Zeitschrift: Kultur und Politik : Zeitschrift für ökologische, soziale und wirtschaftliche

Zusammenhänge

Herausgeber: Bioforum Schweiz

Band: 48 (1993)

Heft: 4

Artikel: Leguminosen-Stickstoff optimal nutzen!

Autor: Schmidtke, Knut / Wunderlich, Beate / Anthes, Johann-Georg

DOI: https://doi.org/10.5169/seals-892087

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Leguminosen-Stickstoff optimal nutzen!

Stickstoff ist im ökologischen Landbau ein knappes Gut. Ihn bestmöglich zu nutzen, ist eine ökonomische wie auch ökologische Verpflichtung.

Leguminosen decken ihren Stickstoffbedarf zum grössten Teil über die symbiontische Stickstoff-Fixierung aus der Luft. Dies führt vielfach dazu, dass Leguminosen nur geringe Mengen Stickstoff in mineralischer Form aus dem Boden aufnehmen. Liegen beispielsweise vor Anlage von Leguminosen-Beständen bereits höhere Mengen mineralischen Stickstoffs (Nitrat- und Ammoniumstickstoff) im Boden vor, so werden diese bis zum Vegetationsende häufig nur unzureichend von Leguminosen-Reinbeständen aufgenommen. Während der Vegetationsperiode kann zusätzlich organisch gebundener Stickstoff aus Humusvorräten bzw. aus Bestandesabfällen der Leguminosen im Boden mineralisiert werden. Beide Effekte können dazu führen, dass zu Vegetationsende im Boden erhöhte N_{min}-Mengen unter Leguminosen-Reinbeständen vorliegen, die je nach Standortgegebenheiten über Winter auch ausgewaschen werden können. Bei Ackerbohnen, die aufgrund ihres Pfahlwurzelsystems den Boden nicht gleichmässig verteilt durchwurzeln können, besteht zusätzlich die Gefahr, dass

Gräser entziehen dem Boden den von den Leguminosen nicht genutzten Stickstoff.

es zu einer Anreicherung von Nitratstickstoff im Boden zwischen den Drillreihen kommt.

Die richtige Ansaat ist entscheidend

Liegen vor der geplanten Anlage (Frühjahrs- bzw. Sommerblanksaat) von Futterleguminosen-Beständen hohe Nmin-Mengen im Boden vor, zum Beispiel über 80 kg Nmin/ha, so sollten keine Futterleguminosen-Reinsaaten, sondern allenfalls Futterleguminosen im Gemenge mit Gräsern ausgesät werden. Gräser decken ihren Stickstoffbedarf fast ausschliesslich aus dem mineralischen Stickstoffvorrat des Bodens. Im Gemenge mit Futterleguminosen können sie den mineralischen Stickstoff im Boden aufnehmen, der von den Leguminosen nicht entzogen wird. Dazu ist es allerdings erforderlich, dass die Gräser einen höheren Ertragsanteil im Gemenge, zum Beispiel 20 bis 30 Prozent, ereichen. Zudem ist hierbei von Vorteil, dass durch den Anbau von Futterleguminosen im Gemenge mit Gräsern auf den meisten Standorten höhere Erträge erzielt werden können als durch Futterleguminosen-Reinsaaten.

Um einen höheren Gras-Ertragsanteil im Gemenge zu erzielen, ist es notwendig, die Aussaatstärke der Leguminosen-Partner nicht zu hoch anzusetzen, beispielsweise bei Luzerne nur 13 bis 15 kg/ha; bei Rotklee nur 10 bis 12 kg/ha. Ist eine Anlage des Futterleguminosen-Gras-Gemenges mittels Untersaatverfahren in Wintergetreide vorgesehen, so kann eine vorgezogene Ansaat der Gräser im Herbst von Vorteil sein. Ziel ist es hierbei, die Etablierung der Gräser im Gemenge sicherzustellen und die Konkurrenzkraft der Gräser durch einen Entwicklungsvorsprung gegenüber den Leguminosen zu stärken. Herbstansaat der Gräser heisst, dass die Gras-Anteile zeitgleich mit der Wintergetreide Deckfrucht im Herbst ausgesät und die Leguminosen-Gemenge-Partner im Frühjahr nachgesät werden (vgl. Tabelle 1).

