérieure, très disloquée, se présente en abaque sur l'éboulement en bordure de la forêt. A. Wengen et mon ami H. Loser l'ont signalée dans le prolongement occidental de ce même flanc anticlinal, notamment au Pâquier à Chenaux (Vanil Noir). J'ai pu l'observer à Bonnavaux lors d'une excursion géologique avec le professeur J. Tercier et mon camarade Loser. L'examen microscopique des roches siliceuses de l'horizon 30 et leur homologue présumé, a confirmé leurs caractères communs.

La série du Gros-Mont étant semblable à celle de Bonnavaux non seulement par sa constitution pétrographique, mais encore par sa position entre l'Hettangien oolithique et les premiers bancs de calcaire spathique, je la considère donc comme la base du Sinémurien.

Je signale déjà, ce que nous reverrons dans l'examen des affleurements de chacun des flancs de l'anticlinal, que ce complexe n'apparaît plus ni dans la partie orientale du flanc SE, à partir de la forêt du Rustoz ni dans le flanc NW.

En dépit de toutes mes recherches dans le Sinémurien s. l. du Gros-Mont, j'ai dû convenir de l'extrême pauvreté faunique de cette série qui ne m'a livré qu'un fragment heureusement déterminable de

Asteroceras stellare Ziet.

Ce fossile caractéristique du Lotharingien, situe le niveau 51 de calcaire spathique clair, par rapport au sommet du Lias inférieur, et nous verrons, avec Horwitz, en traitant du Pliensbachien, que cette limite, telle que je l'ai établie, se justifie.

Autres affleurements.

FLANC NW DE L'ANTICLINAL. a) Calcaire spathique de la Villette (Im Fang). — La partie septentrionale du hameau de la Villette est bâtie sur une butte arrondie (sorte de «Rundhöcker») de calcaire spathique. La disposition des couches apparaît particulièrement bien, devant le bureau des postes, en une succession de roches assez homogènes.

Des travaux souterrains m'ont permis de pénétrer dans cette masse. Sur tout le parcours des galeries, je n'ai rencontré qu'un calcaire spathique offrant toute la gamme des nuances du blanc grisâtre au rose foncé, coupé, à intervalles irréguliers, par des bancs d'une extrême compacité. Ces bancs, terreur des mineurs, se révèlent sous l'objectif très finement oolithiques, ce que ne laisserait pas présumer le seul examen à l'œil nu.

Le calcaire de la Villette revêt certains caractères que je n'ai pas retrouvés dans les calcaires spathiques du flanc SE. Les articles de *Crinoïdes* y ont souvent gardé leur morphologie et apparaissent teintés de rose par des composés ferrugineux. Quelquefois, ces articles font corps avec la gangue au point d'en perdre leur individualité. Le calcaire accuse alors une structure finement cristalline. Un examen attentif y révèle la présence de quelques rares galets de calcaire noir, fortement enchâssés dans le ciment spathique (voir ci-après p. 40). L'étanchéité qu'on serait en droit d'attendre d'une roche de cette structure est compromise par la nature des dislocations qui l'affectent et qui se traduisent, à l'intérieur des galeries, par de fréquents suintements et des infiltrations d'eau.

Les débris de *Brachiopodes* y sont nombreux mais peu caractéristiques. Par contre, des empreintes d'*Ammonites*, découvertes dans des débris qu'un heureux coup de mine venait de détacher de la masse principale, m'ont permis de dater, d'une façon certaine, cette formation que Gilliéron (bibl. 63) et Horwitz (bibl. 81) avaient supposée sinémurienne sans pouvoir l'affirmer, privés qu'ils étaient de preuves paléontologiques. Dans les cinq échantillons que j'ai recueillis, l'on reconnaît nettement

Arietites raricostatum d'Orbigny.

Le calcaire spathique de la Villette représente donc le Lotharingien et se trouve de ce fait contemporain du niveau 51 de l'affleurement du Gros-Mont (fig. 2).

On peut le suivre, vers l'W, sur le coteau dont il forme la crête. Jusqu'au point où le sentier s'engage dans le bois, il semble constituer une zone assez continue, quoique hachée de failles; mais son aspect change soudain et, à partir de ce point, le Sinémurien se comporte exactement comme l'Hettangien de l'affleurement b décrit à la page 22. Une masse de calcaire spathique, en tout semblable

à celui de la Villette, surgit verticalement à la lisière de la forêt, puis disparaît. Quelques mètres plus loin, toujours en bordure gauche du sentier, le coteau morainique est hérissé de gros blocs de ce même calcaire, qui forme ensuite une longue paroi escarpée jusqu'à l'endroit où le sentier s'incurve vers le S. Je crois que là

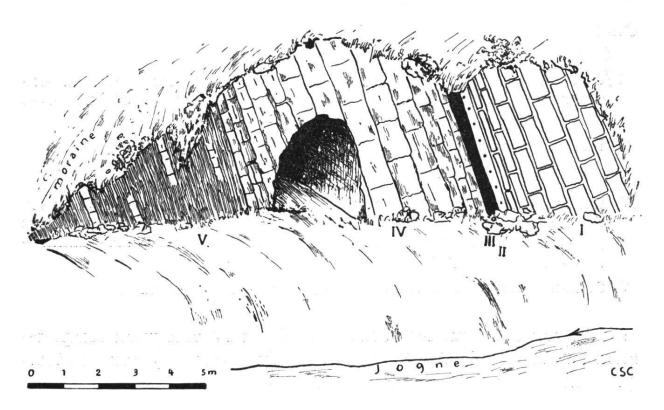


Fig. 3. — Affleurement du calcaire spathique de la Villette, sur la rive droite de la Jogne.

encore, on ne peut expliquer la disposition de ces blocs incohérents que par la présence toute proche des formations du Trias. Un fait me semble intéressant à cet égard. Alors qu'à l'extrémité W de l'affleurement la couverture morainique ne permet pas d'observer les formations qui surmontent le calcaire spathique, on constate, dans la partie E, à 10 m. en aval du bureau des postes, un contact anormal entre ce calcaire spathique et des schistes marneux noirs. On retrouve ce contact, à plusieurs reprises entre la Villette et la cote 1100 de l'affleurement. Le caractère tectonique de ce contact est d'autant plus incontestable qu'à quelque 120 m. de là, sur la rive droite de la Jogne, donc un peu en dehors des limites de ma carte, un affleurement a été mis à jour, affleurement qui présente une série stratigraphique complète, du calcaire spathique considéré comme Sinémurien s. l. par L. Horwitz aux schistes

noirs que cet auteur englobe dans une série compréhensive Lias moyen-Lias supérieur. J'ai relevé le croquis de la fig. 3 avant qu'on ne bétonne l'entrée de la galerie. L'inclinaison des couches ne doit pas prêter à confusion ; il s'agit bien ici du flanc NW de l'anticlinal, flanc commençant à se déverser, comme nous le verrons dans le chapitre de la tectonique.

On trouve de bas en haut (fig. 3):

- I. Calcaire spathique dont la base est semblable au calcaire spathique de la rive gauche, mais dont le sommet présente avec lui de notables différences (voir ci-après p. 40.
- II. Banc de 3 cm. d'une marne jaunâtre fortement pyriteuse.
- III. Schistes noirs.
- IV. Calcaire noir plus ou moins marneux, pouvant être assez compact. C'est dans ce niveau que s'ouvre la galerie. Les bancs inférieurs peuvent atteindre 25 cm. d'épaisseur, mais leur puissance diminue peu à peu et ils passent insensiblement à V.
- V. Schistes marneux noirs entrecoupés de bancs calcaires.

On voit donc que les horizons II, III et IV manquent complètement sur la rive droite et que la base du niveau I y entre tectoniquement en contact avec le complexe V.

b) Affleurement du Contain. — Du point où nous l'avons quitté, le Sinémurien du flanc NW de l'anticlinal n'apparaît plus sur le versant droit du Gros-Mont. Il faut, pour le retrouver, gravir les pentes de la rive opposée jusque dans la forêt du Contain. Une étroite bande de calcaire spathique rose y affleure. J'ai recueilli, parmi les éboulis, des débris de cette roche, qui sont de véritables lumachelles avec

Rhynchonella plicatissima Quenst. Terebratula et Avicula indét.

Cette formation contient également quelques galets de calcaire noir, et, étant en tout semblable au calcaire spathique de la Villette, je la considère comme appartenant à la partie supérieure du Sinémurien s. l.

Qu'en est-il de la partie inférieure ? Elle apparaît là très réduite, mais surtout extrêmement disloquée. J'ai pu reconnaître cependant, formant un socle au calcaire rose, un vestige de calcaire spathique grossier contenant des « galets » dolomitiques ; je le considère comme l'équivalent du niveau 33 (fig. 2).

Quant au complexe de schistes et de calcaires noirs 21-30 (fig. 2), je ne l'ai trouvé nulle part dans le flanc NW.

Si de la forêt de Rotzna on continue à gravir les pentes raides couvertes de gros blocs éboulés, on trouve, en direction du Contain, le Sinémurien interrompu subitement, sur 110 m., par un contact très net entre l'Hettangien et le Lias moyen.

c) Le Lias inférieur réapparaît ensuite émergeant de la moraine, au NE du chalet du Contain. En contact avec le calcaire rose à entroques (renfermant là également des galets noirâtres), se trouve un horizon de calcaire grenu, profondément altéré, présentant une teinte ocreuse et passant à une roche très finement spathique. V. Chassé (bibl. 21) fait de ce calcaire ocreux du Pliensbachien coincé en synclinal entre les formations sinémuriennes. Je partage son point de vue pour ce qui a trait à l'âge de cette roche altérée. Quant au calcaire qui le surmonte, il n'est finement spathique que sur quelques cm. et passe insensiblement à un calcaire siliceux dans lequel j'ai trouvé

Tropidoceras binotatum Op.

Me conformant aux données d'Alph. Jeannet, je rattache ce fossile à la zone à Polymorphites Jamesoni. Comme il se trouve à deux mètres seulement au-dessus de calcaire ocreux, je me vois contraint de rejeter l'interprétation de Chassé. On se trouve là en pleine zone pliensbachienne à parfaite continuité stratigraphique, ce qui exclut la double apparition du Sinémurien que Chassé n'a basée que sur la présence du calcaire spathique (voir planche II, profil 7).

d) Entre le Contain et le chalet du Revers, le Sinémurien court parallèlement à l'Hettangien jusqu'à sa disparition sous l'erratique des Poutes-Paluds. A l'W de Longessiaz (sur le a de siaz), un horizon de calcaire spathique rose m'a livré

Avicula sinemuriensis d'Orb. Rhynchonella indet.

La partie occidentale de ce flanc ne m'a livré aucun autre horizon

qu'un caractère pétrographique ou paléontologique m'eût permis de carter Sinémurien.

Affleurements du flanc SE de l'anticlinal. De la vallée du Motélon à celle du Gros-Mont, et jusque dans la forêt du Rustoz, le Sinémurien s'étend sur une longue zone continue dont les profils, comparés à celui des Rouvenes, ne présentent avec lui aucune variante pétrographique.

- e) A 100 m. au N de la Leyte (pt. 1465), sa partie basale détermine une petite dépression recouverte d'une faible couche de terre végétale, puis, sur un bombement du sol au milieu d'une clairière, un calcaire spathique foncé pointe dans l'herbe, une quarantaine de mètres en dessous du niveau 20 de l'Hettangien.
- f) De la Leyte aux Poutes-Paluds, la nature broussailleuse des flancs de la Rupaz empêche une bonne observation. En faisant la somme des petits affleurements que la reptation parmi les rhododendrons et les myrtilles permet seule d'apercevoir, on arrive cependant à établir un profil complet du Sinémurien, conforme à celui des Rouvenes (Gros-Mont).
- g) A l'E du cirque morainique des Poutes-Paluds, le premier affleurement émergeant de la moraine est celui d'un calcaire grossièrement spathique, que les assises qui le superposent me permettent de rattacher au niveau 59 du profil du Gros-Mont (fig. 2).
- h) Dans la forêt de la Berliénaz, j'ai reconnu tous les horizons de 32 à 68 inclusivement, avec cette restriction cependant, que, les niveaux de base participant de la nature tectonique de l'Hettangien, je ne les y ai rencontrés qu'en blocs isolés, sauf près du Praz où ces niveaux, quoique disloqués, sont en parfaite continuité stratigraphique avec ceux qui les surmontent.
- i) Dans les ravins du Rustoz, le Sinémurien se trahit par l'apparition fréquente de calcaire spathique sous les abrupts de calcaire siliceux du Pliensbachien et le long des chables. Là où affleure l'Hettangien, on trouve encore, mais pour la dernière fois, le com-

plexe basal des schistes et calcaires noirs dans le prolongement du profil-type du Gros-Mont.

C'est encore le Sinémurien s. l. qui forme l'extrémité N des trois crêtes parallèles qui constituent les contreforts de la Hochmatt :

- *j)* Au Rustoz, j'ai reconnu à partir de la moraine, tous les horizons du profil des Rouvenes de 33 à 66. Sous les calcaires pliensbachiens, je n'ai plus retrouvé le banc pyriteux 67, ni le calcaire marneux 68.
- k) Au S du Petit-Toss, l'affleurement commence par un calcaire grossièrement spathique que j'assimile à l'horizon 65, mais qui n'est surmonté que d'un calcaire à *Crinoïdes* uniformément fin, passant aux formations siliceuses du Pliensbachien.
- l) L'affleurement qui se trouve à l'E du point 1271 et celui que baigne le Rio du Petit-Mont se complétant, l'étude que j'en ai faite m'a permis d'établir les faits suivants:

Au calcaire légèrement oolithique qui affleure au bord du ruisseau (Petit-Mont) succède un calcaire spathique très clair dont la partie supérieure est recouverte d'éboulis, interdisant, sur 10 m., toute observation. Un calcaire spathique gris foncé émerge ensuite des alluvions. Il renferme de nombreux éléments dolomitiques et se trouve surmonté d'une roche également échinodermique, mais dans laquelle s'intercalent de nombreux lits de silex. Ce calcaire devient ensuite plus clair, plus finement spathique et passe insensiblement aux calcaires siliceux du Pliensbachien.

En regard du Sinémurien du Gros-Mont, celui du Petit-Mont apparaît beaucoup plus homogène, dans ce sens que les nombreuses intercalations schisteuses constatées aux Rouvenes, se font ici plus rares. En outre, le calcaire spathique semble être ici l'apanage du Lias inférieur. Alors que le calcaire siliceux formant la base du Pliensbachien des Rouvenes est surmonté de calcaire spathique, on constate, au Petit-Mont, la disparition définitive de ce dernier dès qu'apparaît le calcaire siliceux. Etant donné que le calcaire 58 des Rouvenes est déjà fortement siliceux, il sera difficile de fixer dans ce profil du Petit-Mont la limite supérieure du Sinémurien. Dépourvu d'arguments paléontologiques, je me suis résigné à la faire

coincider avec le premier banc de calcaire siliceux. Comme il ressort de la figure 2, l'erreur que peut entraîner cette manière de faire ne peut porter que sur une vingtaine de mètres.

Résumé et observations concernant le Lias inférieur.

Des indices incontestables de lacunes stratigraphiques entre l'Hettangien et le sommet du Lias inférieur, n'apparaissent pas dans la région de la Hochmatt.

Quoique l'absence de la série basale du Sinémurien sur le calcaire oolithique du flanc SE ne puisse pas toujours être imputée aux phénomènes tectoniques, il n'en résulte pas forcément qu'elle doive être considérée comme une lacune stratigraphique. En effet, étant donné la rapidité des variations latérales dans la sédimentation, il est probable que le calcaire échinodermique qui semble bien représenter la base du Sinémurien, dès l'affleurement i du Rustoz, soit l'équivalent stratigraphique du complexe siliceux représenté aux Rouvenes par les niveaux 21-31 (fig. 2). Cette même constatation vaut pour le flanc NW de l'anticlinal.

Quant à la présence des débris dolomitiques (en forme de « galets ») dans les assises sinémuriennes, nous verrons, dans la conclusion générale qui clôt le chapitre du Lias, qu'elle ne peut pas toujours fournir les éléments d'une réponse à la question qui nous préoccupe. Par contre, l'existence de galets calcaires, dans les formations spathiques de la Villette et du Contain, est plus significative et peut être susceptible de serrer le problème de plus près.

A l'œil nu, ces galets sont quelquefois difficiles à distinguer de la masse rose des calcaires spathiques de ces deux affleurements; cependant, toutes les coupes minces que j'en ai faites, même celles pratiquées dans les calcaires les plus finement cristallins, en contiennent.

Sous l'objectif, ils apparaissent isolément et il est facile d'en observer la structure. Sur la masse de calcaires à Entroques, dont les éléments constituants réalisent l'unité d'orientation optique, ils se détachent amorphes, bien délimités. Uniformément marneux ils semblent bien provenir tous d'un même niveau stratigraphique.

Je signalerai encore dans ce calcaire à Entroques la présence d'Ostracodes] et de radioles d'Echinides bien distincts.

LIAS MOYEN 41

Alors que dans le calcaire spathique de l'affleurement a (rive gauche), ces galets sont disséminés dans la roche, ils se multiplient dans les assises supérieures du banc I (rive droite, fig. 3). Leur diamètre est de l'ordre de 3 à 6 mm. Cependant, de toute évidence, il ne peut s'agir ici du premier terme d'une série transgressive. La base de l'horizon auquel appartient cette roche est constituée par un calcaire spathique semblable à celui de la rive gauche. Comme lui, il ne contient que de rares galets isolés dans la masse cristalline. De cette base spathique au sommet à galets, il y a tous les passages. J'ai recueilli quelques échantillons des séries intermédiaires, à caractère échinodermique encore prédominant, mais présentant déjà certaines zones où se concentrent ces galets. La continuité stratigraphique est ici manifeste. Elle ne l'est pas moins entre cette assise à galets et le niveau II. Celle-là procède en effet de la nature pyriteuse de celui-ci et ce caractère s'accentue de bas en haut.

La seule conclusion que l'on puise tirer de ces constatations est que l'apport des galets dans les sédiments du Lotharingien de la Villette est un épisode local des émersions qui se sont produites dans une région assez éloignée.

En résumé, le Lias inférieur de la région de la Hochmatt doit être considéré comme complet dans le flanc SE de l'anticlinal. Il est lacunaire dans le flanc NW. Que ses lacunes soient provoquées, en tout premier lieu, par les poussées verticales et tangentielles, nous le prouverons dans le chapitre de la tectonique. Qu'elles soient partiellement d'ordre stratigraphique, les seuls faits constatés sur ce territoire ne nous permettent même pas de le présumer.

C. Lias moyen: Pliensbachien-Domérien

La masse la plus importante du Lias moyen de la région de la Hochmatt est représentée par un calcaire siliceux très homogène, jouant, du fait de sa compacité et de la constance de ses caractères, un certain rôle orographique. Il détermine les premiers petits abrupts rayant les pentes et se trouve ainsi facile à repérer. L'étude des profils complets du Pliensbachien-Domérien est aisée un peu partout, mais, afin de pouvoir établir une série-type de tout le Lias, je préfère reprendre l'affleurement du Gros-Mont au niveau 68 du Sinémurien s. l., où nous l'avions laissé (p. 32).

Profil-type du Lias moyen du Gros-Mont (fig. 4).

Par leur nature lithologique, les premiers bancs de Lias moyen tranchent sur les formations marneuses du sommet du Lotharingien et présentent la succession suivante :

- 69. Bancs réguliers d'un calcaire bleuâtre très siliceux.
- 70. Lit de silex noir.
- 71. Petits bancs de calcaire enrobant de nombreux nodules de silex. La silice se concentrant ainsi, la roche semble en être épurée et devient plus claire dans la partie inférieure du niveau. Dans la partie supérieure où ces concrétions disparaissent, la roche paraît plus compacte, plus foncée. La silice semble y être répartie plus uniformément.
- 72. Calcaire clair, très spathique. Vers le sommet il le devient plus finement et passe graduellement au calcaire siliceux.
- 73. Calcaire siliceux. Il débute par de gros bancs massifs entrelardés de silex, puis devient plus finement stratifié.

 Les bancs de silex subsistent jusqu'au sommet; j'en ai observé qui atteignaient 8 cm. d'épaisseur.
- 74. Calcaire spathique foncé, en petits bancs, passant insensiblement au calcaire siliceux.

A partir de cet endroit, l'affleurement en bordure du chemin est recouvert par la moraine, mais il est facile de le retrouver le long du ruisseau.

75. Calcaire siliceux en bancs de 15 à 20 cm. Il constitue un puissant niveau, très homogène, où n'apparaissent que rarement des délits schisteux.

Particulièrement bien visible à la sortie de la forêt, il forme la

berge gauche du rio du Gros-Mont, contre laquelle vient se briser, chaque année, l'énorme avalanche de la Granta.

Ce niveau m'a livré

Aegoceras latecosta Ziet.

Amaltheus margaritatus d'Orb.

Il est surmonté d'une alternance de petits bancs de silex pur et de calcaire siliceux. Par la finesse des strates, cette alternance ressemble de loin à un complexe schisteux, mais en réalité ces roches sont très compactes. Je l'ai adoptée comme base du Lias supérieur (fig. 4). Se trouvant une trentaine de mètres en dessus du niveau qui m'a livré l'Amaltheus margaritatus, cette limite, surtout lithologique, ne me semble pas trop arbitraire.

Quant à la limite inférieur du Lias moyen, j'ai dû, pour l'établir, appliquer d'abord la méthode indirecte, qui consiste à déterminer l'âge d'une formation stérile en partant de l'âge des formations qui l'encadrent. Ensuite, pour la préciser, je me suis basé sur un critère lithologique en me référant aux profils stratigraphiques d'Horwitz.

Les formations datées qui encadrent les niveaux stériles 51-74 (fig. 2 et 4) sont :

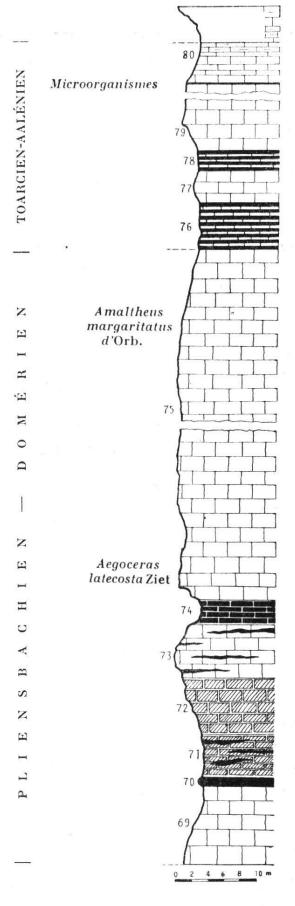


Fig. 4. — Coupe stratigraphique du Lias moyen et supérieur du Gros-Mont.

à la base, le calcaire spathique 51 contenant Asteroceras stellare Ziet., au sommet, le calcaire siliceux 75 contenant Aegoceras latecosta Ziet.

Le premier de ces deux fossiles correspondant à la zone lotharingienne à *Asteroceras obtusum* et le second appartenant, d'après Horwitz, à la zone à *Deroceras Davoei* soit au sommet du Pliensbachien, les niveaux 52-74 représentent donc l'extrême sommet du Lotharingien et le Pliensbachien.

Ceci étant acquis, il reste à préciser la limite inférieure de ce dernier. A cet effet, je me suis conformé aux données très précises d'Horwitz (bibl. 74 et 80). Cet auteur fait commencer le Lias moyen de la « Bande III » à laquelle appartient ma région, par des bancs de calcaires siliceux compacts. J'ai donc adopté ces mêmes formations du niveau 69 comme base du Pliensbachien. La présence dans les assises 75 de l'Aegoceras latecosta Ziet. m'interdit, en tout cas, de tirer cette limite plus haut.

Ainsi établie, la limite entre le Lotharingien et le Pliensbachien, me paraît pleinement justifiée.

Ce profil du Gros-Mont corrobore les premières présomptions d'Horwitz (présomptions confirmées d'ailleurs par ses découvertes postérieures) à savoir que les niveaux supérieurs de calcaire spathique de la région Bellegarde-Charmey sont d'âge pliensbachien.

Autres affleurements.

