Zeitschrift: Jahrbuch für Solothurnische Geschichte **Herausgeber:** Historischer Verein des Kantons Solothurn

Band: 32 (1959)

Artikel: Die "Kastelhöhle" im Kaltbrunnental : Gemeinde Himmelried (Solothurn)

Autor: Schweizer, Theodor / Schmid, Elisabeth / Bay, Roland

DOI: https://doi.org/10.5169/seals-324134

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

DIE «KASTELHÖHLE» IM KALTBRUNNENTAL

Gemeinde Himmelried (Solothurn)

INHALTSVERZEICHNIS

I.	Einleitung	Theodor Schweizer †	3
II.	Die Schichtenfolge	Elisabeth Schmid	Ć
III.	Werkzeuge und Kunst	Roland Bay	
	A. Allgemeine Betrachtung	Theodor Schweizer †	14
	B. Typologie und Statistik der Funde	Roland Bay	17
IV.	Die Tierfunde		62
	Säugetiere und Vögel	Hans Rudolf Stampfli	62
	Die Mollusken der Kastelhöhle	Lothar Forcart	82
V.	Zusammenfassung und Schluss	Leo Fey	86

I. EINLEITUNG

Von Theodor Schweizer †

Das Kaltbrunnental ist ein nord-südlich verlaufendes, zum Teil tief in die Rauracienschichten eingeschnittenes Nebental zur Birs. Vom Ibach durchflossen, hat es hauptsächlich in seinem untern Teil ein wildromantisches Aussehen.

Archäologisch ist dieses Tal schon längst bekannt, wurden doch schon vor Jahrzehnten in der Heidenküche und in der gegenüberliegenden Kohlerhöhle Ausgrabungen durchgeführt, die Funde aus der Rentierjägerzeit (Magdalénien) lieferten.

Durch die finanzielle Unterstützung des Kantons Solothurn, der kantonalen Altertümerkommission und deren damaligen Präsidenten, Regierungsrat Dr. Oskar Stampfli, war es uns möglich, diese Doppelhöhle zu untersuchen, wofür hier unser besonderer Dank ausgesprochen sei.

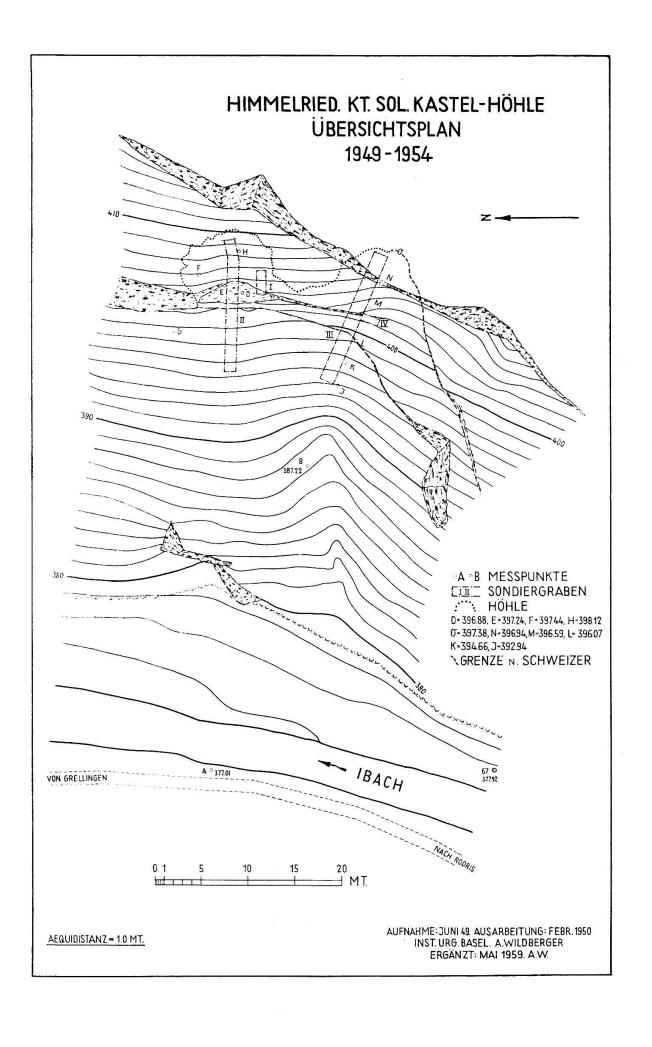
Die mit Lehrer Kellenberger (Allschwil) 1948 begonnene Ausgrabung wurde 1949 und 1950 von mir allein mit durchschnittlich zwei Arbeitern weitergeführt. Insgesamt ist in diesen drei Etappen während zwölf Wochen gegraben worden; hierzu kommen vier Grabungstage 1954, an denen einzelne Profilwände für erneute Entnahme von Erdund Pollenproben nochmals freigelegt wurden.

Die Kastelhöhle ist eine Zwillingshöhle, 8–9 m tief und 23 m breit mit einer Zwischenwand in der Mitte, die etwa 2,50 m bis an den Höhleneingang reicht. Sie liegt auf der rechten Seite des Tales, 30 m über dem Bachbett (Top. A. Blatt 96, 609 850 / 253 000) (siehe Übersichtsplan 1949–1954 Seite 5).

Zuerst wurde die Höhle «Nord» in Angriff genommen, weil deren Vorplatz, sowie ein Teil der Höhle selbst von der Nachmittagssonne beschienen wird, während die Höhle «Süd», sowie deren sehr abschüssiger Vorplatz imme: im Schatten liegt. Es zeigte sich dann, dass diese Überlegung richtig war, denn nur die Nordhöhle enthielt eine ausgesprochene Kulturschicht.

Das Profil im Innern der Nordhöhle sah von oben nach unten folgendermassen aus: Bis auf 20 cm Tiefe war ein grauweisser Sintergrus, dessen Oberfläche mit Bruchsteinen, vom Höhlendach herrührend, bedeckt war. Darauf folgte ein 30 cm dicker Sintergrus, ganz weiss ohne Kalkbrocken, und anschliessend, wie abgeschnitten, hellgelber feiner Kalksplitter, mit ganz wenigen, bis faustgrossen Kalkbrocken vermischt. Diese Schicht hatte eine Mächtigkeit von durchschnittlich 25 cm. Darunter befand sich dann die schwarz-graue Kul-

turschicht mit durchschnittlich 25 cm Dicke. Dieselbe keilte nach hinten sowie auf die Seiten, ungefähr einen Meter vor der Höhlenwand aus. Den Grund dafür sehe ich in dem Umstand, dass die Höhlenwände sehr durchlässig und feucht sind. Somit spielte sich das Leben in der Höhle hauptsächlich in der Mitte ab. Unter der Kulturschicht folgte dann eine hellbraune Schicht Kalksplitter ohne Lehm.


Im ganzen wurden fünf Feuerstellen konstatiert, erkennbar an den starken Kohlen- und Aschenüberresten. Dieselben zeigten aber keine Einfassungen und die häufig vorkommenden Brandplättchen lagen wahllos in der Kulturschicht verstreut. Es machte den Anschein, als ob die abziehenden Jäger die Spuren ihres Lagerplatzes verwischen wollten.

Die Knochenüberreste ausserhalb der Tropflinie sind fast restlos aufgelöst worden, einzig die Zähne blieben einigermassen erhalten. Infolge Sickerwasser hat auch das Knochenmaterial innerhalb der Höhle und hauptsächlich gegen die Höhlenwand zu, stark gelitten.

Zahlreiche Besucher – Wissenschaftler, Lehrer, Schüler und interessierte Laien – besuchten die Ausgrabung. Auf der Wiese des kleinen Talbodens hatten wir auf einem Podium ein grosses Zelt errichtet, das tagsüber als Fundabteilung, nachts als Schlafplatz diente. Hier wurden auch die Funde ausgestellt, als im August 1950 eine Exkursion des Internationalen Prähistoriker-Kongresses (Zürich) unsere Grabung besuchte.

Um diesen schönen und reichhaltigen Fundplatz seinem Wert entsprechend zu erforschen, haben sich mehrere wissenschaftliche Mitarbeiter zur Verfügung gestellt. Sie förderten bei mehrfachen Besuchen die Ausgrabung mit Rat und Tat und haben für diese Veröffentlichung das Ergebnis ihrer Untersuchungen beigesteuert.* Ihnen allen, Frau Prof. Dr. E. Schmid (Basel/Freiburg), den Herren Prof. Dr. R. Bay (Basel), Dr. L. Fey (Olten), Dr. L. Forcart (Basel), Dr. H. R. Stampfli (Solothurn) sei hier der beste Dank ausgesprochen.

^{*} Anmerkung: Die Untersuchung auf Pollen, die unter der Betreuung von Professor Dr. M. Welten (Bern), Bezirkslehrer Ernst Müller (Grenchen) übernommen hat, ist noch nicht abgeschlossen.

II. DIE SCHICHTENFOLGE

Von Elisabeth Schmid

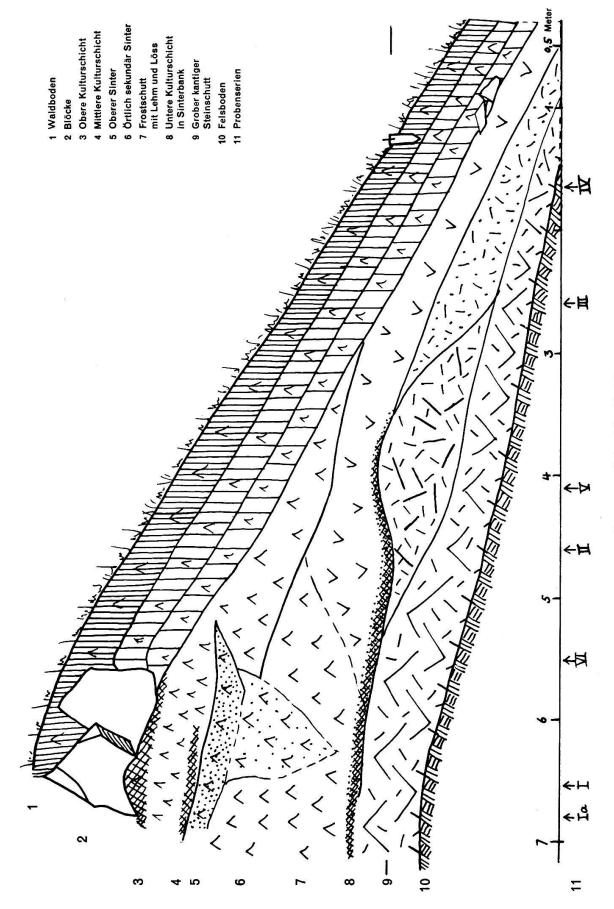
Um die Sedimentverhältnisse in der Kastelhöhle mit den Lais'schen Methoden¹ zu untersuchen und zu datieren, konnte ich der Einladung von Th. Schweizer zur Teilnahme an seiner Ausgrabung sowohl 1949 wie auch 1950 mehrere Male kurze Zeit folgen.

Kellenberger und Schweizer hatten ihre Ausgrabung unmittelbar hinter den grossen Felsblöcken, die vor der Trauflinie aus dem Boden aufragten, begonnen. 1948 war der vordere Teil des Höhlenraumes, 1949 der hintere ausgegraben worden. Unter einer vorn 60 cm mächtigen, nach hinten sich auf 30 cm verringernden sinterreichen, stellenweise steinigen Deckschicht stiessen die Ausgräber auf eine Kulturschicht mit einem reichhaltigen Bestand an Stein- und Knochengeräten des Magdalénien, an im Feuer zersprungenen Quarzitgeröllen und geröteten Kalkplatten von Feuerstellen. Auf dem nach hinten ansteigenden Höhlenboden keilte die Kulturschicht nahe der Rückwand aus. Bei der Flächengrabung war nur ein kleiner Sockel an Deckschichten in der Mitte des Höhlenraumes stehen geblieben, der aber für die Probenentnahme nicht ausreichte. Beim Übergang zur Südhöhle jedoch stand noch eine kleine Profilwand. Zur Einordnung der Kulturschicht in den Gesamtablauf der Sedimentation war es notwendig, auch in das sterile Liegende der Kulturschicht hinabzugraben. Dass Th. Schweizer seine Leidenschaft für die Funde zurückstellte und die notwendigen Schnittgrabungen in das schwer bearbeitbare, steinige Liegende vornahm, kann ihm nicht hoch genug angerechnet werden. Unseren Wunsch, nicht nur im Bereich der Höhle, sondern auch in ihrem Vorplatz den ganzen Schichtenaufbau bis hinab auf den Felsboden freizulegen, hat er gerne erfüllt, obwohl die Blockbarriere und die harte Versinterung tiefer unten grosse Mühen erforderten. Aber diesen Mühen allein ist es zu verdanken, dass nicht nur ein reich gegliedertes Profil die Geschichte der Höhle widerspiegelt, sondern dass auch die untere Kulturschicht entdeckt worden ist.

Neben dem Deckschichten-Profil vor der Südwand der Nordhöhle wurde ein schmaler Graben eingetieft. Doch musste nach 1 m unter der Kulturschicht das Weitergraben eingestellt werden, weil die dort lockere Steinschicht vorzurutschen und damit das ganze Profil einzustürzen drohte. Hier, in diesem Profil I, zeigte der untere Teil eine deutliche Gliederung in eine steinige Lehmschicht unter dem Kultur-

¹ Lais, Robert: Über Höhlensedimente. Quartar 3, 1940, S. 56-108.

horizont, der eine kleinstückige, lockere Steinschicht mit wenig Lehm folgte und darunter eine grobe Lage aus kantigen Steinen und Steinscherben mit wenig Lehm dazwischen.


Mit einem zweiten, grösseren Graben sollte der Einblick in den Schichtenaufbau des Höhlenvorplatzes geöffnet werden. Vom Hang her legte Th. Schweizer einen 1,50 m breiten Schnitt zwischen zwei Bäumen und rechtwinkelig zur Trauflinie etwa in der Mitte des Höhlenbogens an. Hierfür mussten die Blöcke vor dem Eingang ausgehauen werden. Diese Blöcke lagen auf der Kulturschicht, etwas in sie eingedrückt. Die horizontal nach aussen verlaufende Kulturschicht wurde knapp vor den Blöcken durch die schräg abfallende Oberflächenschicht abgeschnitten.

Als die unter der Kulturschicht liegende grobsteinige Schuttschicht 1 m tief durchschlagen war, stiessen die Ausgräber auf eine hart versinterte Bank. Weiter höhleneinwärts, etwa im Bereich unter den Blöcken, hörte diese Versinterung auf. Das in gleicher Höhe liegende Gesteinsmaterial hatte gerundete, angeätzte Steine. Frische und angebrannte Knochenfragmente sowie kleine Quarzitabschläge lagen in ihm: Also ist hier eine tiefere Kulturschicht angeschnitten worden. Deshalb wurde nun auch ein Teil der harten Sinterschicht durchhackt und aus ihr mehrere Artefakte und Tierknochen geborgen. Im rückwärtigen Teil, wo die Arbeit etwas leichter voranging, ergrub Th. Schweizer im Sommer 1949 unter dieser unteren Kulturschicht noch scharfkantiges Gestein. Im Sommer 1950 wurde dann der ganze Graben noch weiter nach vorn gezogen und bis auf den Felsen freigelegt. So konnte dieses Profil II (siehe Längsprofil der Nordhöhle Seite 8) sehr gut beobachtet werden.

Kombiniert man die Profile I und II, so ergibt sich folgender Schichtenaufbau in der Nordhöhle:

Innerhalb der Höhle bildet eine graue feinkörnige Sinterschicht die Oberfläche. Die ebenfalls lockere Sinterlage darunter hat eine gelbe Farbe. Dann folgt ein festerer Sinter mit einigen Steinen, der auf einem kleinstückigen, splittigen Material auf liegt, das von gelbem Feinmaterial durchsetzt ist. Dieser Lage entspricht weiter vorn die Blockanhäufung, während die den Sinterlagen entsprechenden Sedimente gemischtes Hangschuttmaterial darstellen, das über die schräge und in Absätzen bewachsene Felswand heruntergekommen war. Zuoberst schliesst es mit dem heutigen Waldboden ab.

Die dunkelbraune Kulturschicht enthält kleine Steine und lockeres Feinmaterial. Dann folgt ein offenbar durch Frostabwitterung entstandenes Material aus meist kantigen Steinen mit teils gelbem, teils bräunlichem Lehm dazwischen, das im Bereich unter den Blöcken

Längsprofil der Nordhöhle

– 40 cm unter diesen – durch starke Sinterinfiltration eine weisse Färbung bekommen hat. Diese unter den Blöcken 1,50 m mächtige steinige Lehmzone ist in ihrem oberen Teil ausserhalb der Blöcke durch den hangparallelen Waldboden schräg abgeschnitten.

Die harte, gering mächtige Sinterlage, welche die untere Kulturschicht verbacken hat, zieht in einer Länge von über 3 m horizontal nach vorn. Der vordere Teil liegt auf einem Haufen völlig lehmfreien Gesteinssplittes. Weiter vorn hat sich der Sinter in die Hohlräume des Schuttes verteilt, ohne eine Bank auszubilden. Es ist dies offenbar der Bereich der ehemaligen Trauflinie. Unter dem vorderen Schutt und der rückwärtigen Sinterbank liegt die durch Frostaufwitterung vor allem des Felsbodens entstandene Lage aus groben, kantigen Steinen mit wenig Lehm dazwischen. Im oberen Teil sind die Steine noch etwas wirr ineinander gekeilt, während sie auf dem Fels in dessen Struktur übergehen.

Auch in der Südhöhle wurde ein langer Graben vom Hang her bis ins Innere gezogen. Der Aufbau dieses Profiles III war etwas einfacher als in der Nordhöhle, aber die einzelnen Horizonte liessen sich gut parallelisieren.

Aus allen Profilen wurden – schon in den kleinen 1949, vor allem aber in den langen Schnitten 1950, dann nochmals beim Freilegen des Profils II für die Entnahme von Proben für die Pollenanalyse im Sommer 1954 – mehrere Serien von Erdproben für die sedimentanalytischen Untersuchungen im Laboratorium entnommen. Die Einzelergebnisse dieser Untersuchungen sind ausführlich in unserem Buch über die «Höhlenforschung und Sedimentanalyse »² dargelegt. Wir können uns deshalb hier auf einen zusammenfassenden Überblick beschränken.

In der eben zitierten Schrift ist ausführlich dargelegt, dass es notwendig ist, mehrere Probenserien von ausserhalb der Höhle bis ins Höhleninnere zu untersuchen, wenn man den Werdegang der Höhlenschichten auch in Einzelheiten erkennen will. Da die Kastelhöhle nicht hoch im Gebirge sondern tief liegt, da sie ferner weit entfernt war von allen Gletscherbildungen während der Eiszeit, gelten für sie periglaziale Verhältnisse, deren Auswirkung in den Sedimenten erkannt werden muss.

Es wurden folgene Analysen, deren Aussagekraft ebenfalls in der Schrift erläutert ist³, auf die Proben der Kastelhöhle angewendet: Die Sieb- und Schlämmanalyse gab eine Aufteilung der steinig-lehmigen

² Schmid, Elisabeth: Höhlenforschung und Sedimentanalyse. Schr. d. Inst. f. Ur- und Frühgesch. d. Schweiz, 13, 1958. S. 143–153.

³ Schmid, Elisabeth: a.a.O., S. 26-40.

Massen in folgende Korngrössengruppen: < 0.02 mm, 0.02 - 0.05 mm,0.05-0.1 mm, 0.1-0.5 mm, 0.5-2 mm, 2-5 mm; 5-10 mm; > 10 mm.Damit kann nicht nur das Verhältnis von Feinmaterial zu grobem Schutt zahlenmässig festgehalten werden, sondern auch innerhalb des Feinmaterials lässt sich erkennen, ob Lehme und Tone oder ob Löss zumindest einen Teil des Sediments ausmachen. Die Prüfung des Kalkgehalts lässt Verlehmungen, Sinterbildungen und Infiltrationen erkennen, Phosphat- und Humusgehalt zeigen Kultureinflüsse oder Böden an auch dort, wo diese an der Profilwand nicht oder kaum erkennbar sind. Die mikroskopische Betrachtung der Sieb- und Schlämmrückstände lässt Einzelheiten in der Zusammensetzung des Materials und in der Art der Frische oder Anätzung, der Scharfkantigkeit oder der Kantenrundungen erkennen, alles Erscheinungen, welche die klimatischen Verhältnisse bei der Bildung der Sedimente in den verschiedenen Niveaus zu deuten erleichtern oder den Einfluss menschlicher Anwesenheit schärfer kennzeichnen.

Aus diesen vielfältigen Analysen, welche an den in der Kastelhöhle entnommenen Proben durchgeführt und die in der oben zitierten Schrift in Diagrammen festgehalten und in ausführlichen Beschreibungen charakterisiert worden sind, seien hier nur die wichtigsten Ergebnisse genannt:

Im unteren Teil der mittleren Schuttzone hat die Schlämmanalyse eine Einlagerung von Löss ergeben, der sich vor allem im hinteren Teil von Profil II (siehe Längsprofil der Nordhöhle Seite 8) in stärkerer Menge angesammelt hatte. Da damals das Höhlendach noch weiter hervorragte als heute, ist der Lössabsatz innerhalb der Höhle, wo die Kraft des Windes gebrochen wurde, erfolgt.

Der Löss ist für die klimatische Deutung von besonderem Nutzen: denn wenn in einer Felsnische dieses schmalen Tales Löss abgelagert werden konnte, dann müssen die Talhänge frei von Wald gewesen sein. Dies war nur in der Höchstphase einer Vereisung möglich. Da zudem Löss in gletscherfernen Gebieten nur eine hochglaziale Bildung ist, stellt die mittlere Schuttschicht die Ablagerung während der Spaltenfrost-Verwitterung in einer Kältezeit dar.

Auch die Aufwitterung des Felsbodens ist in eine Kaltzeit zu setzen. Die harte Sinterlage darüber muss in einer Zeit gebildet worden sein, da kaum Gestein abwitterte, dafür aber Lösung und Ausfällung von Kalk stattgefunden hat. Demnach hat die in der untersten Schuttschicht nachgewiesene Kaltzeit eine Unterbrechung erfahren, während der im Bereich der damaligen Trauflinie lockerer Sinter und unter dem Höhlendach eine harte Sinterbank gebildet wurde, während zuhinterst lediglich Anätzung des Gesteinsschuttes mit Lehmbildung erfolgte.

Die Versinterung ist unmittelbar nach dem ersten Besuch des Menschen in der Höhle erfolgt, denn die Kulturreste sind fest verbacken. Die Kulturschicht ist demnach in den ersten Teil, der Sinter in den zweiten Teil der kurzfristigen Wärmephase einzuordnen. Die mit der folgenden Vereisung wieder einsetzende Frostverwitterung, zu der nach einiger Zeit Einwehung von Löss kam, hat durch ständiges Abwittern der Höhlenstirn diese allmählich weiter rückwärts, bis etwa auf m 5,50 (siehe Längsprofil der Nordhöhle Seite 8) verlegt. Viel Gesteinsmaterial rutschte damals sicher den Hang hinunter, vor allem grössere Blöcke. Unter dem neuen Eingangsbereich ist es dann eine Zeitlang wieder zu lockerer Sinterbildung in den Hohlräumen des Frostschuttes gekommen. Der letzte Teil dieser Kältezeit erfuhr demnach eine in diesem Sinter erkennbare wärmere Unterbrechung, der dann wieder eine kurz dauernde Kaltphase folgte.

Die Höhlenrückwand ist während der Hauptkaltphase und den folgenden Zeiten vom Bereich wenig hinter der heutigen Trauflinie an bis zum heutigen Stand in den Berg hinein zurückgewittert.

Das Auftauen der in den Spalten des Felsens durch Dauerfrost festgehaltenen Wassers während des Endglazials bewirkte das Abbrechen der grossen Blöcke, welche der oberen Kulturschicht aufliegen. Die durchsinterten Steinlagen innen und der Hangschutt und Waldboden aussen sind postglazialer Entstehung.