Bei der Anlage von Futterleguminosen-Beständen (Haupt- oder Zwischenfrüchten) ist weiterhin zu berücksichtigen, dass nur solche Futterleguminosen die Gewähr für niedrige Stickstoffauswaschungsraten bieten, die bereits im Ansaatjahr einen wüchsigen und geschlossenen Bestand bis zum Vegetationsende gebildet haben. Um dies zu erreichen, sollten stets standortangepasste Gras- und Leguminosenarten sowie geeignete Sortenkombinationen angesät werden. Ferner ist

Für die Stickstoff-Optimierung ist es vorteilhaft, den Ackerbohnen Hafer beizumengen.

bei Arten mit einer langsamen Jugendentwicklung (z.B. Luzerne, Rotklee, Weissklee, Wiesenlieschgras und Wiesenschwingel) zu berücksichtigen, dass das gewählte Ansaatverfahren mit darüber entscheidet, ob es gelingt, einen geschlossenen Leguminosen-Gras-Bestand zu etablieren.

Die sicherste Ansaatmethode stellt auf vielen Standorten für diese Arten eine Untersaat in Pflanzenbestände dar, die als Ganzpflanzensilage genutzt werden (z.B. Hafer-Erbsen-Gemenge). Ein grösseres Ansaatrisiko

besteht für Arten mit einer langsamen Jugendentwicklung in der Regel beim Untersaatverfahren in Mähdrusch-Getreidebeständen sowie bei Blanksaaten im Frühjahr und Sommer.

Tabelle 1 Gras-Arten für Herbst-Untersaat in Wintergetreide					
Grasart	Aussaatstärke (bei nur einer Grasart				
engl. Raigras*	12 kg/ha				
Knaulgras	10 kg/ha				
Rotschwingel	8 kg/ha				
Wiesenlieschgras	4 kg/ha				
Wiesenschwingel	16 kg/ha				

^{*} Nur späte Sorten geeignet.

Enge Reihenabstände bevorzugen!

Auch für die Anlage von Körnerleguminosen-Bestände gilt, dass bei hohen N_{min}-Vorräten im Boden (z.B. über 60 kg N_{min}/ha) keine Körnerleguminosen-Reinsaaten ausgesät werden sollten. Hier empfiehlt es sich, den erhöhten mineralischen Stickstoffvorrat im Boden für die Stickstoffernährung eines Nicht-Leguminosen-Bestandes zu nutzen oder ein Gemenge aus Körnerleguminosen mit Getreide anzubauen.

Über eine optimierte Standraumverteilung, das heisst Verringerung des Reihenabstandes bei Drillsaaten, lässt sich die Anreicherung von mineralischem Stickstoff im Boden zwischen den Reihen vermindern. Deshalb sollten Körnerleguminosen-Bestände, in die keine Untersaaten vorgesehen sind, in relativ engen Reihenabständen angelegt werden, beispielsweise Ackerbohnen in Reihenabständen von 25 bis 30 cm. Nach der Ernte

von Ackerbohnen bzw. Lupinen können in der Regel keine Haupt- oder Zwischenfrüchte mehr angesät werden, die in der Lage sind, bis zum Vegetationsende noch mehr als etwa 40 kg mineralischen Stickstoffs aus dem Boden aufzunehmen. Es bleibt häufig nur die Möglichkeit, durch eine Untersaat in Ackerbohnen bzw. Lupinen Stickstoffverluste zu reduzieren. Untergesäte Pflanzen (vgl. Tabelle 2) können bereits in der Abreifephase von Ackerbohnen bzw. Lupinen Stickstoff aus dem Boden aufnehmen und nach der Ernte als Deckfrucht zügig einen dichten Bestand bilden, der in der Lage ist, bis zum Vegetationsende dem Boden noch erhebliche Mengen mineralischen Stickstoffs (60 bis 100 kg) zu entziehen.