FLANC SE DE L'ANTICLINAL. — Les affleurements du Lias moyen appartenant au flanc SE de l'anticlinal de la Hochmatt ne sont interrompus que par la présence des dépôts récents. J'ai retrouvé partout les niveaux du profil du Gros-Mont, sauf cependant dans la partie orientale de ma carte, notamment dans la cluse du Petit-Mont où, n'ayant pas pu observer le niveau 69 de calcaire siliceux surmonté des calcaires spathiques et privé ainsi d'un critère lithologique qu'à défaut de fossiles j'aurais pu utiliser, j'ai fait coïncider la limite entre le Lotharingien et le Pliensbachien avec celle de ces deux formations. Comme je l'ai déjà signalé (p. 39) cette manière de procéder m'amène à carter Lias inférieur le calcaire spathique et, Lias moyen le calcaire siliceux.

AFFLEUREMENTS DU FLANC NW.— a) Près du village de la Villette, à 400 m. en aval du confluent du rio du Petit-Mont et de la Jogne, la route cantonale est bordée, sur une vingtaine de mètres, d'un aflfeurement de calcaire siliceux bleuâtre que Gilliéron (bibl. 64) a décrit comme Lias moyen. Je l'ai représenté comme tel sur ma carte, mais les séries sur lesquelles il repose m'ont laissé quelque peu perplexe quand il s'est agi d'en fixer la position stratigraphique exacte par rapport aux formations du Lias moyen du Gros-Mont. Ces séries, comme nous l'avons vu ci-devant (p. 35) présentent, devant le bureau des postes, un contact anormal avec le calcaire spathique du Lotharingien. En voici les termes, à partir de ce dernier:

LIAS MOYEN

- A. Schistes marneux noirs, dans lesquels s'intercalent des bancs plus calcaires. Le tout semble avoir été violemment comprimé. La moraine et la terre végétale empêchent d'en mesurer la puissance.
- B. A 10 m. en aval du bureau des postes, on retrouve des schistes noirs, à surface onduleuse, traversés de larges veines de calcite.
- C. L'affleurement susmentionné que Gilliéron (bibl. 64) place dans le Lias moyen, commence par des schistes marneux d'un gris sombre, marqués d'empreintes d'un noir lustré et sillonnés de traces brunàtres. Ces schistes alternent d'abord avec des calcaires siliceux et passent graduellement à l'horizon suivant.
- D. Calcaire siliceux bleu-foncé. De très compact, il devient localement assez fissile pour se déliter en plaques minces au moindre coup de marteau.
- E. Trois mètres avant l'interruption de l'affleurement, on découvre quelques bancs d'un calcaire siliceux, trituré au point qu'on n'en peut discerner une partie homogène. On y distingue parfois des stries très fines, parallèles entre elles, mais disposées obliquement par rapport au plan de stratification.
- F. Calcaire siliceux compact, plus clair que celui du niveau D sillonné de veines de calcite. Patine jaune. Certains délits, plus schisteux, présentent des taches d'un noir lustré.

L'affleurement est partiellement recouvert par la terre végétale, mais en creusant un peu dans cette dernière on trouve:

G. Calcaire siliceux foncé, semblable à D par sa composition pétrographique, sa couleur et la friabilité de certains de ses bancs.

L'affleurement se retrouve dégagé et présente:

- H. Calcaire siliceux revêtant un aspect bizarre; manifestement diaclasée, cette roche n'en demeure pas moins compacte par le fait que les polyèdres sont soudés entre eux par une matière ocreuse, devenant quelquefois blanche. Surface patinée jaune, parsemée de taches brunes ou d'un noir lustré.
- I. Calcaire siliceux très compact. Sur le fond noirâtre de la masse principale, de nombreuses veinules de calcite se détachent nettement en blanc. Patine jaune.
- J. Schistes marneux alternant avec de gros bancs de calcaire qui se délite facilement (5 alternances). Cette formation est, plus que les autres, caractérisée par la couleur rousse de ses parties altérées (20 m. en amont de la première ferme de Bifang, au S du d de Hinterweid).
- K. Calcaire siliceux semblable à I.
- L. Schistes calcaires terminant l'affleurement.

Pas plus heureux que Gilliéron, je n'ai, de toutes ces formations, recueilli aucun fossile. Tout ce qu'on en peut dire ici, du point de vue paléontologique, c'est qu'elles sont surmontées des gros bancs de calcaire à *Taonurus* typiquement bajociens, dont le premier affleurement se trouve à 50 m. en aval de la ferme de Bifang. J'ai eu, par contre, un peu plus de chance dans leur prolongement occidental, où j'ai trouvé deux fragments d'*Ammonites* (voir ci-après, profil e).

Un examen minutieux, en lumière polarisée, des éléments constituant le niveau A, me permet de les assimiler à ceux de l'horizon V du profil de la rive droite de la Jogne (fig. 3). Je les rattache donc au Pliensbachien.

La comparaison qu'on est amené à faire avec ce dernier, pris dans le flanc SE, met en relief une manière de se comporter des couches qui semble bien propre au flanc NW. Nous verrons cependant à la page 50 que ces formations n'offrent avec le Lias moyen des Rouvenes aucune différence essentielle dans leur composition pétrographique. Les différences qu'on peut y relever, telle que la structure schistosée des niveaux A, B et C, la plus grande fissilité des calcaires siliceux, ne sont qu'accidentelles. Elles n'impliquent pas une plus forte teneur en marnes, mais sont en étroite connexion avec l'importante réduction tectonique qui affecte tout ce segment de l'anticlinal.

Quant à la partie supérieure, qui n'est que localement reconnaissable, elle tranche, à la Villette, par ses parties plus marneuses, avec les formations massives du Bajocien. Dans l'étude du Toarcien-Aalénien, nous examinerons ce qui a trait à cette dernière limite.

M'appuyant sur les données que m'a fourni la faune sinémurienne de la Villette (p. 34) et celle bajocienne du Motélon (p. 79), j'ai figuré, sur ma carte, en une seule couleur, toutes les assises du flanc NW comprises entre le calcaire rose à *Echinodermes* et les bancs compacts à *Taonurus*, assises que j'embrasse dans une même série Lias moyen-supérieur.

- b) Il n'est pas très facile de retrouver les différents termes de ce complexe sur les pentes gazonnées de Bifang. Néanmoins, les pointements de roches siliceuses et de schistes que j'ai pu y observer avant que l'herbe ne croisse, m'ont permis de les carter jusqu'à la cote 1080 du pâturage de Bi-Chalet. La limite inférieure, particulièrement bien visible par contre sur le sentier qui longe la crête, coïncide avec un contact tectonique (voir ci-devant p. 35). A partir de ce point, la moraine rend toute série inaccessible aux observations. Mais, au delà du Bi-Chalet, il est certain que tout le complexe disparaît en profondeur, comme le témoigne le contact Trias-Bajocien dans le rio de la Bossonaz et celui Hettangien-Bajocien 110 m. plus à l'W.
- c) Le Lias moyen-supérieur ne réapparaît ensuite que sur la rive gauche de la vallée du Gros-Mont, dans la forêt de Rotzna, au N du chalet de Dom Hugon. Il se trouve là dans la position extraordinaire en arc de cercle, dans laquelle apparaît, comme nous l'avons vu, l'Infralias et le Sinémurien. Il surmonte ce dernier dans la succession suivante:
- 1. Calcaire siliceux noir, fortement broyé dans sa masse, mais dont les petits fragments accusent une assez grande compacité de la roche primitive.
- 2. Schistes marneux, pétrographiquement semblables à ceux qui surmontent le calcaire lotharingien de la Villette.

Ce dernier horizon a été violemment projeté contre le Bajocien. Il forme la berge droite du rio du Contain et se trouve être placé presque perpendiculairement aux bancs bajociens qui constituent le lit de la rivière.

- d) A quelque 270 m. au NE du Contain, les schistes noirs reposent directement sur l'Hettangien. C'est là que j'ai pu observer le complexe Lias moyen-supérieur, dans sa plus grande puissance. Le lit d'un petit torrent presque toujours à sec, m'a livré un profil que je ne vais pas donner ici, pour la bonne raison qu'il reproduit exactement celui de la page 45, avec de simples variations dans l'épaisseur des assises, et une plus grande compacité des bancs supérieurs.
- e) Du chalet du Contain au Praz au Cerf, le contact entre le Lias inférieur et le Lias moyen se fait tantôt par les schistes, tantôt par les calcaires siliceux. Il est assez difficile de le suivre; ces formations schisteuses donnant une bonne prise à la végétation herbeuse particulièrement dense à cet endroit, seul le Sinémurien affleure assez franchement. C'est à 150 m. au N du Contain, qu'un calcaire siliceux m'a livré deux fragments de

Tropidoceras binotatum Op.

f) A partir du Praz au Cerf, les pointements rocheux sont plus fréquents. Le complexe des schistes et calcaires noirs est fortement réduit. La direction des couches trahit localement l'intensité des pressions qui ont amené ces réductions. Ainsi, les bancs qui soutiennent le chalet de Longessiaz tendent à une orientation NS très significative (v. Tectonique p. 190).

Le Lias se perd ensuite sous la moraine des Poutes-Paluds.

g) Dans la partie occidentale de cette moraine, les schistes et les calcaires siliceux forment les pentes qui dominent la vallée de Motélon.

A l'E de la Générale, le long du superbe affleurement qui aboutit au sommet du cône d'éboulis, les schistes noirs forment une assise de plus de 10 m., reposant directement sur l'Hettangien, et passent insensiblement à des calcaires plaquetés alternant avec des marnes et à la base desquels j'ai recueilli deux *Belemnites* en mauvais état.

h) En traversant la pente raide et profondément découpée qui surplombe les pâturages de la Vonderweire, l'attention est attirée par la brusque disparition de la petite paroi hettangienne qui couronne la forêt. Un contact anormal que les dépôts récents empêchent LIAS MOYEN 49

de bien observer, met les schistes noirs en présence du Trias. Ces schistes se résolvent en calcaire siliceux que l'on peut suivre jusqu'au Bajocien.

i) Le dernier affleurement du Lias moyen-supérieur disparaît sous les éboulis de la Vagilière de la Générale. Là où, à partir des calcaires hettangiens, il est observable, il présente les mêmes termes que le profil f.

Résumé.

En s'élevant dans la série liasique de la Hochmatt, on constate une sensible diminution des variations pétrographiques. Ces dernières affectent encore la base du Lias moyen du flanc SE, où alternent les formations à faciès bathyal et celles à faciès néritique.

En usant du terme «bathyal», je fais cependant les réserves qu'imposent certains faits et leurs conséquences géologiques exposées par J. Tercier (bibl. 185, p. 71, 73, 76) et je l'applique à des sédiments siliceux déposés incontestablement à des profondeurs plus grandes que les calcaires à *Entroques*, sans être, pour autant franchement bathyaux dans le sens, fort contestable du reste (id. p. 74), que donne E. Haug à ce terme. La primauté des organismes sténothermes (*Phyllocératidés* et *Lytoceratidés*) sur les autres *Ammonites*, considérée par cet auteur comme seule probante, ne peut, bien entendu, être établie dans une région si pauvre en fossiles.

Les derniers bancs de calcaires spathiques caractérisent le Pliensbachien du flanc SE, sans toutefois atteindre la zone à Deroceras Davoei. Ce fait confirme l'opinion d'Horwitz (bibl. 80, p. 2), mais l'hypothèse de cet auteur que ces formations « montent peut-être jusqu'au Domérien » ne se trouve pas réalisée dans la région de la Hochmatt. L'extrême sommet du Pliensbachien et le Domérien y présentent une grande uniformité de faciès. Cette uniformité, exprimée par la constance pétrographique des assises de calcaires siliceux, semblent bien indiquer une stabilisation dans l'ensemble des facteurs de sédimentation.

Quant aux formations du flanc NW, cette stabilisation paraît, de prime abord, s'y manifester dès le début du Lias moyen, du fait de l'absence apparente de calcaire à *Crinoïdes*. Nous allons voir, cependant, que l'examen de certains détails nous empêche d'en tirer cette conclusion.

La présence, dans les calcaires siliceux du profil e, de Tropidoceras binotatum Op. nous permet de considérer les premiers termes du complexe Lias moven-supérieur du flanc NW comme représentant certainement le Pliensbachien inférieur et peut-être le sommet du Lotharingien. Cette constatation en engendre une autre, à savoir que dans les profils où il y a contact anormal entre le calcaire spathique rose et les schistes, la série manquante ne peut être que de faible puissance. On doit en conclure que les poussées verticales et tangentielles combinées, qui ont si violemment fragmenté l'Infralias et le Sinémurien en provoquant d'importantes lacunes dans ces formations, affectent différemment celles du Lias moyen. Elles s'y amortissent en quelque sorte, et cet effort final se traduit par une compression capable de modifier profondément la structure pétrographique des roches qui le subissent. En fait, sur 12 coupes minces pratiquées dans les schistes des horizons A, B et C (p. 45) de l'affleurement de la Villette et de leurs homologues du profil f de Motélon, il s'en est trouvé deux, dans chacun des profils, que l'examen microscopique a révélé constituées presqu'entièrement d'éléments broyés de Crinoïdes. L'examen à l'œil nu n'aurait jamais permis de soupconner une telle structure dans une roche revêtant l'aspect banal d'un schiste marneux. Les échantillons dont proviennent les coupes minces ont été prélevés dans des assises séparées par une distance verticale de 15 mètres.

Sans prétendre que ces quelques données résolvent entièrement le problème, je crois cependant qu'elles suffisent à démontrer que les conditions sédimentaires, au Lias moyen, n'ont pas varié d'un flanc à l'autre de l'anticlinal de la Hochmatt. Il est donc vraisemblable que les niveaux du flanc NW compris entre le calcaire rose à Crinoïdes et les assises qui m'ont livré Tropidoceras binotatum Op. correspondent, non seulement stratigraphiquement, aux niveaux du flanc SE compris entre les bancs 51 et 75 du profil des Rouvenes

(fig. 2 et 4), mais qu'ils sont encore leurs équivalents pétrographiques, modifiés postérieurement.

D. Lias supérieur : Toarcien-Aalénien.

Le Lias supérieur de l'anticlinal Vanil-Stockhorn, auquel appartient la région étudiée, s'annonce très souvent par la nature plus schisteuse de ses formations.

Cependant, l'uniformité des assises domériennes n'est pas subitement interrompue par l'apparition de ces couches schisteuses. Le passage d'une formation à l'autre est insensible; parfois le changement de faciès ne commence à se produire que dans les assises supérieures (fig. 6). Il arrive même, comme nous allons le voir, que ce changement de faciès ne se produise que beaucoup plus haut, au delà du Lias supérieur.

La pauvreté en fossiles toarciens et aaléniens est extrême dans cette région. V. Gilliéron (bibl. 63 et 64) déjà en avait été frappé et, après lui, H. Schardt et E. Favre (bibl. 172) l'ont signalé dans la description qu'ils donnent du Lias supérieur du Mt Cray, prolongement occidental de la Hochmatt.

Profil-type du Lias supérieur du Gros-Mont (fig. 4 et 6).

Trente mètres environ au-dessus de l'horizon qui m'a livré Amaltheus margaritatus, nous trouvons:

76. Alternance régulière de petits bancs de silex pur et de calcaire siliceux foncé. Ces derniers ne diffèrent en rien des calcaires du Domérien et l'examen micrographique des deux roches confirme leur parfaite similitude . . . 6,00 m.

Par la faible épaisseur de ses bancs, ce complexe, vu de loin, revêt un aspect schistosé, alors qu'en réalité il forme, au contraire, un ensemble très compact, revêche au marteau.

Calcaire siliceux en bancs de 15 à 20 cm. . 4,00 m. 78. Nouvelle alternance de petits bancs de silex et de calcaire siliceux, différant un peu de 76 par la nature plus marneuse du calcaire. Ce dernier revêt quelquefois l'aspect d'un schiste à surface onduleuse, dont certaines parties présentent de vagues traces d'organismes triturés. D'un gris sombre, il est souvent tacheté de noir et répand une odeur fétide 2,00 m. 79. Calcaire siliceux, localement tacheté. L'épaisseur des bancs, faible à la base (5-10 cm.), augmente graduellement, pour atteindre jusqu'à 25 cm. 48.00 m. C'est au sommet de ce complexe que se trouve une roche que l'examen microscopique révèle être presque entièrement formée d'organismes de nature algale (fig. 5, p. 67), auxquels semble liée la présence de foraminifères (v. page 72). 80. Peu à peu la puissance des bancs diminue en même temps que varie la nature pétrographique de la roche. Cette dernière devient un calcaire marneux se résolvant souvent en schistes 5,00 m.

Comme je l'ai dit précédemment (page 43), la limite inférieure de ce profil situe avec assez d'exactitude la base du Toarcien par rapport au Domérien caractérisé par l'Amaltheus margaritatus, pour que, établie sur des caractères surtout lithologiques, elle puisse cependant être considérée comme coïncidant avec la limite paléontologique impossible à établir ici.

Pour des raisons dont l'intérêt stratigraphique me paraît mériter une mention spéciale et que j'exposerai ci-après dans le chapitre « Algues dasycladacées et Foraminifères du Lias », (page 64), je considère le sommet du complexe 79 comme l'équivalent de la zone à Ludwigia Murchisonae.

Ceci étant, on peut en inférer que le niveau 80 représente la partie supérieure de l'Aalénien, mais, quant à savoir jusqu'à quelle hauteur il le représente, c'est là un problème qu'en l'absence de données paléontologiques précises, il est impossible de résoudre. Tout ce que je puis dire c'est que ce complexe de schistes et de calcaires marneux s'étend uniformément de la zone à Ludwigia Murchisonae jusqu'à la zone bajocienne à Witchellia laeviuscula inclusivement. J'ai pu reconnaître cette dernière zone grâce aux quelques fragments d'Ammonites que m'a livrés le gisement de la Berlienaz

et que j'ai comparés aux fossiles bajociens recueillis par L. Horwitz (bibl. 79) aux Recardets. J'ai dû de ce fait rectifier la limite entre le Lias et le Dogger, limite que j'avais d'abord tirée une dizaine de mètres plus haut, là où les assises bajociennes deviennent plus puissantes et plus compactes.

Ainsi, on ne peut distinguer lithologiquement l'extrême sommet du Lias d'avec le Bajocien et la limite que j'ai adoptée, sans être arbitraire, reste approximative. Cependant, on admettra que, d'une part, l'épaisseur totale de ce complexe de schistes et de calcaires marneux ne dépassant guère 20 m. et, d'autre part, son sommet étant incontestablement bajocien, le simple bon sens m'autorise à la maintenir.

Autres affleurements.

Flanc SE de l'anticlinal. a) Sur les flancs herbeux de Tissenivaz (au N de la crête 1887-1860), le Lias supérieur présente les mêmes caractéristiques qu'au Gros-Mont. Sa nature siliceuse est cependant plus apparente encore, les schistes du sommet de l'Aalénien ayant fait place à des calcaires siliceux finement lités. Une vingtaine de mètres en dessus des pitons pliensbachiens qui hérissent la pente, j'ai retrouvé quatre alternances du niveau basal 76. Une légère dépression souligne son passage sur la crête dominant le chalet des Noires-Joux. Le Lias supérieur est ensuite recouvert de terre végétale et de matériaux de glissement que j'ai figurés sur ma carte, mais sa base se situe vers le sommet de l'abrupt qui domine le cirque de la Rupaz. Je n'ai pas réussi à déceler la présence des microorganismes de l'horizon 79 dans les coupes minces des calcaires affleurant à l'E du chalet.

J'ai été plus heureux dans les ravins du Folliu (fig. 6) (prolongement NE de la crête de Tissenivaz). Il m'a suffi de faire trois coupes dans des roches présumées équivalentes du banc 79, pour découvrir, dans l'une d'elles, ces mêmes *Algues* enrobant des débris de *Foraminifères*.

b) Du Gros-Mont à l'arête des Rustoz (contrefort N de la Hochmatt), le Lias supérieur semble se modifier insensiblement et

recouvrer la nature schisteuse qui le caractérise habituellement dans les Préalpes. J'ai pu le constater sur les trois arêtes parallèles des Rustoz, du Petit-Toss et du Revers (fig. 6). Sur la première, des schistes marneux tachetés affleurent sporadiquement sur une distance d'environ 50 mètres.

- c) Sur l'arête médiane du Toss, j'ai pu, en décapant la roche de sa faible couverture végétale, relever le profil suivant, de bas en haut (fig. 6):
- 1. Calcaire siliceux, compact d'un bleu foncé.
- 2. Alternance de calcaires marneux noirs et de schistes argileux.
- 3. Calcaire grenu, plaqueté, d'un gris jaunâtre, avec intercalations de marnes grises à surface rouillée. Une dépression très marquée souligne le passage des niveaux b et c.
- 4. Calcaire marneux, passant latéralement à une roche plus siliceuse, qui forme un socle rayant obliquement la pente.

 L'affleurement n'est plus visible sur la crête, mais en longeant l'abrupt de Kneus, on le trouve surmonté de 5.
- 5. Calcaire siliceux, fragmenté en petits polyèdres et entrelardé de délits schisteux.
- 6. Schistes marneux passant graduellement aux bancs massifs du Bajocien.

Sur cinq coupes minces pratiquées dans la roche du niveau 5, de vingt en vingt centimètres verticalement, une seule accuse une structure qui la fait l'équivalent de l'horizon 79 du profil du Gros-Mont. Les *microorganismes* y sont cependant plus disséminés et je n'y ai pas trouvé de débris de *Foraminifères*.

d) La troisième crête, celle du Revers, présente, en pointements isolés les mêmes formations que le profil c, avec cependant une prédominance des schistes dans les niveaux 2, 3 et 4 (fig. 6). Le sommet présente tous les passages à un calcaire plus massif qui, dans la cluse du Petit-Mont, ma livré un fragment de

Soninia strigifer Buck.

En dépit de minutieuses recherches dans le Lias supérieur, je ne puis confirmer l'existence du banc de 2-3 cm. de calcaire spathique que Wengen (bibl. 206) prend localement comme limite entre le Lias et le Bajocien dans la région du Vanil Noir.

AFFLEUREMENTS DU FLANC NW DE L'ANTICLINAL. Je n'ai pas différencié sur ma carte le Lias supérieur du flanc NW, car je n'ai pas pu établir le caractère suffisamment permanent des critères lithologiques et paléontologiques qui m'avaient aidé à le distinguer du Domérien et du Bajocien dans le flanc SE.

A la Villette, où la série Lias moyen-supérieur (voir p. 45) est réduite à moins de 100 m., rien ne m'autorisait, en l'absence de fossiles, à tirer une limite entre le Domérien et le Toarcien là où les formations deviennent plus schisteuses. Au Contain, où un horizon du profil e (p. 48) m'a livré une Ammonite pliensbachienne, cette différence pétrographique n'existe plus, comme nous le verrons tout à l'heure.

D'autre part, si les termes J, K, L de cette série (profil p. 46) forment avec les couches à Taonurus une limite lithologique nette, je n'y ai pas retrouvé l'équivalent du niveau 79 du profil-type des Rouvenes (fig. 4).

Avec Horwitz, je présume que le sommet de l'Aalénien et la base du Bajocien s'y trouvent confondus comme cela a été signalé déjà par V. Gilliéron (bibl. 64, p. 144), E. Favre et H. Schardt (bibl. 172, p. 347) qui ont étudié la région confinant à la Hochmatt et également par C. Revertera (bibl. 162) et par J. P. Schumacher (bibl. 175).

Cette manière de voir se trouve plus fondée encore lorsqu'on examine le Lias de l'extrémité occidentale de cette zone. Du Haut-Crêt au Motélon, les couches intermédiaires entre le Lias moyen et le Bajocien, ressemblent singulièrement à leurs équivalentes du flanc opposé, dans ce sens que leur nature uniformément siliceuse ne permet plus de les différencier même lithologiquement. Comme le fait observer très justement V. Chassé (bibl. 21), le Toarcien, l'Aalénien et le Bajocien deviennent plus siliceux lorsqu'on approche de la région des Poutes-Paluds. Seule la présence de fossiles bajociens dans les assises supérieures m'a permis de tirer une limite qui coïncide avec celle établie par V. Chassé et avec celle que j'ai adoptée pour la région de la Villette.

Dans les formations de ce flanc NW, je n'ai pu déceler la présence des microorganismes de l'horizon 79 que vers le sommet du profil d (p. 48). C'est du reste à un pur hasard que je le dois,

car le banc les renfermant ne se distingue extérieurement en rien de ceux qui l'encadrent. Ce sont des calcaires siliceux assez compacts se délitant en plaquettes d'un à deux centimètres d'épaisseur.

Bien qu'au cours des recherches effectuées ailleurs dans les assises sous-jacentes au Bajocien fossilifère, ce banc m'ait échappé, je n'en demeure pas moins convaincu qu'en multipliant les coupes minces on le trouverait.

Résumé.