Die Kastelhöhle enthält demnach Sedimente, die während einer schon ausgebildeten Kaltphase beginnen und, schräg nach hinten ansteigend, den Wechsel zu einer kurzfristigen wärmeren Unterbrechung, dann einer länger dauernden Kältephase, einer sehr kurzen wärmeren Periode und erneuter kurzen Kaltphase erkennen lassen, dem die endglaziale endgültige Auftauung und die postglaziale Deckschichtenbildung folgten. Da der untere Sinter keine Interglazialbildung sein kann, liegen rein würmeiszeitliche Bildungen vor, in denen sich ein Frühwürm, ein Interstadial, das folgende Hauptwürm, die Spätwürm-Wärmeschwankung und das Spätwürm mit dem folgenden Postglazial deutlich ausprägen. Nach der alten, wegen vieler Missverständnisse nicht mehr gebräuchlichen Bezeichnungsweise hätten wir also die Sedimente aus Würm I, dem gut ausgeprägten Würm I/II-Interstadial, der grossen Würm II-Eiszeit, dem schwachen Würm II/III-Interstadial und der Würm III-Eiszeit bis zum End- und Postglazial.

Die untere Kulturschicht liegt am Ende von Frühwürm, die beiden oberen gehören dem Spätwürm an.

All diese Beobachtungen und Ergebnisse sind auf der folgenden Tabelle übersichtlich dargestellt.

Sediment	Entstehung	Datierung	
Humusreiche Erde	Waldbodenbildung	Holozän	
Kleinstückiger, lehmiger Felsbruch, hinten mit Sinter	Vorn Hangschutt hinten chemische Abwitterung	Postglazial	
Blockzone und grober Schutt	Rückverlegung der Höhlenstirn zum heutigenStanddurch Abbrechen der Blök- ke beim Auftauen von Tiefenfrost	Endglazial	
Obere (Magdalénien-) Kulturschicht Frostbruch mit Lehm Mittlere Kultur- schicht	3. Besuch durch den Menschen Frostverwitterung u. leichte Anätzung 2. Kurzer Besuch durch den Menschen	Spätwürm	
Lokale Versinterung	Auswirkung der neuen Trauflinie	Spätwürm-Wärme- schwankung	
Frostbruch mit Lehm Frostbruch mit Löss Frostbruch mit Lehm	Allmähliche Rück- wärtsverlegung der Höhlenstirn durch Frostabwitterung. Zeitweise Lössein- wehung	Hauptwürm	
Hart versinterte untere Kulturschicht, davor lockerer	Anätzung und Sin- terbildung unterm alten Höhlendach	Würm-Interstadial	
Sinter zwischen Steinschutt	1. Besuch durch den Menschen	Ende Frühwürm	
Grober lockerer Felsschutt	Aufwitterung des Felsbodens unter dem weiter nach vorn ragenden Höh- lendach	Frühwürm	

Entstehung und Datierung der Sedimente der Kastelhöhle

Zusammenfassung

In der Höhle, die sich durch Auswitterung in der steil ansteigenden Felswand gebildet hatte, und deren Eingang früher viel weiter vorn lag, fand der Mensch am Ende des Frühwürms im vorderen Höhlenteil eine fast ebene Fläche auf grobem Steinschutt vor. Hier richtete er sich seine Jagdstation ein, hier wärmte er sich am Feuer. Nach seinem Weggang wurden die Knochenreste seiner Mahlzeiten, die durch das Feuer geröteten Steine, einige Holzkohlestückehen, vor allem aber auch seine verlorenen und weggeschmissenen Geräte durch starke Sinterbildung zu einer «Kulturbreccie» hart verbacken. Es muss damals relativ warm und feucht gewesen sein. Die Feuchtigkeit hat in diesem engen Nord-Süd-Tal sicher immer bestanden, wenn Büsche und Bäume die Verdunstung abschirmten. Der jahreszeitliche und im Sommer auch tägliche Wechsel von Tauen und Gefrieren während des Hauptwürms wirkte sich durch Abwitterung an der ganzen Felswand und durch Eintiefen der Höhle in den Berg hinein aus. Als im Spätwürm der Jäger wieder kurz in der Höhle Station machte, war das Höhlendach immer noch etwas weiter vorn als heute. Die weitere Deckenabwitterung ebnete den hinten ansteigenden Felsboden noch besser aus, so dass gegen das Ende vom Spätwürm eine weite Halle mit ebenem Boden dem neu angekommenen späten Magdalénien-Jäger einen schönen Wohnraum bot. Hier ist er deshalb auch längere Zeit geblieben, wobei die reiche Kulturschicht entstand. – Beim endglazialen Auftauen des Tiefenfrostes brach die Höhlenstirn ab und überdeckte den Eingangsbereich mit Blöcken und Schutt. Im ganzen Holozän ist die von dieser Zeit an nasse Nordhöhle nie mehr, die Südhöhle nur einmal für flüchtigen Aufenthalt vom Menschen aufgesucht worden.

III. WERKZEUGE UND KUNST

Von Roland Bay

Vorbemerkung: Der Ausgräber der Höhle, Theodor Schweizer, gab nach der ersten Grabung, die nur die oberste Fundschicht der Nordhöhle zum Teil erfasst hatte, eine Zusammenfassung, die wir nachstehend im Original folgen lassen. Bei den späteren Grabungen kamen dann weitere Funde aus der oberen Schicht und als neu die mittlere und untere Fundschicht dazu, weshalb die Angaben, auch was die oberste Schicht anbetrifft, unvollständig sind. Wir wollten aber

damit den verdienten Forscher Theodor Schweizer selbst zum Worte kommen lassen und zeigen, wie er selbst seine Grabung und das damals vorliegende Material beurteilt hat.

A. Allgemeine Betrachtung

Von Theodor Schweizer †

Die Feuersteinwerkzeuge (Tafel I unten, Tafel II, Abb. 6 und 7)

Das Feuersteinmaterial ist sehr verschieden. Am meisten vertreten sind die herausgewitterten Knollen, die man in der Umgebung im Geschiebe sehr zahlreich findet. Diese haben sehr oft ganz feine Haarrisse und eignen sich nicht gut zum Bearbeiten, weil sie dann willkürlich zerspringen. Darum fanden sich von denselben sehr viele Kernstücke, die fortgeworfen wurden, weil sie ungeeignet waren. In diesen finden sich die gleichen Einschlüsse wie in denjenigen von Kleinkembs. Dieses Material muss also vor Urzeiten von dorther bis in unsere Gegend verschleppt worden sein. Von dem guten, spaltbaren Material fanden sich nur kleine Kernstücke, ein Zeichen, dass diese ganz ausgenützt wurden. Da in den dortigen Rauracien-Schichten keine Feuersteinknollen zu finden waren, musste der gute und bergfrische Feuerstein in einer andern Gegend gesucht werden, wahrscheinlich mehr südlich im Malmjura.

Von den Werkzeugen sind die Klingen mit 1646 Stück am zahlreichsten vertreten. Es hat solche darunter von 10 cm Länge und 3,5 cm Breite (Abb. 6, Fig. 22). In Fig. 5 des selben Blattes sehen wir eine Klinge mit retouchierter Schrägspitze. Sehr viele haben Gebrauchsretouchen an den Rändern, die man als Encoche bezeichnen möchte. Die oft wunderbar fein geschlagenen Klingen verraten eine Handfertigkeit, die von einer virtuosen Beherrschung dieser Kunst zeugt.

Mengenmässig kommen die kleinen Klingen mit gestumpftem Rücken mit 208 Stück an zweiter Stelle (Abb. 7, Fig. 24–29). Es hat darunter Exemplare von 4–5 cm Länge und nur 5 mm Breite und solche von 1 cm Länge und nur 3 mm Breite. Der grösste Teil hat eine Mittelrippe, eine sogenannte Verstärkungsrippe. Dann finden wir Stücke, die auf drei Seiten gestumpft sind (Abb. 7, Fig. 26, 27) und solche, deren Spitze quer zur Schneide gestumpft ist, während der Schlagbulbus nicht bearbeitet wurde (Abb. 7, Fig. 28, 29), bei Fig. 24 zeigt die Schneide zwei Encoches.

Gut vertreten sind die Stichel mit 108 Stück. Von den verschiedenen Varianten sind 71 Stück mit beidseitig geschlagenen Stichelkanten (Abb. 6, Fig. 1–4). Von 24 Stück ist nur eine Seite geschlagen, die andere aber retouchiert (Abb. 7, Fig. 17–19). Drei Stück sind Doppelstichel (Abb. 6, Fig. 13). Sehr schön sind die Doppelinstrumente, die eine Seite Stichel, die andere Schaber. Von diesen besitzen wir elf Stück (Abb. 6, Fig. 9–11, 14, 15). Eine Art Papageischnabel sehen wir in den drei Doppelwerkzeugen Stichel-Schaber (Abb. 6, Fig. 16–18). Die gleichen erkennen wir ohne Schaber auf Abb. 7, Fig. 17–19. Ein eigenartiges Werkzeug ist auf Abb. 6, Fig. 12 dargestellt; es ist ein Schaber, dessen andere Seite schnabelartig herausretouchiert ist. Einmalig ist auf Abb. 6, Fig. 28: eine Seite Stichel, die andere frontal abgedacht als eine Art Stechbeitel. Zwei gleiche Stücke fanden wir seinerzeit auf dem Oberfeld bei Winznau.

Klingenschaber besitzen wir 71 Stück (Abb. 7, Fig. 8–13), davon sind vier Stück Doppelschaber (Abb. 6, Fig. 25). Etliche Exemplare weisen auf den Längsseiten Retouchen auf, wie wir sie auf den Abbildungen erkennen können. Überhaupt ist bei diesen Klingenschabern die Schabkante sehr fein und sorgfältig retouchiert worden. Einen grossen, grob geschlagenen Diskusschaber sehen wir auf Abb. 7, Fig. 7.

Bohrer fanden sich 31 Stück, davon 21 einfache (Abb. 7, Fig. 20, 21), acht Doppelbohrer (Abb. 7, Fig. 22, 23), einer sogar mit fünf Bohrspitzen (Abb. 6, Fig. 24) und ein ganz grosser Bohrer (Abb. 6, Fig. 23).

Von den *Dreieckmessern* sind 17 Stück ganz (Abb. 6, Fig. 5–8) und von acht Exemplaren nur Bruchstücke. Das grösste Stück misst genau 7,5 cm, während das kleinste nur 2,7 cm lang ist. Den gleichen Werkzeugtypus fanden wir sehr zahlreich in Winznau, während er in den andern Magdalénienstationen unserer Gegend fehlt.

Von den Klingen mit retouchierter Spitze sind 40 Exemplare vorhanden, und zwar in allen Grössen. Eine Ausnahme bilden vier Stück mit nach rechts gerichteter Spitze, wie wir drei davon auf Abb. 7 in den Fig. 14–16 sehen. Bei elf Klingen ist die Spitze schräg zur Klinge retouchiert (Abb. 6, Fig. 20, 21), während bei der Klinge in Fig. 19 noch die Längsseite eine Strecke weit retouchiert wurde.

35 Werkzeuge lassen sich typologisch nirgends einordnen. Es müssen Spezialwerkzeuge gewesen sein, die nur für eine spezielle Arbeitshandlung verwendet wurden. Zwei solche sehen wir auf Abb. 6, in den Fig. 26, 27.

Dazu gesellen sich noch 144 Kernstücke, aber unter diesen ist kein einziger sogenannter «Eselshuf», von denen wir aus allen sieben Stationen um Olten herum sehr schöne Exemplare besitzen.

Zu erwähnen sind noch ein kleiner Schlagstein aus Buntsandstein mit Bearbeitungsspuren und ein schwarzer, flacher Stein, schieferartig mit retouchierter Längsseite. Es sind total 2309 Werkzeuge aus Stein gefunden und sichergestellt worden.

Wenn wir diese feinen bis allerfeinsten Klingen betrachten, so müssen wir diesem Jägervolk, das eine solche Schlagtechnik beherrschte, alle Hochachtung zollen.

An Hand der Werkzeugtypen müssen wir diese Station ins auslaufende Magdalénien, dem Ende der letzten Kaltperiode der Eiszeit, setzen.

Die Werkzeuge aus Knochen und Geweih (Tafel III und Abb. 8)

Leider war die Höhle wasserdurchlässig, was sich für das Knochenmaterial nachteilig auswirkte. Was sich ausserhalb der Tropflinie befand, war bis auf die Zähne fast restlos zerstört. Auch die Knochen, welche im Bereich der Sickerstellen innerhalb der Höhle lagen, haben sehr stark gelitten. Trotzdem fanden sich noch die hinteren Teile von sieben abgebrochenen Speerspitzen aus Knochen (Abb. 8, Fig. 1-4), davon, Fig. 4, mit zwei Rillen und Querkerben. Desgleichen zwei Knochenpfriemen (Abb. 8, Fig. 5, 6), einer davon mit Gelenkende. Von den fünf Rengeweihstückehen mit Bearbeitungsspuren war eines durchlocht (Abb. 8, Fig. 8-10). Drei Knochenstücke zeigen Kerbschnitte (Abb. 8, Fig. 7, 11) und an einem kleinen Knochenfragment sieht man, wie sie eine Nadel herausschneiden wollten. Eines der schönsten Stücke ist (Abb. 8, Fig. 12) eine runde Knochennadel mit Öhr von 7,7 cm Länge. Dieselbe ist auf Hochglanz poliert und leicht gebogen. Im weitern fanden sich noch zwei Flachnadeln (Abb. 8, Fig. 13), sogenannte Kürschnernadeln und acht kleinere, zum Teil beschädigte Nadeln von 3 bis 3,5 cm Länge. Ein länglich-ovales, glatt poliertes Knochenplättchen, leicht abgedreht, ist an dem einen Ende durchlocht (Abb. 8, Fig. 18). Das andere Ende ist leider abgebrochen und dürfte auch durchlocht gewesen sein. Man kommt von dem Gedanken nicht los, dass es zum Fischfang gedient hat, als eine Art «Löffel». Wenn man es an einer Schnur durch das Wasser zieht, so dreht es sich wie ein richtiger «Spinner». Als letztes Werkzeug ist noch zu erwähnen eine Fischangel aus Knochen, leicht gebogen und an beiden Enden zugespitzt (Abb. 8, Fig. 17).

Die Schmuckstücke

Als Schmuck können wir die tertiären Muscheln und Schnecken ansprechen, deren wir im ganzen zehn Stück gefunden haben (Taf. III). Es sind dies: fünf *Pectunculus*, drei davon durchlocht und eine am

Rande retouchiert (Abb. 8, Fig. 14–16), vier *Turritella*, leider keine mehr ganz und als schönste eine *Cerithium* (Halskette in der Mitte?). Ein kleiner *Ammonit* von 3 cm Durchmesser ist in der Mitte durchbohrt. Dieser dürfte auch als Schmuck angesprochen werden. Derselbe ist ganz fein gerippt und hatte einen dünnen Pyritüberzug. Zu den neun Stückchen *Pechkohle*, die keine Bearbeitungsspuren zeigen, gesellt sich eine kleine *Gagatperle* von 3,5 mm Durchmesser, 2 mm Dicke und 1,5 mm Lichtweite der Bohrung. Ein an der Wurzel durchlochter *Eckzahn* von *Fuchs* könnte als Schmuckanhänger wie auch als Werkzeug gedient haben. Zudem fand sich noch ein kleines Stückchen *Rötelstein*, der auf Bemalung hindeutet.

Als Kuriosum ist eine Gryphaea zu erwähnen, die ich als Ampel bezeichnen möchte. Eine gleiche fand sich seinerzeit in der Azilienstation Balm, am Fusse der Balmfluh. Dieselbe war auch am Rande abretouchiert, damit sie besser stehen konnte. Eine grosse Bohnerzkugel von 3 cm Durchmesser könnte als Spielzeug gedient haben.

B. Statistik und Typologie des gesamten Inventars der Nordhöhle

Von Roland Bay

Allgemeines über die Fundschichten und das Inventar

In der Nordhöhle fanden sich, durch sterile Zwischenschichten getrennt, drei Fundschichten:

- 1. die obere Fundschicht = Spätestes Magdalénien (VI/2)
- 2. die mittlere Fundschicht = Frühes oder mittleres Magdalénien ancien
- 3. die untere Fundschicht = Spätes Moustérien typique

In der Südhöhle fehlte die mittlere Fundschicht, und die beiden anderen ergaben nur spärliche Funde. Die beiden Fundschichten entsprechen der oberen und der unteren Fundschicht der Nordhöhle.

Das Fundmaterial aus der oberen Schicht der Nordhöhle liegt zum grössten Teil im Heimatmuseum in Dornach und ein kleiner Teil im Museum Olten. Alles übrige Material ist im Museum Olten auf bewahrt.

Den Konservatoren der beiden Museen, Professor Dr. Leo Fey in Olten und Dr. O. Kaiser in Dornach, bin ich für die Überlassung der Funde zur Untersuchung und für die hilfsbereiten Auskünfte zu grossem Dank verpflichtet. Ganz besonderen Dank schulde ich aber dem rührigen Ausgräber und früheren Konservator, Theodor Schweizer sel., der mir erlaubte, mehrmals seine Ausgrabung zu besuchen, und stets auf alle Fragen bereitwillig Auskunft gab und für Anregungen zugänglich war.

Bei der nun folgenden Bearbeitung wurde nur das Fundmaterial der Nordhöhle berücksichtigt. Einmal war dasjenige der Südhöhle sehr spärlich. Anderseits hätte eine Vermischung der Fundkomplexe beider Höhlen das genaue Bild der Nordhöhle verwischt. Ferner wurde das im Museum in Olten liegende zahlenmässig und vor allem typenmässig arme Material, das nachträglich bei Nachgrabungen oder als Streufunde aus der obersten Schicht der Nordhöhle stammt, nicht in die Statistik einbezogen. Einmal ist seine genaue Herkunft nicht gesichert, zum anderen war die Bearbeitung und die statistische Auswertung des im Museum in Dornach liegenden Fundgutes bereits abgeschlossen. Es sind aber derart wenige gute Typen darunter, dass sich das Bild der Ergebnisse nicht verändert hätte.

Die obere Fundschicht der Nordhöhle a) Die Steinwerkzeuge

Allgemeine Statistik

Nuclei	138 Stück
Klingen und Abfälle (Absplisse)	1416 Stück
Klingen mit Gebrauchsretouchen gross	93 Stück
mittel	84 Stück
klein	59 Stück
Typen	604 Stück
Total	2394 Stück

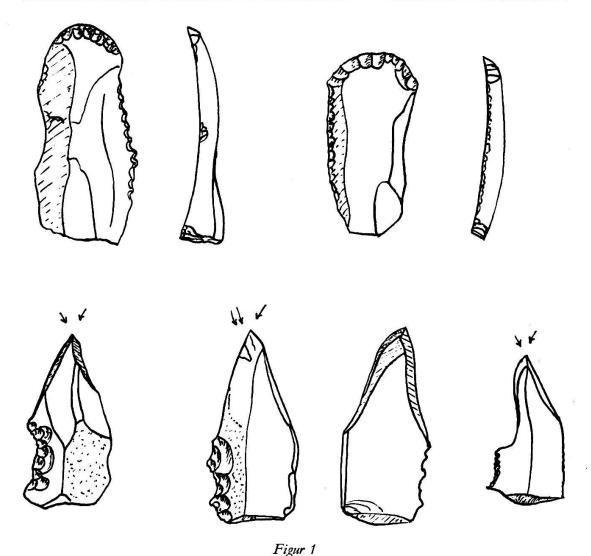
Dazu ist zu sagen, dass unter den Klingen mit Gebrauchsretouchen nur die besonders schönen Klingen angeführt sind. Es wurden aber auch sehr viele schlecht geschlagene Klingen, ja selbst Abfälle mit Gebrauchsmarken gefunden. Der Unterteilung in diese zwei Gruppen kommt daher nur sehr geringer Wert zu.

Typologie

Als Grundlage diente die von F. Bordes und D. de Sonneville-Bordes und J. Perrot angegebene Typologie des Jungpaläolithikums, die sie auch ihrer statistischen Methode zugrunde legten. Es zeigte sich, dass in diesem System alle Formen oder Typen unseres Materials aus der Kastelhöhle untergebracht werden können. Es mussten nur zwei für unsere Station typische Formen als Unterabteilungen angefügt werden: Fig. 1

bei Nr. 1: Grattoir sur bout de lame, avec base retouchée,

bei Nr. 27: Burin dièdre droit, avec encoche latérale.


Ferner wurde der «Zinken», der neuerdings als «rainureur» in die französische Typologie eingeführt worden ist, unter Nr. 24 als Perçoir atypique oder als bec angeführt. Das Messer mit geknicktem Rücken oder «Dreieckmesser», sowie das «Trapezmesser», habe ich unter Nr. 64 als «Pièce à double troncature = Pièce bitronquée» zusammengefasst. Der einzige Diskusschaber figuriert unter Nr. 9 als «Grattoir circulaire».

1. Kratzer (Grattoir). Darunter werden Schabergeräte verstanden, die am Ende einer Schmalklinge eine retouchierte Arbeitskante oder Arbeitsstirn tragen. Meist ist nur das eine Klingenende durch solche Zweckretouchen hergerichtet, während das andere Ende zuweilen durch Retouchen an der Längsseite verschmälert ist (Abb. 7, Fig. 11, 12; Taf. I, Fig. 2, 4). Diese Basiseinziehung wird zur Schäftung gedient haben. Von diesen Grattoirs sur bout de lame sind 30 ganze und 23 zerbrochene Stücke erhalten (Abb. 7, Fig. 8, 10). Eine für unser Material typische Form ist der Klingenkratzer mit steilretouchierter Basis (Grattoir simple avec base retouchée), wie ich sie in einer speziellen Zeichnung hier wiedergebe. (Fig. 1 oben)

Es sind dies sehr dicke Klingen, das Kratzerende am dünneren Klingenende, aber mit sehr groben, steilen Retouchen am entgegengesetzten dicken Ende. Es sind davon 6 Stücke erhalten.

Bei 6 Stücken ist das Kratzerende unregelmässig und flüchtig retouchiert, weshalb sie als atypische Kratzer bezeichnet werden (Abb. 7, Fig. 13). Doppelkratzer, wo beide Enden zugerichtet sind, finden sich 7 Stück (Abb. 6, Fig. 25). Sie kommen sowohl auf kurzen Abschlägen (éclats) wie auf langen Klingen (lames) vor. Die längste misst 12 cm. Bei 2 Kratzern sind die Längsseiten retouchiert (Grattoir sur lame retouchée), und 3 Stücke sind ausgesprochene Grattoir sur éclat, also aus breiten, kurzen und dünnen Abschlägen hergestellt. Als kleinster Kratzer ist ein Nagelkratzer vorhanden (Grattoir unguiforme), und als besonders seltene Form ein ringsherum sorgfältig retouchierter Diskusschaber, der aus einem runden, auf beiden Seiten muschelig retouchierten Discus von 5,2 auf 4,2 cm Durchmesser und im Zentrum von 1,6 cm Dicke besteht (Abb. 7, Fig. 7). Er wird unter «Grattoir circulaire» angeführt. Entgegen den Angaben von Th. Schweizer sind 11 Nuclei mit einer Schabekante, davon 7 «Eselshufe», vorhanden.

2. Zusammengesetzte Werkzeuge (Outils multiples composites). Sehr oft wurden zwei Werkzeugformen auf einer Klinge vereinigt. Besonders häufig, bei 21 Stück, ist das eine Ende der Klinge zu einem Kratzer, und das andere zu einem Stichel hergerichtet worden. Unter diesen Kratzer-Sticheln (Grattoir-burin) finden sich 11 Stück mit einem geraden Mittelstichel (Abb. 6, Fig. 9, 10), 2 Stück mit geradem Eck-

Obere Reihe: Grattoir sur bout de lame avec base retouchée Untere Reihe: Burin dièdre droit avec encoche latérale

stichel (Abb. 6, Fig. 11). 2 Stück sind Kratzerstichel mit konkaver oder hohler Endretouche (Abb. 6, Fig. 14, 15) und 6 mit konvexer oder gewölbter Endretouche (Abb. 6, Fig. 16, 17, 18). Leider sind bei den Zeichnungen, die noch Herr Th. Schweizer ausgeführt hat, alle Stichelabschläge leicht konkav dargestellt. In Wirklichkeit ist der Stichelabschlag aber gerade.