Um einen befriedigenden Aufgang der in Tabelle 2 angeführten Pflanzenarten zu gewährleisten, sollten die Vorteile einer Drillsaat, das heisst die exakte Tiefenablage des Saatgutes in 0,5 bis 1 cm Bodentiefe, genutzt werden. Ist eine Drillsaat aufgrund zu hoher Deckfruchtbestände nicht mehr praktikabel, so kann auf die pneumatische Sämaschine oder Kleegeige ausgewichen werden. Anschliessend sollte dann das Saatgut jedoch über eine Hack- bzw. Striegelmassnahme mit Boden leicht bedeckt werden, um den Aufgang der untergesäten Pflanzen zu fördern. Nach Umbruch von Leguminosen-Beständen können zusätzlich aus den Ernterückständen von Futter- und Körnerleguminosen bzw. deren Gemenge mit Nicht-Leguminosen sowie aus Bodenvorräten erhebliche Mengen Stickstoff im Boden mineralisiert werden. In den Ernterückständen von Leguminosen-Beständen können je nach Alter, Art und Nutzung bis zu mehr als 300 kg Stickstoff enthalten sein.

Nachfrucht und Zeitpunkt des Umbruchs richtig wählen

In der Regel sind Ernterückstände von Leguminosen leicht mineralisierbar, da unter anderem das Verhältnis von Kohlenstoff (C) zu Stickstoff (N), das sogenannte C/N-Verhältnis, in den Ernterückständen relativ eng ist. Es liegt bei den Leguminosen häufig zwischen 9 und 14. Dieses relativ enge Verhältnis führt nach Einarbeitung von Leguminosen-Ernterückständen in den Boden dazu, dass - ausreichende Bodenfeuchte und Bodentemperatur (mehr als 5 °C) vorausgesetzt - der organisch gebundene Stickstoff rasch zu Nitratstickstoff abgebaut wird und dieser zu einem Überschuss an mineralischem Stickstoff im Boden führen kann. Erfolgt beispielsweise der Umbruch eines Kleegrasbestandes im Spätsommer (Ende August bis Anfang September), so können durchaus noch 150 kg Nitratstickstoff im Boden bis Vegetationsende freigesetzt werden. Wird dieser Stickstoff vor Eintritt der Sickerwasserbildung im Boden (je nach Standort im Früh- oder Spätherbst) nicht vollständig von der nachgebauten Frucht (z.B. Winterweizen oder Winterroggen) entzogen, wird er grösstenteils ausgewaschen.

Bei einem Umbruch von Leguminosen-Beständen im Frühjahr kann ebenfalls sehr rasch Stickstoff im Boden mineralisiert werden. Allerdings besteht hier weniger die Gefahr einer Stickstoffauswaschung, da in der Regel eine nachgebaute Hauptfrucht den mineralisierten Stickstoff entzieht bzw. im Frühjahr nur noch geringe Mengen Sickerwasser im Boden gebildet werden. Auf stark auswaschungsgefährdeten Standorten, zum Beispiel sandige und flachgründige Böden,