En résumé, le Lias supérieur de la Hochmatt présente de part et d'autre de l'axe anticlinal une succession de couches à parfaite continuité stratigraphique. Siliceux dans la partie occidentale de la carte, il devient plus schisteux à mesure que l'on s'avance vers l'E (voir fig. 6. p. 71). Aucune de ces formations ne procède forcément du faciès néritique. Seuls les calcaires marneux du niveau 78 (fig. 4, p. 43) offrent certaines analogies avec les schistes fétides, signalés comme toarciens par V. Gilliéron (bibl. 64) et confirmés comme tels par E. Peterhans (bibl. 128, p. 250) dans l'anticlinal de la Tinière. Mais les couches à Lamellibranches (Astarte) qu'invoque ce dernier auteur comme preuve de l'influence d'une ride anticlinale, n'existe pas dans le Lias supérieur de la Hochmatt, ce qu'avait déjà signalé L. Horwitz (bibl. 82, p. 27) pour la région de Charmey à l'W du territoire de ma carte.

Conclusions générales relatives au Lias de la Hochmatt

En abordant l'étude du Lias, nous nous sommes proposé de chercher à discerner les rapports existant entre la nature des dépôts, les variations de faciès de cet étage, et la topographie de l'aire de sédimentation des Préalpes médianes au début du Jurassique.

Que cette aire de sédimentation ait été affectée par des « plissements précurseurs », au sens que l'entendait E. Argand (bibl. 5), nombre d'auteurs en voyaient une preuve dans les lacunes signalées dans cette unité tectonique.

Coordonnant les faits observés dans l'ensemble du domaine préalpin par A. Jeannet, M. Lugeon, E. Gagnebin, L. Horwitz, F. Rabowsky pour sa partie occidentale, par R. Staub, P. Christ, A. Tobler, L. Vonderschmitt pour sa partie orientale, E. Peterhans (bibl. 128) a démontré, avec une remarquable clarté, le bien-fondé de cette hypothèse, en formulant cependant certaines réserves quant à l'extension dans le temps de ces plissements (op. cit., p. 315).

Des conclusions qui se dégagent de la magnifique synthèse de Peterhans, j'avais retenu, au début de ce chapitre, celle se rapportant implicitement à la région étudiée, à savoir :

« Dans la distribution en géanticlinaux et géosynclinaux du domaine préalpin, la région

Dent d'Oche, Tinière, Rossinière, Im Fang, Buochserhorn occupe le flanc N d'un géanticlinal à Lias lacunaire.»

Tenant pour certaine l'existence de ce géanticlinal dans les régions qui ont fourni à Peterhans ces principaux arguments, et l'admettant a priori dans celles où cette existence est contestable, nous sommes arrivés au terme de l'étude des séries liasiques d'une contrée que cet auteur a ignorée et qui se situe dans la zone susmentionnée, sans avoir pu cependant y déceler l'influence manifeste de ce géanticlinal.

En effet, en résumant brièvement les observations consignées en fin de description de chacun des étages (voir ci-devant p. 26, 40, 49 et 56), nous pouvons établir les faits suivants :

Le Rhétien et l'Hettangien affleurent sur les deux flancs de l'anticlinal de la Hochmatt. Ils présentent, de part et d'autre du noyau triasique, des lacunes dont la nature tectonique est rendue évidente par l'absence totale, dans les assises infraliasiques, de tout indice d'une érosion subaérienne d'une part, et d'autre part, par la présence, dans leur voisinage immédiat, de profils complets, tels celui des Rouvenes dans le flanc SE (fig. 1) et celui de la Jogne signalé par L. Horwitz (bibl. 75, p. 3) dans le flanc NW.

De plus, ces lacunes n'affectent pas les mêmes formations. Les profils lacunaires se complètent les uns les autres tant dans le flanc SE que dans le flanc NW, si bien que la somme de leurs termes représente, respectivement, la série entière de l'Infralias des deux flancs. Dès lors, et étant donné la faible distance séparant ces profils, il est impossible de concevoir que ces lacunes soient stratigraphiques. Elles sont incontestablement tectoniques. Leur répartition et le mode de dislocation des couches inclinent à y voir, plutôt que l'effet d'une pression tangentielle, la conséquence de la tectonique en diapire du Trias sous-jacent. Une preuve de moindre valeur, mais significative tout de même des pressions exercées sur l'Infralias, réside dans la fragmentation des plus petits composants de la roche, fragmentation que révèle nettement l'examen microscopique (microfailles des oolithes, etc.).

Le **Lias inférieur**, complet dans le flanc SE, présente des lacunes dans le flanc NW, où n'apparaissent souvent que les calcaires lotharingiens. Tout en procédant du diapirisme triasique, notamment dans les profils a et b (p. 33 et 36), la disparition en profondeur des assises sinémuriennes résulte également de l'intensité de la pression tangentielle exprimée par le pendage anormal des couches, qui fait de l'anticlinal de la Hochmatt le premier stade d'un pli renversé (voir planche des profils). De la Villette au Motélon, la série basale du Sinémurien a été laminée avec les formations qui la surmontent, formations dont j'ai signalé un dernier vestige dans le profil b du Contain (p. 36). Sur la rive gauche du Motélon, il réapparaît complet d'après H. W. Loser; L. Horwitz l'a également signalé comme tel, dans ce flanc, en amont de la Villette.

Ni le Sinémurien, ni le Lotharingien ne présentent des indices d'émersion, mais, alors que l'Infralias est uniformément marnogréseux sur toute l'étendue de notre territoire, le Lias inférieur est au contraire sujet à de rapides variations pétrographiques. De plus ses couches renferment des grains de quartz, des «galets» dolomitiques et des galets calcaires (voir p. 59).

Le **Lias moyen** de la Hochmatt offre, dans sa partie basale, les mêmes caractéristiques que le Lias inférieur. Le calcaire spathique y atteint la zone à *Deroceras Davoei*, soit le sommet du

Pliensbachien. Quant à sa masse principale, elle constitue, avec le **Lias supérieur**, un ensemble d'une parfaite continuité stratigra-phique. La composition très homogène des sédiments accuse un faciès plus profond que celui des formations sous-jacentes. La succession des bancs siliceux n'est interrompue par l'apparition des roches plus marneuses du Toarcien que dans la partie orientale de l'anticlinal, tandis que dans sa partie occidentale, le passage du Lias au Bajocien type (Bajocien moyen) n'est que faiblement marqué par des calcaires siliceux plus finement lités (voir fig. 6, p. 71).

Les lacunes stratigraphiques, observées dans certaines parties des Préalpes et qui ont suscité la théorie des géanticlinaux liasiques, sont donc inexistantes sur toute l'étendue de la région étudiée. Les surfaces perforées ou tout autre indice d'une érosion subaérienne n'apparaissent dans aucune formation du Lias de la Hochmatt.

LES GRAINS DE QUARTZ, LES « GALETS » DOLOMITIQUES, ET LES GALETS CALCAIRES DU LIAS

On serait encore tenté de voir l'influence d'un géanticlinal dans le fait que les assises liasiques contiennent parfois des grains de quartz, des «galets» dolomitiques et des galets calcaires.

J'ai pu observer des grains de quartz dans plusieurs coupes minces de calcaire spathique. Je ne les y ai rencontrés qu'isolés et je n'ai pas trouvé une formation semblable à celle de Schwiedenegg que signalent A. Jeannet et R. Gerber (bibl. 89, p. 143), et sur la surface de laquelle ces grains de quartz se trouvent en si grand nombre qu'ils rendent la roche rugueuse au toucher. Ce que m'a révélé l'étude sommaire que j'en ai faite, concorde avec les descriptions qu'en donne L. Horwitz (bibl. 81, p. 316). Sur le territoire de ma carte, ces grains existent aussi bien dans les calcaires spathiques du Sinémurien que dans ceux du Pliensbachien. Ils sont probablement de même origine que ceux que j'ai signalés dans le niveau 13 de l'Hettangien. Une étude détaillée de ces éléments exotiques s'écarterait trop de notre sujet, je ne puis que citer, à ce propos, les conclusions d'Horwitz (op. cit.) auxquelles j'adhère pleinement.

Après avoir constaté l'existence de grains de quartz dans tout le Lias spathique des Préalpes, voici ce qu'en dit cet auteur :

«Le fait que les dimensions des grains ne changent pas d'une manière appréciable, ni dans le sens longitudinal de la chaîne, ni dans le sens transversal, indique:

- 1. Que la provenance du quartz doit être cherchée en dehors du territoire en question (on n'y connaît pas actuellement de dépôts qui auraient pu fournir ce matériel);
- 2. Que le lieu d'origine de ces fragments devait se trouver relativement très loin, sans cela les dimensions variables des grains en révéleraient le lieu d'origine: elles augmenteraient dans sa direction.»

Il n'en va pas de même des «galets» dolomitiques, du moins pour ce qui a trait à la première des conclusions d'Horwitz. Les assises qui auraient pu être mises à contribution pour les engendrer existent et sont bien connues dans nos Préalpes. Pouvoir en inférer que les formations liasiques contenant des graviers dolomitiques ont été alimentées au dépens du Trias même sur lequel elles reposent, ce serait évidemment fournir une preuve de l'existence d'un géanticlinal exondé.

Cette relation entre le Trias et le Lias d'un même anticlinal semble avoir été établie dans certaines régions des Préalpes. Ainsi E. Gagnebin (bibl. 52, p. 53), constatant, près de Chamby, un contact anormal entre le Trias et le Lotharingien, n'hésite pas à voir dans « l'abondance de menus éléments dolomitiques dans le calcaire à entroques » une preuve de la transgression lotharingienne.

Dans une région comme celle de la Hochmatt, où les séries stratigraphiques sont complètes, du Trias au sommet du Lias, l'origine de ces « galets » ne peut être qu'hypothétique. Proviennent-ils d'un segment émergé de l'anticlinal Vanil-Stockhorn, situé dans un voisinage plus ou moins proche, ou faut-il en rechercher les assises génératrices dans une tout autre unité tectonique, située beaucoup plus loin, dans la zone méridionale des Préalpes? S'il s'agissait de vrais «galets», la seconde hypothèse serait plus vraisemblable que la première : ces « galets » se trouvant disséminés dans les assises liasiques sur toute l'étendue des Préalpes, la zone les engendrant devrait avoir été uniformément exondée sur une grande surface et durant

une période relativement longue. Rien n'empêcherait de supposer avec C. Revertera (bibl. 162, p. 24) que ces « galets » proviennent de la zone des Gastlosen, où le Dogger à Mytilus est transgressif sur le Trias.

Mais quelle est la vraie nature de ces débris dolomitiques? S'agit-il de débris clastiques polis par le transport ou simplement de concrétions postérieures à la sédimentation?

Ce n'est pas ici le lieu de chercher à résoudre un problème qui exigerait une étude systématique des «galets» en question sur tout le domaine préalpin. Qu'il me soit permis cependant, de citer, sans les commenter, trois faits observés sur le terrain et au laboratoire et qui pourront peut-être apporter un jour une modeste contribution à cette étude:

- 1° Sur le territoire de la Hochmatt, les «galets» dolomitiques ne restent pas confinés dans les assises du Lias. On les trouve également dans le Bathonien, le Néocomien, le Flysch des Médianes et le Flysch de la Simme.
- 2º Dans ces étages, ces « galets » se trouvent toujours associés aux calcaires échinodermiques. (Je précise bien les «galets», excluant de ce fait les gros éléments dolomitiques des conglomérats de la Mocausa). Ils manquent dans les bancs de calcaire siliceux, même si ces bancs sont de faible puissance et encadrés par des calcaires spathiques. Cette association revêt un tel caractère de généralité, qu'on est logiquement amené à se demander si, hormis les cas où la nature détritique de ces «galets» est incontestable, il n'existe pas une relation de cause à effet entre la forte teneur en carbonate de magnésie de certains organismes et la présence d'éléments dolomitiques dans des roches construites précisément par ces organismes. A cet effet, je rappellerai que P. N i g g l i (Lehrbuch der Mineralogie, p. 565) indique pour les Crinoïdes une teneur moyenne de 11% en MgCO3 et que F. W. Clarke et W. C. Wheeler (bibl. 23) signalent même pour Encrinites tiliuformis un pourcentage en MgCO3 atteignant 20,23.
- 3º Certains calcaires spathiques ne présentent ces «galets» que dans les parties altérées, la roche fraîche en étant dépourvue. En faisant leur analyse, j'ai pu constater que la section, par le plan équatorial de ces «galets», permet très souvent d'y déceler, même à l'œil nu, la présence de menus éléments étrangers à la masse dolomitique. Ces granules dont la nature m'échappe, semblent cantonnés vers le centre des «galets» plutôt que vers leur périphérie (les coupes tangentielles ne les atteignant que rarement), comme si leur rôle avait été celui d'un pôle attracteur.

Pour en revenir à notre sujet, notons maintenant que E. Peterhans (bibl. 128, p. 202) considère que les « galets » dolomitiques sont toujours liés aux zones géanticlinales. Sans le contester absolument, puisque les arguments me manquent encore, je doute cependant fort qu'il en soit ainsi. En tout cas, la présence de ces « galets » ne suffit pas à prouver l'influence d'un géanticlinal sur la sédimentation liasique de la région de la Hochmatt.

Qu'en est-il des galets calcaires? Beaucoup moins répandus que les «galets» dolomitiques, ils n'apparaissent en grand nombre que dans le tronçon Villette-Contain du flanc NW de l'anticlinal de la Hochmatt. D'abord disséminés dans le calcaire spathique rose de la Villette, sur une distance verticale d'environ 5 m., ils se concentrent ensuite vers le sommet de l'horizon I (p. 36 et 40). Ces grains arrondis, d'un diamètre ne dépassant jamais 6 mm., se détachent en noir sur un ciment clair de calcaire spathique. Comme je l'ai déjà signalé (p. 41), il n'y a là aucune interruption dans la sédimentation mais simple apport, en un milieu peu profond, d'éléments clastiques étrangers à ce milieu.

Si à eux seuls, ils ne suffisent pas plus que les grains de quartz et les «galets» dolomitiques à démontrer l'existence d'un géanticlinal, il faut cependant convenir que la présence d'un haut-fond faciliterait l'interprétation des brusques changements lithologiques du Lias inférieur, dont la localisation de ces galets offre un exemple assez frappant. En suivant vers l'W l'assise qui les renferme, on constate la disparition graduelle des graviers calcaires. La roche se résout peu à peu en un beau calcaire spathique rose, présentant de gros fragments hématitisés de Crinoïdes. Les formations de même âge sont représentées, dans le flanc opposé, par un calcaire spathique de texture très différente, mais de faciès assez semblable. Si on les poursuit en dehors du territoire de ma carte, dans la région qui confine au Petit-Mont, les variations lithologiques deviennent frappantes. L. Horwitz (bibl. 81, p. 314) a déjà signalé ce brusque changement latéral dans la description qu'il donne des séries du Lias inférieur, situées entre la Villette et Bellegarde, séries qu'il n'a retrouvées nulle part ailleurs et qui contiennent des roches et des fossiles inconnus dans les Préalpes.

On voit donc que de l'étude du Lias de la Hochmatt, il ressort que les lacunes stratigraphiques y sont absolument inexistantes. Cette région ne peut être attribuée en aucun de ses points au sommet exondé d'un géanticlinal.

Qu'un géanticlinal ait existé, aucune conclusion susceptible d'en apporter une preuve solide ne se dégage des faits observés. Cependant, on peut admettre que les rapides variations pétrographiques et surtout le fait que les séries complètes de l'Infralias sont très réduites par rapport à celles de la partie occidentale du même anticlinal, pourraient s'expliquer par la présence de la ride sous-marine décrite par E. Peterhans (bibl. 128), mais son point culminant serait en tout cas assez éloigné de la région étudiée.

CHAPITRE III

ALGUES DASYCLADACÉES ET FORAMINIFÈRES DU LIAS

Introduction

La carence presque complète de fossiles dans les sédiments compris entre la zone domérienne à Amaltheus margaritatus et celle à Emileia Sauzei du Bajocien de l'anticlinal Vanils-Stockhorn, a souvent conduit les géologues préalpins à considérer comme Lias supérieur, les formations schisteuses qui surmontent généralement les calcaires siliceux pris comme caractéristiques du Lias moyen. Ainsi, dans cet anticlinal Vanils-Stockhorn, auguel appartient la Hochmatt, V. Gilliéron (bibl. 64), E. Favre (bibl. 172) et H. Schardt (bibl. 172) ont parfois différencié le Lias supérieur en l'assimilant à celui plus fossilifère de l'anticlinal Lyss-Ganterist. Ces auteurs l'ont, par contre, rattaché au Dogger, là où la série schisteuse ne saurait représenter le Lias supérieur, soit en raison de sa persistance au delà des premiers fossiles bajociens, soit encore par suite de sa trop faible épaisseur. Quant aux régions où les schistes n'existent pas, Gilliéron (op. cit.) a figuré sur sa carte le Lias et le Bajocien en une seule série compréhensive.

Comme nous l'avons vu dans le chapitre précédent, je n'ai pu faire coïncider le Lias supérieur avec des formations dont les termes de base et du sommet sont schisteux, que dans la partie orientale de la Hochmatt. Cette façon de procéder s'y est avérée conforme aux données paléontologiques. A partir du Rustoz, la puissance de ces assises diminue insensiblement, les schistes se confinent de plus en plus vers le sommet (Lias-Bajocien), pour disparaître complètement à l'extrémité occidentale de l'anticlinal (voir fig. 6, p. 71).

C'est dans ce tronçon qu'il s'agissait de déceler une manière d'être du Lias supérieur, propre à maintenir son individualité.

Etude microscopique des sédiments liasiques.

J'ai déjà exposé les faits qui m'ont permis de fixer la base du Lias supérieur du Gros-Mont (p. 43). En reportant, à partir de cette dernière, l'épaisseur des schistes toarciens et aaléniens du profil du Revers (fig. 6), la limite Lias supérieur-Bajocien se situerait au milieu d'une série siliceuse offrant une succession de bancs d'une désespérante monotonie lithologique. Décidé à ne pas incorporer au Bajocien ces assises surmontant le niveau à Amaltheus margaritatus d'Orb. avant d'en avoir extrait tout ce qu'elles pouvaient contenir en fait d'éléments discriminants, je me suis mis à explorer cette zone, je dirai centimètre par centimètre, dans les beaux affleurements qui dominent la cluse du Gros-Mont, sur les flancs de la Berlienaz. Sur une distance verticale d'environ 350 m. je n'y ai trouvé que des niveaux absolument stériles, et lorsqu'enfin je mis une première fois la main sur un fragment d'Ammonite, ce fut pour constater qu'il s'agissait de l'espèce bajocienne Stephanoceras humphriesianum Sow.

La recherche de macrofossiles demeurait donc vaine dans le Lias supérieur du Gros-Mont, comme elle le fut ensuite dans ses prolongements immédiats sur la crête du Folliu et le long de l'escarpement des Sauts.

Privé des critères courants, je tentai un diagnostic différentiel des roches liasiques et bajociennes basé sur leur analyse microscopique. A cet effet, j'établis un profil à partir de la base du Pliens-bachien (niv. 69, fig. 4), jusqu'à l'horizon 3 (fig. 7), qui m'avait livré le Stephanoceras précité. Voici brièvement exposés les résultats de ces premières recherches :

Si, après examen des échantillons prélevés dans les niveaux extrêmes de ce profil, il fallait définir leur structure par la morphologie et la finesse des constituants de leur masse principale, on ne pourrait que convenir de la similitude pétrographique des calcaires siliceux aussi bien de l'assise typiquement pliensbachienne, insérée dans les calcaires à *Crinoïdes*, que de celle contenant la première faune bajocienne. Leur identification peut s'appuyer sur des caractères constants dans leur état d'agrégation résultant de l'extrême cohérence d'une masse corpusculaire que le microscope laisse indifférenciée et qui procède vraisemblablement d'une vase pélagique, dans le sens que donne J. Tercier (bibl. 185, p. 71) à ce terme ; (des matériaux clastiques de plus grandes dimensions, tranchant avec la finesse de cette structure, n'apparaîtront que très haut dans le Bajocien gréseux). De plus, la présence de quelques débris organiques parmi les constituants minéraux est un phénomène commun à ces deux niveaux extrêmes.

L'examen des termes intermédiaires va cependant révéler de notables différences non pas dans la nature siliceuse des dépôts, mais précisément dans la fréquence et l'état de conservation de ces débris organiques.

Relativement nombreux dans les sédiments de base (niv. 69, fig. 4), dont ils ne modifient cependant pas la structure générale, ces particules indéterminables deviennent de plus en plus rares à mesure que l'on s'élève dans la série à faciès siliceux continu du Domérien (niv. 75). Mais à partir de la base du niveau 79, leur nombre augmente manifestement, leur individualité s'affirme, puis s'atténue à nouveau pour disparaître au delà de l'horizon à *Stephanoceras*.

Algues dasycladacées:

Dans les bancs où ces débris réalisent leur maximum de fréquence, il est possible d'identifier parfois des organismes particulièrement réfractaires à l'épigénie telles que des spicules triaxones de *Spongiaires*, mais on est frappé d'emblée par la prédominance de longs filaments que leur connexion étroite avec la gangue, qu'ils semblent avoir partiellement élaborée, rend difficile à déterminer. Cependant, en multipliant les coupes minces, j'ai pu constater l'apparition soudaine de corpuscules bien distincts, rappelant ces filaments par leur forme allongée, mais bien différents dans les détails

d'une morphologie foncièrement végétale. Voici ce qu'on en peut observer dans les lames minces :

La section transversale de ces corpuscules figure une collerette disposée autour d'une cavité centrale bien délimitée (fig. 5). Les parties constituant cette collerette restent bien individualisées, séparées qu'elles sont par des canaux radiaires très fins; leur forme apparaît parfois renflée en massue vers l'extérieur. La communauté de caractères des canaux dans toutes les coupes, exclut

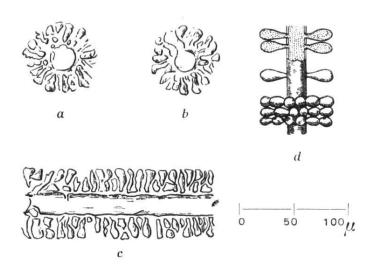


Fig. 5 — Dasycladacées nov. gen. du Lias supérieur de la Hochmatt.

a =coupe transversale droite.

b =coupe transversale oblique.

c = coupe longitudinale.

d = reconstitution de l'organisme,
 basée sur les divers aspects des sections en lames minces et sur les indications tirées des travaux de J. Pia.

leur genèse par altération; ils expriment la structure originelle de l'organisme. Que le contour dentelé de la paroi qui en résulte n'est pas le fait de côtes séparées par des sillons courant tout le long de la carapace, cela ressort clairement de l'examen des sections longitudinales. Ces dernières présentent l'aspect d'un thalle tubuleux, non ramifié, pourvu d'un canal sans cloisonnement apparent. La collerette forme une gaine épaisse coupée de stries perpendiculaires au canal central. Cette disposition des stries permet d'assimiler les constituants de la collerette à des sporanges s'ordonnant symétriquement autour d'une cavité circulaire.

A côté de sections typiques, on observe certains de ces glomérules dépourvus de canal. J'ai constaté assez rarement cette absence. Il est peu vraisemblable qu'elle résulte de quelque phénomène d'hétéroblastie comparable à celui que présentent certaines espèces de Phéophycées actuelles; elle est bien plutôt la conséquence de l'accroissement secondaire des cristaux formant les extrémités intérieures des sporanges, accroissement qui a déterminé l'envahissement de la cavité centrale et sa disparition progressive. Il semble donc bien que l'extstence d'un canal autour duquel sont étagés des corpuscules rayonnants, verticillés, est la caractéristique principale de ces organismes. Leurs dimensions sont assez constantes: le diamètre extérieur est de l'ordre de 70 μ tandis que celui du canal, dans son plus grand développement, ne dépasse jamais $25\,\mu$.

Ces organismes que leur caractères généraux me permettent de rattacher aux Algues dasycladacées, ne correspondent à aucune espèce connue.

Les genres dont ils se rapprochent le plus par leur morphologie d'ensemble en diffèrent toujours par quelque détail de leur structure, par les dimensions de leur thalle, et l'on hésite parfois à risquer même une comparaison. J'exposerai cependant quelques brèves considérations, et ne ferai ainsi qu'ébaucher une étude qui déborderait le cadre de ce travail et que je reprendrai ailleurs.