Bohrer-Kratzer (Perçoir-grattoir) fanden sich 2 Stück, wovon der eine mit gerader, der andere (Abb. 6, Fig. 12) mit gebogener Bohrerspitze.

Bohrer-Stichel (Perçoir-burin) sind 6 Stück vorhanden. Davon ist dreimal die Bohrerspitze gerade aufgesetzt. Es sind dies alles sehr grosse, robuste Klingen (Abb. 6, Fig. 27, 28). Bei der Fig. 28 ist die Bohrerspitze nach unten gerichtet. Sie ist fälschlicherweise mit einem

Stichelabschlag gezeichnet worden. In Wirklichkeit stellt die rechte Längsseite einen Streifen der Knollenrinde dar. Das gegenüberliegende, nach oben gerichtete Stichelende, ist ein mehrfach nachgeschärfter Mittelstichel, dessen Spitze aber abgebrochen ist. Es ist dies das Stück, das Th. Schweizer als eine Art «Stechbeitel» beschreibt. Fig. 27 derselben Abbildung zeigt oben den groben Bohrer und unten den Stichel mit gewölbter Retouche. Ein sehr robuster und grosser Bohrer ist auf Abb. 6, Fig. 23, abgebildet. Das obere Ende ist ursprünglich ein Stichel mit konkaver Seitenretouche, der nachträglich zu einem Bohrer umgearbeitet wurde. Das untere Ende ist ein Eckstichel mit konkaver Querretouche. Leider gibt die Zeichnung diese Details nicht gut wieder.

Zweimal findet sich die Kombination von einem Mittelstichel (becde-flûte) mit gegenüberliegendem Zinken (bec).

3. Bohrer (Perçoir). Es fanden sich 78 Stück. Diese Instrumente zeigen an einem oder an beiden Klingenenden eine feine Spitze herausgearbeitet, die zur Herstellung runder Löcher in Holz, Knochen, Geweihe, Leder, ja in Stein und Zähnen verwendet worden sind. Die Bohrerspitze ist deshalb grundlegend anders gestaltet als die Spitze des später zu besprechenden Zinkens. Beim Bohrer ist die Spitze gerade, wenn auch oft seitlich an einer Lamelle oder einem Abschlag sitzend, in der Regel gleichmässig stark und im Querschnitt mehr oder weniger rund gearbeitet, was durch Wechselretouchen auf der Vorderund Hinterfläche des Dornes erreicht wird. Bei 16 Stück ist die Bohrerspitze gerade, in der Längsachse der Lamelle aufgesetzt als «pointe droite», in 3 Fällen schräg dazu als «pointe déjetée». Die grossen Exemplare sind bis auf ein Stück nur einfache Bohrer, also mit nur einer einzigen Bohrerspitze versehen. Nur ein breiter Abschlag zeigt mehrere Bohrerspitzen (Perçoir multiple) der Abb. 6, Fig. 24. Mit 52 Stück sehr reichlich vertreten sind die Mikro-Bohrer (Micropercoir), wo auf oft ganz winzig kleinen Lamellen oder Abschlägen eine oder mehrere feine Bohrerspitzen herausgearbeitet wurden. Wir finden 39 Einfachbohrer (Abb. 7, Fig. 20, 21), 8 Doppelbohrer, wo an jedem Klingenende ein Bohrer sitzt (Abb. 7, Fig. 22, 23). Nicht dargestellt sind 2 Zwillingsbohrer, wo zwei Bohrerspitzen an einem Klingenende sitzen, und schliesslich 3 Mehrfachbohrer, wo Bohrerspitzen an verschiedenen Stellen des meist breiten Abschlages (éclat) sich finden.

Mit 7 Stück ist der «Zinken» vertreten (Abb. 7, Fig. 14, 15, 16). Dieser charakteristische Werkzeugtyp wurde von A. Rust mit dem Namen «Zinken» belegt. Auch französische Forscher haben ihn erkannt. So benennt ihn A. Cheynier im Magdalénien primitif von Bade-

goule als «bec-canif», also Schnabelmesser. Neuerdings wird er als «rainureur», als Furchenschneider bezeichnet. Da F. Bordes dafür keine spezielle Bezeichnung angibt, wurde er unter die Gruppe der «Perçoir atypique-bec» der Nr. 24 eingereiht. Kennzeichnend für den Zinken ist ein aus einer meist kräftigen Klinge herausgearbeiteter Dorn, der an seinem Ende kleine, steile, auf die Oberfläche übergreifende Retouchen aufweist, so dass ein schmales, steilretouchiertes Kratzerende mit einer kurzen schneidenden Kante entsteht, die in der Ebene der Unterseite der Klinge verläuft. Es ist dies gewissermassen ein Mikronasenkratzer, oder ein atypischer Miniatur-Hochkratzer (H.G.Bandi 1947). Die er Zinken diente, wie A.Rust beweisen konnte, zum Eintiefen von Längsrinnen in Rengeweihe, um so Späne herauszuheben, die dann zu Ahlen und Nadeln verarbeitet wurden. Nach A. Cheynier kommt der Zinken im ganzen oberen Paläolithikum vor. Nach H. Schwabedissen findet er sich auch noch im nordischen Mesolithikum und in der nordischen neolithischen Trichterbecherkultur. Allerdings scheint er, und besonders der charakteristische Doppelzinken, mit gegenständigen Zinkenenden, im wesentlichen auf die spätmagdalénienzeitliche Hamburgerkultur beschränkt zu sein. Der Zinken in unserem Material weist also möglicherweise auf nordischen oder östlichen Einfluss hin.

Das eigenartige, zinkenartige Gerät der Abb. 7, Fig. 5, konnte in der Sammlung nicht mehr gefunden werden.

4. Stichel (Burin). Weitaus den grössten Anteil an Typen stellen die Stichel mit 112 Stück. Diese verteilen sich auf 51 Mittelstichel (burin dièdre droit oder bec-de-flûte), wo sich zwei Stichelabschlagflächen in einer senkrecht stehenden Stichelkante in Mitte der Längsachse der Klinge treffen (Abb. 6, Fig. 1, 2, 3). Eine eigenartige Unterabteilung bilden die Stichel, mit einer sehr groben herausretouchierten Encoche oder Kerbe auf einer dem Stichel entferntliegenden Längsseite der Klinge (Abb. 6, Fig. 4 und Textfigur 1 untere Reihe). Ich gebe ihr die Bezeichnung «Burin dièdre droit, avec encoche latérale» oder «Mittelstichel mit Schaftkerbe». Es sind davon 3 gleichgearbeitete Stücke erhalten. Diese Schaftencoche oder seitliche Schaftkerbe wird wohl zum Schäften des Stichels gedient haben.

12 Stück sind Eckstichel, wo die Stichelkante in der Verlängerung einer Klingenkante verläuft. Davon sind 8 Links- und 4 Rechtsstichel. Bei 3 weiteren verläuft der Längsabschlag mit spitzem Winkel zum Querabschlag, ähnlich dem «Papageienschnabel». Da sie aber keine eigentlichen Papageienschnäbel sind, reihen wir sie unter den Winkelsticheln oder Burin d'angle ein. 2 Stichel sind aus zerbrochenen Klingen hergestellt worden, wo die eine Stichelfläche die Bruchfläche quer

zur Klingenachse, die andere durch einen längsverlaufenden Stichelabschlag erzeugt wurde. Es ist dies ein Burin d'angle sur cassure. Es fanden sich 4 Doppelstichel (Abb. 6, Fig. 13). Sehr häufig sind auch Stichel, wo die eine Stichelfläche nicht durch einen Stichelabschlag, sondern durch steile Abretouchierung gewonnen wurde. Wir unterscheiden 15 Stichel mit zur Längsachse der Klinge schräger, an sich aber gerader Retouchenfläche (Burin sur troncature retouchée oblique), wovon 6 links und 9 rechts, und 5 Stichel mit hohler Retouchenfläche (Burin sur troncature retouchée concave), davon 1 links und 4 rechts. Drittens haben wir 17 Stichel mit gewölbter Retouchenfläche (Burin sur troncature retouchée convexe), davon 7 links und 10 rechts. Diese letzteren sind in Abb. 7, Fig. 17, 18, 19, dargestellt. Doch ist auch hier wieder zu sagen, dass der Stichelabschlag gerade verläuft. Selten finden sich die «Burin plans», wo der Stichelabschlag als Schrägfläche auf der Rückseite der Klinge angebracht wurde, und so eine schräggestellte Stichelkante entsteht. Es sind 3 solche Flächenstichel vorhanden, wovon bei 2 Stück die andere Stichelfläche ein Abschlag, bei 1 Stück eine gerade retouchierte Stichelfläche ist.

Die Stichel wurden in der Höhle geschlagen, denn es fanden sich als Abfall bei deren Herstellung über 30 Stichelabschläge, sogenannte gestielte Lamellen F. Sarasin's oder Birseck-Lamellen von H. Schwabedissen.

5. Lamellen mit Quer- und Schrägretouchen (Pièces tronquées). Es werden hier grosse Lamellen eingereiht, die an einem oder an beiden Klingenenden grobretouchiert sind. 2 Stücke zeigen am einen Klingenende eine gerade Querretouchierung (à troncature droite), 2 Stück eine zur Längsachse der Klinge schräge Retouchierung (à troncature oblique), so dass eine exzentrische Spitze entsteht, und 6 eine gewölbte Retouchierung (à troncature convexe).

Einen erstaunlich grossen Anteil am Typenmaterial haben die Stücke, die ich der Gruppe der «Stücke mit doppelter Rückenretouche (Pièce à double troncature) zurechnen möchte. Darunter gehören die «Dreieckmesser», die «Trapezmesser» und die «Kerbspitzen». Es sind davon 40 Stück vorhanden. Zunächst sei hervorgehoben, dass die sogenannten «Federmesser» und die «Segmentmesser», mit dem gleichmässig gekrümmten, feinmuschelig retouchierten Rükken, hier nicht vorkommen. Wohl kommt eine Form des groben, dickrückigen und sehr grobmuschelig retouchierten Segmentmessers vor; doch zeigen diese Stücke ganz die Form der Azilien-Spitze (Pointe azilienne) und werden dort eingegliedert.

Von diesen 40 Messern mit doppelter Rückenretouche sind 23 ganz und 17 als Fragment erhalten. Unter den 23 ganz erhaltenen Messern

sind 7 Dreieckmesser, wo die beiden ungleichlangen retouchierten Rücken in der Mitte des Klingenrückens in einem stumpfen Winkel aufeinander treffen (Abb. 6, Fig. 5, 6). Diese Dreieckmesser, oder nach H. Schwabedissen auch Messer mit geknicktem Rücken genannt, sind alle unter 4 cm lang, also eher klein. Bei den Trapezmessern treffen wir viel längere Stücke. Bei den 16 Trapezmessern (Abb. 6, Fig. 7, 8) treffen die beiden retouchierten Rückenpartien nicht aufeinander, sondern lassen eine Strecke von unretouchierter Seitenkante zwischen sich frei. Meist bildet der eine stets gerade Retouchenrücken mit der gegenüberliegenden Längskante eine scharfe Spitze, während die andere konkav gestaltet ist und so eine Art Kerbspitze entsteht (Abb. 6, Fig. 7). Oftmals ist die untere Schmalfläche der Lamelle gegenretouchiert. Bei wieder anderen Stücken bildet sie ebenfalls eine Spitze, die dann aber auf der Rückenfläche der Lamelle Gegenretouchen zeigt. Es zeigt sich also eine grosse Variation. Es muss aber einer späteren Publikation überlassen bleiben, diesen in unserem Magdalénien sonst seltenen Typus genauer zu beschreiben und kritisch zu würdigen.

- 6. Verschiedenartige Typen (Pièces variées). Hier ist ein merkwürdiger, grober Längsschaber (Racloir) aus grauem Schiefer zu vermerken, ferner 9 Flachkratzer (Raclettes), die aus sehr dünnen Abschlägen (éclats) bestehen und ringsherum feinmuschelig retouchiert sind.
- 7. Lamellen oder sehr kleine Klingen (Outillage lamellaire). Gross ist der Anteil der kleinen Lamellen mit Randretouchen. 192 Stück zeigen feine Längsretouchen an einer (174 Stück) oder an beiden Längskanten (13 Stück). H. Schwabedissen nennt sie Rückenmesserchen (Abb. 7, Fig. 24, 25).

Bei 5 Stück laufen die beiden Retouchenränder in eine feine Spitze aus, in 1 Fall in eine feine seitliche Bohrerspitze. Der Kremserspitze (Pointe de Font-Yves) ähnliche Formen sehen wir 3 mal. Auch Micro-Gravette-Spitzen kommen vor.

Ist die Schmalkante der Lamelle ebenfalls retouchiert (19 Stück), so haben wir ein Rückenmesserchen mit Endretouche (Lamelle à dos tronquée) vor uns (Abb. 7, Fig. 28, 29). Dabei kann diese Endretouche gerade oder schräg verlaufen und dann eine feine Spitze bilden oder eine geometrische Form vortäuschen (2 Stück).

Sind beide Querschneiden endretouchiert und eine oder beide Längsschneiden dazu, so sprechen wir von Rechteckmesserchen (Abb. 7, Fig. 26, 27). Es finden sich unter den 19 Stück mit Endretouchen 6 Rechteckmesserchen. Sägen mit mehrfacher Zähnelung der Längssteite (Lamelle à dos denticulée) fanden sich nur 2 Stück.

- 25 Abschläge und Lamellen zeigen grosse, absichtlich herausgearbeitete Kerben (Lamelle à coche), wobei teils grosse, meist aber kleine Abschläge verwendet wurden.
- 8. Azilien-Spitzen (Pointes aziliennes). Es sind dies Spitzen von 4-5 cm Länge, deren gleichmässig gebogener Rücken durch sehr steile und grobmuschelige Retouchen sehr dick gestaltet wurde. Die Basis kann ebenfalls retouchiert sein. Diese Spitzen machen den Eindruck von Orangenschnitzen (segment de cercle, segment d'orange). Sie sind nicht zu verwechseln mit den dünneren und vor allem schmalrückigen und feinretouchierten Federmessern, die in unserer Station nicht vorkommen. Es sind 5 Pointes aziliennes vorhanden. Diese Spitzen verweisen und datieren die Station nicht etwa ins Azilien und damit ins Mesolithikum; denn die Azilienspitze tritt regelmässig im späten Magdalénien auf, allerdings nur in wenigen Stücken, während sie im eigentlichen Azilien dann an Zahl sehr zunimmt.
- 9. Klingen. Die gut geschlagenen Klingen mit regelmässigen Gebrauchsretouchen verteilen sich auf 16 sehr lange (8–12 cm), 77 lange (6–8 cm), auf 84 mittellange (3,5–6 cm) und 59 kleine (1–3,5 cm lange) Klingen. Doch kommt dieser Zusammenstellung nur geringer Wert zu, da sehr viele missratene Klingen ebenfalls Verwendungsspuren und Encochen tragen.
- 10. Kernstücke (Nucleus) und Herstellungswerkzeuge. Dass in der Höhle die Werkzeuge geschlagen worden sind, beweisen die 138 Kernstücke (Nuclei). Davon zeigen 4 eine seitliche Kante als Schaberkante retouchiert, 7 hohe Nuclei eine durch Retouchierung hergerichtete plane Unterfläche als Schabekante, sogenannte Pferdehuf- oder Eselshuf-Nuclei. Auch die vielen Abfälle deuten auf einen Werkplatz hin. Es fand sich ferner ein zerbrochener Quarzitschlagstein (Percuteur), sowie ein länglicher Kieselstein mit feiner Schrammung. Mit diesem Abdrücker oder Retoucheur hat man die feinen Randretouchen an den Klingen abgedrückt (Museum Olten).
- 11. Geräte aus Knochen oder Geweih und Schmuck. Hierüber ist den Angaben von Th. Schweizer unter Verweisung auf die Abbildungen nichts weiter beizufügen. Die Spitzen aus Renntiergeweih und die geöhrten Nadeln gehören sicher in eine Spätphase des Magdalénien.
- 12. Herdstellen. Aus den Herdstellen stammen die rotgebrannten Kalksteinplättchen, die als Herdplatten gedient haben. Ferner finden sich regelmässig in der Hitze zersprungene Gerölle, sogenannte Hitzsteine. Diese fanden sich auch in der oberen Schicht der Kastelhöhle.

b) Spezielle Statistik und Auswertung nach der Methode von F. Bordes

1. Tabelle der statistischen Methode

In der Tabelle Nr. 1 sind die Typen nach der Einteilung und Numerierung nach F. Bordes aufgeführt. Die erste Rubrik bringt die Nummern, die zweite die französische Bezeichnung, die dritte die Anzahl jeden Typs, die vierte die Gruppenanzahl, die fünfte die Prozentwerte, die sechste die Kumulativwerte, wo der Prozentwert des betreffenden Typs zu der Summe der vorhergehenden Typenprozente addiert wird. Danach wird dann die Kumulativkurve gezeichnet.

Tabelle 1

	mmer Gerätetypus Bordes	Anzahl	Gruppen- Anzahl	Prozent	Kumula- tivwert
	Grattoir				
1 1 2 3 5 8 9 10	Grattoir sur bout de lame Grattoir sur bout avec base ret Grattoir sur bout atypique Grattoir double Grattoir sur lame retouchée Grattoir sur éclat Grattoir circulaire Grattoir unguiforme	52 \ 6 7 \ 7 2 3 1 1	65 79	10,80 1,16 0,33 0,5 0,16 0,16	10,8 11,96 12,29 12,79 12,95 13,11
	Outils composites				
17 21 22	Grattoir-burin Perçoir-grattoir Perçoir-burin	21 2 6	29	3,48 0,33 1,0	16,59 16,92 17,92
	Perçoir				
23a 23b 24 25 26	Perçoir pointe droite Perçoir pointe déjetée Perçoir atypique-bec-Zinken Perçoir multiple Microperçoir Microperçoir double	16 } 7 5 39 8	19 78	3,15 1,16 0,83 6,46 1,33	21,07 22,23 23,06 29,52 30,85

	Burin			
2728	Burin dièdre droit Burin dièdre droit avec encoche Burin dièdre déjeté	$ \begin{array}{c} 48 \\ 3 \\ 12 \end{array} $	10,44	41,29
29 30	Burin dièdre d'angle	$\left\{\begin{array}{c}3\\2\end{array}\right\}$ 5	0,83	42,12
31 35	Burin multiple dièdre Burin sur tronc. ret. oblique	4 15	0,66 2,48	42,78 45,26
36 37	Burin sur tronc. ret. concave Burin sur tronc. ret. convexe	$\begin{bmatrix} 5 \\ 17 \end{bmatrix}$ 22	3,64	48,90
44	Burin plan	3 112	0,5	49,40
	Pièce tronquée			
60 61 63 64	Pièce à troncature droite Pièce à troncature oblique Pièce à troncature convexe	$\begin{pmatrix} 2\\2\\6 \end{pmatrix}$ 10	1,66	51,06
04	Pièce à double troncature = Dreieckmesser etc	40 50	6,64	57,75
	Pièces variées			
77 78	Racloir	9 10	0,16 1,49	57,91 59,40
	Outillage lamellaire			
85 86	Lamelle à dos	192 19	31,8 3,14	91,20 94,34
87 89	Lamelle à dos denticulée Lamelle à coche	$\binom{2}{28}$ 30	4,8 0	99,14
91	Pointe azilienne	5 246	0,83	99,97
	Total der Typen	604	100	100

2. Allgemeines zur statistischen Methode und zur Altersbestimmung

Die Unterteilung und die Einordnung des Magdalénien der Nordschweiz in das für das westeuropäische Magdalénien aufgestellte Chronologieschema stösst auf grosse Schwierigkeiten, ganz besonders bei kleinen und fundarmen Stationen. H.G. Bandi (1947) versuchte dies durch Aufstellen einer Skala von Alterscharakteristika, also von Leittypen, so von Harpunen, Lochstäben, Silextypen, und dem Kunststil

nach dem Vorbilde von Abbé H. Breuil und H. Obermaier und anderen. Diese Leittypen lassen aber nur eine Datierung post quem zu, da sie einige Phasen überdauern können. Als Leittypen für das ausgehende Magdalénien M 5 nennt Bandi: Speerspitzen mit zweiseitig abgeschrägter Basis, einreihige Harpunen, letzte Ausläufer der Propulsoren, halbzylindrische Knochenstäbchen mit Verzierungen, als neue Silexformen die Seitenstichel mit schräger, konvexer oder konkaver Querretouche und atypische La Gravette-Spitzen.

Für das Spätmagdalénien M 6 nennt er: Speerspitzen mit zweiseitig abgeschrägter Basis, zweireihige Harpune, Lochstäbe mit mehreren Löchern, als neue Silexformen die atypische Abri-Audi-Spitze, atypische Kerbspitze, Papageienschnabel, atypische Kielkratzer (Hobel), kleine Rundkratzer oder Viereckkratzer und Mikrolithen.

Während für das frühe Magdalénien (M 1 und M 2) und das Hochmagdalénien (M 3 und M 4) die Silexchronologie ganz versagt, beginnen diese Neuformen erst am Schlusse des Magdalénien (M 5 und M 6) eine Rolle zu spielen, wo die an das obere Aurignacien, respektive Périgordien, erinnernden Formen auftreten. Auf Grund dieser Voraussetzungen konnte Bandi (1947) viele Fundkomplexe der Schweiz den einzelnen Endstufen des Magdalénien zuteilen. Wo diese Leittypen aber fehlten, konnte keine Datierung post quem angegeben werden. Ergänzend sei noch vermerkt, dass die Fauna keine Unterteilung des Magdalénien zulässt.

Diese Methode der Leittypen hat also grosse Mängel:

- 1. Es ist eine auf nur wenige oder nur einen einzigen Leittyp gestützte Datierung post quem.
- 2. Es kann ein einziger Leittyp ausschlaggebend und entscheidend sein. Ein solcher kann aber bei unseren stark gestörten Stationen sekundär in eine andere Schicht geraten sein, so dass diese und damit die ganze übrige Stratigraphie falsch datiert und gedeutet wird.
- 3. Bei Fundarmut können Leittypen ganz fehlen. Insbesondere sind Typen aus organischen Substanzen (Harpunen, Lochstäbe) sehr oft vergangen.
- 4. Es wird nicht die Eigenart und die Gesamtheit eines Fundkomplexes erfasst.

Die statistische Methode von F. Bordes und M. Bourgon (1951), D. de Sonneville-Bordes und J. Perrot (1953) ermöglicht, diese Schwierigkeiten und Unsicherheiten der Charakterisierung und Datierung zu umgehen, indem der gesamte Typenschatz einer Fundschicht berücksichtigt wird, und die Zusammenstellung der Prozentualanteile sämtlicher Typen mit Fundkomplexen bekannter Datierung sich vergleichen lässt, unabhängig, ob Leittypen vorhanden sind oder nicht.

Die Bedingung zur Anwendung dieser statistischen Methode ist die, dass das gesamte Material der zu untersuchenden Schicht oder Station vorliegt, und dass die Zahl von Typen – nicht etwa nur Leittypen – genügend gross ist, mindestens 50, besser über 100 Stück.

Die Prozentanteile der einzelnen Typen oder Typenkategorien, immer in gleicher Reihenfolge aneinander gereiht, werden nun rechnerisch in Verhältniswerten, oder Indices, erfasst und sind so vergleichbar. Anderseits lassen sie sich graphisch darstellen in Histogrammen oder besser in Kumulativkurven. Diese Kurven verschiedener Fundstellen oder Fundschichten lassen sich leicht mit einander vergleichen und übereinander zeichnen.