Rotschwingel 6– 8 früh: von Aussaat der Ackerbohnen engl. Raigras* 5–12 bzw. Lupinen bis 10 cm Wuchsh Knaulgras* 5–10 der Deckfrüchte	Pflanzenart	Aussaatstärke (kg/ha)	Einsaat-Zeitpunkt				
	Rotschwingel	6- 8	früh:	von Aussaat der Ackerbohnen			
Knaulgras* 5–10 der Deckfrüchte	engl. Raigras*	5–12		bzw. Lupinen bis 10 cm Wuchshöhe			
	Knaulgras*	5–10		der Deckfrüchte			
		15–18	ории.	der Ackerbohnen			
ital. Raigras 15–20 spät: ab 20 cm Wuchshöhe Ölrettich 15–18 der Ackerbohnen							

bzw. Lupinen

15-18

Gelbsenf

^{*} Späte Sorten

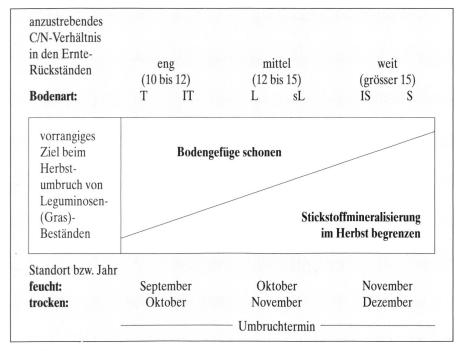


Abbildung 1

Ziele und Handlungsanweisungen beim Herbstumbruch von Leguminosen-Beständen zu Wintergetreide (nach Alvermann 1993, verändert und ergänzt).

ist daher ein Verschieben des Umbruchs ins Frühjahr eine geeignete Massnahme, um Stickstoff vor der Auswaschung zu bewahren.

Die Menge der eingearbeiteten Ernterückstände entscheidet mit darüber, wieviel und in welchem Zeitraum Stickstoff im Boden nach Umbruch von Leguminosen-Beständen zu Nitratstickstoff mineralisiert wird. Bei Futterleguminosen-Beständen, deren Aufwuchs genutzt wird, lassen sich durch eine Mahd oder Abweidung der Bestände direkt vor dem Umbruch die Mengen an leicht mineralisierbaren Ernterückständen verringern. Diese Massnahme kann sowohl für Haupt- als auch für Zwischenfrucht-Leguminosen-Bestände empfohlen werden. Da bei Grünbrachen mit Leguminosen-Gemengen der gesamte Aufwuchs auf der Fläche verbleibt, ist hier die Gefahr einer Stickstoffauswaschung verstärkt gegeben.

Mineralisierung wird bestimmt durch C/N-Verhältnis

Über die Zusammensetzung der Ernterückstände kann die Geschwindigkeit der Nitratfreisetzung aus Ernterückständen im Boden beeinflusst werden. Im Prinzip gilt, dass der Stickstoff aus den Ernterückständen um so schneller mineralisiert werden kann, je enger das C/N-Verhältnis in der eingearbeiteten pflanzlichen Substanz ist. Ernterückstände von Leguminosen weisen in der Regel ein

deutlich engeres C/N-Verhältnis auf als Ernterückstände vieler Grasarten. Deshalb ist anzunehmen, dass die Mineralisierung des Stickstoffs aus den Ernterückständen um so langsamer verlaufen wird, je höher der Grasanteil in einem Leguminosen-Gras-Gemenge zum Zeitpunkt des Umbruchs ist. Der Gras-Ertragsanteil in Futterleguminosen-Gras-Gemengen lässt sich durch die Wahl der Ansaatmischung und des Ansaattermines von Gras und Futterleguminosen beeinflussen. In Gründbrachebeständen mit Gräsern und Rotklee bzw. Luzerne als Gemengepartner können die Gräser durch häufiges Mulchen gefördert werden, das heisst parallel dazu der Ertragsanteil Leguminosen im Gemenge reduziert werden.