Les Dasycladacées, représentées dès le Silurien inférieur par le genre Vermiporella à thalle dichotome, décrits déjà par E. Stolley (bibl. 180) et précisés par A. Eisenack (bibl. 42) et les genres Dasyporella et Thabdoporella à thalle non ramifié, signalés par J. Pia (bibl. 142) et E. J. Garwood (bibl. 59), jouent un rôle prépondérant au Permo-Trias, mais n'ont guère fait l'objet d'étude spéciale dans leurs formes liasiques.

Inconnues dans le Rhétien, (bibl. 142, p. 67), des Dasycladacées ont été découvertes en fragments dans l'Hettangien, par L. et J. Morellet (bibl. 122, p. 441), dans le gisement de Simonla-Vineuse (Vendée). G. Dubar (bibl. 40, p. 182) les signale, sans en préciser le genre, dans le Lias inférieur et moyen de l'Atlas marocain, où ils voisinent avec des Solénopores. Enfin, J. Pia, dans ses admirables travaux sur les Siphonés verticillées, constate à plusieurs reprises la rareté des représentants connus de cette famille dans le Lias et le Dogger et ne signale que deux espèces liasiques: Sestrosphoera liasina recueillie dans le calcaire de Verena (Alpes du Vicentin) (bibl. 147 et 154) et le fameux Palaeocladus mediterraneus provenant des monts calabrais, que cet auteur décrit une première fois en 1920 (bibl. 141, p. 118) et qu'il qualifie, en 1936 (bibl. 154, p. 28), de fossile caractéristique du Lias, après en avoir, avec L. Noeth (bibl. 125), confirmé l'existence dans les chaînes du Pinde (Grèce).

Pour autant que mes coupes minces me permettent de l'établir, les microorganismes du Gros-Mont ne présentent pas la forme tronconique des fragments décrits par L. et J. Morellet (bibl. 122); ils en diffèrent, de plus, par le rapport du diamètre extérieur (D) avec celui de la cavité centrale (d) et par leurs dimensions. La moyenne de D et de d que je tire des mesures indiquées par ces auteurs (op. cit., p. 442) atteint respectivement 2,32 et 1,62 mm.

Je n'ai pu me procurer les données fournies par la découverte de *Dasycladacées* que Dubar (bibl. 40, p. 181) ne fait que signaler dans les « Annales de la Société géologique du Nord ».

Quant aux deux espèces liasiques de J. Pia, voici ce que dit cet auteur de la première (bibl. 142, p. 67) :

« Sestrosphaera lässt allerdings den Bau der inneren Organen nicht erkennen. Wir wissen nur, dass der Thallus in einen Kopf und einen Hals gegliedert war, die beide mit Wirtelästen besetzt waren.»

Le *Palaeocladus mediterraneus* par contre a été scruté, par J. Pia, dans tous les détails que son état de conservation précaire livrait à l'observation. La reconstitution qu'il en donne (bibl. 141, p. 121) souligne l'obliquité des pores, exprimée par l'angle, de plus en plus aigu de bas en haut, que ces derniers forment avec le canal central. Les sections transversales, figurées dans la planche VI du même ouvrage (bibl. 141), confirment nettement cette disposition qui, avec d'autres différences, moins perceptibles en coupes minces que le *Palaeocladus* présente avec les espèces plus anciennes, font de lui un fossile caractéristique du Lias, possédant simultanément des affinités avec les genres du Trias et du Tertiaire.

Il n'est évidemment pas question de déceler dans les microorganismes de mes coupes minces les différences subtiles établies par J. Pia. L'analyse minutieuse de chacun de leurs constituants permet cependant de considérer qu'en dépit de la recristallisation du thalle, la disposition des canaux radiaires dans les sections longitudinales exprime leur structure originelle. Dès lors, il faut bien convenir que ces organismes présentent moins une affinité avec les espèces liasiques connues, qu'ils n'évoquent, par la disposition des pores et par leur morphologie d'ensemble, certains types de Diplopores dont on connaît maintenant l'extension jusqu'au Crétacé (P. Arbenz, bibl. 3), ou d'autres genres de Dasycladacées plus récents, avec lesquels je ne fais que signaler leur analogie, en me référant notamment aux planches et descriptions de J. Pia (bibl. 150) et de L. et J. Morellet (bibl. 123). Il est bien entendu que ce ne sont là que des analogies dont un examen minutieux souligne souvent la précarité comme argument en faveur de l'existence d'un lien génétique. Je ne veux pour l'instant en tirer aucune conclusion car, quel que soit le genre auquel appartiennent ces glomérules, leur valeur stratigraphique pour le secteur compris dans les limites de ma carte, me paraît d'ores et déjà établie par les faits suivants :

POSITION STRATIGRAPHIQUE DU BANC A DASYCLADACÉES

La présence de l'horizon à microorganismes dans le complexe absolument stérile du Gros-Mont ne fournissait en elle-même aucune indication relative à l'appartenance de cet horizon au Lias ou au Bajocien.

Cependant, de nouvelles recherches dans les affleurements du Contain (p. 55), du Folliu (p. 53) et du Toss (p. 54) m'ayant permis de considérer cette présence non plus comme un accident, mais comme un fait permanent, je tentai de la déceler, en dehors de mon terrain, dans un profil caractérisé par une faune d'Ammonites.

Le massif des Bruns, contigu à celui de la Hochmatt, mais appartenant à une zone stratigraphique plus fossilifère, se prêtait particulièrement à pareille tentative. Ses assises renferment, entre autres, une faune liasique et bajocienne que L. Horwitz (bibl. 82) a minutieusement décrite. Me référant aux indications de cet auteur, je levai un profil à la Vachia d'Avaux et d'Amont (au N de Charmey), à partir des calcaires domériens jusqu'au Bajocien typique. J'y trouvai deux fragments d'Ammonites, mais, dans les coupes minces, pas une trace de microorganismes.

C'est alors que j'allai consulter les collections de L. Horwitz déposées au musée géologique de Lausanne. Grâce à l'extrême bienveillance de Monsieur le professeur E. Gagnebin, que je tiens encore à remercier ici, je pus établir un profil, du Lias moyen au Bajocien, en choisissant les échantillons les mieux conservés des Ammonites suivantes, dans chacun desquels je fis faire une coupe mince:

1. Grammoceras cf. subtile Fucini

déterminé par L. Horwitz et attribué par lui à la zone à Amaltheus margaritatus. (DOMÉRIEN)

2. Lytoceras aequistriatum Quenst.

L. Horwitz le donne comme apparenté au Lytoceras sublimatum Oppel (Pal. Mitt. Pl. 43, fig. 4) ou encore au Lytoceras cornuscopia Joung et Bird, figuré dans O. Hug (Pl. II, fig. 2). (TOARCIEN INFÉRIEUR.)

3. Ludwigia costosa Quenst.

Déterminée par L. Horwitz et attribuée par lui à la zone à Dumortieria Levesquei. (AALÉNIEN INFÉRIEUR.)

4. Ludwigia Murchisonae Sow. (AALÉNIEN SUPÉRIEUR)

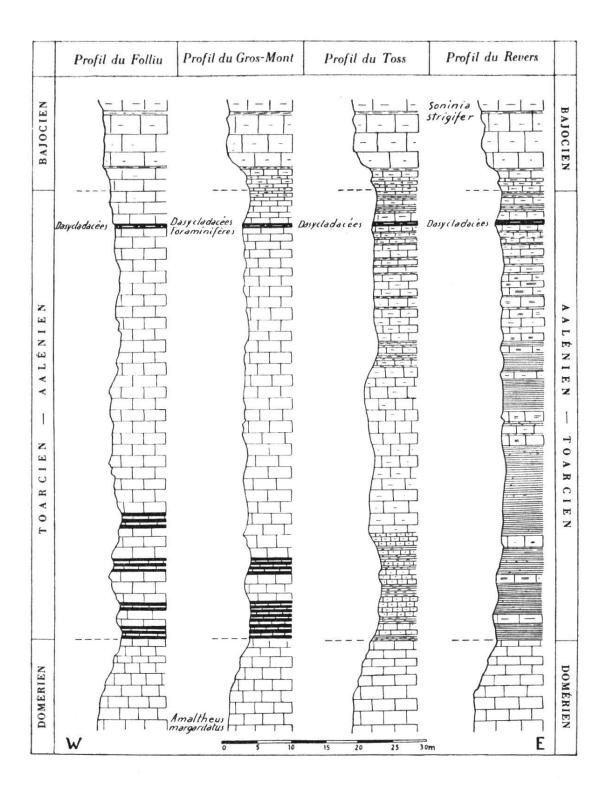


Fig. 6. — Profils montrant la position du banc à Dasycladacées et à Foraminifères, ainsi que les variations pétrographiques des horizons stériles compris entre les niveaux fossilifères du Domérien et du Bajocien.

Le Lias supérieur schisteux dans la partie orientale de la Hochmatt devient de plus en plus siliceux d'E à W. Pour la description des profils, voir p. 51,53 et 54.

Je n'eus pas besoin de poursuivre l'examen microscopique jusqu'aux échantillons bajociens, car alors que les N° 1, 2 et 3 ne renfermaient que quelques débris de *spicules*, la roche N° 4 était littéralement pétrie de *microorganismes* en tout semblables à ceux de l'horizon 79 du profil du Gros-Mont. Dès lors, je crois que ce n'est pas doter ces organismes d'une importance qu'ils n'ont pas, que de leur attribuer la valeur d'un critère et de considérer les bancs qui les renferment, du moins dans les limites de ma carte, comme équivalant stratigraphiquement à la *zone à Ludwigia Murchisonae*. C'est ce que j'ai fait en tirant la limite du Bajocien au delà de ces bancs comme je l'ai exposé dans le chapitre du Lias supérieur (p. 52). La position de ces derniers par rapport à la faune domérienne et bajocienne dissipe toute équivoque quant à la localisation de ces microorganismes en un seul et même horizon (voir fig. 6).

Foraminifères.

Une autre particularité de ce niveau est de recéler, surtout dans les parties les plus riches en *Algues*, des débris ou des tests entiers de *Foraminifères*. Cette association est un fait prévisible, étant donné l'abondance de ces *Protozoaires* sur les fonds *d'Algues* actuelles.

L'état de conservation de ces *Foraminifères* ne permet que très rarement une détermination spécifique. Lorsqu'une telle indentification est possible, l'on constate bien vite qu'il ne s'agit pas de formes caractéristiques d'un étage. Ils n'en présentent pas moins quelque intérêt par suite de leur inégale répartition dans les assises liasiques.

En effet, relativement abondants dans les niveaux 52, 54 du Sinémurien s. l. (fig. 2), 72 et 74 du Pliensbachien (fig. 4), les Foraminifères disparaissent complètement, à partir de ce dernier banc jusqu'au Lias supérieur. Je n'en ai pas retrouvé la moindre trace dans tout le complexe de calcaires siliceux représenté par les horizons 75-78. Ils réapparaissent progressivement vers le sommet du niveau 79 et présentent leur maximum de fréquence dans le banc à microorganismes. Les coupes minces faites dans le niveau 80 en contiennent encore fréquemment.

Les Foraminifères du Lias préalpin n'ont guère retenu l'attention des géologues. Cependant A. A. G. Schieferdecker et J. P

Schumacher (bibl. 173) les ont signalés dans le Sinémurien de Rossinière et dans celui de Charmey. Les déterminations un peu audacieuses qu'en font ces deux auteurs les rattachent tous à la famille des Lagenidés. J'ai pu reconnaître à la base du Pliensbachien et dans le Lias supérieur, je ne dis pas certaines espèces, mais certains genres cités. Ce sont notamement *Cristellaria*, *Nodosaria* et *Frondicularia*. J'ai rencontré en outre les genres non signalés, *Glandulina* et *Epistomina*.

Conclusions.

Dans la recherche d'un fait permettant d'établir une limite entre le Lias supérieur et le Bajocien, nous avons pu constater combien certains sédiments que le seul examen macroscopique eût permis de supposer isopiques, se révèlent différents les uns des autres lorsqu'on les analyse sous l'objectif.

Partant de cette constatation et grâce à l'apparition d'Algues dasycladacées et subsidiairement de Foraminifères, dans les assises supérieures du Lias, nous y avons identifié la zone à Ludwigia Murchisonae. Cette manière de procéder s'est trouvée justifiée par les faits que nous avons exposés ci-devant.

On pourrait cependant alléguer que tant que la position systématique des microorganismes cités n'est pas définie, que tant qu'on ignore s'ils représentent vraiment un stade bien distinct dans l'évolution d'un genre, on ne saurait les considérer comme un critère paléontologique.

Cela est bien évident, mais il n'est pas moins évident que quelle que soit la place qui leur sera assignée dans l'échelle des êtres, ces microorganismes présentent une réelle valeur stratigraphique et constituent, par leur persistance remarquable et leur localisation dans un même niveau (fig. 6), un critère que l'on peut qualifier provisoirement de lithologique au même titre, par exemple, que la lumachelle du Rhétien. Ils n'en demeurent pas moins fort utiles sur le terrain et c'est, dans le cadre de cette étude, ce qui importe avant tout.

CHAPITRE IV

LE DOGGER A ZOOPHYCOS

Introduction.

Le Dogger se répartit dans les Préalpes médianes en deux zones à faciès distinct: celle du *Dogger à Zoophycos* et celle du *Dogger à Mytilus*. Toutes deux sont représentées dans la région étudiée ici.

En dépit d'une certaine imprécision du terme, puisque, comme le remarque A. Jeannet (bibl. 88, p. 467), les Zoophycos peuvent apparaître aussi bien dans le Lias que dans le Bajocien ou le Bathonien, alors qu'ils sont très rares dans le Callovien, je réunis sous ce vocable de *Dogger à Zoophycos* les étages Bajocien, Bathonien et Callovien de l'anticlinal de la Hochmatt. Ayant pu différencier ces trois étages sur ma carte, je les traiterai séparément dans un même chapitre.

Quant au *Dogger à Mytilus*, je préfère en placer la description dans la seconde partie de ce travail.

A. Bajocien.

Alors que les sédiments liasiques semblent avoir été soumis, durant leur dépôt, à de nombreuses vicissitudes, ceux du Bajocien présentent, au contraire, une assez grande uniformité de faciès, du moins dans leur masse principale.

Les assises inférieures du Bajocien participent encore de la nature localement schisteuse du Lias supérieur. Aussi bien dans la partie orientale de la Hochmatt, où le Lias supérieur est schisteux, que dans la partie occidentale, où il est formé de petits bancs BAJOCIEN 75

siliceux, le Bajocien inférieur fournit tous les passages entre les schistes ou les calcaires plaquetés et les bancs massifs du Bajocien moyen (voir fig. 6 et 7). C'est généralement par une prédominance de calcaire gris clair tacheté de noir que s'effectue la transition.

Ces premiers niveaux, absolument stériles, sont surmontés de bancs plus épais, parfois encore tachetés, qui m'ont livré une faune bajocienne. La puissance de ces bancs augmente graduellement et atteint jusqu'à 1,20 m. vers le milieu de l'étage. Les calcaires relativement compacts dont ils sont alors constitués déterminent quelques-unes des croupes saillantes qui bordent la zone morainique s'étendant de la Villette à la vallée de Motélon. C'est dans la partie SE de cette zone que le Bajocien est le plus accessible aux observations. Suivons-le à partir de là.

Affleurements du flanc SE de l'anticlinal.

a) Au fond de la gorge du Petit-Mont, dans le lit-même de la rivière, les assises inférieures du Bajocien, ainsi que celles du Lias supérieur, sont quelque peu réduites par compression, mais elles affleurent nettement sur les deux rives. Ce sont des schistes marneux, entrelardés de bancs très fins de calcaire siliceux, lesquels croissent en importance à mesure que l'on s'élève. Ils forment un horizon de 5-6 m. avant de passer à des formations plus compactes. C'est dans ces dernières que j'ai trouvé la première faune bajocienne. Le gisement se trouve sur la rive gauche, environ 15 m. au-dessus du fond de la rivière. Dans un calcaire gris clair, tacheté de noir, j'ai recueili un fragment de

Soninia strigifer Buckmann

Tout près de là, dans l'éboulis qui recouvre partiellement l'espace compris entre le rio et la route du Petit-Mont, j'ai trouvé un autre fragment d'*Ammonite* indéterminable, dont la gangue présente ce même aspect de calcaire gris tacheté. Tout le long de la rivière, on peut suivre les bancs plus massifs qui surmontent les niveaux fossilifères et qui, s'érigeant parfois en abrupts successifs, y déterminent une suite de cascades d'un très bel effet.

- b) Les mêmes formations bajociennes affleurent vers le sommet du grand couloir qui gravit la pente boisée du Ratze. Sur l'arête du Revers, elles ne se présentent qu'en pointement et la série compacte y détermine un petit plateau.
- c) Au pt. 1594 (S du Petit-Toss), le Bajocien est représenté par le même calcaire compact, mais les assises qui le supportent sont très réduites par rapport à celles de l'arête du Verdy.

d) Profil de l'arête du Verdy :

- 1. Schistes marno-calcaires à la base.
- 2. Petits bancs (2-3 cm.) de calcaire siliceux, gris-bleu alternant avec de fins délits marneux.
- 3. Calcaire marneux gris clair moucheté de noir.
- 4. Bancs puissants de 0,80-1 m., qui semblent ici beaucoup plus fissiles que dans le reste de la chaîne, probablement par suite des violentes dislocations qui ont particulièrement affecté ce tronçon de l'anticlinal et qui se traduisent, au pied des deux sommets 1756 et 1774, par une multitude de petites failles qu'il est impossible de représenter sur la carte.

Le sentier qui gravit les deux sommets coupe les formations bajociennes dans toute leur épaisseur et c'est là, comme nous le verrons tout à l'heure (p. 80), que j'ai pu les différencier de l'étage bathonien.

e) Du Verdy au Gros-Mont, l'épaisseur du Bajocien croît sensiblement. En suivant la crête marquée par les pts. 1774 (Verdy), 1514 (Sauts-dessus), 1357 (Sauts-dessous), on observe également une plus grande uniformité de faciès entre le Lias supérieur et les bancs massifs du Bajocien moyen. Ainsi, dans les ravins de la Berliénaz, l'ensemble des calcaires marneux de l'extrême sommet de l'Aalénien et de la base du Bajocien n'atteint qu'une dizaine de mètres. Cette série intermédiaire est surmontée d'une alternance de calcaire tacheté et de calcaire siliceux plaqueté semblable à celui du Pliensbachien. Les bancs deviennent ensuite un peu plus marneux tout en demeurant très compacts. Ils ne sont que rarement interrompus par de fines intercalations de calcaires schisteux. Leur tranche présente une couleur d'un noir bleuté, tandis que leur surface altérée est brune ou jaunâtre. J'ai remarqué parfois, vers le

BAJOCIEN 77

sommet du Bajocien, quelques bancs d'un calcaire finement grenu qui, sous l'objectif, présente de nombreux éléments clastiques.

C'est dans le calcaire tacheté que j'ai recueilli quelques fragments d'*Ammonites*. En rassemblant les mieux conservés de ces débris, j'ai pu établir qu'il s'agissait d'une forme que je rapporte au

Stephanoceras humphriesianum Quenst.

La comparaison que j'en ai faite avec l'échantillon de ce type qui se trouve dans la collection de L. Horwitz, à Lausanne, corrobore cette première détermination.

Dans sa liste des fossiles bajociens, L. Horwitz (bibl. 82, p. 19) rattache cette forme à la faune du Bajocien moyen. J'ai été ainsi conduit à considérer les formations sous-jacentes au niveau qui me l'a livrée, comme correspondant à la zone à Witchellia leviuscula et en partie à celle à Emileia Sauzei.

D'autre part, environ 200 m. au-dessus du gisement en question, j'ai recueilli un

Phylloceras zignodianum d'Orb.

L'espèce *Ph. zignodianum* signalée par L. Horwitz (bibl. 83, p. 6) dans le Bathonien inférieur, reconnue par ce même auteur (bibl. 82, p. 18) dans le Bajocien moyen n'apparaît, d'après certains paléontologues, qu'à partir du Bajocien supérieur. J'incline à croire que l'exemplaire en question appartient à cette dernière zone, mais pas à son extrême sommet, car les schistes à *Tripartitus* qui, comme nous le verrons tout à l'heure, m'ont servi de base dans l'établissement de la limite Bajocien-Bathonien n'apparaissent que 50 à 60 m. plus haut.

f) Les versants SE du Mt Folliu (1777 m.) et de Tissenivaz (1888 m.) sont presqu'entièrement constitués par les formations bajociennes. L'épaisseur extraordinaire qu'atteignent celles-ci, telles qu'elles sont figurées sur ma carte, n'est qu'apparente. Elle résulte du fait que le pendage des couches est parallèle à l'inclinaison de la pente. En réalité, la puissance du Bajocien en cet endroit ne dépasse guère 530 m., ce qui est un maximum dans la région étudiée. Les calcaires n'affleurent que sporadiquement dans les pâturages des Noirs-Joux. Par contre, le cirque morainique qui domine à l'W le chalet de la Petite Audèche, en présente un superbe affleu-

rement. On y voit les couches bajociennes, inclinées d'abord de 50° SE, s'incurver brusquement et devenir presque horizontales entre les deux sommets 1888 et 1887. Le passage du Lias supérieur au Bajocien se fait par une suite de bancs de 4 à 6 cm. d'épaisseur d'un calcaire siliceux très homogène qui, en augmentant de puissance, revêt insensiblement l'aspect typique des formations bajociennes. Ces calcaires compacts bleu-noir, entrecoupés de rares délits marneux, ne m'ont livré aucun fossile.

Affleurements du flanc NW de l'anticlinal.

Les affleurements bajociens sont ici beaucoup plus rares, par suite des réductions consécutives aux mouvements tectoniques qui ont plus violemment disloqué les formations du flanc NW que celles du flanc opposé.

- g) Le Bajocien apparaît une première fois à l'W de la Villette. La construction de la route cantonale a mis à jour des calcaires marneux d'un bleu foncé qui, pétrographiquement, ne diffèrent pas de ceux que nous avons observés au Petit-Mont, mais qui cependant, à l'encontre de ces derniers, montrent sur leur surface altérée des multitudes de Zoophycos. On peut les suivre aisément le long des torrents dans la forêt de Bifang et, à 170 m. au N du Bi-Chalet, on les voit entrant en contact avec le Trias.
- h) Le Bajocien ne réapparaît que sur l'autre versant de la vallée du Gros-Mont. Au S de Rotzna-dessous, il se trouve coincé entre deux failles qui le juxtaposent d'une part au Lias moyen, d'autre part au Bathonien et au Callovien. Il n'est observable que si l'on décape ses bancs de l'épaisse couche de tuf qui les tapisse tout le long de la rivière. C'est un calcaire noir gréso-marneux qui se distingue nettement des assises bathoniennes qui le surmontent.
- i) On retrouve ces mêmes formations 300 m. en amont, sur la rive droite du torrent qui dévale les pentes du Haut-Crêt. Afin d'éviter toute confusion, je signalerai une légère erreur dans le levé topographique de cet endroit. L'espace où figure le Bajocien-Bathonien à l'W du pt. 1239 (Rotzua du milieu) est non pas occupé par

79

une seule vallée largement ouverte, comme l'indique la carte, mais par deux profondes gorges séparées par une croupe assez vaste, partiellement recouverte de dépôts récents. Alors que le Bajocien n'affleure pas dans la gorge la plus proche des Rotzua, il est très distinct dans celle qui traverse la forêt du Haut-Crêt. C'est de la rive droite de celle-ci qu'il s'agit en l'occurrence. Ici, comme plus bas, les bancs sont recouverts de tuf. Je n'ai indiqué ce dernier sur la carte que là où il constitue un dépôt important.

j) Il n'est pas très aisé de suivre le Bajocien entre le chalet du Haut-Crêt et celui du Praz au Cerf, dissimulé qu'il est sous une épaisse couche de terre végétale. Quelques pointements, disséminés dans le gazon, permettent cependant de le déterminer.

Par contre, dès que l'on a quitté la moraine sur laquelle est construit ce dernier chalet, les affleurements se multiplient. Le flanc SE de la montagne présente, entre Longessiaz et la Morardaz, d'assez bons profils, du Lias au sommet du Bathonien.

k) Dans la forêt qui couronne les pâturages de la Vonderveire et de la Générale, j'ai reconnu le Bajocien à la puissance des bancs marneux qui surmontent la zone intermédiaire des calcaires siliceux. Dans la grande coupure d'érosion dont l'aboutissement est le sommet du cône, à l'E du chalet de la Générale, j'ai trouvé le seul fossile que m'ait livré le Bajocien du flanc NW de l'anticlinal. Cet exemplaire, bien mal conservé, trahit cependant son appartenance à l'espèce

Stephanoceras humphriesianum Quenst.,

signalé ci-dessus ; la forme de la section du dernier tour est, en effet, nettement quadrilatière et ses arêtes sont un peu arrondies.