3. Die Indices

F. Bordes errechnet aus den 92 Typen folgende Verhältniswerte:

$$IG = Indice de grattoir = \frac{Anzahl aller Kratzer \times 100}{Anzahl aller Typen} = \frac{(1-15) \times 100}{(1-92)}$$

$$IB = Indice de burin = \frac{Anzahl aller Stichel \times 100}{Anzahl aller Typen} = \frac{(27-44) \times 100}{(1-92)}$$

$$IGA = Indice de grattoir aurig. = \frac{Anzahl der Aurign. kratzer \times 100}{Anzahl der Typen} = \frac{(11-14) \times 100}{(1-29)}$$

$$IBd = Indice de burin dièdre = \frac{Anzahl der Abschlagstichel \times 100}{Anzahl der Typen} = \frac{(27-31) \times 100}{(1-92)}$$

$$IBt = Indice de burin sur tronc, retouchée = \frac{Anzahl der Stichel mit Retouche \times 100}{Anzahl der Typen} = \frac{(34-37) \times 100}{(1-92)}$$

$$IGA^{r} = Indice de grattoir aurig. restreinte = \frac{Anzahl Aurign. kratzer \times 100}{Anzahl aller Kratzer} = \frac{(11-14) \times 100}{(1-15)}$$

$$IBd^{r} = Indice de burin dièdre restreinte = \frac{Anzahl der Abschlagstichel \times 100}{Anzahl der Stichel} = \frac{(27-31) \times 100}{(27-44)}$$

$$IBt^{r} = Indice de burin tronc. ret. restreinte = \frac{Anzahl Stichel mit Retouche \times 100}{Anzahl der Stichel} = \frac{(34-37) \times 100}{(27-44)}$$

$$IBt^{r} = Indice de burin tronc. ret. restreinte = \frac{Anzahl Stichel mit Retouche \times 100}{Anzahl der Stichel} = \frac{(34-37) \times 100}{(27-44)}$$

Diese Indices wurden für die Typenreihe der oberen Schicht der Kastelhöhle errechnet und in der Tabelle 2 als letzte Rubrik angeführt. Zum Vergleich gebe ich in derselben Tabelle 2 die Werte für verschiedene Stationen des Magdalénien und Azilien, deren Fundgut darauf hin untersucht und deren Datierung gesichert ist. Es sind die von F. Bordes und D. de Sonneville-Bordes darauf hin untersuchten Stationen der Dordogne: Laugerie Haute Est, La Madeleine und Villepin. Ich führte dabei zum Vergleich sämtliche Zeitabschnitte des Magdalénien und das Azilien dieser Stationen an, da es sich bei der oberen Schicht unserer Station nur um die Kulturen des Magdalénien und Azilien handeln kann.

Es ist aus der Zusammenstellung klar ersichtlich, dass sich unsere obere Schicht am besten mit der Rubrik: Magdalénien VI/2 von Villepin vergleichen lässt, also mit einer spätesten Magdalénienkultur im Übergang zum Azilien, dass es sich aber nicht um das reine Azilien handeln kann.

Lau-Haute Est La Madeleine Villepin Kagerie Magdalénien Magdalénien Azi-Magdalén. Azi-Index stel Protolien lien Höhle V. VI.2 I. II. III. IV. VI. VI.1 Magd, 675 3700 3010 640 681 1457 4986 485 168 663 225 604 n 20,5 | 27,4 | 27,6 | 20,2 IG 22,5 28,3 30 27,6 29,7 46,1 13,1 45,3 55,8 46,3 IB41,9 | 35 23,2 | 39,0 | 50,2 | 60,7 19,2 0 18,5 0,2 **IGA** 0,9 2,8 0,2 0,40,30,10,40,50 0 0 **IBd** 28,7 21,3 13,2 | 24,2 | 30,8 | 29,1 34,3 50,3 29,1 9,4 0 11,9 9,5 | 10,2 9,9 | 15,4 | 28,4 IBt 9,9 4,7 | 14,2 9 0 6,7 6,1 0,9 11,4 **IGA**r 10 10 0,50 0 0 1 0,6 1 1,7 75,9 90,1 62,9 68,4 60 IBdr56,8 | 61,9 | 61,4 48 49,3 0 64,4 22,6 20,9 28,8 25,4 30,7 0 IBt^r 46,7 22 8,4|30,7 46,8 33,0

Tabelle 2

4. Die Kumulativkurven

(Text-Fig. 2-5)

In Fig. 2 sind die Kurven der obersten Schicht, von Magdalénien VI der Patenstation La Madeleine und die drei Schichten von Villepin bei Tursac (Dordogne) mit der Kurve der oberen Schicht der Kastelhöhle übereinander gezeichnet. Daraus ist klar ersichtlich, dass unsere Station sich stark von La Madeleine und von der Couche inférieure = Magdalénien VI/1 von Villepin, wie anderseits vom reinen Azilien von Villepin unterscheidet. Sie fällt aber mit der Kurve für das späteste Magdalénien VI/2 von Villepin zusammen. Diese beiden Kurven sind in Fig. 3 nochmals gezeichnet.

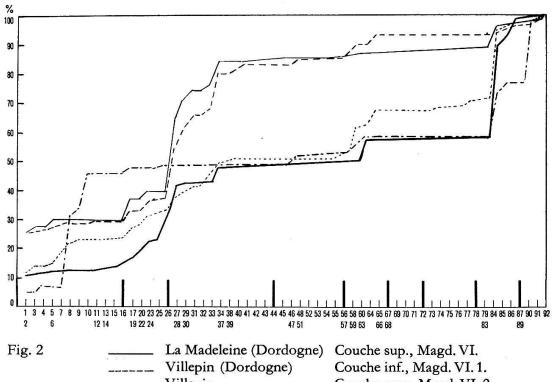


Fig. 2 _____ La Madeleine (Dordogne) Couche sup., Magd. VI.

Villepin (Dordogne) Couche inf., Magd. VI. 1.

Villepin Couche moy. Magd. VI. 2.

Villepin Couche sup. Azilien.

Kastelhöhle Couche sup.

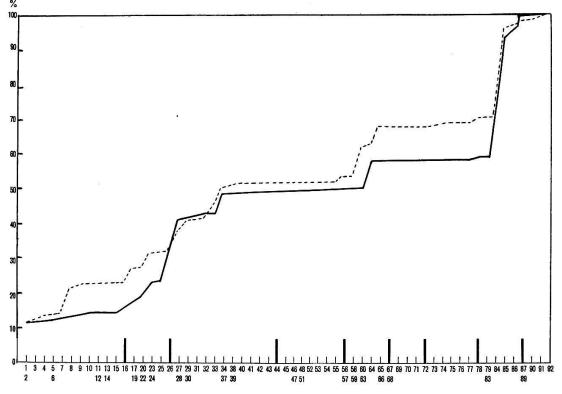
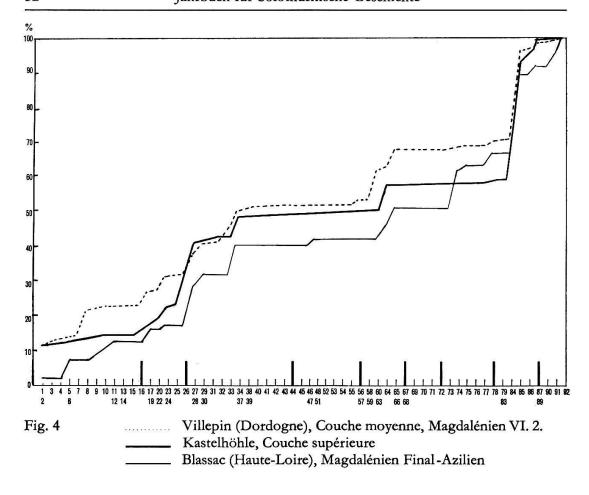
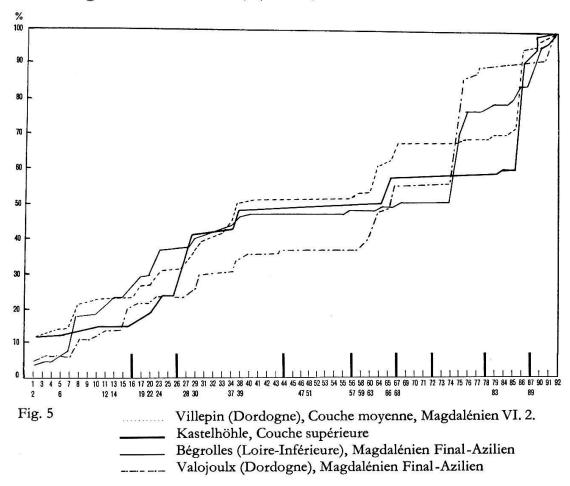



Fig. 3 Villepin (Dordogne), Couche moyenne, Magdalénien VI. 2.

Kastelhöhle (Kaltbrunnental), Couche supérieure.



In der Fig. 4 vergleichen wir sie zur Erhärtung mit der von D. de Sonneville zuerst als «Magdalénien final ou mieux Azilien», später aber als reines Azilien bestimmten Kultur des Abri sous roche von Blassac (Haute Loire). Trotzdem hier nur 54 Typen vorliegen, ist die Kurve doch sehr instruktiv und geht parallel mit den vorigen Kurven von Villepin und Kastelhöhle. Meines Erachtens handelt es sich bei Blassac ebenfalls um ein Magdalénien final und nicht um ein reines Azilien, da sehr viele Stichel vorliegen und die drei Azilien-Spitzen (Pointes aziliennes) die Datierung «reines Azilien» nicht rechtfertigen. Wie Bordes und de Sonneville selbst angeben, kommen die Azilien-Spitzen schon im Spätmagdalénien vor, so in Villepin VI/1 sogar häufiger als in VI/2, im Azilien von Villepin aber sehr viel häufiger. Die entsprechenden Anteile sind hier: 1,8%, 0,6% und 21,7%. Für die Kastelhöhle beträgt ihr Prozentanteil 0,8%, was wiederum gut mit Villepin Magdalénien VI/2 übereinstimmt. Für den von J. Bouyssonie bearbeiteten Abri Jardel II bei Peyzac (Dordogne) mit Kulturen des Magdalénien VI und des Azilien beträgt der Anteil der Azilien-Spitzen im Magdalénien VI 3,5%, im Azilien aber etwa 30%, wenn man seine «quartiers d'orange» als Azilien-Spitzen nehmen darf.

Die Fig. 5 zeigt den Vergleich der beiden Kurven für Kastelhöhle (obere Schicht) und Villepin Magdalénien VI/2 mit einer Station des Epimagdalénien von Bégrolles bei Nantes an der Loire-Inférieure und einer als azilienzeitlich datierten Station Valojoulx in der Dordogne.

Beide Kurven zeigen annähernd parallelen Verlauf mit unseren beiden Kurven der Fig. 3, mit einigen Unterschieden:

- 1. Kastelhöhle zeigt wenige Grattoirs sur éclat (Nr. 7).
- 2. Kastelhöhle zeigt, wie auch Villepin, sehr wenige Grattoirs unguiformes (Nr. 10) und Grattoirs nucléiformes (Nr. 15).
- 3. Kastelhöhle zeigt den grössten Anteil an Burins dièdre (Mittelstichel und Eckstichel) (Nr. 27 und 28).
- 4. Kastelhöhle zeigt einen starken Anteil an Pièces tronquées oder Dreieckmessern (Nr. 64), Bégrolles gar keine.
- 5. Kastelhöhle und Villepin zeigen keinen Anstieg für die Pièces à encoches und die Pièces denticulées (Nr. 74 und 75), bei Bégrolles und Valojoulx ist dieser Anteil aber sehr hoch.
- 6. Kastelhöhle und Villepin zeigen aber gerade umgekehrtes Verhalten gegenüber Bégrolles und Valojoulx für die Lames à dos (Lamellen mit abgedrücktem Rücken) (Nr. 85).

5. Zusammenfassung

Die oberste Schicht der Kastelhöhle gehört also dem spätesten Magdalénien an und ist identisch mit dem Magdalénien VI/2 von Villepin. Sie gehört also in das ausgehende Magdalénien, wo sich bereits das Azilien bemerkbar macht. Sie gliedert sich in ihrem Typenschatz und dessen prozentualen Anteilen ganz in die süddeutschnordschweizerischen endmagdalénienzeitlichen Fundkomplexe ein, also in die Thaynger Gruppe Schwabedissens mit den Stationen von Petersfels im Hegau, Kesslerloch, Schweizersbild, Stationen um Olten, und natürlich den übrigen Stationen im Birstal mit dem gleichen Fundinventar (Bandi H. G. 1953, Bay R. 1953, Lüdin C. 1938, Sarasin F. 1918 und 1924). Von besonderem Interesse ist auch die Brügglihöhle bei Nenzlingen (Bandi H. G., Lüdin C., Mamber W., Schmid E., Schaub S. und Welten M. 1953), die von M. Welten pollenanalytisch untersucht wurde, und deren Kultur in die ältere Dryaszeit, kurz vor der Allerödschwankung eingewiesen wurde.

2. Die mittlere Fundschicht der Nordhöhle

a) Das Fundinventar und seine Typologie

Allgemeine Statistik

Nuclei, Silex	4 Stück
Nuclei, Quarzit	0 Stück
Abschläge ohne Gebrauchsretouchen, Silex	170 Stück
Abschläge ohne Gebrauchsretouchen, Quarzit	3 Stück
Abschläge mit Gebrauchsretouchen, Silex	55 Stück
Typen, Silex	26 Stück
Typen, Quarzit	2 Stück
Total	260 Stück

Ferner fanden sich ein Hitzstein aus Buntsandstein und viele zerschlagene und zum Teil angebrannte Knochen. Knochen- und Geweihwerkzeuge oder Schmuck fehlen.

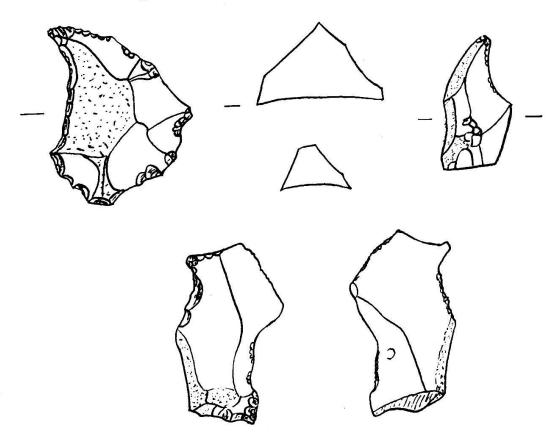
Typologie

Die Steinwerkzeuge sind auffallend grobe und meist schlecht gearbeitete Stücke. Viele fallen durch ihren dicken Querschnitt auf und an einigen Stücken sind noch Teile der Knollenrinde erhalten. Die Retouchen, besonders an den Kratzern und Schabern, sind sehr grobmuschelig, unsorgfältig und zeigen mehrfach die Art der Stufenretouchen.

Daneben fallen aber einige wenige Stücke durch ihre hervorragende Technik auf, so der Doppelstichel, einige Schaber, Zinken und Bohrer.

Im ganzen gesehen zeigt aber das Inventar der mittleren Schicht den Charakter eines groben und wohl frühen Magdaléniens mit Anklängen an das Aurignacien.

1. Kratzer. Klingen mit Kratzerenden (Grattoir sur bout de lame) sind 2 Stück vorhanden. Das ganz erhaltene Stück (Abb. 3, Fig. 9) zeigt hohen, dreieckigen Querschnitt mit einem dem Schlagbulbus gegenüberliegenden dickeren Kratzerende. Dieses zeigt sehr steile, grobe Stufenretouchen. Vom anderen Stück ist nur das etwas flachere Kratzerende mit ebensolchen steilen Retouchen vorhanden.


7 Kratzer sind atypische Klingenkratzer, wo das Kratzerende oft an einem seitlichen Vorsprung angebracht und wenig sorgfältig gearbeitet ist (Abb. 3, Fig. 6, 11, 18; Abb. 4, Fig. 4 und Abb. 5, Fig. 6, 12, 14). Einige tragen Hohlkehlen (encoches), so Abb. 3, Fig. 18. Schlechtgearbeitete Diskuskratzer sind 2 Stück vorhanden (Abb. 4, Fig. 13, und Abb. 5, Fig. 8). Beide sind 1,4 cm dick.

Ein Miniaturkratzer (Abb. 5, Fig. 24) kann als Fingernagelkratzer (Grattoir unguiforme) angesprochen werden. Ein merkwürdiger Typus ist der atypische Kielkratzer (Grattoir caréné atypique) der Abb. 5, Fig. 1. Er ist aus einem 1,5 cm dicken Abschlag mit planer Ober- und Unterfläche gearbeitet und zeigt am einen Ende einen durch lange Steilretouchen herausgearbeitete Kratzernase, die sich links in einen durch Stufenretouchen ausgehöhlten Hohlschaber fortsetzt und in einer seitlichen retouchierten Nase endet. Dem Kratzer gegenüber findet sich auf der Unterseite der Klinge ein mächtiger Stichelabschlag, der eine sehr grobe Stichelkante erzeugt hat.

Die Schaber oder Racloirs werden weiter hinten beschrieben.

2. Zusammengesetzte Werkzeuge. Hierher ist der eben besprochene Stichelkratzer zu zählen, ferner 2 Bohrer-Stichel. Der eine (Abb. 3, Fig. 8) ist ein Nucleus mit einem Rest der Knollenrinde. Das eine Ende zeigt eine plane Abschlagsfläche. Von ihr wurde durch viele kutze Stichelabschläge gegen den Rindenteil hin ein sehr plumper Stichel herausgearbeitet, der mehrmals nachgeschlagen wurde. Die gegenüberliegende scharfe Längskante zeigt auf der Unterseite viele Retouchen und ist so zu einer Schaberkante geworden. Diagonal zum Stichel wurde durch viele feine Stufenretouchen eine Bohrerspitze geformt, sowie zwei weitere am schräg abfallenden Stirnende. Das andere Stück (Abb. 4, Fig. 10) ist ein aus einer dicken Klinge hergestellter dicker, derber Bohrer. Am anderen Ende ist durch einen Stichelschlag und Nachretouchierung des Klingenrandes ein atypischer Stichel entstanden, dessen Arbeitskante stark abgenutzt ist.

3. Bohrer. Alle drei Bohrerspitzen sind am Rande von flachen, breiten Abschlägen (éclats) durch sehr feine wechselseitige Retouchen entstanden (Abb. 4, Fig. 7; Abb. 5, Fig. 23, 25). Aus sehr dicken Abschlägen mit noch anhaftender Knollenrinde sind durch hohe Steilretouchen und feinere Nachschärfung gebogene Zinken hergestellt worden (Textfig. 6, obere Reihe). Ganz besonders interessant aber ist eine S-förmig gestaltete Klinge. Es ist ein Doppelzinken (Textfig. 6, unten). Die Zinkenspitzen stehen sich diagonal gegenüber. Beide sind an ihrem flachen Klingenende und der anschliessenden Längsschneide der Klinge durch feine Retouchierung zu schrägstehenden, derben Spitzen, eben zu Zinken geformt.

Figur 6. Zinken aus der mittleren Kulturschicht

4. Stichel. Es fanden sich ein kleiner Mittelstichel (Abb. 5, Fig. 20) und 2 Eckstichel (Abb. 3, Fig. 13 und Abb. 5, Fig. 21). Alle sind sehr unbeholfen aus Klingen geschlagen. Aus einem flachen Abschlag (éclat), bei dem nachträglich der Bulbus weggeschlagen wurde, wurden die beiden spitzzulaufenden Seitenkanten durch schräge, grosse Stichelabschläge, der eine auf der Oberseite, der andere gegenüber auf der Unterseite des éclat abgeschlagen und die so verbleibende scharfe

Seitenkante nachretouchiert. Die Stichelkante selbst steht demzufolge schräg und wurde sekundär noch etwas nachgeschärft (Abb. 4, Fig. 8), so dass ein Burin sur troncature concave entstanden ist.

2 Nucleus-Stichel (Abb. 5, Fig. 3, 4) sind aus länglichen, spitz zulaufenden Nuclei herausgearbeitet worden und zeigen starke Gebrauchsspuren. Ein merkwürdiger Doppelstichel ist ein Burin plan double, ein doppelter Flächenstichel, wo auf einer flachen Klinge je auf der Vorder- und auf der Hinterseite alternierend von der Schmalseite der Klinge aus je ein flacher Stichelabschlag geführt wurde und so die beiden gegenüberliegenden Enden eine schräggestellte Stichelkante erhalten haben (Abb. 3, Fig. 7). Die dem Stichelabschlag gegenüberliegende Längskante der Klinge ist feinmuschelig retouchiert – ein seltener Gerätetyp! (Textfig. 7.)

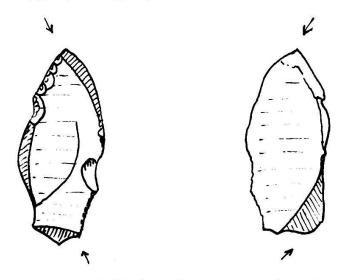


Fig. 7. Doppelstichel aus der mittleren Kulturschicht

Ganz im Gegensatz zu diesen unbeholfenen Sticheln steht ein feiner Doppelstichel (Abb. 3, Fig. 17), ein Burin multiple mixte, dessen eine Stichel als Burin dièdre d'angle und der diagonal gegenüberliegende als Burin sur troncature retouchée convexe sehr exakt gearbeitet ist. Das Stück stellt einen Fremdling im übrigen Inventar dar.

- 5. Lamellen mit Randretouchen (à bord abattu). Zwei grobe Klingen zeigen partielle Randretouchierung (Abb. 5, Fig. 5, 7).
- 6. Verschiedene Typen. Altertümlich ist das aus einem dicken, rechteckigen Abschlag entstandene knochensplittrige Stück (Pièce esquillée), das auf den beiden gegenüberliegenden Kanten durch heftige Aufschläge beidseitige schartige Retouchen zeigt (Abb. 3, Fig. 10).

Breitschaber (Racloir) finden sich in der Form von einem geflügelten Hohlschaber mit einem zum Nasenkratzer umgearbeiteten Flügelende

- (Abb. 3, Fig. 4 und Abb. 4, Fig. 6), als einseitiger Bogenschaber (Abb. 5, Fig. 11), als beidseitiger, durch gröbere Stufenretouchen und feine Randretouchen gearbeiteter Bogenschaber mit abgebrochener Kratzerspitze (Abb. 4, Fig. 3) und als ein grosser kombinierter Bogen-Hohlschaber (Abb. 4, Fig. 1). Eine sehr dünne Silexklinge (Abb. 5, Fig. 15) und ein dünner Quarzitabschlag, dessen Rückseite die gewölbte Kieseloberfläche ist (Abb. 5, Fig. 17) sind ringsherum fein retouchiert zu Flachschabern (Raclettes).
- 7. Lamellen. Kleine, dünne Klingen sind selten (Abb. 5, Fig. 22). Solche mit abgedrücktem Rücken (à dos abattu) fehlen vollständig.
- 8. Segmentklingen (Segment de cercle). Die Abb. 5, Fig. 10, stellt ein im Querschnitt hochdreieckiges Messer mit gerader Schneide und stark gebogenem, sehr grob retouchiertem, dickem Rücken dar. Es ist wegen der schlechten Arbeit der Rückenretouchen sehr fraglich, ob diese Form eine gewollte ist, oder ein Abspliss, der wie so viele andere «outils de fortune», als Messer verwendet worden ist. Wollte man dieses Instrument als Typus ansehen, so stände es der Chatelperron-Spitze des frühen Périgordiens am nächsten.
- 9. Klingen. Diese sind meist gross und grob geschlagen und tragen oft noch Teile der Knollenrinde, meist am Messerrücken. Ihre Dicke ist sehr unterschiedlich. Der grosse Anteil an Breitabschlägen (éclats) fällt auf. Elegante Formen und Schmalklingen fehlen.
- 10. Nuclei. Die 4 Nuclei sind etwas unbeholfen und zeigen Magdalénien-Schlagtechnik. Andere Nuclei sind zu Werkzeugen gestaltet worden und wurden bei den entsprechenden Typen beschrieben, so die sehr dicken Werkzeugformen, wie Stichel, Kratzer, Schaber.
 - 11. Geräte aus Knochen, Geweih und Schmuck fehlen gänzlich.

b) Charakterisierung und Datierung der mittleren Fundschicht

Wegen der geringen Zahl von Typen wurde auf die statistische und die graphische Auswertung verzichtet. Als Charakteristika der Werkzeuge stellen wir folgendes fest:

1. Schlagtechnik. Diese ist unbeholfen, besonders was die Primärschläge anbetrifft, so dass dicke, kurze Klingen und etwas bessere Breitklingen oder Abschläge (éclats) entstehen. Schmalklingen sind selten. Die Zweckretouchen für Kratzer, Bohrer und Stichel sind ebenfalls recht unbeholfen, grob und oft in der Stufenretouchen-Technik ausgeführt.