Zeitpunkt des Umbruchs abhängig von Bodenart wählen

Auf sandig bis sandig-lehmigen Standorten wird die Mineralisierung von Stickstoff in der Regel durch eine gute Durchlüftung des Bodens von Natur aus gefördert («hitzige Böden»). Eine gebremste Mineralisierung im Boden ist hier bei einem Umbruch von Leguminosen-Beständen im Herbst immer dann erwünscht, wenn Winterweizen bzw. Winterroggen nachgebaut werden, die nur geringe Mengen Stickstoff vor Winter aufnehmen können (etwa 10 bis 40 kg N/ha). Deshalb empfiehlt es sich, auf sandigen und sandig-lehmigen Böden nach Möglichkeit im

Herbst einen grasbetonten Leguminosen-Gras-Bestand einzuarbeiten. Der nicht mehr im Herbst mineralisierte Stickstoff aus den Ernterückständen kann dann verstärkt im darauffolgenden Frühjahr freigesetzt werden, das heisst, zu einem Zeitpunkt, an dem die Stickstoffauswaschungsgefahr geringer wird und der Stickstoffbedarf des Wintergetreides ansteigt.

Auf lehmigen bis tonigen Böden ist die Stickstoffmineralisierung im Boden nach Einarbeitung von Ernterückständen häufig durch eine geringere Durchlüftung des Bodens vermindert («träge Böden»). Auf diesen Böden kann über eine Einarbeitung von Ernterückständen mit einem engeren C/N-Verhältnis (leguminosenreicher Bestand, jüngere Pflanzen) die Stickstoffmineralisierung gefördert werden. Hier besteht bei einer Einarbeitung im Herbst wegen der gebremsten Stickstoffmineralisation im Boden eine geringere Gefahr, dass grössere Mengen mineralischen Stickstoffs bis zum Vegetationsende im Boden angereichert und anschliessend ausgewaschen werden. In Abbildung 1 sind für verschiedene Bodenarten die C/N-Verhältnisse angegeben, die bei einem Herbstumbruch in den Ernterückständen anzustreben sind.

Durch Bodenbearbeitung den Stickstoff gezielt mobilisieren

Über den Zeitpunkt und die Intensität der Bodenbearbeitung beim Umbruch von Leguminosen-Beständen lässt sich die Geschwindigkeit der Stickstoffmineralisierung im Boden steuern. Grundsätzlich gilt, dass bei einem Herbstumbruch auf allen Standorten der Umbruchtermin so weit hinausgeschoben werden sollte, wie es der Bodenfeuchtezustand und die Ansprüche der Nachfrucht an den Saatzeitpunkt erlauben. Ziel ist es, einerseits die Stickstoff-Freisetzung im Boden durch die im Spätherbst sinkenden Bodentemperaturen zu begrenzen und andererseits das Bodengefüge beim Umbruch zu schonen.

Auf schweren Böden sollte die Schonung des Bodengefüges bei einem Herbstumbruch von Leguminosen-Beständen im Vordergrund stehen. Ein Umbruch bei zu feuchtem Bodenzustand kann hier nachhaltige Strukturschäden des Bodens mit sich bringen, die unter Umständen zu schlechteren Feldaufgängen und deutlich geringeren Erträgen bei der Nachfrucht führen. Auf schweren Böden liegt deshalb der optimale Umbruchtermin in trockenen Jahren häufig bei Anfang bis Mitte Oktober; in sehr feuchten Jahren bereits Ende September.

Vorrangiges Ziel der Bodenbearbeitung beim Umbruch im Herbst auf sandigen bis sandig-lehmigen Standorten ist es, die Stickstoffmineralisierung im Herbst zu begrenzen. Je sandiger der Boden ist, desto später kann und sollte umgebrochen werden (z.B. im niederschlagsreichen Jahr im

November, im niederschlagsarmen Jahr Anfang Dezember). Die Gefahr, nachhaltige Strukturschäden des Bodens aufgrund von relativ feuchten Bodenverhältnissen beim Umbruch zu erzeugen, ist auf sandigen Böden weniger gegeben.