L'examen de ces différents affleurements nous fournira les données relatives au Bajocien, dans l'établissement du profil d'ensemble, que nous donnerons du Dogger à Zoophycos, en fin de ce chapitre. J'ai exposé dans les pages précédentes les faits qui m'ont permis de le différencier du Lias supérieur, il me reste maintenant à fixer la limite entre le Bajocien et le Bathonien.

B. Bathonien.

LIMITE ENTRE LE BAJOCIEN ET LE BATHONIEN

La limite entre le Bajocien et le Bathonien, telle que je l'ai adoptée sur ma carte, coîncide avec un changement très marqué dans la nature pétrographique des sédiments. Aux formations compactes du Bajocien succèdent des schistes qui, par leur friabilité, déterminent de vastes dépressions (voir fig. 7). L'étude minutieuse des assises compactes et des premiers schistes révèle que ce changement, apparemment si rapide, s'ébauche beaucoup plus bas que ne le laisse présumer la compacité du Bajocien supérieur. Ce dernier recèle en effet plus d'intercalations de schistes et de bancs compacts d'un calcaire gréseux (voir p. 105), que le Bajocien moyen. De plus, les premiers schistes enrobent souvent des petits bancs de calcaire tacheté, semblables à ceux de la base. Dans le massif des Bruns, L. Horwitz (bibl. 79, p. 54, et 82, p. 20) a considéré le complexe schisteux surmontant les formations compactes comme appartenant encore au Bajocien. Je le comprends dans le Bathonien pour la raison suivante: dans l'affleurement du Verdy (voir p. 76), aux bancs calcaires du Bajocien succède une alternance de formations franchement marneuse et de petits bancs gréseux qui m'ont livré quelques fragments bien déterminables de

Lytoceras tripartitum Rasp.

Le gisement se trouve à 100 m. au N du chalet du Verdy (1698 m.). Quoique ce fossile ait été signalé dans le Bajocien supérieur, notamment par W. Kilian (bibl. 91) (qui le signale également dans le Callovien), je crois qu'à défaut d'autres critères paléontologiques, il n'est pas arbitraire de considérer les formations qui le contiennent comme bathoniennes étant donné qu'une limite ainsi établie correspond au changement lithologique très net dont nous avons déjà parlé (apparition des schistes sur les bancs plus compacts du Bajocien et, souvent, présence du premier banc de calcaire oolithique).

Affleurements.

Le Bathonien ne diffère pas pétrographiquement d'un flanc à l'autre de l'anticlinal.

BATHONIEN 81

Aussi ne passerons-nous pas en revue tous ses affleurements, nous nous contenterons de signaler les caractères qui sont communs à tous, aussi bien aux affleurements du flanc SE qu'à ceux du flanc NW.

C'est dans la partie orientale de ma carte que ces caractères peuvent le mieux être observés. Entre le Gros et le Petit-Mont, la Hochmatt lance vers la vallée de la Jogne d'énormes contreforts, trois arêtes parallèles séparées par les cirques du Perru et de Kneus, et constituées en grande partie par le Bathonien.

Le premier banc de calcaire oolithique n'y affleure que sporadiquement. Les calcaires tachetés et les formations marno-gréseuses, signalées ci-dessous, se résolvent peu à peu en un complexe plus homogène de schistes calcaires, souvent gréseux et micacés, à pâte d'un bleu-noir, d'une couleur d'altération brune. Ces formations présentent parfois des traces de charbon. Leur uniformité n'est interrompue que par l'apparition de calcaires oolithiques qui s'érigent en pitons abrupts, isolés dans la masse schisteuse (voir fig. 7).

Le nombre des bancs oolithiques n'est pas constant. On doit en inférer que ce sont des lentilles plutôt que des bancs. On peut s'en convaincre du reste, lorsque des chalets de Kneus ou du Perru (Steiniger Toss) par exemple, on observe leur comportement en profondeur. Aux pieds du second sommet oolithique de l'arête médiane (N du pt. 1594), j'ai recueilli deux nouveaux exemplaires de

Lytoceras tripartitum Rasp.

Ce gisement a déjà été exploré par V. Gilliéron (bibl. 64, p. 139), qui signale cette espèce comme la seule représentée dans le Bathonien de la Hochmatt. Force m'a été de convenir qu'il en était probablement de même dans tous les affleurements du Bathonien compris dans les limites de ma carte. Ainsi, dans les formations schisteuses situées à 50 m. au N du Bovatey (1535 m.) et à 200 m. au S de Rotzna (1239 m.), je n'ai recueilli que des fragments de Lytoceras tripartitum. Dans ce dernier gisement, j'ai cependant trouvé, sur un bloc détaché, un débris de

Perisphinctes funatus Opp.

Cette espèce est considérée par A. Jeannet (bibl. 88, p. 503) comme appartenant déjà à la faune du Callovien. Il est probable qu'il provienne de cet étage dont il est séparé par la moraine de Rotzna. Cependant, à cause de la nature pétrographique de sa gangue, à cause aussi de la situation de l'éboulis qui me l'a livré,

il n'est pas exclu qu'il appartienne au sommet de l'horizon considéré comme Bathonien supérieur, dont il va être question maintenant.

Le complexe schisteux, dont la puissance peut atteindre 600 m. et plus dans la partie occidentale de ma carte, est surmonté d'une alternance de calcaire gréseux assez compact et de calcaire oolithique ou spathique très dur.

Les bancs gréseux sont littéralement tapissés de Zoophycos. On les trouve notamment le long du couloir qui, partant de la base du pic 1979, aboutit sur le chemin du Petit-Mont, en aval des « Escaliers de la Croix ». La nature gréseuse de la roche à Zoophycos est ici moins manifeste que dans les horizons qui lui sont immédiatement supérieurs. C'est bien plutôt un calcaire marneux un peu grenu, que l'objectif révèle, constitué par une vase indifférenciée englobant quelques grains de quartz et de menus débris de Crinoïdes.

Les calcaires oolithiques et spathiques se présentent, contrairement à leurs semblables des assises inférieures, en bancs très continus qui, par leur couleur d'altération blanchâtre, se distinguent nettement des formations qui les encadrent. Il faut noter qu'il y a connexion intime entre les calcaires bathoniens à structure spathique et ceux à structure oolithique. Les coupes minces que j'ai faites d'oolithes d'un peu plus d'un millimètre de diamètre trahissent toutes une disposition concentrique autour d'un débris d'articles de *Crinoïdes*. Les éléments dolomitiques sont très abondants dans toutes ces formations.

Au S du col de Tissenivaz (1758) à la limite de ma carte, un de ces bancs m'a livré des fragments indéterminables de *Brachiopodes*. Cette découverte ne saurait, bien entendu, servir d'argument pour établir l'existence, dans ce Bathonien supérieur, du « faciès intermédiaire » signalé par M. Lugeon (bibl. 107) à la Pointe d'Orchez, par E. Peterhans (bibl. 128) à la Dent d'Oche, par L. Horwitz (bibl. 79) dans le massif des Bruns et par A. Lombard (bibl. 102) au Roc des Suets. Elle mérite cependant d'être signalée.

LIMITE SUPÉRIEURE DU BATHONIEN

De même que j'ai fait coïncider la limite inférieure du Bathonien avec un changement dans la nature pétrographique des sédiCALLOVIEN 83

ments et l'apparition du premier banc de calcaire oolithique, j'ai adopté comme limite supérieure de cet étage les derniers bancs compacts de calcaire oolithique et spathique. Avant de donner, dans le profil d'ensemble du Dogger, la succession des roches que nous venons d'examiner, voyons si cette façon de faire se justifie.

C. Callovien.

Aux calcaires oolithiques considérés comme sommet du Bathonien succèdent des schistes calcaires parfois très marneux, passant graduellement à des formations siliceuses plus compactes, le tout entrelardé de bancs de silex.

Les premières assises qui m'ont livré une faune callovienne se situent assez haut dans cette série, de sorte qu'il n'est pas invraisemblable que les derniers bancs de calcaire oolithique et gréseux, desquels je présume que provient le *Perisphinctes funatus* Opp. cité ci-devant (p. 81), représentent déjà la zone à Macrocephalites macrocephalus.

La précarité des renseignements fournis par cette seule Ammonite rend cependant bien fragile l'existence d'un fait paléontologique qui m'obligerait à déplacer ma limite de quelque 15 m. Par contre, le changement de faciès qu'accuse le Callovien tel que je le considère, fait de cet étage une entité stratigraphique bien définie, présentant avec le Bathonien des différences importantes. En effet, les fossiles de faciès néritique que sont les Crinoïdes n'apparaissent plus qu'accidentellement et à l'état de minuscules débris dans les formations du Callovien de la Hochmatt. Ils n'y constituent plus ces niveaux spathiques et oolithiques si caractéristiques du Bathonien de la région. D'autre part, aux brusques variations pétrographiques a succédé une certaine stabilité dans la sédimentation, dans ce sens que les schistes de la base, qui procèdent encore localement d'un faciès peu profond, revêtent lentement un caractère bathyal qui se traduit d'abord par la plus grande finesse de leur structure et ensuite par l'apparition, au sommet de l'étage, de calcaires à Radiolaires. Bien souvent, rien ne distingue ces derniers de certaines radiolarites de la nappe de la Simme; nous en reparlerons au cours de la description des affleurements.

Affleurements.

Les caractères du Callovien sont assez constants dans les deux flancs de l'anticlinal.

- a) La friabilité de ses formations basales qui, dans le pays, leur ont valu le qualificatif de roches « pourries » les rend peu accessibles dans le secteur compris entre le Petit-Mont et l'arête du Verdy. Le Callovien s'y trouve affecté de fortes réductions, particulièrement sensibles à l'W du sommet 1979, où les schistes, réduits à 3 m., sont comprimés entre le Bathonien et les calcaires siliceux de son sommet. Ces derniers renferment, en cet endroit plus qu'ailleurs semble-t-il, une multitude de rognons de silex corné. En fait de fossile, je n'ai trouvé que quelques débris déformés de Belemnites, au N du pt. 1794 de l'arête médiane.
- b) Du Verdy à la Chaux d'Hochmatt, le Callovien présente de bons affleurements recouverts, vers le bas seulement, d'une fine couche de terre végétale. A l'E de la Granta, j'ai recueilli deux exemplaires d'Ammonites, malheureusement tout à fait indéterminables.
- c) Au fond de la cluse du Gros-Mont, toute la partie inférieure du Callovien est masquée par les éboulis. Sa partie supérieure affleure par contre vers le pont Notre-Dame. C'est un calcaire siliceux à pâte grise, un peu grenu, à couleur d'altération d'un jaune verdâtre. Il détermine, sur la rive gauche du rio, un petit sommet d'où l'on peut le suivre aisément jusqu'au pied du Croset.
- d) L'ascension de la paroi N du Vanil de l'Ardille m'a permis d'observer, 2 m. en dessous du calcaire noduleux du Malm inférieur, un calcaire siliceux très compact, d'un gris clair, renfermant de nombreux Radiolaires.
- e) A l'W de la Morardaz, je n'ai reconnu le Callovien que sur l'étroite bande qu'il laisse affleurer avant de disparaître complètement jusqu'à l'extrémité orientale du Haut-Crêt.
- f) Il reprend de l'importance à cet endroit. Fort bouleversées, ces couches ont, vers leur sommet, une direction presque perpendiculaire à l'arête qui domine les Rotznas. La roche sous-jacente aux

CALLOVIEN 85

calcaires noduleux présente *une teinte d'un rouge lie de vin*, qui la fait ressembler, à s'y méprendre, au Crétacé supérieur. La méprise est d'autant plus facile que, sur l'arête, le Callovien se trouve en contact avec le Néocomien!

g) Ces formations rouges, inexistantes sur le flanc SE de l'anticlinal, réapparaissent dans les ravins qui surplombent la vallée du Gros-Mont, à l'E de Rotzna dessous, ainsi qu'au Toss, au NW du pt. 1325. Ce sont des calcaires compacts, très homogènes que l'objectif révèle constitués en grande partie par des Radiolaires à l'exclusion de tout autre organisme¹. (Des Radiolaires apparaissent déjà dans les formations grises immédiatement sous-jacentes, mais ils sont plus disséminés et sont accompagnés d'autres microorganismes dont la nature m'échappe.) Ces Rhizopodes disparaissent du reste très rapidement; je ne les ai pas rencontrés dans la roche lithographique surmontant les calcaires rouges (voir fig. 7) et, au delà de ce dernier, ils sont, dans l'Argovien, toujours associés aux Globigérines (voir p. 93).

Il m'a été impossible de retrouver le gisement d'Ammonites signalé par Th. V. Chassé (bibl. 21, p. 8) au S du chalet de Rotzna-dessous. Par contre, dans ces ravins et à l'entrée de la galerie du Toss, les assises inférieures au calcaire à Radiolaires m'ont livré:

Macrocephalites compressus Quenst.
Proplanulites subcuneatus Teiss.
Procerites quercinus Terq.
Perisphinctes crassicosta Buck.
Perisphinctes grossouvreia Opp.
Phylloceras Kunthi Neum.

h) Sur le flanc N du Gros Toss (1375 m.), le passage du Callovien n'est souligné que par quelques pointements rocheux, mais il affleure particulièrement bien dans la forêt de la Mercière où ses formations, régulièrement coupées de bandes siliceuses disposées parallèlement aux lignes de stratification, déterminent un ressaut

¹⁾ Voir à ce sujet le profil-type du Callovien, niveau 13, p. 89.

bien marqué, jusqu'à leur disparition sous les dépôts récents de la vallée de la Jogne.

LIMITE SUPÉRIEURE DU CALLOVIEN

Le sommet du Callovien est impossible à distinguer pétrographiquement de la base de l'Öxfordien. N'ayant récolté aucun fossile caractéristique entre les assises qui m'ont livré une faune callovienne et le premier banc de calcaire noduleux, j'ai fixé la limite supérieure du Callovien à la base de la série marneuse qui aboutit à ce dernier. Cette limite, quelque peu conventionnelle, place à l'extrême sommet du Callovien le *calcaire à Radiolaires* surmonté d'un banc peu épais de calcaire compact gris, à pâte très fine, dont on retrouvera du reste l'analogue dans le profil Oxfordien-Argovien.

Le Bajocien, le Bathonien et Callovien considérés dans leur ensemble.

Coordonnant les faits observés dans les divers affleurements bajociens, bathoniens et calloviens compris dans la région de la Hochmatt, nous pouvons maintenant établir que le Dogger à Zoophycos présente, dans cette région, la succession suivante, de bas en haut:

BAJOCIEN:

- 1. Schistes ou calcaires siliceux plaquetés ne se distinguant pas des assises du Lias supérieur.
- 2. Calcaire en bancs plus épais, à consistance plus ferme que 1. C'est une roche marneuse, tantôt d'un bleu-noir uniforme, tantôt d'un gris plus clair semé de mouchetures noires. Nombreux *Zoophycos*. Ce niveau exploré au Petit et au Gros-Mont m'a livré

Sonninia strigifer Buck. Stephanoceras humphriesianum Quenst.

- 3. Bancs très épais (jusqu'à 1,20 m.) de calcaire marneux noir, entrecoupé de schistes à intervalles irréguliers, avec *Phylloceras zignodianum* d'Orb.
- 4. Ces bancs alternent, vers le sommet, avec des formations gréseuses demeurant assez compactes.

Les calcaires foncés des horizons 2, 3 et 4 répandent au choc une odeur fétide. Bathonien: 5. Schistes calcaires coupés de fines intercalations d'un calcaire marneux gris clair, tacheté de noir. Lentilles de calcaire oolithique.

Lytoceras tripartitum Rasp.

6. Niveau moyen, pouvant atteindre plus de 600 m. de puissance, constitué par une alternance de schistes marneux et de petits bancs de calcaire gréseux, micacé, présentant souvent des traces char-Cette bonneuses. masse qui par sa nature pétrographique et son comportement évoque faciès «Flysch» est interrompue par des formations oolithiques et spathiques que leur consistance érige en pitons isolés.

Lytoceras tripartitum Rasp.

7. Assises compactes de calcaire oolithique et spathique en bancs épais, avec intercalations de calcaire gréseux à Zoophycos, également compact. Au col de Tissenivaz, ce niveau m'a livré des fragments de

Brachiopodes ind.

Callovien: 8. Schistes marneux d'un gris-brun. Couleur d'altération jaune-verdâtre.

Vers la base, intercalations de schistes gréseux contenant localement de rares et minuscules débris de *Crinoides*.

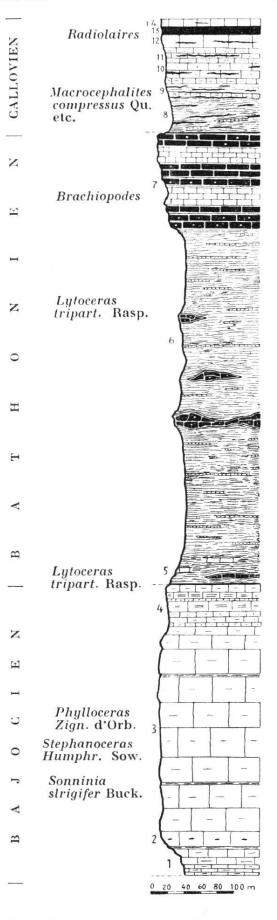


FIG. 7. — Coupe stratigraphique du Dogger à Zoophycos de l'anticlinal de la Hochmatt.

(suite)

Callovien: 9. Alternance de schistes semblables à 8 et de bancs de 6 à 8 cm. de calcaire marneux gris-clair, sillonné de veinules de calcite. Exposée à l'air, cette roche prend une teinte d'un jaune-verdâtre qui la pénètre assez profondément pour former une zone de 3 à 5 cm. Cette zone est fort bien visible sur les cassures fraîches où on la voit alors auréoler le noyau de calcaire gris non altéré. Dans les schistes, si le délitement ne met pas d'une façon continue de la roche fraîche à découvert, l'altération peut atteindre une plus grande profondeur. Aussi faut-il creuser parfois longtemps pour s'apercevoir de l'identité de la masse fondamentale des schistes et des calcaires. Vers le sommet, les schistes se font plus rares et le calcaire, de moins en moins marneux, revêt parfois un aspect légèrement cristallin. C'est la partie supérieure de ce niveau qui, dans les ravins de Rotzna, m'a livré la première faune callovienne, soit

> Macrocephalites compressus Quenst. Proplanulites subcuneatus Teiss.

- 10. Calcaire siliceux d'un gris brun. Sa pâte, très homogène, est parfois ponctuée de taches noires répandues sans ordre. Ces taches, en forme de spicules bien visibles à l'œil nu, correspondent à de petites plages marneuses. La couleur d'altération de la roche est jaune-verdâtre.
- 11. Calcaire siliceux différant de 10 par sa structure légèrement granuleuse, l'orientation de ses constituants, soulignée par la disposition des taches noires parallèles au plan de stratification et par sa couleur d'altération d'un brun-fauve. Le gisement du Toss comprend:

Procerites quercinus Terq. Perisphincles crassicosta Buck Perisphinctes grossouvreia Opp. Phylloceras Kunthi Neum.

12. Bancs compacts de calcaire siliceux gris, renfermant quelques Radiolaires isolés et d'autres microorganismes indéterminables. Ils sont marqués vers le bas de longues traînées rouges qui ne résultent pas de l'altération superficielle. Le sommet présente, sur 10 cm., une curieuse intrication de plages rouges et grises parallèles au plan de stratification. La roche ressemblerait de loin au calcaire noduleux, mais sa faible épaisseur et sa situation entre les assises compactes 11 et 13 en font nettement une roche issue de phénomènes tectoniques et intermédiaire entre le calcaire siliceux gris et le calcaire rouge à Radiolaires. Je ne l'ai trouvée nulle part ailleurs qu'au

Toss. A Rotzna, le niveau 13 repose directement sur 11. Cette structure rappelle celle de l'horizon b de la partie supérieure du Callovien d'Aveneyres (Haute Tinière) signalé par A. Jeannet (bibl. 88, p. 492).

- 13. Calcaire à Radiolaires. Ce sont des roches compactes, très homogènes, d'un rouge lie de vin. Constituée par une pâte très fine, qui sous l'objectif reste indifférenciée, ils renferment d'innombrables Radiolaires, à l'exclusion de tout autre organisme. Ce dernier fait seul m'incite à croire qu'il s'agit là d'une formation profonde.

 Bien souvent, rien ne distingue ce calcaire à Radiolaires de certaines radiolarites de la nappe de la Simme.
- 14. Calcaire compact, présentant une structure lithographique et une cassure conchoïde. La roche de couleur grise est localement tachetée. L'examen au microscope n'y révèle plus aucune trace de *Radiolaires*.

Toutes les assises, de 8 à 14, renferment des rognons de silex corné, formant souvent des bancs continus de 4 à 7 cm. d'épaisseur.

Hormis de légères variations dans la schistosité des formations de sa base et dans la couleur des calcaires à *Radiolaires* de son sommet, ce profil-type du *Dogger à Zoophycos* est commun aux deux flancs de l'anticlinal de la Hochmatt.

Conclusions

V. Gilliéron (bibl. 64), E. Favre et H. Schardt (bibl. 172) ont signalé déjà la difficulté qu'il y a de séparer stratigraphiquement les trois étages du Dogger. La faune que j'ai pu recueillir dans le

¹⁾ En effet, les Radiolaires en tant qu'organismes ubiquistes ne nous fournissent aucune indication d'ordre bathymétrique lorsqu'ils sont associés à d'autres organismes (bibl. 17, p. 389; voir également L. Moret 1940, Manuel de paléontologie animale, p. 102). Il n'en est plus de même lorsque ces autres organismes sont absents et que seuls, résistant à la dissolution, subsistent les tests siliceux des Radiolaires.

L. Horwitz (bibl. 83, p. 383) a signalé des roches rouges calloviennes dans le massif des Bruns (vieille Cierne) sans s'arrêter à l'étude de leur structure. Il les considère comme un « faciès local tout à fait exceptionnel » et les attribue, à cet endroit, au Callovien inférieur. Là où elles apparaissent dans ma région, leur position entre le sommet du Callovien et la base du Malm est absolument certaine.

secteur de la Hochmatt, tout en me permettant de conclure à la présence de chacun d'eux, n'a cependant pas entièrement résolu pour moi cette difficulté. Elle subsistait par le fait que, d'une part, les gisements fossilifères étant localisés dans les assises médianes du Bajocien et du Callovien et que d'autre part, le *Lytoceras tripartitum* Rasp., seul fossile que m'ait livré le Bathonien, déborde dans ces deux étages, il m'était impossible de fixer avec précision la base et le sommet de chacun d'eux. Pour suppléer à l'insuffisance des données paléontologiques, j'ai été contraint de les différencier partiellement par leurs caractères pétrographiques, comme je viens de l'exposer.

Jusqu'à quel point ces limites basées simultanément sur des caractères paléontologiques insuffisants et sur la nature lithologique des sédiments, correspondent-elles effectivement à celles qu'eût permis d'établir une faune caractéristique abondante?

A cette question je puis répondre que l'étude comparée de mes profils et de ceux décrits par A. Jeannet (bibl. 88, p. 473, 492-496; 72, p. 613-615) et par L. Horwitz (bibl. 74, p. 55; 82, p. 17 et 18: 83, p. 357 et 358), dans des régions géologiquement apparentées à celle de la Hochmatt, fait ressortir la parfaite conformité des assises comprises dans les limites que j'ai adoptées, avec celles étudiées par ces auteurs et caractérisées par une faune. Ces limites se trouvent ainsi pleinement justifiées.

MALM 91

CHAPITRE V

LE MALM S.L.

Introduction.

Les schistes surmontant le Callovien, tel que je viens de le décrire, constituent le premier terme d'une série caractérisée par le calcaire noduleux.

Décrivant ce dernier dans l'anticlinal Vanil-Stockhorn, V. Gilliéron (bibl. 64, p. 162) l'a assimilié au Malm inférieur. La faune que cet auteur y a recueillie, et qu'il m'a été donné d'examiner au musée de Bâle, est essentiellement représentée par des *Belemnites* dont deux seulement proviennent de la région de la Hochmatt. Ce sont des fragments de *B. argovianus* Mayer trouvés dans la cluse de Petit-Mont et attribués par Gilliéron à la zone à Peltoceras transversarium.