Sehr oft bleiben, besonders als Messerrücken, Teile der Knollenkortex erhalten. Nur ganz vereinzelte Stücke zeigen die vollendete Schlagtechnik der oberen Fundschicht.

- 2. Typische Magdalénienformen. Nur wenige Stücke sind hierher zu zählen, so der Doppelzinken und der feine Doppelstichel (Abb. 3, Fig. 17), der kleine Bohrer (Abb. 5, Fig. 25), sowie der Fingernagelkratzer (Abb. 5, Fig. 24). Ferner sind die beiden groben, gebogenen Zinken hierher zu zählen (Textfig. 6 oben).
- 3. Charakterisierung der übrigen Typen. Der übrige grössere Teil zeichnet sich durch seine unbeholfene Schlagtechnik und dadurch wenig charakteristische Formen aus. Doch lassen sich einige typische Merkmale aufzeigen:

Die Kratzerklingen nehmen an Dicke gegen das Arbeitsende zu. Viele Kratzer sind «outils de fortune», also an zufälligen Vorsprüngen an Breitklingen angebracht. Oft sind Nuclei zu Werkzeugen umgearbeitet worden, so als Bohrer-Stickel, Nucleus-Stichel, Diskusschaber, Pièce esquillée. Die feinen Bohrerspitzen sitzen an Breitklingen. Die Stichel sind alle, bis auf den einen Doppelstichel, der vielleicht fälschlicherweise in dieses Material geraten ist, sehr unbeholfen, die Stichelabschläge kurz und unregelmässig geführt. Es sind mehrheitlich derbe Eckstichel. Schöne Klingen fehlen, wie auch die Klingenkratzer. Hingegen sind Hohl- und Bogenschaber mit grober Retouchierung häufig.

Es fehlen die Messerchen mit abgedrücktem Rücken und alle Mikrolithen.

- 4. Altertümliche Merkmale. Als Reminiszenz an das Aurignacien, respektive das Périgordien, ist der Grattoir caréné atypique (Abb. 5, Fig. 1) zu nennen, ebenso die Nasenkratzer und die dicken, grobretouchierten Hohl- und Bogenschaber. Ferner sind die Nucleus-Stichel, die Pièces esquillées altertümliche Formen. Wenn das Segmentmesser als Typ zu werten ist, dann geht es auf die früh-périgordienzeitliche Chatelperron-Spitze zurück. Für unsere Gegend ganz fremde, altertümliche Formen sind die beiden Stichelformen, einerseits die flache Breitklinge mit nachretouchierter Stichelspitze (Abb. 4, Fig. 8) und der Burin plan double mit Gegenretouchen (Abb. 3, Fig. 7 und Textfig. 7).
- 5. Datierung und Vergleichsstationen. Aus der Schweiz ist bisher keine derartige Industrie bekannt geworden, die sicherlich dem Magdalénien angehört, aber noch solche altertümliche, zum Teil ans Aurignacien anklingende Merkmale aufweist. Auch fehlen bisher meines Wissens in der Schweiz derart stratigraphisch gesicherte Inventare, die eine Unterteilung des Magdalénien überhaupt zulassen würden. Die ebenfalls im Kaltbrunnental gelegene Kohlerhöhle weist auch verschiedene Fundschichten auf (C. Lüdin 1938). Ihr Fundinventar ist aber weder bearbeitet, noch publiziert worden.

Die unserer Station am nächsten gelegene Höhle mit genau untersuchter Stratigraphie und einer Schichtfolge vom Moustérien de tra-

dition acheuléenne zum Moustérien typique, drei Aurignacienschichten und ebenfalls zwei Magdalénienschichten, ist der Vogelherd im Lonetal, in der schwäbischen Alb (Riek G. 1934). Auch dort liegen in der obersten Frostbruchstrate, die dem letzten Hauptvorstoss der Würmvergletscherung entspricht, ein oberes und ein unteres Magdalénien. Beide liegen, wie in der Kastelhöhle, 20 bis 25 cm übereinander. Das obere Magdalénien entspricht ganz demjenigen der oberen Schicht unserer Höhle und ist in die Thaynger-Gruppe von Schwabedissen einzureihen. Das untere Magdalénien vom Vogelherd zeigt, wie dasjenige aus der Kastelhöhle, grobe, dicke Klingen und Abschläge mit oft noch anhaftender Knollenrinde. In der Publikation von G. Riek (1934) sind auf Tafel 24 die Silexwerkzeuge der unteren Magdalénienschicht abgebildet. Es sind dieselben Typen, wie in der mittleren Schicht unserer Kastelhöhle, so ein éclat-Stichel, Zinken, massiver Bohrer, massive Breitschaber, Kratzer mit verdicktem Kratzerende. Auch dort fehlen die feineren Typen, insbesondere auch die Messerchen mit abgedrücktem Rücken, die Mikrobohrer und die Mikrolithen, die in der oberen Schicht so häufig sind.

Im Vogelherd ist das Aurignacien in drei Schichten als oberes, mittleres und unteres Aurignacien sehr gut vertreten. Es liegt in der Schicht des Hauptwürm, die zwar in der Kastelhöhle abgelagert ist, aber vollkommen steril ist. Interessanterweise zeigt das untere Magdalénien der Kastelhöhle noch starke Anklänge an das Aurignacien, respektive Périgordien, besonders auch an das mittlere und obere Aurignacien des Vogelherds. Doch fehlen bei unserem Material die dort häufigen und so typischen Kielkratzer (Grattoir caréné), lange Spitzbohrer, die Hochschaber und die gut geschlagenen Klingen-Stichel sowie die elegant geschlagenen Spitzklingen mit feinen Randretouchen. Aber die als altertümliche Formen in unserem Fundmaterial erkannten Werkzeuge finden wir alle wieder im Aurignacien des Vogelherd. Ein genau gleiches Stück wie der merkwürdige Grattoir caréné atypique (Abb. 5, Fig. 1) finden wir auf Taf. 18, Fig. 9, bei G. Riek aus dem oberen Aurignacien. Ferner findet sich ein gleiches Stück, als Grattoir sur lame à protuberance bezeichnet, im Aurignacien der Station Bonhomme im Vallon des Rebières in der Dordogne (M.R. Sauter 1946) auf Fig. 15, Nr. 10, und Fig. 18, Nr. 20, abgebildet.

Da aber bei unserem Material der grosse typische Formenkreis des Aurignacien fehlt, kann es sich bei unserer Station nicht um eine Aurignacienstation handeln.

Eine weitere, sehr interessante Vergleichsstation, mit denselben Typen wie die Kastelhöhle, ist die von F. Bordes 1953 publizierte Höhle von Cottier (Haute-Loire). Sie zeigt ganz dieselbe Schlagtechnik mit Belassung der Knollenrinde, und dieselben Typen, wie grosse Bogenschaber, grosse Hohlschaber, Bohrer auf Abschlägen, Pièces esquillées, grobe Stichel, so ebenfalls einen auf breitem Abschlag mit mehrmaliger Nachschärfung (wie Abb. 4, Fig. 8) und vor allem die genaue Kopie des interessanten Burin plan double mit feinmuschelig retouchierter Gegenkante (Abb. 3, Fig. 7 und Textfig. 7). Da mit dieser Industrie aus Cottier eine geöhrte Nadel und 2 Lanzenspitzen mit rechteckigem Querschnitt gefunden wurden, so wird diese Industrie von F. Bordes ins Magdalénien ancien, also ins frühe Magdalénien eingereiht.

6. Zusammenfassung

Die mittlere Schicht und ihr Fundinventar ist auf Grund der Schlagtechnik und der Typen der Steinwerkzeuge sehr verschieden von der oberen Schicht. Die mittlere Fundschicht gehört ins Magdalénien ancien, also in ein frühes Magdalénien. Genaueres kann wegen der geringen Anzahl von Typen nicht ausgesagt werden.

3. Die untere Fundschicht der Nordhöhle

a) Das Fundinventar und seine Typologie

Allgemeine Statistik	
Nuclei Silex	0 Stück
Nuclei Quarzit	4 Stück
Abschläge ohne Retouchen, Silex	68 Stück
Abschläge ohne Retouchen, Quarzit	46 Stück
Abschläge mit Gebrauchsretouchen, Silex	15 Stück
Abschläge mit Gebrauchsretouchen, Quarzit	9 Stück
Typen Silex	8 Stück
Typen Quarzit	18 Stück
Knochenartefakte	0 Stück
Viele Knochensplitter	

Typologie

Die Instrumente aus Silex zeigen alle den unpräparierten Plan de frappe, also die Clacton-Technik des Abschlages. Doch ist der Plan de frappe bei einigen Stücken sekundär nachretouchiert worden. Die Levallois-Technik mit vorbereitetem Nucleus vor dem Abschlag der Klinge findet sich hier nicht. Sehr oft ist, besonders auf den grossen Messern, die Knollenrinde als Griffrücken belassen worden. Die Abschläge sind im allgemeinen dick, aber nicht unbeholfen, sondern von der typischen Art für das evoluierte Moustérien typique. Die Rand-

retouchierung ist mehrheitlich eine sorgfältige Stufenretouche. (Taf. I, Reihe 1 und 2.)

Die Instrumente aus Quarzit, die in derselben Kulturschicht lagen, zeigen sehr einfache, unbeholfene Formen, ebenfalls alle ausschliesslich in Clacton-Technik geschlagen. Der Winkel zwischen dem Plan de frappe und der Abschlagsfläche beträgt bei den meisten Stücken 110°. Nur drei Stücke zeigen einen stumpferen Winkel von 118° und eines einen Winkel von 92°. Die Retouchierung ist oft schlecht geraten. Doch hängt diese grobe Machart mit dem ungünstigen Material zusammen. Sehr oft ist auch hier die Oberfläche des Gerölls als handlicher Rücken erhalten, was dann diesen Stücken die Form von Orangenschnitzen gibt. (Taf. I, Reihe 3.)

1. Instrumente aus Silex

In ausgezeichneter Schlagtechnik ist das viereckige Messer mit Eckstichel (Abb. 1, Fig. 1) geschlagen. Der Plan de frappe (unten) ist nachretouchiert. Die bogenförmige Längskante ist durch zweistufige Retouchen zu einer Schaberkante oder Säge ausgebildet worden. Die gegenüberliegende Längskante ist unten fein retouchiert. Sie trägt oben durch steile Retouchen eine Encoche oder Kerbe, die mit der nachgeschlagenen Querseite eine 1,4 cm lange Stichelkante bildet. Ähnliche Stücke finden sich im Moustérien typique von La Ferrassie (D. Peyrony 1934, Fig. 23, Nr. 3) und im Vogelherd (G. Riek 1934, Taf. 8, Fig. 1 und 2) abgebildet.

In Abb. 1, Fig. 2, haben wir ebenfalls ein sehr interessantes, kombiniertes Werkzeug vor uns, das auf den ersten Blick recht atypisch aussieht. Aus einem dicken Abschlag, mit Knollenrinde am Rücken, ist aber bis in alle Einzelheiten genau der von D. Peyrony im Moustérien typique der Station La Ferrassie in der Dordogne gefundene Meissel (ciseau) enthalten (La Ferrassie 1934, Fig. 20). Nur ist unser Stück zu dem von La Ferrassie spiegelbildlich gestaltet. Auf der Oberseite ist die der Knollenrinde gegenüberliegende Kante im unteren Teil steil retouchiert, im oberen zur Schäftung gestumpft. Die untere Querkante ist durch einen Querabschlag meisselartig geschärft. Die plane Rückfläche der Klinge trägt am Bulbusende (oben) steile Retouchen, offenbar auch zur Schäftung. Der untere Teil der Längskante mit Knollenrinde ist durch mehrere parallele Längsschläge, wie bei einem Stichel, so zugeschlagen, dass die scharfe Oberkante mit der gegenüberliegenden Meisselfläche zusammen eine scharfe Meisselkante ergibt. Genau dieselbe Anordnung zeigt auch der eben erwähnte Meissel aus dem Moustérien von La Ferrassie.

Abb. 1, Fig. 3, ist ein Spalter (tranchet), der eine unbearbeitete Unterseite besitzt. Durch einen grossen flächigen Abschlag ist der breitere Klingenteil durch einen grossen flächigen Abschlag zu einem Spalter geschlagen worden, dessen bogenförmige Schneide fein retouchiert ist. Das der Schneide gegenüberliegende Schmalende ist zu einer Dreieckspitze (Pointe triangulaire) ringsherum nachretouchiert. Dieser spitz zulaufende Teil hat wahrscheinlich zur Schäftung gedient. Ähnliche Stücke bildet D. Peyrony aus Le Moustier in der Dordogne (1930, Fig. 12, Nr. 1) und aus La Ferrassie (Fig. 15, Nr. 1 und 3), alle aus dem Moustérien typique, ab.

Ein grosses Dreieckmesser mit natürlichem Rücken ist in Abb. 1, Fig. 4, enthalten, das nach G.Goury (1948, Fig. 38) eine typische Form für das Spätmoustérien = Moustérien IV = Moustérien supérieur de la Quina darstellt, bei dem, wie auch auf unserem Stück, die Randretouchen wechselständig auf der Oberseite und der Unterseite des Abschlags angebracht sind. Ein gleiches Stück bildet D. Peyrony aus dem Moustérien typique von La Ferrassie ab (Fig. 11, Nr. 3).

Abb. 1, Fig. 5, ist ein typisches dreieckiges Messer, wie sie in La Ferrassie (Peyrony 1934, Fig. 10, Nr. 3) und im Vogelherd (G. Riek 1934, Taf. 9, Nr. 3) aus dem späten Moustérien typique gefunden wurden. Seine gebogene Spitze ist auf der Oberseite durch feine Randretouchen, auf der Unterseite aber durch grosse Flachabschläge scharf herausgearbeitet.

Abb. 1, Fig. 6, ist ein kleiner Diskusschaber, der auf der Oberfläche schildkrötenartige Facetten zeigt, dessen Unterseite durch stufige Retouchen hohl gearbeitet ist. Die Kante zeigt ringsherum Gebrauchsretouchen. La Ferrassie (Fig. 23, Nr. 5) zeigt dieselbe Form im Moustérien typique.

Abb. 1, Fig. 7, stellt eine typische Form des Moustérien typique dar. Aus einem kräftigen, breiten Abschlag mit hohem, flachem Rücken wurde die Schlagfläche unten abretouchiert. Die beiden andern rechtwinklig aufeinander stossenden Kanten wurden durch Hohlkerben zu Sägen umgebildet, die in einer scharfen Spitze zusammenstossen. D. Peyrony beschrieb diese Form unter der Bezeichnung «Pièce tronquée» aus dem Moustérien typique und dem frühesten Périgordien I (Chatelperron) der Station La Ferrassie (Fig. 24, Nr. 3–5, und Fig. 35, Nr. 4).

Ein letztes sehr typisches Stück ist leider von Th. Schweizer als Abb. 3, Fig. 5, unter dem Inventar der mittleren Schicht (Magdalénien ancien) abgebildet, aber auf der Photographie (Taf. I, zweite Reihe links) richtigerweise in der Reihe der Silices aus der Moustérienschicht abgebildet worden. Es fällt in Form, Material und vor allem in der gel-

ben, cachelonierten Patina ganz aus dem Magdalénien-Material heraus und gleicht ganz dem Stück Abb. 1, Fig. 7, in seiner Patina. Es ist ein kleiner, gestielter Schaber (Racloir pédonculé), wie er in gleicher Ausführung im Moustérien typique von La Ferrassie (Peyrony 1934, Fig. 13, Nr. 1) abgebildet ist. Durch steile Retouchen wurde beidseitig unter der Mitte des Abschlags ein Stiel zur Schäftung zugeschlagen. Die Schaberkante ist breit gelassen, vorne mit einer kleinen Bohrerspitze versehen. Die Unterfläche und der Plan-de-frappe am Stielende sind nicht nachgeschlagen worden. Diese Form des geschäfteten Schabers ist nach G. Goury (1948, Seite 185) eine typische Neuform für das Moustérien IV, also für das Spätmoustérien. Sie kommt mehrfach im Moustérien supérieur mit kälteliebender Fauna der Station Sandougnein der Dordogne (A.Darpeix, 1934, 1936, und F.Bergounioux und A.Glory 1943, Fig. 61) vor. In derselben Station finden wir übrigens auch den Diskusschaber und den Spalter.

2. Instrumente aus Quarzit

Der einfachste Typus ist die aus einem Quarzitgeröll geschlagene Klinge in Form eines Orangenschnitzes (Abb. 2, Fig. 5, 6, 10).

Der Schlag zu deren Abtrennung vom Nucleus wurde immer von der Gerölloberfläche aus ausgeführt. Und zwar liegen die beiden Schlagbulben für Ober- und Unterseite in der Mitte des gebogenen dicken Rückens einander gegenüber. Die Technik war also so, dass durch Schläge äquatorial auf den Kiesel ein Schnitz nach dem anderen abgeschlagen wurde. Die als Gerölloberfläche erhaltene Rückenfläche zeigt eine Dicke zwischen 9 und 18 mm. Sie zeigt aber keine Randretouchen. Die zur Schneide hin zulaufenden grossen Abschlagsflächen sind ebenfalls meist einfach gelassen. Die Schneide ist gerade oder stumpfwinklig und grob nachretouchiert, so dass sie leicht gezähnt erscheint. G. Riek fand diesen Typ im älteren Moustérien, dem Moustérien de tradition acheuléenne des Vogelherds (1934, Taf. 6, Abb. 1) und nannte ihn «Spitzschaber».

Eine evoluiertere Form ist das Bogenmesser (Abb. 2, Fig. 13), wo der Geröllrücken bis auf einen kleinen Rest durch Sekundärabschläge entfernt wurde, so dass oben mit der gebogenen Schneidekante eine scharfe Dreikantspitze, unten durch zwei kürzere Abschläge und feine Randretouchen ein Kratzer entstanden sind. Die Messerkante ist in der Mitte fein retouchiert, während im oberen Drittel wieder ein kleines Stück der Gerölloberfläche stehen blieb. Das Stück ist also aus einem roten Quarzitgeröll vom Querschnitte unseres Messers herausgeschlagen worden. Die Rückfläche wird in ihrer ganzen Ausdehnung vom Schlagbulbus eingenommen.

Eine andere Schlagrichtung zeigen die 3 Spitz- oder Dreieckmesser der Abb. 2, Fig. 4, 8, 11), wo die Gerölloberfläche an der Basis erhalten ist. Von hier ist auch die Klinge längs abgeschlagen worden. Während Fig. 8 eine Klinge mit exzentrischem Längsgrat zeigt, deren Schneiden ringsherum retouchiert sind, sind die beiden andern sehr dicke Klingen mit sekundär gestumpftem Rücken. Bei Fig. 4 wurde so eine stichelartige Spitze herausgearbeitet, und bei Fig. 11 eine bohrerartige Ecke. Die Schneidekante von Fig. 4 ist durch alternierende Randretouchen auf der Ober- und Unterfläche zu einer wellenförmigen Schneide zugeschlagen worden.

Das beste Instrument der ganzen Serie ist auf Abb. 2, Fig. 9, abgebildet. Es ist eine Doppelspitze (limace) in bester Schlagtechnik aus einem roten Quarzitgeröll geschlagen, dessen Oberfläche noch an zwei Stellen des einen Längsrandes erhalten geblieben ist. Seine grösste Dicke beträgt 9 mm. Die Unterfläche ist konvex-konkav mit dem etwas seitlich stehenden grossen Schlagbulbus. Die Oberfläche ist überdeckt von grossmuscheligen Primärabschlägen, die vor der Abtrennung der Spitze auf dem Nucleus angebracht worden sind. Die untere Spitze ist dünn auslaufend, die obere zeigt eine kräftige stichelartige Schneide, die durch das Stück Geröllrinde und einen entgegengesetzten Querabschlag erzeugt wurde. Der linke Rand zeigt in der Mitte eine ausretouchierte Schäftungskerbe, der rechte Rand ist ebenfalls in der Mitte feinmuschelig retouchiert. Beide Retouchen dienten wahrscheinlich zur Schäftung der Spitze. Diese Form der Doppelspitze (limace) ist nach G. Goury (1948, Seite 185) eine typische Errungenschaft des Moustérien IV = Moustérien supérieur de la Quina.

Aus sehr grobem, schlecht zu bearbeitendem Quarzit sind die 3 gröbsten Instrumente (Abb. 2, Fig. 1, 2, 3) geschlagen worden. Trotzdem lassen sie je einen Typus erkennen.

Die Abb. 2, Fig. 1, zeigt einen dicken Orangenschnitz, dessen Gerölloberfläche grösstenteils nachretouchiert wurde. Die grobe, ihr gegenüberliegende Schneide trägt in der Mitte eine herausgearbeitete, scharfe Encoche oder Kerbe. Die beiden Spitzen sind zu schrägstehenden Stichelkanten geschlagen, so dass ein grober Doppelstichel entstanden ist. Beide Stichelkanten zeigen starke Abnutzung.

Abb. 2, Fig. 2, ist ein Spalter oder ein Ziehmesser mit einfacher Ober- und Unterfläche, dickem Rücken mit Schlagstelle an der einen Schmalseite, mit zwei durch Längsschläge sich zur Schneidekante sich verjüngenden Seitenflächen und einer leicht konvexen eigentlichen Arbeitskante an der, der Abschlagstelle gegenüberliegenden, Schmalseite. Diese Schneide ist durch grobe und feine Retouchen gleichmässig gezähnt. Ein ähnliches Stück wurde im Moustérien supérieur

von Sandougne gefunden und wurde von A. Darpeix als «Biface quadrangulaire», also als «quadratischer Zweiseiter» beschrieben.

Abb. 2, Fig. 3, ist eine lange, dicke Klinge mit Gerölloberfläche und Plan-de-frappe am einen Schmalende. Der dort dreieckige Querschnitt wird durch seitliche Grobretouchen und Abschläge gegen das andere Ende zu quadratisch und endet vorne in eine starke, abgenützte Stichelkante, die axial und senkrecht zur Unterfläche des Klingenabschlags steht.

Die übrigen Stücke sind einfache Abschläge in Form von Schmaloder von Breitklingen mit dreieckigem Querschnitt und zur Oberfläche meist schräggestellter Basis, entsprechend dem Schlagwinkel.

Abb. 2, Fig. 7, ist eine Längsklinge mit einfacher Unterfläche und Längsgrat. Die konvex gebogene Längskante ist steil abgestumpft. Die obere Spitze ist durch eine konvexe und eine konkave Endretouche zu einem Schrägbohrer (Perçoir pointe déjetée) ausgebildet. Das gegenüberliegende Schmalende stellt mit dem schrägen Plan-defrappe und der anderen konvex retouchierten Bogenkante ebenfalls eine feine Bohrerspitze dar. Diese Form des Bohrers findet sich nach D. Peyrony (1934, Fig. 16, Nr. 2) auch im Moustérien typique von La Ferrassie.