Die Tiefe einer Bearbeitung mit dem Pflug kann als Mittel zur Lenkung der Stickstoff-Freisetzung nach Leguminosenumbruch genutzt werden. Auf sandigen bis sandig-lehmigen Standorten kann durch eine tiefere Pflugfurche beim Herbstumbruch (z.B. 22 bis 25 cm) die Mineralisation aus den Ernterückständen gebremst werden. Dabei werden die Ernterückstände in tiefere Bodenzonen eingearbeitet, die häufig schlechter durchlüftet werden. Auf schwereren Böden ist hingegen eher eine Pflugtiefe im Herbst von nur 18 bis 20 cm anzuraten.

Eine reduzierte Stickstoffmineralisation im Herbst konnte auch festgestellt werden, wenn ein Kleegras-, Luzernegras- oder Zwischenfruchtbestand ohne eine vorherige Narbenzerstörung eingepflügt wurde (sogenannter «heiler Umbruch»).

Wird eine Narbenzerstörung, zum Beispiel mit dem Grubber, vor dem Einsatz des Pfluges durchgeführt, lässt sich die Stickstoffmineralisation im Herbst dadurch begrenzen, dass der Zeitraum zwischen Narbenzerstörung, Pflugeinsatz und Einsaat der Nach-

Wenn dieses Feld bis zum Frühjahr so liegen bleibt, gehen grosse Mengen Stickstof verloren.

frucht auf wenige Tage verkürzt wird. Dabei ist auf eine angemessene Rückverfestigung des Bodens vor Einsaat der Nachfrucht besonders zu achten, um eine gute Jugendentwicklung sicherzustellen.

In der Praxis werden Leguminosen-Bestände zum Teil auch bereits im August oder Anfang September umgebrochen. Um höhere Stickstoffausträge bei einem frühzeitigen Umbruch zu vermeiden, müssen dann allerdings Haupt- oder Zwischenfrüchte mit einem hohen vorwinterlichen Stickstoff-Aufnahmevermögen angebaut werden. Zwischenfrüchte, die bei rechtzeitiger Ansaat noch erhebliche Mengen mineralischen Stickstoffs vor Winter aufnehmen können, sind in Tabelle 3 zusammengestellt.

Aufgrund der Tatsache, dass eine gesteigerte Stickstoffmineralisation im Boden nach Umbruch von Leguminosen-Beständen in vielen Fällen über zwei bis drei Jahre anhält, sind wiederholt erhöhte Nmin-Gehalte im Herbst nach der ersten Frucht, die auf den Umbruch folgt, festgestellt worden. Deshalb sollten die Massnahmen zur Verminderung einer Stickstoffauswaschung nicht auf die erste Nach-

frucht beschränkt bleiben. Durch gezielten Anbau von Zwischenfrüchten, Änderung der Stellung von Hauptfrüchten in der Fruchtfolge und Reduzierung der Bodenbearbeitungsintensität kann zusätzlich Stickstoff im Verlauf der gesamten Fruchtfolge vor Auswaschung bewahrt und somit die Stickstoffversorgung der Feldfrüchte langfristig gesichert und verbessert werden.

Eine ausführliche Literaturliste sowie der ungekürzte Beitrag kann gegen Einsen dung von DM 2.– in Briefmarken angefor dert werden bei:

Professur für Biologische Produktionssysteme Karl-Glöckner-Strasse 21 C D-35394 Giessen

Knut Schmidtke beschäftigt sich schwerpunktmässig mit dem grundwasser schonenden Anbau von Futterlegumino sen; Beate Wunderlich und Johann-Georg Anthes haben sich in ihren Di plomarbeiten mit dem Stickstoffhaushal bzw. der Stickstoffdynamik in Boden unc Pflanze auseinandergesetzt.

Dieser Beitrag wurde mit freundlicher Ge nehmigung der Redaktion entnommen aus «bio-land» 3/93.