Les puissantes assises de calcaire compact qui succèdent à ce complexe marneux, s'en distinguent d'emblée par le rôle morphologique qui leur est dévolu. Dans la région étudiée, V. Gilliéron (bibl. 64) y a reconnu la zone kiméridgienne à Strebilites tenuilobatus, grâce à la découverte qu'il fit, au Petit-Mont également, d'un Perisphinctes polyplocus Rein. Cet auteur signale, là encore, la présence d'un Cidaris pretiosa du Tithonique.

Mes recherches confirment l'existence des zones identifiées par ce savant géologue. En me procurant une faune d'Ammonites elles apportent une preuve de plus de l'existence de l'Argovien dans la région de la Hochmatt et m'ont ainsi permis d'assigner au Malm une limite inférieure. Quant à la limite supérieure de cet étage, j'ai pu la fixer en m'appuyant à la fois sur les données de Gilliéron et sur cet autre fait paléontologique constitué par la présence, au sommet du Malm, des microorganismes Clypeina et Coscinoconus.

Sur ma carte et dans la description qui va suivre, j'ai divisé le Jurassique supérieur en deux parties :

- A. Malm inférieur : Oxfordien-Argovien.
- B. Malm s. str. : Séquanien-Kimméridgien-Portlandien.

A. Malm inf.: Oxfordien-Argovien.

Bien que, dans les Préalpes médianes, l'exis-GÉNÉRALITÉS. tence des assises oxfordiennes inférieures à la zone à Cardioceras cordatum, n'ait jamais été confirmée paléontologiquement, il faut bien admettre, qu'étant donné le faciès profond du calcaire à Radiolaires signalé ci-devant (p. 89) et la continuité stratigraphique parfaite que présentent avec lui les assises qui l'encadrent, il ne saurait être question, dans la région étudiée, d'une interruption de sédimentation. Je considère donc que l'Oxfordien est représenté lithologiquement par des schistes marneux qui, avant de se résoudre en calcaire noduleux, atteignent dans le profil du Toss, 6 m. d'épaisseur. Il est possible qu'il débute déjà avec les niveaux supérieurs que j'ai inclus dans le Callovien (p. 86) mais, à défaut de fossiles et m'appuyant sur le fait que la puissance des assises comprises entre le Callovien fossilifère et les schistes en question ne dépasse pas 15 m., j'ai tiré la limite inférieure de l'Oxfordien là où les couches tranchent par leur inconsistance avec les calcaires siliceux compacts considérés comme calloviens.

Profil-type du Toss.

- 1. Schistes marneux alternant avec de petits bancs (2 cm.) de calcaire clair.
- 2. Calcaire noduleux mais encore très peu compact et n'atteignant que 15 cm. d'épaisseur.
- 3. Calcaire marneux compact et très homogène. Structure lithographique, cassure conchoïdale.

- 4. Petits bancs d'un calcaire gris clair, sillonné de veinules de calcite. Il rappelle, par son aspect et sa consistance, les formations typiques du Malm.
- 5. Calcaire noduleux compact, de couleur grise, tacheté de rares concrétions rouges et alternant avec de petits bancs de calcaire semblable à 3 et à 4. Localement un peu schisteux, ce complexe présente vers son sommet tous les passages vers les assises du Malm moyen et supérieur.

Je ne ferai que signaler la coexistence dans ce niveau, de quelques Radiolaires et de nombreuses Globigérines répartis indifféremment dans les concrétions et dans la gangue.

Les fossiles que j'ai recueillis dans l'Argovien proviennent tous du niveau 5. Ce sont :

Peltoceras transversarium Quenst.
Perisphinctes (Lithacoceras) lucingense Favre.
Perisphinctes Martelli Opp.
Peltoceras sp. indet.
Phylloceras tortisulcatus d'Orb.
Phylloceras silenus Font.
Perisphinctes sp. indet.
Perisphinctes bennensis de Loriol.

Le gisement qui m'a livré les quatre premiers de ces fossiles est situé au NW du Gros-Toss (1317 m.), un peu en aval de l'entrée de la galerie. Les trois suivants proviennent du prolongement de ces mêmes assises dans le ravin des Rotznas, sur la rive gauche du rio du Gros-Mont. Le dernier est le seul représentant de la faune argovienne que m'ont livré les formations du flanc SE de l'anticlinal. Je l'ai trouvé au pied du Cheval Blanc (2148 m.) à l'endroit dit « Creux au mort », dans un calcaire gris finement plaqueté, immédiatement inférieur aux gros bancs de calcaire compact du Malm.

Autres affleurements.

FLANC NW DE L'ANTICLINAL

a) Je n'ai pas retrouvé, ailleurs qu'à Rotzna, la succession complète que présente le profil du Toss. Dans son prolongement vers

la vallée de la Jogne, la roche est souvent dissimulée sous la terre végétale et je n'ai pu figurer l'Oxfordien-Argovien, sur ma carte, que grâce aux pointements du calcaire noduleux de l'horizon 5.

- b) Sur le versant N du sommet 1375, ce dernier niveau est fortement décalé par rapport à celui du versant occidental.
- c) Au pied du Haut-Crêt, les niveaux 3, 4 et partiellement 5 surmontent les calcaires rouges du Callovien.
- d) Sur la crête de Bovatey, l'Oxfordien-Argovien n'est marqué que par un étroit liséré de calcaire noduleux. Il s'y trouve coincé entre le Malm et les calcaires oolithiques du Bathonien puis disparaît tectoniquement.
- e) Il affleure une dernière fois sur le versant droit de la vallée du Motélon, à l'W du Chalet de la Morardaz, trahi qu'il est par quelques fragments de calcaires noduleux et de calcaire lithographique, le tout fortement comprimé.

FLANC SE DE L'ANTICLINAL

f) De la vallée du Petit-Mont à celle du Gros-Mont, l'Oxfordien-Argovien affleure d'une façon très continue. Soulignant les abrupts du Malm, il y marque très nettement les nombreuses dislocations qui affectent cet étage. Je n'ai rencontré, dans ce tronçon, qu'un seul horizon de calcaire noduleux. On le voit qui barre obliquement la paroi surplombant les pâturages de « In den Bächern ». Il y forme, vers l'W, une partie de la crête et passe sur l'autre pente par une succession de failles. En suivant une petite vire qui conduit au sommet 1979, on trouve toute la série schisteuse qu'il surmonte. Ce sont des calcaires et des schistes que j'assimile aux niveaux 1, 3 et 4, du profil du Toss (p. 92), en notant qu'ils sont ici plus développés que dans ce dernier. Le calcaire noduleux, semblable à celui du niveau 5 par sa structure et sa compacité, ne se présente cependant plus comme lui alternant avec des calcaires fins. Il est, en bordure du « Creux au Mort », réduit à un seul banc, sur lequel reposent les calcaires typiques du Malm par l'intermédiaire d'un niveau peu épais de calcaire lithographique. Celui-ci m'a livré

Perisphinctes bennensis de Loriol.

- g) Au fond de la gorge du Gros-Mont, 40 m. en amont du Pont Notre-Dame, l'Oxfordien-Argovien pointe parmi les éboulis. On reconnaît le niveau lithographique surmonté du calcaire noduleux qu'on peut suivre, avec quelque peine, jusqu'au pied de la paroi qui surplombe à l'E les « Escaliers du Mont ».
- h) On le retrouve, plus à l'W, dans un ancien lit du torrent, au pied de l'imposante paroi de l'Ardille où il va butter contre le Malm.
- i) Après une courte disparition sous l'éboulis, il affleure à nouveau. Etroitement coincé entre le Callovien et le Malm du pied de l'Ardille, le calcaire noduleux, à peine perceptible, semble former corps avec ces formations. (Cela explique que W. Wengen (bibl. 206, p. 30) signale son absence à cet endroit.)
- j) Sur le versant N du Vanil de Croset, il reprend par contre toute son extension. J'en ai relevé le profil suivant de bas en haut :
- 1. Alternance de schistes marneux et de calcaires compacts gris clair, avec prédominance de ces derniers.
- 2. La roche prend l'aspect d'un calcaire plus marneux que les précédents. Elle présente, à mesure que l'on s'élève dans la série, des zones grumeleuses de plus en plus nombreuses et aboutit à un calcaire noduleux où le concrétions ne sont cependant pas aussi nettement individualisées que dans le niveau équivalent du flanc NW de l'anticlinal.
- 3. Calcaire marneux, d'un gris bleuté, à structure lithographique, alternant plusieurs fois avec de petits bancs de calcaires gris clair sillonné de veinules de calcite. Ce niveau est beaucoup plus développé que les niveaux 3 et 4 pris ensemble dans le profil du Toss (p. 92).
 - . Calcaire noduleux, compact, semblable à celui de l'horizon 5 du profil du Toss, mais ne se présentant pas, comme celui-ci, en alternance avec d'autres formations. Il ne forme ici qu'un seul banc surmonté, comme dans l'affleurement g, du calcaire lithographique. Les nodules, comme du reste leur gangue, se révèlent sous l'objectif criblés de Globigérines qui s'associent à quelques Radiolaires éparses dans la masse.

L'étude comparative de ces divers affleurements fait ressortir une différence manifeste dans le développement du calcaire noduleux des flancs NW et SE de l'anticlinal de la Hochmatt. Nous verrons dans la conclusion qui clôt ce chapitre ce qu'il faut en penser.

J'ai adopté, sur ma carte, comme limite supérieure de l'Oxfordien-Argovien les bancs de calcaires noduleux et lithographiques immédiatement sous-jacents aux formations typiques du Malm.

B. Malm s. str.: Séquanien, Kiméridgien, Portlandien.

GÉNÉRALITÉS. La distinction établie par V. Gilliéron (bibl. 64, p. 164) entre le Malm s. str. du flanc NW et celui du flanc SE de l'anticlinal Vanils-Stockhorn, ne me paraît pas applicable au tronçon de cet anticlinal que représente la région étudiée. Le calcaire noir, que cet auteur considère comme l'apanage du « flanc le plus rapproché des Gastlosen », se retrouve dans le Malm de l'un et de l'autre jambage, où il n'est, par surcroît, aucunement lié à un niveau déterminé. En outre, les fossiles tithoniques n'y sont pas cantonnés dans la partie septentrionale, je les ai rencontrés également dans le flanc SE. Si bien qu'il m'est permis d'embrasser dans une même description le Malm des flancs NW et SE, compris dans les limites de ma carte.

Description des assises inférieures et moyennes du Malm s. str.

Les assises succédant aux calcaires marneux et noduleux de l'Argovien sont constituées par une roche compacte d'un gris clair, disposée en petits bancs de 15 à 25 cm. d'épaisseur, lesquels sont entrecoupés de lits de silex.

La puissance des bancs calcaires augmente assez rapidement en même temps que disparaissent les intercalations siliceuses. Le milieu de l'étage est formé d'un calcaire massif dans lequel il est parfois difficile de discerner le moindre joint de stratification. Cette série que A. Jeannet (bibl. 88, p. 553) signale comme « non subdivisible paléontologiquement » se présente bien comme telle dans la région de la Hochmatt. Elle ne m'a livré que deux fragments indéterminables d'Ammonites et un moule externe de

Perisphinctes eupalus d'Orb.

J'ai recueilli cet exemplaire, attribué par d'Orbigny au Kiméridgien, dans le calcaire massif de la partie NE de l'escarpement du Toss (1375 m.).

En dépit de l'apparente homogénéité que lui confère la compacité plus ou moins égale de ses assises, ce complexe renferme des roches très variées, différant les unes des autres par leur structure, leur teneur en CaCO₃ (40-85 % e. P.), leur couleur (qui va du noir au gris très clair) et par d'autres caractères que l'examen au microscope permet de reconnaître aisément. Une première tentative d'établir une subdivision basée sur ces variations pétrographiques ne m'a fourni aucune donnée susceptible de généralisation, par suite, notamment, du fait qu'une roche de composition donnée est loin d'être liée à un horizon déterminé.

Il en a été de même d'un essai de différenciation lithologique des premiers niveaux que supporte le calcaire massif. Les bancs, en s'amenuisant, reprennent ici l'aspect des assises de la base; les intercalations siliceuses réapparaissent. J'ai cependant pu y constater l'existence d'une formation que je n'avais pas rencontrée plus bas. Il s'agit d'une espèce de bol, de couleur jaune bleuâtre, remplissant d'abord les interstices de la roche elle-même et formant ensuite des délits bien individualisés, de 8 à 10 cm. d'épaisseur. Ce bol, à forte teneur d'argile, englobe alors de petits polyèdres de calcaire et forme avec eux un agglomérat aussi compact parfois que les bancs qu'il sépare. Cette dernière circonstance fait que bien souvent il passe inaperçu dans l'ensemble uniformément cohérent du Malm. Lors du percement de la galerie du Toss, plusieurs de ces délits argileux ont été traversés, comme me l'avait fait remarquer mon ami P. Mercier, du Service géologique. L'un d'eux repose sur une surface criblée de trous circulaires de 8 cm. de diamètre et de 5 mm. de profondeur. Ces perforations, dont l'origine ne peut être due à l'intervention d'un organisme lithophage, sont vraisemblablement en connexion avec la formation du bol, ce que laissent présumer la régularité de leur forme et la physionomie de la roche.

Etude microscopique des assises supérieures du Malm s. str.

C'est à partir des niveaux coupés de ces intercalations d'argile, soit seulement vers le sommet du Malm, qu'il m'a été enfin possible d'établir une subdivision basée sur les variations pétrographiques, et cela grâce à l'apparition d'une microfaune propre à confirmer le synchronisme de ces variations dans toute la région comprise dans les limites de ma carte.

J'ai levé dans la partie supérieure du Malm six profils de détails, situés respectivement :

- A. Au pied du Vanil de Croset, 500 m. au N du chalet de Brenleire-dessus.
- B. Dans la gorge du Gros-Mont, à l'endroit noté sur la carte « Escaliers du Mont ».
- C. Sur le contrefort oriental du Cheval Blanc, en dessus du cirque rocheux dit « Creux au Mort ».
- D. Le long du chemin du Petit-Mont, au lieu dénommé « Kreuzli » qui marque l'entrée de la cluse, aux confins de mon terrain.
- E. A l'W du sommet du Toss, à la hauteur de la cote 1320.
- F. Près du chalet de Rotzna dessus. Les contacts anormaux de nature tectonique que présente le Malm du Haut-Crêt et de la Morardaz ne m'ont permis d'y prendre que des profils incomplets par rapport aux précédents.

Flanc SE de l'anticlinal

Flanc NW de l'anticlinal

L'étude comparée, en coupes minces, des roches provenant de ces divers profils m'a révélé, outre l'existence de microorganismes connus, tels que les *Radiolaires* et les *Calpionelles*, celle de protistes caractéristiques non encore signalés dans cette unité stratigraphique, soit :

Clypeina jurassica Favre. Coscinoconus alpinus Leupold et Bigler.

L'apparition répétée de cette faune dans les mêmes niveaux pétrographiques des profils susnommés m'a permis d'établir, qu'abstraction faite de quelques variantes dues à la forme lenticulaire des calcaires spathiques, le Malm supérieur de l'anticlinal de la Hochmatt présente uniformément la succession suivante, de bas en haut :

- 1. Calcaire gris clair surmontant le dernier niveau de bol argileux, signalé ci-devant (p. 97). Ce calcaire compact, en bancs de 15 à 20 cm., est souvent marqué de trainées roussâtres de limonite.
- 2. Calcaire à surface grumeleuse dont la pâte grise, souillée de matière ocreuse, renferme des débris épars de *Crinoïdes*.
- 3. La roche, localement encore grumeleuse, est constituée par une pâte plus fine, plus marneuse que 2, d'où les débris échinodermiques ont disparu. L'objectif y révèle une multitude d'organismes en forme de bâtonnets, sorte de mégasclères monoaxes dépourvues de canal. Quelques sphères, d'allure aberrante, apparaissent çà et là et tranchent sur la masse grise de la roche par la blancheur et le brillant de la calcite hyaline constituant la fine paroi qui les limite.
- 4. Alternance de calcaire compact pur du type Malm et de calcaire plus marneux. Ce dernier est sillonné de fines veinules de calcite disposées parallèlement les unes aux autres dans différentes directions.
- 5. Calcaire à pâte fine d'un gris clair englobant des masses rosées de composition et de texture semblable. Ce niveau m'a livré

Corbula Pichleri Ziet. Terebratula cf. datensis Favre

- 6. Insensiblement le niveau 5 prend une couleur plus foncée et aboutit à une roche noirâtre, où les plages rosées auréolent des rognons de pyrite de la grosseur d'une noix.
- 7. La roche redevient semblable à 5 quant à la structure, mais en diffère par l'apparition subite de

Calpionella alpina Lorenz

avec prédominance de la forme sphérique décrite notamment par H. J. Fichter (bibl. 48, p. 8, fig. 1).

8. Calcaire gris-bleuté, moins marneux, plus compact que 7, enrobant de gros rognons siliceux non pas noirâtres comme dans le reste du profil, mais très clairs et parfois diaphanes. Les parties siliceuses

ne contiennent aucun organisme. Par contre, les *Calpionelles* abondent dans les parties calcaires, sans qu'il n'y ait plus prédominance d'une forme sur les autres comme dans le niveau sous-jacent. On y trouve indifféremment

Calpionella alpina Lorenz Calpionella elliptica Cadisch (bibl. 15, p. 249, pl. III, fig. 17).

Calpionella oblonga Cadisch (bibl. 15, p. 252, pl. III, fig. 20 et 21).

- 9. Calcaire clair à structure nettement lithographique renfermant la même faunule que 8.
- 10. Calcaires spathiques et oolithiques. Ainsi tout en se trouvant en parfaite continuité stratigraphique avec le niveau 9, la roche change brusquement de structure. Les Calpionelles ne sont plus que très rares mais, dans une profusion de débris organiques, apparaissent successivement

Clypeina jurassica Favre (bibl. 45, p. 35, fig. 10, pl. I, fig. 2).

Coscinoconus alpinus Leupold et Bigler (bibl. 98, pl. XVIII, fig. 5 à 11).

Cet horizon 10, sujet à quelques variations relatives à son épaisseur et à sa disposition dans une même zone paléontologique, se présente de la manière suivante:

PROFILS A ET B (de la page 98).

De bas en haut:

- a) Calcaire composé de débris grossiers d'*Echinodermes* . . . 0,10 m.
 b) Calcaire lithographique dans lequel abondent
 - Calpionella alpina Lorenz

Ce calcaire forme un banc compact de 0,20 m.

0,15 m.

c) Passage brusque à un second banc spathique qui m'a livré Coscinoconus alpinus Leupold

d) Deux bancs, semblables à b	0,45 m.
e) Roche grenue où de gros débris de <i>Crinoïdes</i> baignent dans une masse que le microscope laisse indifférenciée et dans laquelle on reconnaît de rares <i>Textulaires</i> et quelques <i>Calpionelles</i>	0,20 m.
Profil C.	
a) Roche présentant l'aspect macroscopique d'un calcaire qu'on a coutume de qualifier, abusivement peut-être, de coralligène (Cayeux, bibl. 17, p. 419) et réunissant, en un seul horizon, les constituants des trois niveaux spathiques du profil précédent, auxquels il faut ajouter quelques vestiges de Bryozoaires et de menus éléments clastiques cantonnés en certaines plages	2,50 m.
Profil D.	
a) Le niveau coralligène, équivalant par la diversité de ses composants à celui de la coupe précédente, est ici réduit à	0,20 m.
b) Calcaire lithographique rempli de Calpionelles	1,30 m.
c) Calcaire grenu, légèrement spathique	0,15 m.
Profil E.	
a) Calcaire oolithique. L'enveloppe corticale des oolithes y est constituée par plusieurs zones concentriques autour d'un nucléus qui est presque toujours un fragment d'article de Crinoïdes. Ces débris échinodermiques se retrouvent du reste dans certaines parties non oolithisées; l'unité d'orientation optique, qu'ils réalisent, les distinguent d'emblée des fragments à structure fibreuse des Bryozoaires qui se trouvent là en assez grande quantité. Brochant sur le tout, de fréquentes sections de verticilles apparaissent nettement et font de ce niveau le plus riche en Clypeina jurassica Favre	

qu'il m'a été donné d'examiner dans ma région. La plupart des sections sont transversales et ne présentent qu'une partie de la couronne sporangique. J'en ai observé qui comprenaient neuf chambres, disposées en arc de cercle, dont certaines s'ouvrent à leur extrémité distale. Leur physionomie correspond exactement à celle de l'espèce décrite par J. Favre et A. Richard (bibl. 45, p. 34 et pl. I, fig. 2) et figurée dans leur texte et dans la planche de microphotographies qui se trouve à la fin de leur travail.

Dans mes coupes minces, les sections longitudinales sont rares. Je n'ai rencontré que des vestiges de thalle défiguré et un tronçon plus net où l'on distingue deux *verticilles* superposés.

Le plus grand diamètre que j'ai mesuré est de l'ordre de 1,65 mm. Si l'on tient compte qu'il s'agit là de la mesure d'un fragment de couronne largement ouverte, on admettra que ce diamètre peut atteindre 2 mm., comme cela ressort de la reconstitution que j'ai faite de l'organisme. Les chambres sporangiques mesurent, à leur évasement extérieur 0,42 mm., à leur extrémité intérieure 0,15 mm. et ont une longueur de 0,58 mm. Ces dimensions varient et celles que je donne ici expriment une moyenne.

b) Calcaire à pâte très fine englobant de gros rognons de silex corné. Sous l'objectif, le silex est stérile, tandis que les plages calcaires englobent quelques

Calpionella alpina Lorenz 0.15 m.

c) Calcaire spathique à structure plus fine que a). Les oolithes y sont moins nombreuses et cantonnées à la base du niveau. Les sections de couches basales et prismatiques de Lamellibranches y sont nombreuses et, parmi les fragments de Crinoïdes et d'autres débris organiques indéterminables, on distingue quelques Foraminifères de peu d'importance stratigraphique. Pouvant se rattacher à ces derniers, je citerai certains organismes constitués par un chapelet de loges pyriformes enveloppant les oolithes et que L. Dangeard (bibl. 30, p. 185, fig. 6 b) a signalé dans le Rauracien de Champvam-les-Dôles (Jura). Cet auteur les figure appliqués sur la pellicule externe des oolithes et les rattache au genre Ophtalmidium.

Tandis que dans le niveau précédent les *Dasycladacées* se trouvaient seules, on constate ici, principalement au sommet du calcaire spathique, l'association

Clypeina jurassica Favre Coscinoconus alpinus Leupold La roche prend localement l'aspect d'une microbrèche, constituée qu'elle est par les mêmes éléments que nous avons rencontrés déjà dans le profil C. Le passage au calcaire lithographique sus-jacent s'effectue sans transition .

1,20 m.

PROFIL F.

- b) Calcaire clair à Calpionelles et Radiolaires.

Au sommet du Haut-Crêt, le niveau à *Crinoïdes* est marqué par quelques bancs d'une roche très claire. Dans la multitude des débris organiques qui la constituent, il en est quelques-uns qui attirent l'attention par leur fréquence et l'uniformité de leur configuration. Je signalerai entre autres certaines locules sphériques qui rappellent les «formes connexes» citées par A. Lombard (bibl. 101, pl. XIX, fig. 209-229) et que cet auteur comprend dans les « *microfossiles incertains* » du Jurassique supérieur. On reconnaît en outre, voisinant avec les fragments de *Crinoïdes* et de *Bryozoaires*, quelques loges de *Cristellaires* une section tangentielle très franche de *Spiriline*, et de rares galets calcaires. Je n'ai pu y déceler qu'un reste douteux de *Coscinoconus*.

Le Malm de la Morardaz, que chevauche le Bathonien est localement représenté par cette même roche échinodermique. (Ce fait a son importance dans la construction des profils tectoniques que nous aurons à examiner en fin de ce travail.)

Nous voyons donc que, sous des modalités diverses, ce sont bien les calcaires spathiques et oolithiques qui caractérisent le niveau 10 de la partie supérieure du Malm (profil de la page 99).

Age des calcaires spathiques.

Des faits recueillis en plusieurs points de la région étudiée, nous pouvons déduire, d'une part, que ces calcaires sont disposés en lentilles dans la série sédimentaire et, d'autre part, qu'en dépit du caractère sporadique des affleurements qui résulte de cette disposition, la faune que renferment ces calcaires témoigne du synchronisme de leur dépôt et en fait un horizon paléontologique bien délimité.

Dès lors, si nous pouvons en déterminer l'âge, ce niveau 10, facilement repérable sur le terrain, va nous permettre de fixer la position réciproque des assises sous-jacentes décrites ci-devant comme Malm supérieur et des calcaires lithographiques qui le surmontent.