3. Charakterisierung und Datierung der unteren Schicht

Die Abschlagstechnik ist eine reine Clacton-Technik mit unpräpariertem Plan-de-frappe. Die Abschläge sind grob, dick und meist breit (éclat), weniger als Schmalklingen (lames). Dies verweist das Inventar ins Altpaläolithikum, vermag aber an sich nichts über die Einordnung in dessen Untergruppen oder über das Alter auszusagen. Wenngleich die Levallois-Technik mit Präparation des Nucleus mehr beim evoluierten Moustérien (Acheuléen kommt hier nicht in Frage) vorkommt, so finden sich nach D. Peyrony (La Ferrassie 1934, Seite 14) alle Formen der Abschlagtechnik (Clacton, Levallois und moustérienartig) in der gleichen Fundschicht. Dieses Merkmal lässt also nicht auf das Alter oder auf eine bestimmte Kulturzugehörigkeit schliessen, da ein und dieselbe Sippe alle drei Techniken gleichzeitig angewendet hat.

Wichtiger ist die Typologie. Es fehlen bei unserem Material die Faustkeile (Coups-de-poing) und die Handspitzen (Bifaces cordiformes) vollständig. Dasselbe finden wir im evoluierten Moustérien typique der Dordogne, im Gegensatz zum kulturell und meist auch zeitlich älteren Acheul-Moustérien (Moustérien de tradition acheuléenne). Nun muss aber gesagt werden, dass wohl meist das Moustérien typique in den französischen Stationen über dem Moustérien de

tradition acheuléenne liegt, also jünger ist. So ist es im Abri Raymonden Nord bei Périgueux, in La Ferrassie und in Le Moustier. Doch liegt gerade im Abri inférieur von Le Moustier ein Moustérien typique als Schicht B weit unter dem Moustérien de tradition acheuléenne der Schichten F-H, das dann vom Moustérien typique evolué der Schicht J überlagert wird. Umgekehrt, das Moustérien de tradition acheuléenne über dem Moustérien typique, und somit näher dem Aurignacien, liegt es in Combe-Capelle, im Abri des Merveille à Castelmerle bei Sergeac, in der Station Gare de Couze und in Belcayre. Die Untersuchungen von D. Peyrony haben gezeigt, dass sich das Moustérien de tradition acheuléenne parallel und synchron mit dem klassischen Moustérien typique entwickelt hat und dass es über dem Moustérien typique nahe dem Aurignacien liegen kann. Es kommt diesem Unterschied also keine zwingende chronologische Bedeutung zu.

Hingegen zeigen die einzelnen Typen, und besonders das ganze Arsenal von Typen, dass wir es mit Spätformen zu tun haben. Wir haben es also mit einem Moustérien typique evolué, also einer Spätphase des Moustérien zu tun, in der bereits schon Anzeichen an das kommende Aurignacien auftauchen.

Dies ist unbedingt aus dem Silexmaterial zu schliessen, dessen Formen vollkommen mit dem französischen Moustérien typique evolué im Einklang stehen. Das in derselben Schicht gefundene Quarzitmaterial aber zeigt diese Formen um vieles vereinfacht und vergröbert, was aber mit dem Material und dessen schlechter Bearbeitungsmöglichkeit zusammenhängen muss. Denn es waren dieselben Leute, die beide Formen schufen. Wären die Quarzitinstrumente allein gefunden worden, wie dies vielfach in unseren Moustérien-Stationen des Birstales der Fall ist (Schalberg, St. Brais, Liesberg-Mühle), so wäre man geneigt, sie einer viel primitiveren Kultur, womöglich dem sogenannten «alpinen Paläolithikum» oder dem «alpinen Moustérien» zuzuteilen und eine Spezialfacies, ja sogar eine Spezialkultur daraus zu machen. Dass dies nicht angängig ist, ist hier dem Glücksfall zuzuschreiben, dass in der Kastelhöhle in derselben unteren Schicht gut determinierbare Silextypen mit altmodisch aussehenden Quarzitinstrumenten zusammen vorkamen.

Neuerdings glaubte J. Combier (1959) an Hand von einem Nucleus und fünf Werkzeugen aus einer Höhlenbärenknochen führenden Schicht der Höhle von Châteaubourg in der Ardèche eine sehr frühe (Ende letztes Interglacial) und dem alpinen Paläolithikum angehörende Industrie gefunden zu haben. Er glaubt an eine spezielle «Wildkirchli-Kultur». Diese ist nach ihm in verschiedenen alpinen und perialpinen Stationen in Frankreich, der Schweiz, Deutschland, Öster-

reich, Jugoslawien und Italien vertreten. Diese Stationen seien mehrheitlich interglazial. Er fasst die Höhlen von St. Brais, Cotencher bei Neuenburg, Gondenans-les-Moulins im Doubstal zusammen mit den alpinen Höhlen von Wildkirchli, Wildenmannlisloch, Drachenloch und fasst ihre Kultur einheitlich zusammen als «alpines Moustérien». Die Typologie dieser Stationen ist nach ihm eine spezielle, originale und ziemlich verschieden vom typischen Moustérien und dem Praemoustérien.

Ohne hier auf Details eintreten zu können, halte ich diese Ansicht von J. Combier nicht für stichhaltig. Erstens ist die Datierung einiger der angeführten Stationen heute durch eingehende geologisch-sedimentologische Untersuchungen (R. Lais und E. Schmid 1958) gesichert. Die Höhlenbärenschichten und damit auch die darin gefundenen Werkzeuge sind je nach der topographischen Lage der Höhle in unterschiedlicher Zeit und Zeitdauer entstanden, im allgemeinen aber in der lang andauernden Vorrückungsphase des Würmglazials. Die darin eingeschlossenen Steinwerkzeuge zeigen keine einheitliche Zeit- und Kulturphase an (E. Schmid 1958).

Ferner ist es meiner Ansicht nach verfrüht, aus 5 Instrumenten von Châteaubourg, 2 Instrumenten aus St. Brais und einigen wenigen von Gondenans-les-Moulins eine eigene Kultur des «Moustérien alpin» zu machen. Neuere zahlreichere Funde aus Gondenans-les-Moulins und das zahlreiche und gut untersuchte Material aus Cotencher bei Neuchâtel (A. Dubois und H. G. Stehlin, 1933) zeigen zwar materialbedingte, gröbere, aber keineswegs primitivere Formen und sind, was schon A. Dubois schrieb, ohne Zweifel an das Moustérien typique evolué von La Quina anzulehnen.

Ob es überhaupt ein «alpines Moustérien» oder das Bächler'sche «alpine Paläolithikum» als spezielle, originale Facies oder gar als originale Kultur gibt, ist höchst fraglich und muss noch abgeklärt werden.

Sicher liegt in der unteren Schicht der Kastelhöhle keine solche Spezialkultur vor, sondern ein Moustérien typique evolué aus dem Ende des Frühwürm.

Zusammenfassung

Die Kastelhöhle Nord zeigt drei Kulturschichten, die typologisch von oben nach unten zu bestimmen sind als:

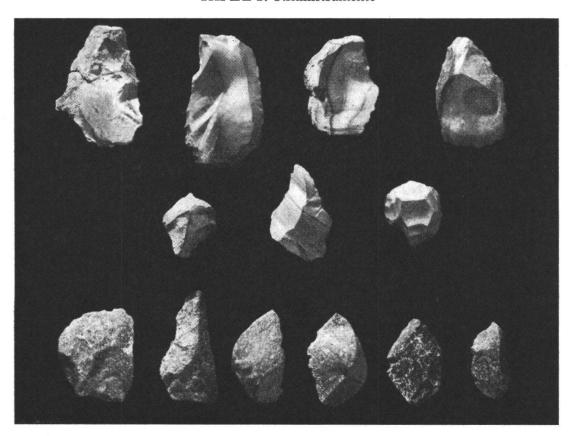
Magdalénien final = Magdalénien VI/2,

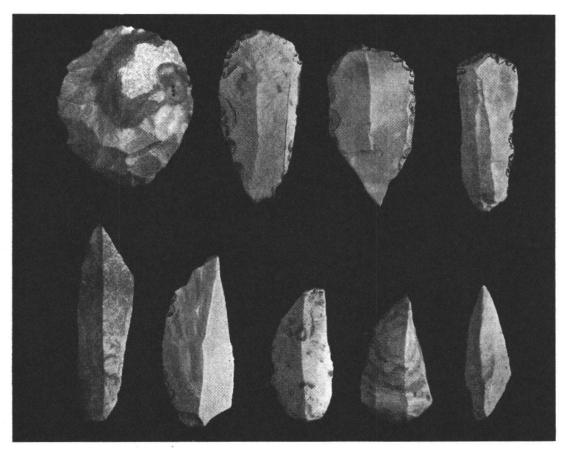
Magdalénien ancien

Moustérien typique evolué = Moustérien IV de la Quina.

Dadurch, dass das Material beisammen geblieben ist, und genügend Typen vorhanden sind, konnte für die obere Schicht die statistische Methode von F. Bordes angewendet werden, die sich voll bewährte und zum ersten Mal die genaue Altersbestimmung unseres üblichen Birstal-Magdaléniens als Magdalénien VI/2 = Magdalénien final beweisen konnte. In der mittleren Schicht konnte ein Magdalénien ancien nachgewiesen werden, ein Abschnitt, der bisher im jurassischen Magdalénien noch gefehlt hat, da noch nie zwei übereinander liegende Magdalénienschichten auf diese Weise ausgegraben und untersucht werden konnten. Wieder zeigte sich, dass auch in der Kastelhöhle ein Aurignacien fehlt. Es ist bis heute in der Schweiz noch nicht nachgewiesen worden. Das Inventar der unteren Schicht liess sich, dank einer Anzahl guter Silextypen, als Moustérien typique evolué, also als ein Spät-Moustérien bestimmen. Die gleichzeitig damit gefundenen Quarzitinstrumente gehören zur gleichen Kultur und verweisen somit die anderen Birstal-Moustérien-Stationen mit nur Quarzitinstrumenten, aber gleicher Machart, in dieselbe Stufe und nicht in ein sogenanntes alpines Paläolithikum oder eine andere originale Quarzit-Kultur.

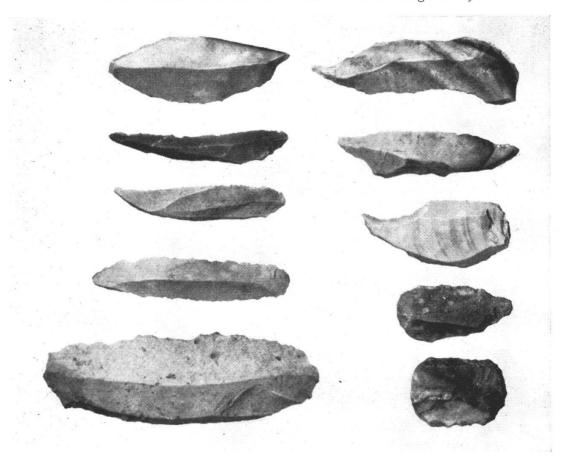
Literatur

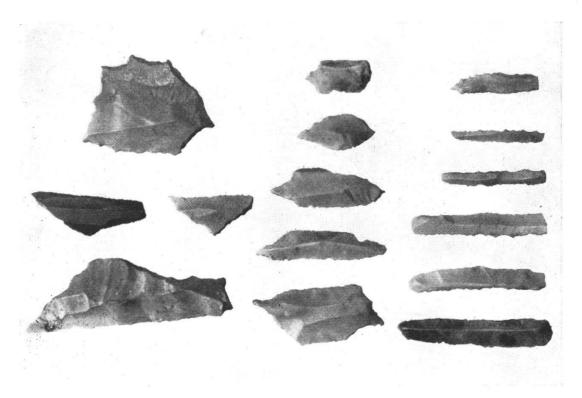

Bächler, E., Das alpine Paläolithikum der Schweiz. Monogr. zur Ur- und Frühgeschichte der Schweiz. 2. 1940.


Bandi, H.G., Die Schweiz zur Rentierzeit. Frauenfeld 1947.

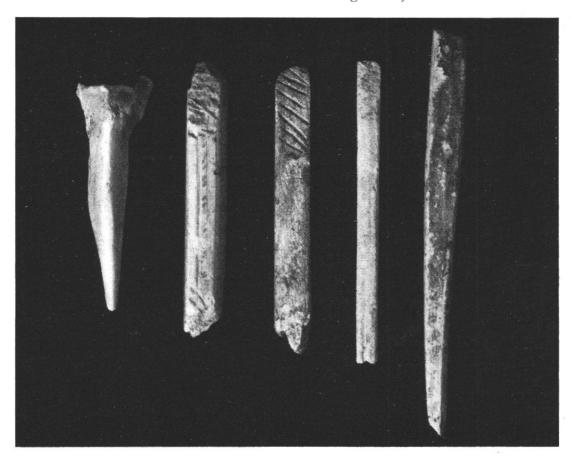
- Das Silexmaterial der Spätmagdalénien-Freilandstation Moosbühl bei Moosseedorf (Kt. Bern), Jb. Hist. Mus. Bern. 32/33 1952/53, 77-134.
- C. Lüdin, W. Mamber u. a., Die Brügglihöhle in der Kohlholzhalde bei Nenzlingen (Kt. Bern) eine neue Fundstelle des Spätmagdalénien im unteren Birstal. Jb. Hist. Mus. Bern, 32/33, 1952/53, 45–76.
- Bay, R., Die Magdalénienstation am Hollenberg bei Arlesheim (Kt. Baselland). Tätigkeitsbericht Naturf. Ges. Baselland. 19, 1953, 164–178.
- Bestimmung des Alters der oberen Fundschicht aus der Kastelhöhle im Kaltbrunnental nach der statistischen Methode von F. Bordes. Bull. Schweiz. Ges. Anthrop. u. Ethnol. 35, 1958/59, 9-10.
- Bergounioux, F.M., und A. Glory, Les Premiers Hommes. Paris 1948.
- Bordes, F., Principes d'une méthode d'étude des techniques de débitage et de la typologie du Paléolithique ancien et moyen. L'Anthropologie. 54, 1950, 19-34.
- et M. Bourgon, Le complex moustérien: moustérien, levalloisien et tayacien. L'Anthropologie. 55, 1951, 1–23.
- L'industrie de la Grotte de Cottier (Haute-Loire). Bull. Soc. préh. franç. 50, 1953, 650-651.
- Bouyssonie, J., L'abri Jardel II, Commune de Peyzac (Dordogne). Congr. préh. France. C.R. Poitiers-Angoulème 1956. 262–270.
- Breuil, H., La Préhistoire. Revue des Cours et Conférences (30. 12. 1929) Langny. 1937. Capitan, L. et D. Peyrony, La Madeleine. Publ. Inst. Internat. d'Anthrop, 2. 1928, 1–125. Cheynier, A., Le Magdalénien primitif de Badegoule. Bull. Soc. préh. franç. 36. 1939, 354–355.
- A propos des courbes cumulatives statistiques appliquées à la préhistoire. Bull. Soc. préh. franç. 54. 1957, 211–215.

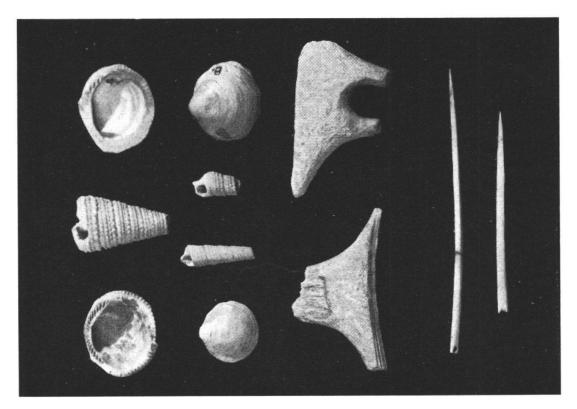
- Combier, J., La Grotte des Ours à Châteaubourg (Ardèche) et le problème du «Moustérien alpin». Cahiers rhodaniens 3, 1956.
 - Ref. F.Bordes, L'Anthrop. 62, 1959, 296-299.
- Darpeix, A., Le Moustérien du gisement de Sandougne à Tabaterie. Congr. préh. France. C. R. 1934, 366.
- Nouvelles fouilles à Tabaterie (Dordogne). Bull. Soc. préh. franç. 1936, 417.
- Dubois, A. und H.G. Stehlin, La Grotte de Cotencher, Station moustérienne. Soc. Paléontol. Suisse. 52/53, 1933.
- Goury, G., Origine et Evolution de l'Homme. Paris 1948.
- Gruet, M. et P. Jaouen, Bégrolles et la pénétration magdalénienne en Loire-Inférieure. Bull. Soc. préh. franç. 54, 1957, 397-411.
- Koby, F. Ed., Une nouvelle station préhistorique: Les cavernes de St. Brais (Jura bernois). Verh. Naturf. Ges. Basel. 49, 1938.
- St. Brais. Jb. Schweiz. Ges. Urgesch. 30, 1938, 66-69.
- Les cavernes du cours moyen du Doubs et leur faune pléistocène. Actes Soc. jurass. d'Emul. 1945, 1–47.
- Nouvelle contribution à la Paléontologie et à la Préhistoire des cavernes du Doubs. ibid. 1950, 1-26.
- Lüdin, C., Kohlerhöhle im Kaltbrunnental. Jb. Schweiz. Ges. Urgesch. 30, 1938, 61-64. Peyrony, D., Le Moustier. Rev. anthrop. 1930, 1-50.
- La Ferrassie. Préhistoire 3, 1934, 1-92.
- L'Abri de Villepin. Bull. Soc. préh. franç. 33, 1936.
- Riek, G., Die Eiszeitjägerstation am Vogelherd im Lonetal. Tübingen 1934.
- Sarasin, F., Die steinzeitlichen Stationen des Birstales zwischen Basel und Delsberg. Denkschr. Schweiz. Naturf. Ges. N. F. 54, 1918.
- Sarasin, F., und H. G. Stehlin, Die Magdalénienstation bei Ettingen (Baselland). Denkschr. Schweiz. Naturf. Ges. N. F. 61, 1924.
- Sauter, M. R., Station paléolithique du «Bonhomme», Vallon des Rebières, Dordogne. Cahiers Préh. Archéol. 2, 1946, 1–75.
- Contribution à l'étude de la typologie lithique du Magdalénien suisse. Jb. Schweiz.
 Ges. Urgesch. 40, 1949, 62-74.
- Schaub, S. und Jagher, A., Zwei neue Fundstellen von Höhlenbären und Höhlenhyäne im unteren Birstal. Ber. Schweiz. Paläont. Ges. 38, 1945, 621-635.
- Schmid, E., Höhlenforschung und Sedimentanalyse. Schriften Inst. Ur- und Frühgesch. d. Schweiz. 13, 1958, 1–186.
- Schwabedissen, H., Die Federmesser-Gruppen des nordwesteuropäischen Flachlandes. Zur Ausbreitung des Spät-Magdalénien. OFFA-Bücher. 9, 1954, 1–104.
- Sonneville-Bordes, D. de, et J. Perrot, Essai d'adaptation des méthodes statistiques au Paléolithique supérieur. Premiers résultats. Bull. Soc. préh. franç. 50, 1953, 323-333.
- Sonneville-Bordes, D. de, Esquisse d'une évolution typologique du Paléolithique supérieur en Périgord. L'Anthropologie 58, 1954, 197–230.
- L'industrie de l'abri sous roche de Blassac (Haute-Loire). Bull. Soc. préh. franç. 52, 1955, 371-377.
- Sonneville-Bordes, D. de et J. Perrot, Lexique typologique du Paléolithique supérieur. Bull. Soc. préh. franç. 51-53, 1954-1956.
- Vogt, E. und H.G. Stehlin, Die paläolithische Station in der Höhle am Schalbergfelsen. Denkschr. Schweiz. Naturf. Ges. N. F. 71, 1936.
- Wyss, R., Beiträge zur Typologie der paläolithisch-mesolithischen Übergangsformen im schweizerischen Mittelland. Schriften Inst. Ur- und Frühgesch. d. Schweiz. 9, 1953.


TAFEL I: Silexinstrumente



Oben: Silex- und Quarzitinstrumente aus der unteren Schicht: Moustérien Unten: Silexinstrumente aus der oberen Schicht: Magdalénien final Diskusschaber, Kratzer und Stichel


TAFEL II: Silexinstrumente aus der oberen Schicht: Magdalénien final



Oben: Lamellen, Stichel, Kratzer und Zinken Unten: Trapez- und Dreieckmesser, Bohrer, Messer mit abgedrücktem Rücken

TAFEL III: Obere Schicht: Magdalénien fina

Oben: Pfriemen und Speerspitzen aus Knochen und Rengeweih Unten Schmuck aus fossilen Schnecken und Muscheln Bearbeitete Rengeweihstücke, Lochstabfragment? Nadeln mit Nadelöhr