Tabelle 3	
Zwischenfrüchte zur Stoppelsaat mit hohem	vorwinterlichen Stickstoffaufnahmevermögen

Pflanzenart	Aussaatstärke (kg/ha)	Saattiefe (cm)	Saattermin		
Ölrettich	18 – 22	1	Ende Juli bis Mitte September		
Winterfutterraps 8 – 12		1	Ende Juni bis Anfang September		
Futterrübsen	10 - 15	1	Anfang Juli bis Anfang September		
Gelbsenf	15 - 20	1	Anfang August bis Mitte September		
ital. Raigras	30 – 40	0,5-1	Anfang Juli bis Anfang September		
Einj. Weidelgras (Raigras)	40 – 50	0,5-1	Anfang Juli bis Ende August		

Stickstoff- sammlungs- vermögen Wurzel- systems	Wurzel-	l- lungstiefe	Pflanze	Verwendung im Ackerbau		Entwick- lungs- geschwin- digkeit	Wurzel- eigen- schaften			Stickstoff- Mengen in Spross- und Wurzelmasse
ja nein				US	StS		A	В	C	in einer Vegetationsperiode
*	tief	über 200 cm	Lupinen	SM	*	++	++	+	-	140 bis 440
*	tief	über 200 cm	Steinklee		*	+	++	++	+	ca.150
*	tief	über 200 cm	Luzerne	*	*	+	++	Ē	+	bis 450
*	mitteltief	80 bis 150 cm	Ackerbohnen	SM		++	+	-	+	190 bis 440
*	mitteltief	80 bis 150 cm	Zottelwicke		*	++	++	+	++	ca. 270
*	mitteltief	80 bis 150 cm	Platterbse		*	++	++	+	++	ca. 320
*	mitteltief	80 bis 150 cm	Seradella	*	*	++	++	+	++	bis 300
*	mitteltief	80 bis 150 cm	Gelbklee	*	*	+	+	-	_	bis 200
*	flach	bis ca. 80 cm	Inkarnatklee		*	+ 2 48 8 8	+	+	+	80 bis 210
*	flach	bis ca. 80 cm	Schwedenklee	*	*	++	+	+	+	160 bis 310
*	flach	bis ca. 80 cm	Fadenklee	*	*		++	+	++	
*	flach	bis ca. 80 cm	Rotklee	*	*		+	-	+	120 bis 380
*	flach	bis ca. 80 cm	Weissklee	*	*		-	-	+	150 bis 320
*	mitteltief	80 bis 150 cm	Senf		*	+++	_	_	+	ca. 100
*	mitteltief	80 bis 150 cm	Ölrettich	*	*	+++	+	1-1	+	ca. 170
*	mitteltief	80 bis 150 cm	Rübsen		*	++				
*	flach	bis ca. 80 cm	Raigras	*	*	+	+	<u>-</u>	+	140 bis 200
*	flach	bis ca. 80 cm	Phacelia		*	+++T	+	_	+	ca. 100
*	flach	bis ca. 80 cm	Buchweizen		*	+++ T	++		÷	ca. 150
*	flach	bis ca. 80 cm	Sonnenblume		*	+++T	_	_	_	

Legende:

Verwendung im Ackerbau

US: Untersaat

SM: Untersaat in Silomais

StS: Stoppelsaat

Entwicklungsgeschwindigkeit

langsam

schnell ++:

+++: sehr schnell

Keimung auch unter sehr T: trockenen Bedingungen

Wurzeleigenschaften

A: Tiefenwachstumsgeschwindigkeit in gelockertem Boden

B: Fähigkeit, sich in ungaren Böden zu entwickeln

C: Ausbildung von Fein- und Haarwurzeln

-: schlecht, +: mässig, ++: gut

Die Angaben zu den Stickstoffmengen sind aus mehreren Arbeiten zusammengetragen, unter anderem einer Dissertation, Standort Stuttgart, Hohenheim (Heinzmann) und einer Diplomarbeit, Standort Gochsen bei Neuenstadt a.K. (Brandmeier)