Nous disposons à cet effet du critère paléontologique constitué par les *Calpionelles* d'une part, par les *Clypéines* et le *Coscinoconus* d'autre part.

Quelle valeur stratigraphique possède chacun de ces microorganismes? Nous allons l'exposer brièvement.

I. CALPIONELLA.

L'immense extension géographique (Préalpes, Alpes, Carpathes, Afrique du Nord, etc.) que possèdent ces protistes a attiré très tôt l'attention des stratigraphes. Les faits essentiels qu'on peut dégager des œuvres qui traitent de leur valeur stratigraphique se résument dans la constatation que ces microfossiles, à position systématique douteuse, sont caractéristiques du Tithonique, et apparaissent jusque dans l'Infravalanginien inclusivement (voir fig. 8, p. 108). Il est vraisemblable qu'elles montent un peu plus haut, mais exceptionnellement (G. Colam (bibl. 24) les signale dans le Barrémien de Majorque). Leur présence dans les assises inférieures au Tithonique n'a été signalée que dans les Alpes orientales notamment par D. Trümpy (bibl. 198).

Pour ce qui a trait aux Préalpes, A. Jeannet (bibl. 72 et 88) considère que les *Calpionelles* sont localisées dans le Malm supérieur et à la base du Crétacé. Des diverses formes qu'en cite ce savant, quelques auteurs ont tenté de faire une discrimination: les types établis par H. J. Fichter (bibl. 48, p. 7) et J. Cadisch (bibl. 15,

p. 251) se distinguant les uns des autres par leur configuration et leurs dimensions, la différenciation préconisée par G. Murgeanu et M. Filipescu* que ces auteurs basent sur la plus ou moins grande ouverture du col, offrent un intérêt paléontologique évident, mais toutes ces formes se trouvant associées dans presque tous les niveaux que j'ai étudiés en coupes minces, je n'en puis tirer aucune donnée de quelque valeur stratigraphique. Si bien qu'en définitive, les *Calpionelles* ne permettent qu'une première approximation dans la recherche de l'âge du niveau 10.

II. CLYPEINA.

Cette *Dasycladacée*, considérée d'abord comme cantonnée dans le Tertiaire où L. et J. Morellet (bibl. 120 et 121) la reconnurent à partir de l'Yprésien, fut signalée pour la première fois dans le Jurassique par F. Favre et E. Joukowsky (bibl. 46, p. 315) et déterminée quelques années plus tard par J. Favre et A. Richard (bibl. 45, p. 34) comme *Clypeina Michelin* du Purbeckien du Salève.

Contrairement à ce genre, la *Clypeina jurassica* découverte par ces mêmes auteurs (bibl. 45, p. 35), et à laquelle se rapportent les formes observées dans mon matériel, n'apparaît pas dans les couches d'eau douce purbeckiennes, mais dans les formations marines immédiatement sous-jacentes.

Tout en confirmant ces données, J. Pfender (bibl. 136, p. 91) remarque que des ombelles de *Clypeines* existent déjà dans le Rauracien-Séquanien de Tlemcen (Algérie).

Signalée ensuite dans les nappes helvétiques, la *Clypeina juras*sica Favre est considérée par M. Gerber (bibl. 61, p. 535) comme caractérisant l'extrême sommet du Portlandien de l'Oberfeldalp (Urirostock).

Reprenant ses recherches et les étendant aux assises qui surmontent le Portlandien, J. Favre (bibl. 44) y décèle une nouvelle

^{*} G. Murgeanu et M. Filipescu. 1933. Calpionella carpathica nov sp. dans les Carpathes roumaines. Extr. Not. Biol. Vol. 1, No 2. Bucarest.

espèce, *Clypeina inopinata* qui prend naissance dans le Valanginien inférieur. Après avoir établi d'une façon péremptoire que la *Cl. jurassica* n'atteint pas le sommet de cet étage, cet auteur résume ainsi « l'état de nos connaissances concernant les *Clypeines* de l'époque secondaire » (op. cit., p. 14) :

» Ctypeina jurassica » apparaît probablement déjà dans le Rauracien-» Séquanien du N de l'Afrique, mais en Europe, tant dans le Jura méri-» dional que dans les Alpes et la Provence, elle semble être localisée » dans le Portlandien et à l'extrême base du Crétacé. Au moment où elle » s'éteint, une espèce voisine, Clypeina inopinala, existe dans le Valan-» ginien inférieur du Jura central. »

Voilà qui serre de plus près le problème que nous nous sommes proposé de résoudre. Avant d'en tirer une conclusion, examinons encore la position stratigraphique du troisième microorganisme signalé dans le niveau 10.

III. COSCINOCONUS.

Dans de nombreuses coupes minces provenant de régions assez éloignées les unes des autres, W. Leupold et H. Bigler (bibl. 98) ont reconnu ce *Foraminifère* qui, pour avoir été quelque peu négligé en dépit de sa fréquence, n'en présentait pas moins un réel intérêt.

D'une large extension horizontale, puisque ces auteurs l'ont signalé aussi bien dans l'autochtone et les nappes helvétiques de la Suisse orientale que dans les chaînes subalpines de la région de Grenoble, le *Coscinoconus alpinus* possède, en outre, l'élément essentiel propre à faire de lui un fossile caractéristique : il reste confiné dans quelques couches d'une très faible extension verticale.¹.

^{&#}x27;) Dans une note récente, J. Pfender (bibl. 139, p. 209) conteste ce fait et signale le Coscinoconus dans le Lias de Narvajas (Espagne), le Bathonien supérieur de Provence, le Bathonien sup. - Callovien inf. du Massif de l'Hermon (Syrie) et même jusque dans l'Urgonien.

Une étude que les circonstances présentes m'ont obligé de suspendre, me laisse entre-

Dans l'autochtone helvétique, il apparaît dans les couches de Grasspass, à la limite du Malm et du Crétacé. Les gisements de *Coscinoconus*, compris dans les nappes helvétiques et étudiées par W. Leupold et H. Bigler (op. cit., p. 608, 609, 615 et 616), se situent dans le complexe de calcaires spathiques et oolithiques et des microbrèches qui représente le Tithonique.

C'est également du sommet du Malm que proviennent les exemplaires de *Coscinoconus*, signalés par ces auteurs dans les chaînes subalpines des environs de Grenoble. L'âge de la roche qui les contient est ici particulièrement bien déterminé puisqu'il s'agit de la brèche récifal d'Aizy-sur-Noyarey, le gisement classique des *Berriaselles Boissieri* du Tithonique supérieur.

Si étroitement lié aux formations néritiques, on pourrait alléguer que le *Coscinoconus alpinus* n'est qu'un fossile de faciès. W. Leupold (bibl. 98, p. 610), envisageant cette éventualité, a été à même de la rejeter en se basant sur le fait bien établi que, dans les niveaux sus ou sous-jacents, des roches de nature pétrographique absolument identique ne renferment jamais ce *Foraminifère*. Voici, d'après cet auteur, les limites de son extension verticale (op. cit., p. 616):

«Le genre *Coscinoconus alpinus* n'apparaît pas dans le Tithonique inférieur. Il atteint son plein épanouissement vers l'extrême sommet de cet étage, dans les bancs qui précèdent immédiatement les « couches à ciment » considérées comme néocomiennes. Disséminé dans les formations bréchoïdes qui s'intercalent dans ces dernières, il ne subsiste pas au delà du Berriasien. »

voir que les données de J. Pfender et celles de W. Le upold et H. Bigler ne sont pas inconciliables, dépendantes qu'elles restent de la notion de province géologique. En attendant de pouvoir en publier les résultats définitifs, je signale dans le tableau de la page 108, l'extension du Coscinoconus donnée par J. Pfender comme exceptionnelle et celle donnée par W. Le upold et H. Bigler comme habituelle dans les régions citées ciaprès.

En résumé, les microorganismes que renferme le Malm supérieur de la Hochmatt, se répartissent dans la série sédimentaire du domaine méditerranéen selon le schéma suivant :

	Calpionella	Clypeina jurassica	Coscinoconus alpinus
VALANGINIEN		·Ÿ	
INFRA-VALANG.	1	↑	
TITHONIQUE SUP.			
TITHONIQUE INF.			
KIMERIDGIEN			
SÉQUANIEN			

Fig. 8. Répartition stratigraphique des microorganismes contenus dans les calcaires spathiques du Malm

En trait continu = Extension habituelle. En pointillé = Exceptions citées dans le texte.

Dès lors, nous pouvons considérer que dans la série qui surmonte le calcaire massif du Malm moyen (voir ci-dessous, p. 99), le Tithonique est représenté dès le niveau 7. Ce niveau, caractérisé par l'apparition subite des *Calpionelles*, est situé à une distance assez constante du complexe spathique; dans les différents profils décrits, cette distance reste de l'ordre de 15 - 20 m.

MALM S. L. 109

L'argument constitué par l'existence des Calpionelles est sans doute insuffisant pour fixer la limite inférieure du Tithonique et nous verrons tout à l'heure que les petits bancs 5 et 6 (profil p. 99) doivent vraisemblablement être incorporés à cet étage. Mais, ce que nous nous proposons ici étant la détermination de l'âge du calcaire spathique (niv. 10), il nous suffit de connaître la position réciproque de ce dernier et du premier banc à Calpionelles pour pouvoir en inférer que l'horizon 10 n'appartient en tout cas pas à l'extrême base du Tithonique.

Cette constatation qui ne nous fournit en elle-même qu'un argument négatif ne permettant de fixer qu'approximativement la position de l'horizon 10, trouve cependant son importance accrue par l'apparition des Clypéines. En effet, si l'existence de ces dernières détermine la place à assigner au niveau 10 par rapport au Néocomien, elle n'exclut par l'appartenance de ce niveau à la base extrême du Tithonique puisque ces Dasycladacées sont liées, dans ma région, au calcaire à Crinoïdes et manquent dans les assises qui lui sont inférieures. Ainsi, les données fournies par les Calpionelles et les Clypéines se complétant, nous pourrions établir d'ores et déjà que le calcaire échinodermique est situé dans la zone comprise entre l'extrême base du Tithonique exclusivement et l'Infravalanginien. L'âge du niveau 10 serait alors déterminé dans un sens, mais un certain flottement subsisterait quant à l'attribution de cet horizon à la partie moyenne ou supérieure du Tithonique. La présence dans le niveau 10 du Coscinoconus alpinus que Leupold signale à partir seulement de l'extrême sommet du Tithonique dissipe cette incertitude et dès lors nous pouvons conclure que le complexe de calcaires oolithiques et spathiques qui couronnent les formations du Malm constitue le dernier terme du Tithonique et comprend en outre l'extrême base de l'Infravalanginien.

LIMITE SUPÉRIEURE DU MALM

Connaissant l'âge des sédiments qui constituent le sommet du profil de la page 99, reprenons maintenant ce profil.

Dans son ensemble, il se distingue des niveaux sous-jacents par la plus faible épaisseur de ses bancs calcaires et la réapparition des lits et nodules de silex. Ces caractères sont communs aux régions qui confinent à la mienne. Dans celle du Vanil-Noir, qui prolonge vers le SW l'anticlinal de la Hochmatt, H. Favre et E. Schardt (bibl. 172) n'ont cependant pas différencié le Malm supérieur; à propos du Tithonique, ces auteurs écrivent: « Nous n'avons pas encore constaté ce niveau, quoique aucun motif ne nous autorise à croire à son absence » (op. cit., p. 145).

Ainsi, s'il est probable que le profil décrit ci-devant n'est pas entièrement compris dans le Tithonique, les faits suivants m'incitent à croire qu'il le représente au moins à partir du niveau 5:

Bien que les fossiles que m'a livré ce niveau 5 ne soient pas caractéristiques du Tithonique, l'étude que j'ai faite de la collection Gilliéron, déposée au musée de Bâle, m'a permis de constater qu'ils accompagnent toujours des formes considérées comme tithoniques telles que *Terebratula dyphia* Pict., *Rhynchonella spoliata* Suess. De plus, la gangue en est semblable. D'autre part, les équivalents minéralogiques du niveau 6 se rencontrent souvent dans les coupes tithoniques décrites par A. Jeannet (bibl. 88). Quant à l'horizon 7 et à ceux qui le surmontent, ils sont caractérisés par l'apparition des *Calpionelles*.

Ainsi, compris entre les niveaux 5 et 10 inclusivement, le Tithonique atteint, dans la région étudiée, une épaisseur moyenne de 20 à 25 m. La limite supérieure du Malm telle que je l'ai adoptée sur ma carte coïncide avec le sommet du complexe spathique.

Conclusions relatives au Malm S. L.

De part et d'autre du noyau anticlinal de la Hochmatt, la série comprise entre le Callovien et l'Argovien fossilifères présente une continuité stratigraphique incontestable. Nous avons, par conséquent, considéré comme Oxfordien le complexe de schistes et de calcaire lithographique que E. Favre et H. Schardt (bibl. 172) ont assimilé, dans la chaîne du Vanil-Noir, aux calcaires à ciment et qui dans notre région surmonte le calcaire rouge à Radiolaires. Nous ne l'avons cependant pas différencié sur la carte et l'avons décrit en une seule série compréhensive Oxfordien-Argovien. Seul, le sommet de cette série est caractérisé par une faune argovienne.

MALM S. L. 111

Le calcaire noduleux, qui dans le flanc NW se répartit dans tout l'étage, est beaucoup moins développé dans le jambage SE de l'anticlinal. Il convient de voir dans ce fait l'indice d'un changement de faciès qui, pour ne revêtir dans ma région qu'un caractère épisodique, n'en est pas moins en relation avec la réduction « de l'Argovien comme faciès noduleux à l'approche des couches à Mytilus » signalée par A. Jeannet (bibl. 88, p. 594) comme phénomène observable dans tout le domaine des Préalpes.

Les formations compactes qui succèdent à l'Oxfordien-Argovien ne se laissent pas subdiviser paélontologiquement. On peut noter comme caractères pétrographiques généraux :

- a) la présence, dans leur *partie inférieure*. de nodules et lits de silex abondamment répandus entre des couches de 20 à 25 cm. d'épaisseur ;
- b) l'absence de ces éléments siliceux dans la *partie moyenne* où les calcaires, devenus massifs, ne présentent souvent aucun joint de stratification;
- c) la réapparition, dans la *partie supérieure*, des nodules et lits de silex entrecoupant des bancs calcaires semblables à ceux de la base.

A ce propos, Alph. Jeannet (bibl. 72, p. 621, et 88, p. 554) constatant cette même succession au Vanil-Noir et dans la région d'Aveneyres, a émis l'hypothèse que le premier niveau correspondait peut-être au Séguanien, le second au Kimméridgien et le troisième au Portlandien. Rien dans la région étudiée ici ne vient infirmer cette hypothèse. Au contraire, les faits décrits ci-devant la rendent très vraisemblable. Cependant, la carence presque complète de fossiles ne m'ayant pas permis de l'étayer d'arguments paléontologiques relatifs aux niveaux a et b, j'ai figuré, sur ma carte, les trois étages en une seule couleur. Seul, l'extrême sommet du Malm m'a livré des organismes caractéristiques; la présence dans ses formations organogènes de Clypeina jurassica Favre et de Coscinoconus alpinus Leupold, témoigne de l'existence d'un faciès coralligène du Tithonique dans la région de la Hochmatt, ce qui confirme une fois de plus le fait établi par Alph. Jeannet (bibl. 88) que ce faciès n'est pas «localisé le long du bord radical des Préalpes médianes, mais qu'il s'en trouve des affleurements isolés plus en avant».

CHAPITRE VI

LE CRÉTACÉ

Introduction.

C'est à propos de cet étage qu'il est fait pour la première fois mention du massif de la Hochmatt dans la littérature géologique. En effet, dans son travail de 1834, B. Studer (bibl. 182) signale la présence dans cette région de ce qu'il appelait encore le « calcaire du Stockhorn » considéré comme Crétacé et à l'âge duquel il apporta plus tard quelques précisions.

Cinquante ans après, V. Gilliéron (bibl. 64) entreprit l'étude systématique de ces formations dans les régions voisines et les notes consignées dans ses admirables monographies des Préalpes représentent déjà l'essentiel de ce que nous en connaissons aujourd'hui.

Je décrirai successivement le Crétacé inférieur ou Néocomien et le Crétacé supérieur, comprenant dans ce dernier, comme je l'ai fait sur ma carte, les «Couches rouges» des auteurs et les schistes et calcaires noirs qui affleurent irrégulièrement à leur base.

A. Crétacé inférieur.

Les premiers termes des assises néocomiennes sont constitués par les calcaires à *Calpionelles* et à *Radiolaires* que j'ai signalés dans le chapitre précédent et qui surmontent le niveau coralligène du Tithonique. Sur les courtes distances, où par suite de sa disposition en lentilles, ce dernier n'affleure pas, il devient difficile de tirer une limite précise entre le Malm et le Crétacé car le passage de l'un à l'autre s'effectue insensiblement. Cependant, dans son ensemble, le Néocomien se distingue des assises sous-jacentes par

la structure de ses formations et leur plus grande plasticité; la roche, procédant d'une vase calcaire, réalise un type de structure lithographique qu'on ne rencontre pas dans le Malm (si ce n'est qu'à son extrême sommet) et la plasticité inhérente à une telle roche est accrue encore par sa disposition en bancs plus finement lités que ceux du Malm.

Affleurements.

Le Néocomien est largement représenté dans l'anticlinal de la Hochmatt. Il couronne son flanc SE, de la Cluse du Petit-Mont à celle du Gros-Mont, en y déterminant les arêtes de Baufel, le sommet du Cheval-Blanc (2148 m.), le dôme arrondi de la Hochmatt (2154 m.) où il est marqué de vastes entonnoirs, et finalement une partie de la crête de Vagilière qui s'abaisse, par bonds, jusqu'aux pâturages de la Féguelenaz. De là, où une profonde coupure d'érosion le met à nu sur toute son épaisseur, son rôle morphologique est plus effacé; plaqué sur le Malm, il n'atteint plus le sommet de la chaîne et forme, au pied du Vanil de Croset, les premières dépressions du synclinal de Château d'Oex.

Dans le flanc NW de l'anticlinal, il ne s'érige au-dessus du Jurassique qu'aux Rotznas, sur la rive gauche du rio du Gros-Mont, où une faille le met latéralement en contact avec le Callovien. Partout ailleurs, il s'étale en de multiples plissotements dans le vaste synclinal gruyérien.

Tous ces affleurements revêtent les mêmes caractères paléontologiques et pétrographiques. Pour ce qui a trait aux premiers de ces caractères, V. Gilliéron (bibl. 63 et 64), H. Schardt et Favre (bibl. 172) ont noté déjà l'impossibilité qu'il y avait à subdiviser le Crétacé inférieur de l'anticlinal Vanil-Stockhorn, non pas que les fossiles y soient absolument rares, mais parce que les gisements y sont très disséminés et livrent surtout des *Belemnites* peu caractéristiques ou des fragments d'*Ammonites* mal conservées.

Dans la collection de Gilliéron, à Bâle, figurent un *Phyllocrinus* sabaudianus en assez bon état et un débris de *Crioceras* provenant de la région étudiée. J'ai moi-même recueilli au pied de l'Alpe de

Baufel un échantillon de calcaire noir, portant l'empreinte déformée de

Oosterella cultrata d'Orb.

Les longs couloirs pierreux qui sillonnent le versant méridional du Cheval-Blanc m'ont également livré un exemplaire de

Simbirskites Decheni Ræm.

et quelques *Belemnites* indéterminables. Ces dernières sont plus nombreuses dans le tronçon du synclinal gruyérien qui limite au NW le territoire de ma carte.

Pas plus que sur les données paléontologiques qu'il fournit, on ne peut s'appuyer sur les caractères pétrographiques du Néocomien pour le subdiviser. On observe cependant certaines manières d'être des formations, qui permettent de fixer, au moins approximativement, la position d'un point donné par rapport à la base ou au sommet de l'étage. Ainsi j'ai observé, dans les assises inférieures seulement, de fréquentes récurrences du faciès dit du « type Malm » : au milieu des calcaires lithographiques, apparaît brusquement un petit banc de 6 à 8 cm. d'épaisseur qui par sa compacité tranche nettement avec eux. J'en ai compté jusqu'à six, répartis sur une cinquantaine de mètres au sommet des « Escaliers du Mont ».

Alors que dans ces mêmes assises inférieures la roche présente une teinte unie, grise ou bleuâtre, on la trouve, plus haut, mouchetée de taches sombres qui confluent avec la couleur générale. Simultanément apparaissent, vers le milieu de l'étage, de fins délits de schistes noirs. En examinant les taches de près, on constate que de première configuration quelconque, elles tendent peu à peu vers une même forme, s'orientent dans une même direction; on les voit s'allonger dans le sens du plan de stratification, se multiplier à mesure que l'on approche d'un délit et finalement le calcaire tacheté se résoud en schistes marneux. Ces schistes apparaissent à intervalles inégaux à partir du milieu du Néocomien jusqu'à son sommet.

Quant aux lits de silex, aux rognons siliceux, si caractéristiques du Néocomien, on les trouve répartis dans tous ses niveaux.

A côté des variations pétrographiques discernables à l'œil nu, il en est d'autres que révèle l'étude microscopique de leur structure.

Certaines de mes coupes minces présentent une telle abondance d'organismes qu'on peut dire, sans exagération, que la roche en est entièrement constituée. Les *Calpionelles* et les *Radiolaires* sont particulièrement nombreux dans les assises inférieures du Néocomien. Les premiers de ces protistes ne subsistent que jusqu'au delà des premiers bancs à intercalations schisteuses. Nous avons vu dans le chapitre précédent (p. 104) que leur présence n'est pas déterminante dans l'établissement de l'âge exact des sédiments qui les renferment. Mais même en adoptant l'Hauterivien comme limite extrême de leur extension dans les Préalpes, on doit convenir que les renseignements qu'ils fournissent, dans la recherche de la position approximative d'un niveau par rapport à la base ou au sommet du Néocomien, sont très utiles.

La disparition des *Calpionelles* est graduelle. Les assises qui succèdent aux niveaux qui en contiennent les dernières survivantes, apparaissent sous l'objectif, presque complètement stériles. Seuls de rares *Radiolaires* et quelques débris épars baignent dans une masse vaseuse traversée de minuscules veines de calcite. Plusieurs de mes préparations ne renferment même aucun organisme. Et il en est ainsi jusque vers le sommet du Néocomien.

Les assises immédiatement sous-jacentes au complexe qui marque le début du Crétacé supérieur renferment, par contre, une microfaune abondante qui consiste surtout en *Globigérines* et *Foraminifères* monoculaires indifférents.

A côté de ces faits, propres à des assises données sur toute l'étendue de ma carte, il en est un autre que je n'ai pu observer que dans la partie occidentale du flanc SE de l'anticlinal de la Hochmatt:

Une vingtaine de mètres en aval du pont situé à la sortie des gorges du Gros-Mont, à 300 m. à l'W de la Féguelenaz, j'ai rencontré un banc de calcaire à Crinoïdes, de 30 cm. d'épaisseur, intercalé dans des calcaires lithographiques. Il m'a été possible de le suivre sur une quarantaine de mètres, du chemin au fond de la rivière et sur la rive gauche de celle-ci. C'est une roche claire, finement spathique dans laquelle on distingue, même à l'œil nu, de rares galets de teinte rosée, et, sous l'objectif, des articles de Crinoïdes, des Bryozoaires et quelques éléments clastiques. Une telle formation vers le sommet du Néocomien me paraît significative du fait que les phénomènes qui ont affecté le Crétacé supérieur et

amené les lacunes dont nous parlerons tout à l'heure, se sont ébauchés, en certains points de l'aire sédimentaire relativement éloignés du bord radical des Préalpes, bien avant que ne le laisse présumer l'apparente uniformité de faciès du Crétacé inférieur.

Le sommet de ce dernier coı̈ncide, sur ma carte, avec l'apparition des schistes à *Rosalines* et nous verrons, dans les conclusions, quels niveaux stratigraphiques comprend cet étage ainsi délimité.

B. Crétacé supéricur.

J'ai inclus dans le Crétacé supérieur les schistes et calcaires noirs qui affleurent, dans la région étudiée, entre les assises néocomiennes et les formations du type si caractéristique des « Couches rouges » et que j'ai appelé « complexe schisteux intermédiaire ». L'avantage relatif à l'interprétation cartographique qui résulte de cette manière de faire, la justifierait dans une certaine mesure, étant donné que cette série intermédiaire, d'une puissance généralement inférieure à 10 m., ne saurait figurer sur une carte au 1 : 10 000. Mais la limite ainsi adoptée, qui par cette raison seule ne laisserait pas d'être quelque peu conventionnelle, repose avant tout sur les faits paléontologiques que nous allons maintenant examiner.