Abb. 1 KASTELHÖHLE

Untere Schicht

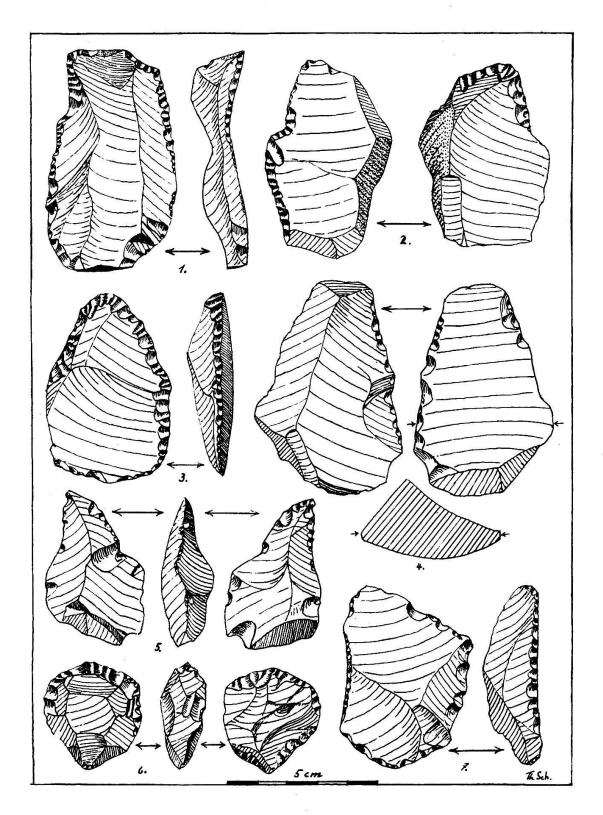


Abb. 2

KASTELHÖHLE

Untere Schicht, Quarzitwerkzeuge

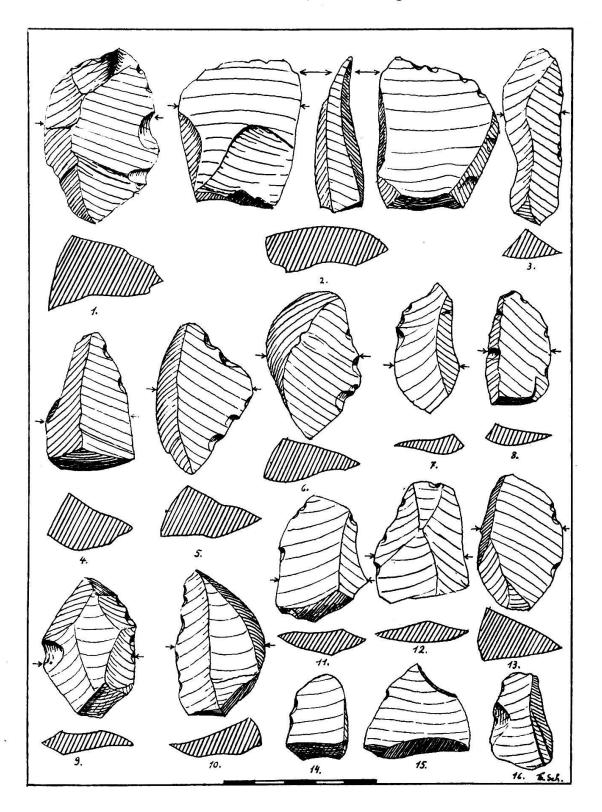


Abb. 3 KASTELHÖHLE

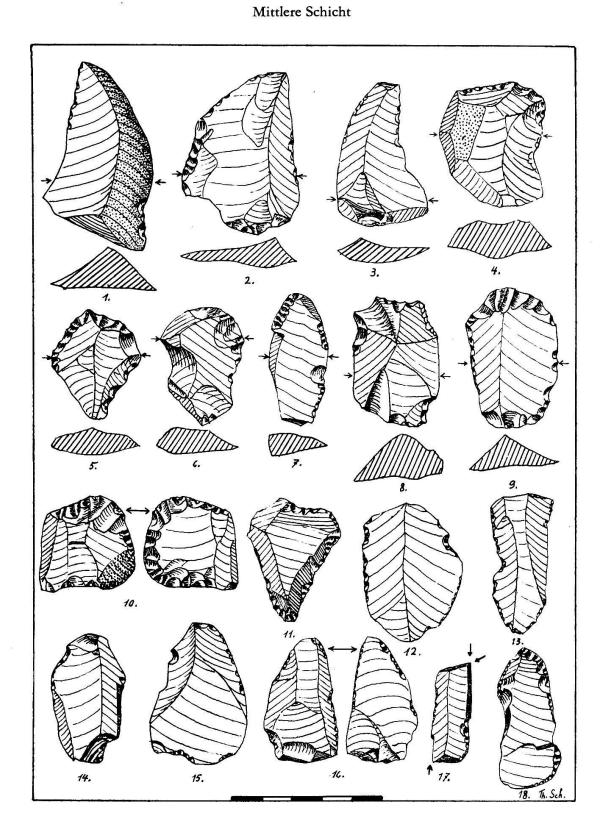


Abb. 4
KASTELHÖHLE

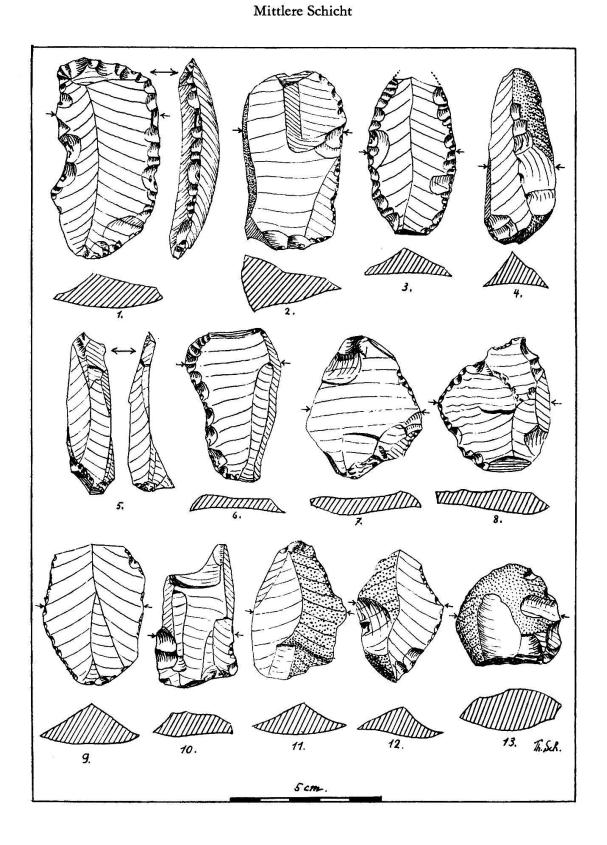


Abb. 5
KASTELHÖHLE

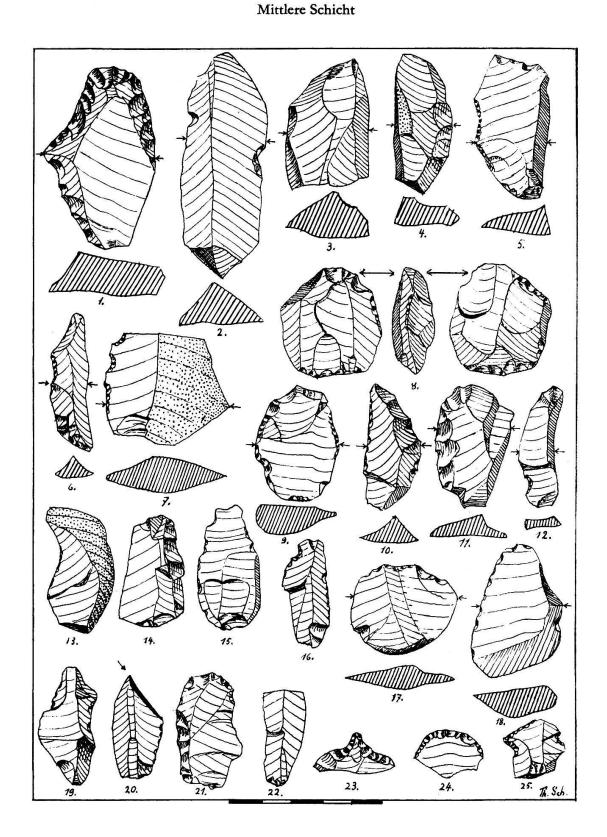


Abb. 6
KASTELHÖHLE

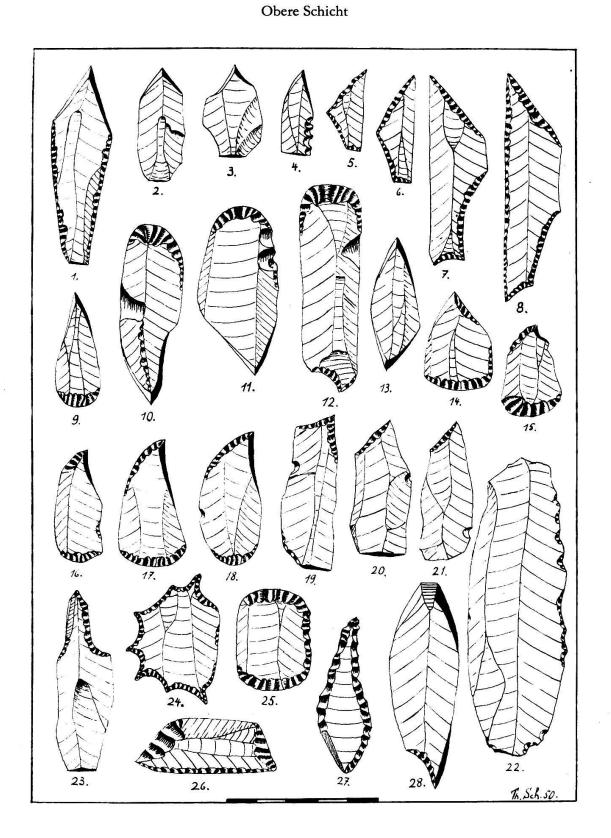


Abb. 7 KASTELHÖHLE

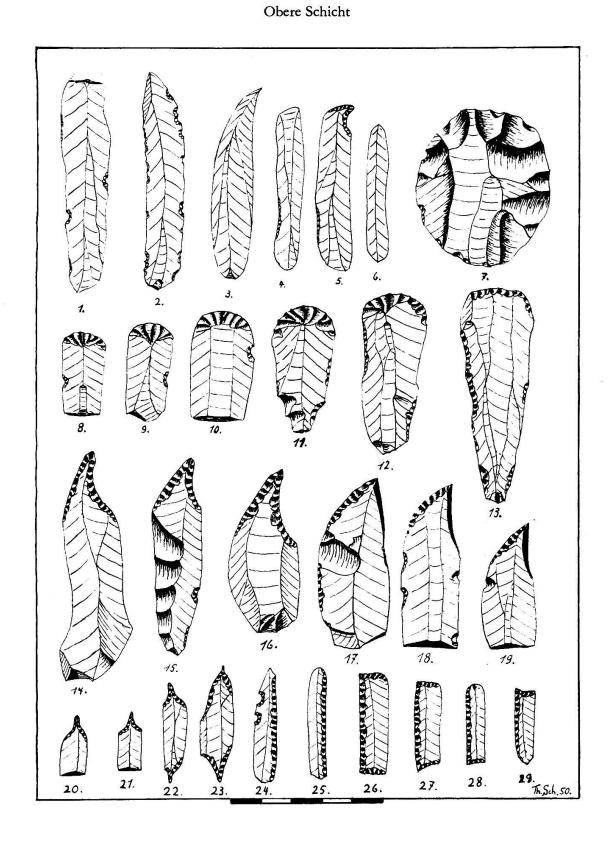
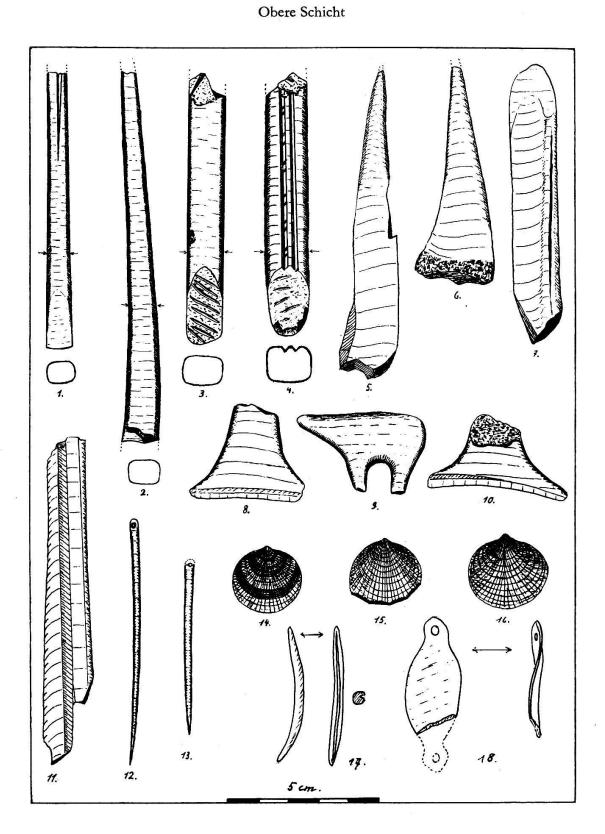



Abb. 8
KASTELHÖHLE

IV. DIE TIERFUNDE

SÄUGETIERE UND VÖGEL

Von Hans Rudolf Stampfli

Die Bestimmung und Bearbeitung wurde im naturhistorischen Museum in Basel vorgenommen, wo mir die Sammlung und die Bibliothek frei zur Verfügung standen. Grossen Dank schulde ich Dr. S. Schaub, der mir mit Rat zur Seite stand, und Dr. F.-Ed. Koby, der mir bei der Bestimmung des Moustérien-Materials behilflich war. Die Bestimmung der Mollusken hat freundlicherweise Dr. L. Forcart übernommen, auch ihm sei hier der beste Dank ausgesprochen.

Oberste Schicht

Säugetiere

Lynx lynx (L.)

Diese Art ist durch ein Distalfragment (angebrannt) eines Mt. IV (?) und 2 Phalangen belegt. Die Asymmetrie des Gelenkes weist unbestritten auf den Luchs hin. Die Knochen sind etwas schlanker gebaut als beim recenten Tier.

Leucocyon lagopus (L.)

1 Maxillarfragment mit M_2 – P_1 , 1 Radius (Länge 92 mm), ein dazugehöriges Ulnafragment und 1 Distalepiphyse des Femurs. Sämtliche Knochen stimmen in Form und Grösse mit dem Vergleichsmaterial überein, auch zeigt M_1 sup. die für diese Art typischen Merkmale.

Vulpes vulpes (L.)

9 Mandibelfragmente (sin. et dext.), 5 Maxillarfragmente (sin. et dext.), diverse isolierte Zähne, 1 Radius sin. mit einer Länge von 128 mm, div. Langknochenfragmente, Fuss- und Handknochen. Es handelt sich mindestens um 7 Individuen, wobei eines eine kleinere Form darstellt, die Distalepiphysenbreite einer Tibia misst 14 mm, eine andere 12 mm. Der gleiche Unterschied tritt bei der distalen Epiphyse des Humerus zu Tage: grössere Form: 20 mm, kleinere Form 17 mm.

Canis lupus L.

2 Maxillarfragmente sin., 1 Mandibelfragment sin., diverse isolierte Zähne, Fragmente von Mt. und Mc., Phalangen, Wirbel. Ein Wirbel zeigt etwas zu grosse Ausmasse, doch scheint er noch innerhalb der Variationsbreite zu liegen. – Es handelt sich wahrscheinlich um 1 Individuum.

Talpa europaea L.

2 Ulnae dext., 1 Ulna sin., 1 Femur sin. - 2 Individuen.

Sorex araneus L.

3 Mand. sin., 1 Mand. dext., 1 Mandibelfragment dext., 1 Maxillar-fragment ohne Zähne, isolierte I, 2 Humeri dext., 1 Tibia dext. – Mindestens 3 Individuen.

Sorex minutus (L.)

Vorderteil des Schädels mit beiden Maxillen, 1 I inf. sin., 1 I inf. dext. – Trotz Fehlens der beiden I sup. und der unteren Zähne ist die Zugehörigkeit zu dieser Art unbestritten, da Grösse und Form der vorhandenen Teile mit den entsprechenden des Vergleichsmaterials vollkommen übereinstimmen.

Soricide

Von einer sehr kleinen Art liegen 3 Humeri vor, die bedeutend kleiner sind als diejenigen von Sorex minutus (L.). Humerus von Sorex minutus (rec.): 7,4 mm, unsere Humeri: 5 mm. Die genaue Bestimmung war nicht möglich.

Neomys fodiens (Schreber)

1 Mand. sin. Grösse und Struktur von M und P stimmen mit dem verglichenen Material überein, dagegen zeigt I eine leichte Abweichung, indem er einen nur äusserst kleinen Höcker am Grunde aufweist. Er zeigt also somit Ähnlichkeit mit den I von Crocidura russula (Hermann), von der sich aber Neomys durch rotbraune Zahnspitzen unterscheidet.

Lepus variabilis (Pall.)

Am reichhaltigsten ist, was die Individuenzahl anbetrifft, der Schneehase vertreten. Es sind allein 124 noch gut erhaltene Mandibeln (alle ohne Ramus ascendens) erhalten, nebst weiteren Mandibelfragmenten, was ca. 60 Individuen entspricht; ferner 12 Maxillarfragmente, z. T. mit Zähnen, eine äusserst grosse Anzahl isolierter Zähne jeder Sorte,

sowie ganz erhaltene Stücke und Fragmente von sämtlichen Skelettknochen. Die Bestimmung wurde an Hand der oberen I und P₃ vorgenommen, die allerdings gar nicht so häufig vorkommen, jedoch zeigen die vorhandenen Zähne eindeutig die Merkmale des L. variabilis. Messungen der Extremitätenknochen stimmen mit den Massen, wie sie *Hescheler* (1907) angibt, überein.

Spermophilus rufescens K. et Bl.

Vorhanden ist eine Tibia dext., die morphologisch mit dieser Art übereinstimmt (verglichen mit Originalia und Abbildungen in Hescheler [1907]), dagegen weist unser Exemplar nicht die Grösse auf, die in der Literatur für Sp. rufescens angegeben ist. Die Länge unserer Tibia ohne Proximalepiphyse (die fehlt) beträgt 38,5 mm, Breite des Proximalteiles 6,9 mm, Breite der Distalepiphyse 5 mm. Zum Vergleich die Messungen anderer Autoren:

Nehring 42–44 mm Hescheler 42 mm Studer 43–44 mm Woldrich

(zit. nach Studer) 41,2–35,2 ♀¹

Blasius. 46,2 mm ohne Proximalepiphyse 44,0, Breite der Proximalepiphyse 9,3 mm

Originalia . . . infolge Fehlens des proximalen Teiles konnte bei keinem Original der Sammlung eine Längenmessung vorgenommen werden. Die Distalbreite schwankt zwischen 5 und 5,2 mm

Andere Spermophilusarten, ausser Sp. rufescens, kommen für unsere Tibia kaum in Frage, da die Längenmasse zu sehr abweichen. Sp. guttulatur *Schinz* weist eine Tibialänge von 31,5 mm auf, Sp. citellus *Bl.* 37,3 mm und Sp. Eversmanni 46,6 mm (*Nehring*), alle Masse inkl. der Epiphyse. – Es scheint sich hier um eine kleinere Form von Spermophilus rufescens zu handeln.

Marmota marmota L.

1 Distalfragment vom Humerus, 4 Ulnae, 8 Radii. - 5 Individuen.

¹ Wahrscheinlich liegt hier ein Druckfehler vor, es sollte 41,2–45,2 stehen, auch die anderen Zahlen sind in steigender Reihe angeführt. Leider konnten die Zahlen nicht in der Originalarbeit nachkontrolliert werden.

Cricetus cricetus (L.)

1 Maxillarfragment dext. mit M₁-M₃, 1 Maxillarfragment sin. mit M₁ und M₃. Obwohl keine deutliche Bruchlinie zu konstatieren ist, so scheint es doch, dass die beiden Maxillen zum gleichen Schädel gehören. Diese Ansicht wird durch Messungen bestärkt. Die Breite und Länge der Zahnreihe zeigt bei beiden Fragmenten die gleichen Ausmasse: M₁₋₃: 8 mm, Breite 1,8 mm. Die Zahlen liegen etwas unter dem Normalen, es handelt sich um ein kleines Tier. Auch die Extremitätenknochen sind klein: 1 Humerus sin., 1 Humerus dext. mit einer Distalbreite von 7,8 mm, 1 Femur dext. mit einer Länge von 29 mm, ferner 1 Ulna dext., 2 Radii, 1 Tibia und 3 Wirbel. Es scheint nur 1 Individuum vorzuliegen.

Arvicola amphibius (L.)

1 Schädelfragment (vorderer Teil) mit M_{1-3} dext. et sin., 4 Mand. sin., 1 Mand. dext. – 4 Individuen. – Betreffend Extremitätenknochen siehe unten.

Arvicola spec. (amphibius?)

Diverse isolierte Zähne, jedoch keine M₁ inf. und M₃ sup. gehören einer Arvicolide an. Der Grösse nach könnte es A. amphibius sein.

Microtus ratticeps K. et Bl.

1 Schädelfragment mit M_{1-2} sin. et dext., 3 Mand. dext., 1 Mand. sin. Diverse M_3 sup. und M_1 inf. – Der M_1 inf. zeigt eine etwas aberrante Form des Vorderendes, die jedoch noch vollkommen in der Variationsbreite dieser Art liegt (*Rörig* und *Börner* 1905). – 3 Individuen. – Betreffend Extremitätenknochen siehe unten.

Microtus nivalis (Martins)

1 Mand. sin. mit M₁₋₂.

Microtus arvalis (Pall.)

3 M₃ sup. sin., 1 M₃ sup. dext. – Wie unten erwähnt wird, gehört wahrscheinlich noch weiteres Material zu dieser Art. – Betreffend Extremitätenknochen siehe unten.

Microtus arvalis (Pall.) an Pitymys multiplex Fatio

8 Mand. dext., 20 Mand. sin., z. T. ohne M₁, 6 Maxillarfragmente, sämtliche jedoch ohne M₃. Diverse isolierte Zähne. – Die genaue Zuweisung zu einer der angeführten Art ist schwierig, denn wie das Ver-

gleichsmaterial zeigt, bestehen in der Zahnstruktur des M_1 inf. bei diesen beiden Arten nur geringe Unterschiede, die sogar oft ineinander übergehen. Zur genauen Bestimmung wären M_3 sup. notwendig. Da jedoch die isolierten M_3 sup. sämtliche zu Microtus arvalis gehören (siehe oben), ist anzunehmen, dass auch das andere Material zu dieser Art gerechnet werden darf. Der genaue Beweis kann allerdings nicht erbracht werden.

Pitymys multiplex Fatio

1 Schädelfragment mit M_{1-3} sin. und M_3 dext. – Betreffend Extremitätenknochen siehe unten.

Dicrostonyx torquatus Pall.

Diese Art ist belegt durch einen M₁ inf. dext. Ob 2 Femora und 1 Tibia hieher gerechnet werden dürfen, ist unsicher.

Die Extremitätenknochen der kleinen Nager

Die ziemlich grosse Menge der Langknochen der kleinen Nager kann nicht leicht bestimmten Arten zugeteilt werden, besonders da das Vergleichsmaterial nicht in grosser Anzahl vorhanden ist. Ferner zeigte es sich, dass innerhalb einer Art grosse Schwankungen in bezug auf die Grösse vorkommen, so dass eine genaue Bestimmung unseres Materials nicht möglich ist.

Das ganze Material kann durch seinen sofort auffallenden Grössenunterschied zwei Gruppen zugeteilt werden, jede Gruppe zerfällt wieder in 2 Untergruppen (Tab. 1), die Messungen des recenten Materials sind in der Tab. 2 zu ersehen.

Diese Messungen zeigen, dass wohl das gesamte Material der 1. Gruppe zu den Microtinen zu rechnen ist, jedoch kann die Art nicht genau festgelegt werden, da, wie die Tabelle zeigt, die in Frage kommenden Arten sich des öftern in ihren Grössen überschneiden oder nur äusserst geringe Längenunterschiede in den Extremitätenknochen aufweisen.

Unsere grösseren *Humeri* der 1. Gruppe passen sowohl auf Microtus arvalis wie auch auf Microtus nivalis, die kleineren scheinen eher Pitymys multiplex anzugehören. – Die grösseren *Ulnae* dürfen zu M. arvalis, die kleineren zu P. multiplex gerechnet werden. – Die *Radii* passen zu beiden in Frage kommenden Gattungen; die Zuteilung der *Femora* erfolgt wiederum zu Microtus und Pitymys und gleich verhält es sich bei den *Tibiae*.

Die Knochen der 2. Gruppe passen zu den Arvicoliden, ob auch die dem Dicrostonyx zugeteilten Knochen hieher gehören, kann nicht

Tabelle 1

Extremitätenknochen der kleinen Nager, fossiles Material

Durchschnittswerte, Masse in mm

			1. Gruppe	n p p e				2. Gruppe	nppe	
		groß			klein		gr	groß	klein	in
	Anzahl	Länge	Distal- breite	Anzahl	Länge	Distal- breite	Anzahl	Länge	Anzahl	Länge
Scapula	5		Fragmen	te, nicht	Fragmente, nicht aufteilbar				1	
Humerus	11	14,5	4,0	5	12,5	3,0	2	nic durchsch	nicht aufteilbar durchschnittl. Länge 17,0	bar nge 17,0
Radius	7	nicht a	ufteilbar,	durchsch	aufteilbar, durchschnittl. Länge 10,0	ge 10,0	1	18,2	1	17,0
Ulna	5	15,0	Ĺ	4	11,0		1	ca. 20	1	18,0
Becken	9		Fragmen	te, nicht	Fragmente, nicht aufteilbar		1	Fragmer	Fragment, nicht aufteilbar	ufteilbar
Femur	13	15,5		11	11,5		_	22,0	7	18,0
Tibia	17	19,5		8	16,0	I	4	26,0	4	21,0

Tabelle 2
Extremitätenknochen der kleinen Nager, recentes Material
Masse in mm

	Humerus	erus	Radius	Ulna	Femur	Tibia
	Länge	Distalbreite	Länge	Länge	Länge	Längc
Arvicola shermann Miller	19,7	5,0	16,2	21,0	20,0	21,8
Arvicola terrestris L.	17,0–20,3	5,0	15,0–16,1	20,0–21,5	18,0–24,5	20,5–26,3
Microtus nivalis (Martins)	13,8	3,0	I	16,7	15,5	20,0
Microtus arvalis (Pall.)	11,0–13,7	3,0–3,8	10,5–11,5	13,0–15,2	12,3–16,5	15,8–18,8
Pitymys multiplex Fatio	11,5	3,5	9,5	12,0	13,0	16,0
Dicrostonyx torquatus (Pall.).	18,5	5,0	16,0	20,0	22,0	21,2
Dicr. torquatus (Pall.), fossil.	18,0	5,0	I	I	19,0–22,8	21,5–22,0

endgültig abgeklärt werden. Die Radii sind alle etwas zu gross verglichen mit Tabelle 2, dürfen aber gleichwohl noch hieher gerechnet werden.

Equus caballus L.