A cet effet, nous distinguerons le Crétacé supérieur du synclinal de Château d'Oex largement développé au S de la Hochmatt et celui du synclinal gruyérien qui, représenté par quelques lambeaux seulement, borde au NW le territoire de ma carte.

1. Synclinal de Château d'Oex.

Un premier affleurement de Crétacé supérieur émerge de la plaine marécageuse de « Praz Michy » et flanque le versant méridional du Vanil de Croset. La partie méridionale de cet affleurement est décrite déjà dans l'étude récente qu'a faite des Couches rouges mon ami et camarade de laboratoire K. Berliat (bibl. 7). Le contact avec le Néocomien, qui dans le profil signalé se fait sans l'intermédiaire de la série schisteuse, se modifie assez rapide-

ment. En effet, quelques pointements et une petite dépression courant parallèlement au sentier du Croset-dessous (1536 m.) révèlent la présence de quelques délits marneux immédiatement sous-jacents au calcaire rouge. Après une brève éclipse sous les alluvions et sous la moraine de la Féguelenaz, ils réapparaissent, timidement d'abord, au sommet du cône d'éboulis situé à 130 m. à l'E du point 1645; on les voit ensuite couper obliquement la crête et déterminer, sur l'autre versant, à la cote 1790, un affleurement dont voici les termes, de bas en haut :

Profil du complexe schisteux intermédiaire dans le synclinal de Château-d'Œx

- 1. Dissimulé sous la terre végétale et les débris de la forêt, le calcaire néocomien semblable au niveau à *Globigérunes* que j'ai signalé dans le Crétacé inf. n'émerge que çà et là. En le décapant un peu, on suit cependant aisément le processus de transformation de la roche lithographique mouchetée de noir, devenant de plus en plus marneuse et se résolvant finalement en schistes.
- 2. Schistes marneux noirs, coupés de trois fins délits de calcaire tacheté. Stériles.
- 3. Schistes calcaires noirs, plus résistants que les précédents. Ils affleurent largement à la lisière de la forêt et y déterminent un socle qu'on peut suivre avec quelque difficulté jusqu'à la paroi N de la grande niche d'éboulement cotée 1887 m. sur ma carte. Alors que dans la forêt ils atteignent 1,50 m. d'épaisseur, ils sont réduits ici à 40 cm., coincés qu'ils se trouvent entre le Néocomien et la masse disloquée des Couches rouges. Ces schistes noirs renferment une faune microscopique assez abondante, parmi laquelle il est aisé de reconnaître

Rosalina (Globotruncana) apenninica Renz

- 4. Les assises qui surmontent ce niveau sont masquées, à la lisière de la forêt, par une couche plus épaisse de terre végétale, mais 50 m. plus au N, on trouve, dominant l'abrupt des Chaux, un calcaire grenu à pâte claire, légèrement tachetée, à première vue pas très différent du calcaire néocomien, mais qui, sous l'objectif, se révèle contenir quelques rares loges de *Rosalines* difficilement déterminables.
- 5. Schistes noirs semblables à 2, mais contenant

Rosalina (Globotruncana) appenica Renz

6. Calcaire gris clair, assez compact, qui, sous le microscope, s'avère presque stérile. Plusieurs de mes coupes minces ne présentent que quelques exemplaires rares, mais bien conservés de

Rosalina (Globotruncana) Linnei d'Orb.

Cette stérilité est d'autant plus surprenante que ces formations grises du Crétacé supérieur se montrent, généralement, les plus riches en *Rosalines* de tout le complexe des Couches rouges.

Au delà de ce niveau, la disposition désordonnée des couches ne permet plus l'établissement d'une succession normale. Je signalerai simplement que la crête 1887, où localement les strates sont horizontales, est constituée par un calcaire gris englobant d'assez fréquents débris d'Inocérames, puis sur la pente fortement déclive qui aboutit au col de la Hochmatt (1825 m.), la roche se panache et les Couches rouges typiques, atteignant alors un gros développement, forment tout le flanc méridional de la Hochmatt. Nous y reviendrons tout à l'heure en parlant du sommet de cet étage.

Le long de la crête qui du point 1887 conduit au sommet de la Hochmatt, une tectonique tourmentée a provoqué le laminage intense du *complexe schisteux intermédiaire*. Il n'y affleure plus que sporadiquement, de sorte qu'il n'est pas très facile de fixer la limite entre le Néocomien et les Couches rouges en ne se basant que sur l'aspect de la roche. Bien souvent une roche tachetée, que l'œil le plus exercé eût prise pour néocomienne, s'est révélée, sous l'objectif, remplie de *Rosalines*. Aussi n'est-ce qu'en multipliant les coupes minces que l'on parvient à établir une limite qui ne soit pas arbitraire et à déceler par cela même des failles qui, dans un milieu où la roche n'est jamais absolument nue, passeraient sans doute inaperçues.

On retrouve le complexe schisteux, assez bien développé (3 m. environ), de part et d'autre du sommet 2108, où entre deux écailles, l'une de Néocomien, l'autre de Couches rouges, il détermine une légère dépression.

Dans un dernier élan, le Crétacé supérieur atteint la crête qui domine le plateau de la Hochmatt (chalet 2029). Toute la série des schistes intermédiaires et des calcaires gris du Crétacé supérieur est réduit, en cet endroit, à 2 ou 3 mètres et ce sont les formations rouges qui marquent l'énorme décrochement Hochmatt-Cheval-Blanc dont nous reparlerons dans le chapitre de la tectonique.

C'est 700 m. plus au S qu'il faut aller chercher la base du Crétacé supérieur de la lèvre orientale de la faille. Alternant avec des calcaires tachetés, des schistes noirs, légèrement bitumineux, affleurent dans les pâturages de la Chaux du Lappé. Plus développé qu'à la Hochmatt, ce complexe intermédiaire atteint ici 7 à 8 m. de puissance. Il renferme

Rosalina (Globotruncana) appenninica Renz.

Dans son prolongement de « In den Gälmen », on trouve, à côté de cette espèce,

Globotruncana ticinensis Gandolfi.

Dans ce tronçon du synclinal de Château d'Oex, compris entre le Lappé et le Gros l'Adrey, les schistes noirs ne sont plus surmontés par les calcaires gris à *Rosalines*, mais directement par les calcaires rouges assez riches en

> Rosalina (Globotruncana) Linnei d'Orb. Rosalina (Globotruncana) Stuarti de Lapp.

et en autres foraminifères, tels que Globigerina, Textularia, Oligostegina, de moindre valeur stratigraphique.

Le sommet des Couches rouges semble être ici en contact avec le Flysch de la Simme, sauf à son extrémité orientale où replié en un petit synclinal il est bordé de part et d'autre par le Néocomien. A 250 m. au N du chalet de Lappé, ce sommet est représenté par une roche que je n'ai pas retrouvée ailleurs. Il s'agit d'un calcaire spathique rouge dans lequel abondent, parmi des articles bien distincts de Crinoïdes et des galets de quartz,

Rosalina (Globotruncana) Linnei d'Orb. Rosalina (Globotruncana) Stuarti de Lapp.

Cette roche revêt le même aspect que le calcaire spathique signalé par M. Lugeon (bibl. 107) dans le Crétacé supérieur de Tréveneusaz. Cependant, à l'encontre de ce dernier (qui est plutôt l'équivalent des formations spathoïdes, de structure bien différente, que nous trouverons à la base des Couches rouges des Gastlosen (voir p. 141), le calcaire spathique de la Hochmatt occupe une position, bien définie par sa faune, au sommet du Crétacé supérieur.

Du Lappé au col de la Hochmatt (1825 m.), de larges pans de roche, d'un rouge très vif, flanquent le versant méridional de la montagne, mais les cônes d'éboulis masquent tout contact avec le Flysch. Par contre, à une centaine de mètres au NW du pt. 1825, ce contact est asez bien marqué. Les Couches rouges forment à cet endroit une écaille que, par suite de son exiguité, je n'ai pas pu

indiquer sur ma carte, mais qu'on trouvera représentée dans la figure 11 (p. 155). La masse principale du Crétacé supérieur, en contact avec le Flysch coincé entre elle et cette écaille, présente à son sommet la succession suivante :

1. Calcaire marneux d'un rouge lie-de-vin, disposé en bancs de 20 à 25 cm. d'épaisseur et très riche en

Rosalina (Globotruncana) Linnei d'Orb.

Ces formations sont souvent mouchetées de plages d'un calcaire plus clair qui se résout parfois en fins délits, parcourant la roche dans le sens du plan de stratification . . .

3,50 m.

- 1,20 m.

1,50 m.

4. Bancs compacts de calcaires rouges renfermant

Rosalina (Globotruncana Linnei d'Orb. Rosalina (Globutruncana Stuarti de Lapp. . . 1,00 m.

Plaqués contre ce niveau, apparaissent de petits bancs de calcaire gréseux, absolument stériles, que pour les raisons que j'exposerai dans un prochain chapitre j'ai rattachés au Flysch des Médianes.

L'écaille de Crétacé supérieur qui chevauche ce Flysch comporte les termes suivants :

1. Calcaire gris-vert disposé en petites plaquettes et contenant de nombreuses

Rosalina (Globotruncana) Linnei d'Orb. Rosalina (Globotruncana) Stuarti de Lapp.

2. Calcaire rouge, en bancs de 10 à 15 cm., présentant la même faune que 1.

Du col de la Hochmatt au chalet de la Féguelénaz, le contact entre le sommet du Crétacé et le Flysch n'est visible qu'en cet endroit, signalé et décrit déjà par K. Berliat dans sa monographie des Couches rouges; partout ailleurs, il est masqué par la moraine et les dépôts récents. Il en est de même du lambeau situé à l'W de la plaine marécageuse de Praz Michy.

2. Synclinal gruyérien.

Cette unité tectonique n'est que faiblement représentée dans la région étudiée. Le Crétacé supérieur y affleure en un étroit liséré marquant au NW la limite de ma carte.

Si l'on se dirige de la vallée du Gros-Mont à celle de Motélon, on le rencontre une première fois dans la combe dite « Creux Charles ». Quelques bancs de calcaire gris, panachés de rouge, émergent timidement d'un fond broussailleux partiellement envahi par l'éboulement du Haut-Crêt. Après une courte éclipse dans les marécages du Diot, il réapparaît au pied du col 1558. Un vaste glissement de terrain, datant du printemps 1941, a mis à nu, à l'E du col, une puissante série schisteuse comprise entre le Néocomien typique et les formations grises et rouges qui flanquent le sommet en pyramide tronquée du Gros Haut-Crêt (1643 m.). En voici les termes de bas en haut:

Profil du complexe schisteux intermédiaire dans le synclinal gruyérien.

- 1. Le dernier banc de calcaire typiquement néocomien, coupé d'intercalations siliceuses, révèle, sous l'objectif, la même stérilité que ceux des assises moyennes de cet étage dans le synclinal de Château d'Oex (voir p. 115).
- 2. Petit délit de schistes noirs.
- 3. Calcaire à pâte grise, mouchetée de taches noires qui confluent avec la couleur générale. Vers le sommet du niveau, les taches deviennent plus fréquentes; on les voit s'allonger parallèlement au plan de stratification, se rapprocher de plus en plus les unes des autres et se résoudre finalement en schistes marneux.
- 4. Alternance de calcaire du même type que 3 en bancs de 10 à 15 cm. et de schistes gris ou noirs. A la base du complexe, les calcaires sont riches en Globigérines, Radiolaires calcifiés et autres microorganismes, tandis que les schistes sont stériles. Il en est du reste de même des éléments de couleur brunâtre qui ponctuent parfois la roche. Alors qu'à la base de ce niveau on trouve indifféremment Globigérines et Radiolaires, on assiste, vers le milieu du complexe, à un extraordinaire développement de ces derniers au détriment des Globigérines qui peu à peu s'éteignent complètement. Un peu plus haut, c'est l'inverse qui se produit et on ne trouve plus traces de Radiolaires. Ce fait paraît bien être de même nature que celui signalé à propos des Calpionelles et Radiolaires par Andrusov et J. Koutek (bibl. 1) et que J. Cadisch (bibl. 15) considère comme un phénomène général

de permutabilité du rôle joué par les *Radiolaires*. La multiplication de l'un ou l'autre de ces protistes n'exclut pas le développement d'autres microorganismes et, vers le sommet du complexe notamment, des représentants de la famille des *Lagenidés* ne sont pas rares.

5. Schistes noirs, plus calcaires et plus développés que les délits de même nature de l'alternance 4. Absolument semblables, quant à la structure aux schistes à *Rosalines* du synclinal de Château d'Ox (profil, p. 117) et renfermant comme eux

Rosalina (Globotruncana) appenninica Renz.

6. Calcaire grenu, gris clair, parfois verdâtre surmonté des Couches rouges typiques.

A l'W du col, le passage du Crétacé supérieur n'est souligné que par quelques pointements dans le gazon, mais, au pied du Petit Bovatey (1395 m.), la roche réapparaît à nu, en un magnifique profil de tout le complexe schisteux intermédiaire. Ce sont les schistes à *Rosalines* du sommet de cette série qui constituent, près du chalet de la Progenaz, le dernier affleurement du Crétacé supérieur du synclinal gruyérien.

Conclusions.

Dans son ensemble, le Crétacé de la région étudiée est représenté de bas en haut :

- a) par une puissante série de calcaire lithographique en petits bancs, coupée d'intercalations siliceuses, flanquant de part et d'autre l'anticlinal de la Hochmatt (NEOCOMIEN);
- b) par un complexe schisteux, inégalement développé dans les synclinaux de Château d'Oex et de la Gruyère (COMPLEXE SCHISTEUX INTERMÉDIAIRE);
- c) par les calcaires gris ou rouges à *Rosalines* caractéristiques du Crétacé supérieur (COUCHES ROUGES).

Des faits consignés dans ce chapitre, il ressort qu'en dépit d'une remarquable répétition des mêmes phénomènes relatifs à la disposition des bancs, à leur structure et à leur microfaune, les calcaires lithographiques considérés par A. Jeannet (bibl. 88, p. 604), et par tous les auteurs préalpins comme représentant le Néocomien, ne sont subdivisibles ni paléontologiquement, ni pétrographiquement.

Les *Calpionelles*, contenues dans les assises qui surmontent le Tithonique coralligène, témoignent bien de l'existence de l'Infra-Valanginien, mais ne nous fournissent pas d'indications précises sur la limite supérieure de cet étage. Dans la série très épaisse reposant en continuité stratigraphique manifeste sur les bancs à *Calpionelles*, il n'est pas possible non plus de distinguer l'Hauterivien du Barrémien.

Les premières assises qu'une faune caractéristique permet de dater sont les schistes noirs à *Rosalina appenninica* Renz, du Cénomanien (complexe schisteux intermédiaire).

Il importerait donc de connaître jusqu'à quel niveau le calcaire lithographique représente le Barrémien et quels horizons stratigraphiques sont compris entre ce niveau et le Cénomanien.

SÉRIE INFÉRIEURE AUX SCHISTES CÉNOMANIENS

Si nous prenons le **synclinal gruyérien** où la série schisteuse est le mieux développée, force nous est bien d'admettre, en considérant le profil décrit à la page 121, qu'aucun fait ne vient témoigner d'une interruption de la sédimentation entre les calcaires typiquement néocomiens, et les schistes cénomaniens. Ces derniers se situant à l'extrême sommet de la série schisteuse, on en peut inférer que quelle que soit la position de la limite supérieure du Barrémien dans les calcaires lithographiques ou à la base de la série schisteuse intermédiaire, l'Albien et l'Aptien se trouvent représentés dans le synclinal gruyérien.

Qu'en est-il du tronçon du **synclinal de Château-d'Œx** que comprend la région étudiée ?

Abstraction faite de l'affleurement du Croset, qui confine au territoire dans lequel la transgression des Couches rouges a été démontrée par K. Berliat (bibl. 7), le Crétacé supérieur typique repose ici sur les calcaires lithographiques, par l'intermédiaire d'un complexe schisteux beaucoup moins développé que celui du synclinal gruyérien, mais renfermant comme l'extrême sommet de

celui-ci, Rosalina appenninica Renz, caractéristique du Cénomanien. Il est indéniable qu'il existe une étroite connexion pétrographique entre le calcaire tacheté dit du « type néocomien » et le complexe schisteux intermédiaire ; le passage graduel de l'un à l'autre est manifeste aussi bien dans les affleurements de la Hochmatt et du Cheval-Blanc que dans ceux du synclinal gruyérien.

De plus, j'ai signalé, en traitant du Crétacé inférieur (p. 115), l'abondance des Globigérines et autres microorganismes dans la partie supérieure des calcaires lithographiques, abondance succédant à la stérilité quasi-absolue des assises moyennes. Or tout en notant que ce développement de la microfaune est commun aux deux synclinaux, on est d'emblée frappé par la dissemblance des microfossiles contenus dans les derniers bancs du type néocomien de l'une et l'autre unité. A ne considérer que ceux-ci, il semble que la multiplication des microorganismes s'amorce plus bas dans le synclinal de Château d'Oex. De fait, sous l'objectif, les calcaires lithographiques immédiatement inférieurs au complexe schisteux intermédiaire de la Hochmatt correspondent beaucoup plus aux bancs moyens de l'alternance schisteuse du synclinal gruyérien qu'à leurs homologues pétrographiques supportant cette alternance. On est dès lors amené à se demander si le sommet de la série homogène des calcaires lithographiques de la Hochmatt et les niveaux moyens du complexe schisteux du synclinal gruyérien ne sont pas de même âge. La faible épaisseur du complexe schisteux de la Hochmatt (synclinal de Château d'Oex), résulterait alors, non pas d'une lacune stratigraphique, dont on ne trouve du reste nulle trace, mais des conditions bathymétriques consécutives aux mouvements qui ont affecté cette aire de sédimentation et qui, s'ils furent synchrones jusque vers le milieu du Néocomien de part et d'autre de l'axe anticlinal de la Hochmatt, sont loin de l'avoir été durant le reste de la période crétacée.

Cette équivalence stratigraphique de deux formations de faciès différents mais surmontées l'une et l'autre du Cénomanien en parfaite continuité, implique-t-elle l'existence du Crétacé moyen également dans ce tronçon du synclinal de Château d'Oex? Ne disposant encore d'aucun fossile caractéristique, il serait prématuré de l'affirmer. Cependant, à mesurer la réalité à travers ce qu'on en voit, il nous faut bien admettre que, si la présence du Gault dans la région étudiée n'est encore que vraisemblable, l'existence d'une lacune stratigraphique entre le Néocomien et le Cénomanien ne

peut être considérée que comme une hypothèse que n'étaye aucun fait observable dans cette région.

SÉRIE SUPÉRIEURE AUX SCHISTES CÉNOMANIENS

Il n'en est pas de même des formations supérieures au Cénomanien. Les vicissitudes qui ont coupé la sédimentation crétacée sur tout le territoire des Préalpes, se traduisent ici par des lacunes qu'il a été possible de circonscrire exactement. En se basant sur les Rosalines, dont les espèces principales R. appenninica Renz, R. Linnei d'Orb. et R. Stuarti de Lapp, caractérisent des niveaux stratigraphiques bien définis, K. Berliat (bibl. 7) a démontré que dans la partie orientale du territoire de ma carte, les schistes cénomaniens sont surmontés des formations transgressives du Maestrichtien. J'adhère entièrement aux conclusions de mon camarade, en précisant cependant qu'en allant d'W à E cette lacune s'efface progressivement. Dans les calcaires gris de la crête « Vagilière » (cotée 1887-2016) j'ai reconnu en effet, à côté des Rosalines Linnei le type intermédiaire décrit par O. Renz (bibl. 161) comme R. appenninica-Linnei. Etant donné que ces formations, de quelque 70 m. de puissance, succèdent aux schistes noirs du Cénomanien et sont à leur tour surmontées des calcaires rouges considérés par K. Berliat comme maestrichtiens, il ne fait aucun doute que dans la partie occidentale de la Hochmatt, le Crétacé supérieur est intégralement représenté du Cénomanien au Maestrichtien inclusivement. Nous verrons que dans la partie orientale de cette région il comprend, en outre, le Danien (voir p. 127 et 166).

Quant aux couches rouges du Haut-Crêt, elles présentent les caractéristiques du Crétacé supérieur du synclinal gruyérien auquel elles se rattachent et constituent, au NW du territoire de ma carte, le dernier terme de la série stratigraphique.

CHAPITRE VII

LE FLYSCH DES MÉDIANES

Il est maintenant bien établi que le Flysch paléocène est transgressif en certains points des Préalpes médianes. Dans un travail récent, J. Tercier (bibl. 186) a démontré péremptoirement l'existence, dans le synclinal gruyérien, d'une lacune stratigraphique, dont l'ampleur est soulignée par l'absence de tout le complexe des couches à *Globorotalia* attribué au Danien et à la base du Paléocène.

Ce même synclinal renferme, dans son prolongement sur le territoire de ma carte, les débris d'une roche à caractère nettement détritique. L'abondance de ces débris dans la moraine terminale de « Creux Charles » m'avait fait présumer qu'un lambeau de Flysch devait exister dans les environs. Après avoir scruté, dans ses moindres détails, le petit repli synclinal du Haut-Crêt, j'ai dû convenir que l'érosion glaciaire n'avait plus rien laissé subsister de la roche en place. J'ai retrouvé plus bas d'autres témoins de cette roche, à la confluence des glaciers du Gros Haut-Crêt et de l'Heptaudaz. Le bras morainique correspondant à ce dernier aboutit, un peu en dehors de mon terrain, à une masse chaotique qui paraît être en place mais dont il ne m'a pas été possible de découvrir la limite inférieure.

Je tiens cependant à signaler cette formation qui, revêtant l'aspect d'un grès calcaire très grossier, présente une parfaite analogie avec le Flysch d'Estavannens décrit par J. Tercier (op. cit.) comme premier terme de la série transgressive du Paléocène sur le Maestrichtien.

Dans le tronçon du synclinal de Château d'Oex compris dans la région étudiée, le Flysch des Médianes n'est représenté qu'en un seul endroit :

J'ai signalé déjà, dans le chapitre précédent (p. 120), le lambeau de Flysch coincé entre deux écailles crétacées au NW du

FLYSCH 127

pt. 1825 (voir fig. 10). Il s'agit là de fines plaquettes d'un calcaire argileux, devenant parfois légèrement gréseux, à pâte d'un grisbleuâtre, se révélant sous l'objectif absolument stérile. L'altération leur confère une couleur blonde, panachée de vert tendre, et, assez rarement, leur surface, moelleuse au toucher, se couvre d'empreintes d'*Helminthoïdes*.

A ne considérer que ce seul contact, il semblerait que le Flysch qui, dans la région confinant au SW au territoire de ma carte, présente une parfaite continuité avec les Couches à Globorotalia (bibl. 7), transgresse ici sur le Maestrichtien. C'est ce qui ressort en effet des conclusions de Berliat (bibl. 7). Toutefois, sans contester que le sommet maestrichtien de la Hochmatt trahit l'influence d'un changement bathymétrique, je noterai que ce changement ne constitue vraisemblablement qu'un épisode sédimentaire n'impliquant par une émersion aussi accentuée que ne le font supposer les contacts en question. Le fait que nous nous trouvons là dans la zone la plus intensément affectée par le chevauchement de la nappe de la Simme rend excessivement précaire les données fournies par des profils «lacunaires» qui se situent à proximité immédiate des séries complètes du Danien. D'autre part, les recherches qui m'ont permis d'attribuer au Cénomanien la plus grande partie du Flysch compris entre la Hochmatt et les Gastlosen, m'ont mis en présence d'un complexe situé sur la ligne de contact des nappes des Médianes et de la Simme. L'étude que j'en ai faite m'engage à modifier quelque peu les conclusions de Berliat qui concernent ma région. Nous en reparlerons lors de la description de ce complexe, dans la troisième partie de ce travail.

L'établissement des faits indispensables à la délimitation du Flysch stérile des Médianes étant subordonné à la connaissance de l'âge des formations qui le juxtaposent, ce n'est qu'après avoir déterminé cet âge qu'il sera possible de justifier les limites de ce Flysch telles que je les ai adoptées sur ma carte. Les assises qui, du pl. 1825 au chalet du Lappé, forment une étroite dépression sont d'âge différent et dépendent en majeure partie de la nappe de la Simme. Aussi, est-ce dans le chapitre traitant de cette unité (p. 166) que j'ai préféré placer les conclusions relatives à l'un et l'autre des Flyschs représentés dans le synclinal de Château d'Oex.