Von wahrscheinlich nur einem Individuum sind diverse isolierte Zähne vorhanden, ferner 2 gut erhaltene Phalangen II und 3 Stück Phalangen III, ferner diverse Carpalia und Tarsalia, Sesambeine und Knochenfragmente der Langknochen. In Grösse und Struktur stimmen die Überreste vollkommen mit dem Wildpferd von Thayngen und Veyrier überein.

Equide

Von einem kleinwüchsigen Equiden ist das Scaphoideum sin. erhalten, das allerdings etwas verwittert ist, jedoch nicht so stark, dass nicht seine ursprüngliche Grösse festgestellt werden konnte. Es zeigt kleinere Ausmasse als Equus asinus.

Rangifer tarandus L.

Gewichtsmässig stammt die grösste Menge der Überreste vom Ren. Es sind allein 31 Mandibelfragmente, 3 Mandibelfragmente von jungen Tieren, 5 Maxillarfragmente und etwa 300 isolierte Zähne vorhanden. Ferner eine grosse Menge Knochenfragmente, wobei die Distal- und Proximalfragmente vom Mc- und Mt-Canon stark vertreten sind, ebenso sind Phalangenfragmente, Tarsalia und Carpalia häufig vorhanden. Wie im Fundmaterial anderer Höhlen, so sind auch bei uns nur sehr wenig ganzerhaltene Knochen anzutreffen, selbst die Phalangen sind aufgebrochen. Wirbel, Rippen und Schädelfragmente (abgesehen vom Petrosum) sind relativ selten. – Die Individuenzählung nach den Zähnen und Knochen führt auf eine Zahl von etwa 25.

Cervus elaphus L.

1 proximaler Teil einer rechten Geweihstange, nebst weiteren kleineren Geweihfragmenten belegt eindeutig diese Art. Vorhanden sind noch diverse isolierte Zähne und 1 Scapulafragment. Die verschiedene Abkauung der Zähne weist auf 2 Individuen.

Capra ibex L.

2 Mandibelfragmente, eine grössere Anzahl isolierter Zähne, Fragmente vom Mc- und Mt-Canon, Phalangen und Sesambeine. Das Mandibelfragment dext. zeigt kleine Ausmasse, liegt aber innerhalb der Variationsbreite des Steinbocks.

Grosser Bovide

Diverse Zähne, 1 Distalfragment des Mc-Canons, 1 Beckenfragment (grösster Durchmesser des Acetabulums: 75 mm), 1 Scapulafragment und einige weitere Langknochenfragmente. Sämtliche Knochen, wie auch die Zähne, übertreffen an Grösse die entsprechenden Stücke des Hausrindes, sie zeigen grosse Ähnlichkeit mit dem amerikanischen Bison.

Knochen von Jungtieren

Diverse Knochenfragmente stammen von juv. Tieren, sie sind teils dem Ren, teils dem Steinbock zuzuteilen. Es handelt sich mindestens um 2 Individuen.

Vögel

Lagopus

Wie Hescheler (1907) und Nehring (1902) gezeigt haben, ist die Unterscheidung der beiden Schneehuhnarten nur durch die Messung des Tarso-Metatarsus genau möglich. Die Masse sämtlicher anderer Knochen überschneiden sich, wie Tabelle 3 zeigt:

Längenmasse der Extremitätenknochen der Gattung Lagopus

Zusammengestellt nach Nehring (1902), Hescheler (1907) und

Sarasin/Stehlin (1918)

	L. mutus (Leach)	L. lagopus L.
Humerus	55,0–61,5	56,0–66,0
Radius	51,0-54,0	
Ulna	57,0-59,0	53,5-55,0
CMetacarpus	31,9–34,0	33,0-38,0
Femur	56,5–58,0	56,0-58,0
Tibiotarsus	71,0–73,0	71,0–74,5
TMetatarsus	30,0–35,0	Durchschnittl. 38,0
Coracoid	42, 0	_
	5)	

Zur Bestimmung ist man also gezwungen, mehr auf die morphologischen Unterschiede zu achten, besonders auf den etwas grazileren Bau sämtlicher Knochen bei L. mutus, besonders da auch Epiphysenmessungen an den Humeri nicht ganz befriedigen. Die Unterschiede betragen hier nach Messungen obiger Autoren nur 0,5–1,0 mm. Bei unserem Material sind wir so vorgegangen, dass wir zuerst sämtliche Tarsometatarsi nach ihrem Längenunterschied den beiden Arten zugeteilt haben, ferner wurden die eindeutig grazileren Humeri und Femora L. mutus zugesprochen, die eindeutig gröberen Stücke dieser beiden Knochenarten L. lagopus. Das übrigbleibende Material (das die grosse Menge ausmacht) wurde mit Lagopus spec. bezeichnet, da trotz mehrmaliger Kontrolle dieser Rest nicht mit Sicherheit einer dieser Art zugewiesen werden konnte.

Lagopus lagopus L.

8 Tarso-Metatarsi mit einer durchschnittlichen Länge von 36 mm, 17 Humeri (und Humerifragmente) mit einer durchschnittlichen Länge von 58 mm. – Mindestens 10 Individuen.

Lagopus mutus (Leach)

18 Tarso-Metatarsi mit einer Länge von 31–35 mm, 25 Humeri (und Humerifragmente) mit einer durchschnittlichen Länge von 57 mm. – Mindestens 17 Individuen.

Lagopus spec.

Eine grosse Anzahl Knochen (besonders Fragmente) wurde mit L. spec. bezeichnet. Es kommen alle Extremitätenknochen vor, nebst Sternum-Fragmenten. Es sind allein 25 Femora und 17 Femurfragmente und etwa 25 Humerifragmente vorhanden. Eine Individuenzählung darf hier nur nach den Humeri vorgenommen werden, es handelt sich etwa um 16 Individuen, so dass wir auf eine Gesamtindividuenzahl (L. lagopus und L. mutus) von etwa 40 kommen.

Aquila chrysaetus (L.)

Vorhanden sind das 2. Zehenglied und das Krallenglied der Hinterzehe.

Sturnus vulgaris L.

Dieser Vogel ist belegt durch 2 Radii sin. et dext., die aber nicht die gleiche Grösse aufweisen: 33,0 und 34,8 mm, es muss sich also um 2 Individuen handeln. Ferner liegt ein Carpus-Metacarpus vor.

Montifringilla nivalis (L.)

1 Ulna dext.

Pyrrhocorax alpinus (V.)

1 Coracoid dext.

Reptilien

Salamandra spec. (maculosa?)

Auf einem kleinen Fundplatz wurden Überreste von mehreren Salamandern zu Tage gefördert. Vorhanden sind 30 Mandibeln und Mandibelfragmente, 40 Femora und Femurfragmente, 62 Humeri und Humerusfragmente, eine grosse Anzahl Zehenglieder und Wirbel. Es muss sich etwa um 25 Individuen handeln. Die Knochen stimmen gut mit Salamandra maculosa überein.

Amphibien

Rana spec.

Von einem kleinen Frosch (kleiner als R. esculenta) liegen diverse Langknochenfragmente vor.

Pisces

Unbestimmte Art

6 Fischwirbel sind vorhanden, die zu einer Art von der Grösse einer Forelle gehören. Eine ganaue Bestimmung konnte infolge Fehlens des Vergleichsmaterials nicht vorgenommen werden.

Unbestimmte Tierarten

1 kleiner Zungenbeinast konnte nirgends untergebracht werden, er scheint eher einem Raubtier als einem Huftier anzugehören. Eine 1. Rippe eines juv. Tieres, die durch ihre Schlankheit auffällt, konnte nicht bestimmt werden. Sie besitzt die Grösse der entsprechenden Rippe des juv. Steinbocks, zeigt jedoch andere Struktur.

Mittlere Schicht

Säugetiere

Ursus spelaeus Rosenm.

Der Höhlenbär ist in dieser Schicht vertreten durch einen P₁ inf. sin.

Lepus variabilis Pall.

1 Beckenfragment, 1 Mt. II dext., 1 Mc. III dext., 1 Incisiv, 2 Molarenfragmente, 1 Maxillarfragment ohne Zähne. Die Ausmasse und die Struktur dieser Überreste stimmen mit dem Vergleichsmaterial überein. Ein P₃ sup., der leider defekt war und später zerbrach, zeigte die typischen Merkmale dieser Art.

Arvicola spec. (amphibius?)

1 Maxillarfragment mit M₁ sin. et dext. zeigt Struktur und Grösse von A. amphibius. Infolge Fehlens der M₃ sup. kann eine genaue Bestimmung nicht vorgenommen werden.

Rangifer tarandus L.

Distalfragment vom Mc-Canon, 1 Phalanx, 1 Sesambein. Trotz der geringen Überreste kann sicher auf das Ren geschlossen werden.

Vögel

Lagopus spec.

1 Tarso-Metatarsus-Fragment.

Scolopacide (Gallinago media Frisch?)

1 Humerus sin. ohne Proximalteil, 1 Tarso-Metatarsus sin. Die beiden Stücke konnten nicht eindeutig bestimmt werden, sicher ist nur ihre Zugehörigkeit zu den Scolopacinae, den eigentlichen Schnepfenvögeln. Die Beschaffenheit des Distalgelenkes des Humerus, besonders des proximal gerichteten Fortsatzes auf der cranialen Seite, der klein, abgerundet und wenig vom Schaft abstehend ist, deutet auf eine nahe Verwandtschaft zu Scolopax rusticola L., der Waldschnepfe, hin, jedoch zeigt der Knochen Ausmasse, die ihn für diese Art zu klein erscheinen lassen. Gleiche morphologische Beschaffenheit zeigt auch Gallinago gallinago (L.), die Bekassine, die jedoch zu kleine Masse aufweist. (Tab. 4)

Tabelle 4
Humerusmasse von Scolopaciden, in mm

	Länge	Breite der Distal- epiphyse vom Epi- cond. lat. bis E. medialis	größter Durch- messer des Corpus humeri
Scolopax rusticola L Unser Humerus Gallinago gallinago (L.).	53	9,5	4,5
	43–45 ²	6,9	3,2
	38	6,1	3,0

Möglicherweise kommt Gallinago media Frisch, die grosse Sumpfschnepfe, in Frage, die leider in der Sammlung nicht vorhanden ist

² Infolge Defekt nur schätzbar.

und so nicht kontrolliert werden konnte. Gallinago gallinago (L.) besitzt eine Flügellänge von 125–135 mm, Gallinago media Frisch dagegen eine von 140 mm, was den Längenunterschied des Humerus erklären könnte. – Wahrscheinlich zur gleichen Art gehört der Tarso-Metatarsus, der trotz gleicher morphologischer Beschaffenheit nicht vollständig zum entsprechenden Stück von Scolopax rusticola L. passt, da unser Knochen schlanker und graziler gebaut ist. Der grazilere Bau weist wiederum auf Gallinago gallinago (L.), unser Stück jedoch hat eine grössere Länge (Tab. 5).

Tabelle 5

Tarso-Metatarsus-Masse von Scolopaciden, in mm

	Länge	Max. Epi- physen- breite	Distalbreite: Abstand der Trochleae	Breite des Schaftes
Scolopax rusticola L Unser TMetatarsus Gallinago gallinago (L.).	35,0	6,0	6,5	3,0
	38,0	5,0	5,8	2,3
	33,8	5,0	5,0	2,0

Auch hier passt Gallinago media Frisch wohl am besten.

Unterste Schicht

Säugetiere

Leucocyon lagopus (L.) Koby det.

1 Phalanx I pedis.

Vulpes vulpes (L.)

9 C inf. et sup., M_1 sup. sin., P_1 sup. dext. Div. P und I. 1 Schwanzwirbel. – 2–3 Individuen.

Canis spec.

1 M2 inf. sin., stark abgekaut und ein wenig defekt.

Ursus spelaeus Rosenm.

2 ID₃, 2 CD, D₁ inf. dext. M_1 inf. dext., M_2 inf. dext. (Fragm.) I_3 inf. dext. (Fragm.), I_1 sup. dext. I_1 sup. sin. P₁ sup. sin., I₃ sup. sin. (Fragm.), D₁ inf. dext. ID₃ sup. I₁ sup. sin., I₂ inf. dext., 1 Maxillarfragment sin. – Mindestens 2 ad. Individuen und 2 juv. Individuen.

Ursus spec. Koby det.

I₃ sup. sin., I₃ sup. dext., M₁ inf. dext., M₁ sup. sin. F.-Ed. Koby, der die Bestimmung dieser Zähne freundlicherweise übernommen hat, schreibt: «Alle 4 Zähne gehören anscheinend dem gleichen Individuum. Es handelt sich um einen grösseren arctoiden Bären mit ausgesprochenen spelaeoiden Merkmalen. Sehr auffallend ist die Kürze der Wurzel der Incisiven: Ursus spec., weder U. spelaeus noch U. arctos.» Unsere Untersuchungen ergaben folgende Resultate:

Incisiven:

Länge der Incis	siven:															
Ursus spelaeus:	Mittelwert a	us 1	5	Мe	SS	un	ge	n:					1.00		49	mm
Ursus arctos:	durchschnitt	lich		•			•			•				•	20	mm
Ursus spec.:	I ₃ sup. dext.		101	•		•				•			•		4 0	mm
	I ₃ sup. sin.		•	٠	•	٠	•	٠	•	•	•	•	٠		39	mm
Längenverhältn	is Wurzel: K	rone	e (.	Mε	ess	un	ge	n	am	ı I	nn	en	ra	nd)):	
U. spelaeus (Mi	ttelwert aus 6	M	ess	un	ge	n)	: 2	:7:	20) =	= Ca	a. !	5:4	4.		

U. spec.: 20:19 und 20:20 = ca. 1:1.

Die Abflachung auf der medialen Seite der Wurzel ist bei unserem Bär geringer als bei U. spelaeus, der mediale Höcker dagegen ist bedeutend grösser.

Molaren:

M₁ inf. dext.: der Zahn ist leider stark abgekaut, was die Beobachtungen erschwert. Seine Länge beträgt 26 mm, die Breite 14 mm, grössenmässig liegt er also auch in der Variationsbreite des U. arctos. U. spelaeus misst durchschnittlich 29 mm × 14 mm. Der Zahn ist plumper gebaut als der entsprechende des U. arctos, der vordere Teil weist spelaeoide Merkmale auf. – M₁ sup. sin.: Länge 24 mm, Breite 19 mm. Grössenmässig könnte auch er zu U. arctos passen, doch auch er ist plumper gebaut und zeigt auf der labialen Seite Strukturen, die zu U. spelaeus hinweisen. Der Zahn ist abgenutzt und beschädigt.

Lepus an Oryctolagus Koby det.

Ein I inf.

Arvicola terrestris L.

1 Humerus sin.

Arvicola spec.

M₂ inf. sin., 1 Femur dext., 2 Phalangen.

Equus caballus L.

D₁ inf. sin., I inf.

Rangifer tarandus L. Koby det.

Mt.-Canon dext., Distalfragment, diverse isolierte Zähne, Phalangenfragmente, Sesambeine, 1 Cuboidnaviculare sin., 1 Mc.-V-Griffel. – 2 Individuen.

Capra ibex L. Koby det.

Diverse isolierte Zähne, 1 (fragliches) Radiusfragment.

Bovide

1 Incisiv.

Vögel

Lagopus lagopus (L.) Koby det.

1 Humerus dext., 1 Coracoid dext., 1 Radiusfragment sin.

Corvus corone L.

1 T.-Metatarsus sin., (Fragment), 1 Femur sin., (Fragment), 1 Coracoid sin. (Fragment).

Reptilien

Tropidonotus natrix L.

Unter- und Oberkieferfragmente, Wirbel und Rippen. – 1 Individuum.

Zusammenfassung

Oberste Schicht: Spätes Magdalénien

Die grösste Menge des uns zur Bestimmung übergebenen Materials (ca. vier Fünftel) stammt aus der obersten Schicht. Wie die Artenliste zeigt, handelt es sich um eine Fauna, wie sie schon des öftern aus diesen Schichten zu Tage gefördert wurde (vgl. die Faunen-Listen der Höhlen des Birstales und auch der Fundstätten des Schaffhausergebietes). Neue Tierarten wurden keine gefunden und es erübrigt sich somit, längere Betrachtungen über die Faunenzusammensetzung und der daraus resultierenden Klimafrage anzustellen, da diese Probleme von anderen Autoren eingehend behandelt worden sind. Hier seien

nur kurz die Unterschiede zu den in der gleichen Gegend ausgegrabenen Tierresten diskutiert.

Zahlenmässig überragen die Reste der Nahrungstiere der Menschen der Magdalénien-Periode auch bei unserem Material. Das Ren ist mit ca. 45, der Schneehase mit rund 55 und das Schneehuhn (Moorschneehuhn und Gebirgsschneehuhn) mit ungefähr 40 Individuen vertreten. Die Anzahl dieser primären Jagdtiere liegt also beträchtlich über den andern in unserer Höhle aufgefundenen Tiere, zählen wir doch nur 1 Wildpferd, 1 grossen Boviden, 7 Wölfe, 3 Füchse etc. Was die Jurastationen betrifft, steht die Kastelhöhle in bezug auf Quantität der 3 obgenannten Arten in den vordersten Rängen, mit den Schaffhauser Höhlen kann sie sich allerdings nicht messen. Ungefähr gleichviel Individuen wurden in Ettingen konstatiert (50 Hasen, 40 Schneehühner). Für die wahrscheinlich sehr grosse Menge der in der Kohlerhöhle zu Tage geförderten Knochen sind leider keine Zahlen vorhanden (abgesehen von den Nagetieren). Geringer vertreten als in den andern Jurastationen sind allerdings die Equiden und Boviden; Musteliden und die sylvicolen Nagerarten fehlen bei uns gänzlich. Im Vergleich zu den Schaffhauser Stationen ist noch die schwache Anwesenheit juveniler Huftiere zu erwähnen, die allerdings auch in den andern Birstal-Höhlen gering vertreten sind. Quantitativ stehen auch die kleinen Nager und unter diesen besonders der Halsbandlemming zurück, was verglichen mit der Kohlerhöhle sofort auffällt.

Vergleichsmässig seien hier die kleinen Nager zusammenfassend angeführt:

1 Mandibel

Prozentuale Verteilung (Mandibeln):
Arvalis-agrestis-Form....81 %
Microtus ratticeps K. et Bl... 16 %
Microtus nivalis (Martins) ... 3 %

Microtus nivalis (Martins)

Das arktische Element (M. ratticeps und der in der prozentualen Verteilung nicht aufgeführte Dicrostonyx torquatus) und das alpine Element (M. nivalis) sind hier gegenüber der allgemeinen Nagerfauna bedeutend weniger vertreten, aber infolge des geringen Materials ist

obige Zusammenstellung nicht bindend und kann für eine genaue Analyse der Magdalénien-Fauna nicht benutzt werden, im Gegensatz zu der ungeheuren Menge der Nagerreste der Kohlerhöhle.

Die geringe Vertretung des arktisch-alpinen Elementes finden wir auch wieder bei den Nicht-Nagern, wenn wir von den beiden Nahrungstieren Ren und Schneehase absehen. Von den typisch arktischen Vertretern sind Eisfuchs, Halsbandlemming, nordische Wühlratte und Moorhuhn vertreten, was ungefähr der Zusammensetzung der arktischen Fauna der übrigen Magdalénien-Stationen entspricht, jedoch sind bei uns diese Arten wiederum in nur geringer Quantität vorhanden, wenn wir vom wichtigen Nahrungstier Moorhuhn absehen. – Die Vertreter der alpinen Fauna, Murmeltier, Schneehase, Schneemaus, Steinbock, Gebirgsschneehuhn, Steinadler und Alpendohle sind auch nur gering vertreten, die Gemse fehlt vollständig.

Eine besondere Note in die Tierzusammensetzung bringt der Nachweis des rötlichen Ziesels und des Hamsters, beides sind typische Steppentiere. Letzterer allerdings ist ein anpassungsfähiges Tier und kann auch in anders gearteten Gebieten sein Dasein fristen. In den Jurastationen im Birstal wurde der Hamster nur am Schlossfelsen von Birseck gefunden, er ist hier zum ersten Mal auch für die Stationen im Innern des Gebirges nachgewiesen. –

Bei den Knochenfragmenten und Zähnen, die von einem grossen Boviden stammen, handelt es sich um die schon seit langer Zeit in jeder Magdalénien-Station festgestellte Art. Sie weist die Grösse eines amerikanischen Bisons auf.

Die Vogelfunde zeigen nichts Besonderes. Das Schneehuhn als Nahrungstier überragt die andern Arten beträchtlich. In unserem Material überwiegt das Gebirgsschneehuhn (64 %), das Moorschneehuhn kommt auf nur 36 %. Obwohl nach *Stehlin* (1918) das Birstal für das Moorschneehuhn geeigneter ist, erreicht bei unserem Material das Gebirgsschneehuhn die grössere Individuenzahl.

Abschliessend können wir als eine Besonderheit das Vorkommen von ca. 25 Salamandern festhalten, die sämtliche am gleichen Platz gefunden wurden. Da die Feuersalamander den Winter gemeinsam an einem Ort mit einer Art «Winterschlaf» verbringen, scheint es sich hier um diese Art zu handeln, die durch irgend eine Begebenheit den Tod gefunden hat.

Mittlere Schicht: Frühes Magdalénien

Die Tierfunde der mittleren Schicht sind äusserst gering und fragmentarisch, mengenmässig macht dieses Knochenmaterial etwa 3 % der uns übergebenen Funde aus. Die interessantesten Fundstücke sind der Humerus und der Tarso-Metatarsus eines schnepfenartigen Vogels. Wahrscheinlich handelt es sich um die grosse Sumpfschnepfe, die damit zum ersten Mal nachgewiesen worden wäre.

Unterste Schicht: Moustérien

Sehr interessante Überreste stammen aus dem Moustérien, leider jedoch ist auch hier die quantitative Ausbeute gering. Nebst den auch im Magdalénien vorkommenden Arten tritt hier der Höhlenbär in grösserer Anzahl auf (ca. 30 % der Gesamtindividuenzahl).

Sehr interessant sind die Funde von Bärenzähnen, die sowohl Merkmale vom Braunbär wie auch vom Höhlenbär aufweisen. Eine genaue Beschreibung des Tieres kann infolge der Defekte der Fundstücke nicht gegeben werden.

Liste der in der Kastelhöhle nachgewiesenen Tierarten

Oberste Schicht: Spätes Magdalenien

Raubtiere:

Lynx lynx (L.) Leucocyon lagopus (L.) . Vulpes vulpes L Canis lupus L	•	•		•	•	•	Eisfuchs gemeiner Fuchs
	I	nse	ki	tenj	fre.	SSE	er:
Talpa europaea L	•			•			Maulwurf
Sorex araneus L							
Sorex minutus (L.)	•	•		٠	•	٠	Zwergspitzmaus
Soticide							
Neomys fodiens (Schreber)		•	•	٠	٠	*	Wasserspitzmaus
		Ι	Va	get	ier	e:	
Lepus variabilis Pall	•	•	•	•	•	٠	Schneehase

Arvicola spec. (amphibius?) (wahrscheinlich) Schermaus

Microtus ratticeps K. et Bl nordische Wühlmaus Microtus nivalis (Martins) Schneemaus Microtus arvalis (Pall.) Feldwühlmaus Microtus arvalis (Pall.) an Feldwühlmaus oder Pitymys multiplex Fatio Erdmaus Dicrostonyx torquatus Pall Halsbandlemming
Huftiere:
Equus caballus L
Vögel:
Lagopus lagopus (L.)
Aquila chrysaetus (L.) Steinadler Sturnus vulgaris L gem. Star Montifringilla nivalis (L.) Schneefink Pyrrhocorax alpinus (V.) Alpendohle
Reptilien:
Salamandra spec. (maculosa?) (wahrscheinlich) Feuersalamander
Amphibien:
Rana spec Froschart
Fische:
Pisces diverse Fischarten
Mittlere Schicht: Frühes Magdalénien
Raubtiere:
Ursus spelaeus Rosenm Höhlenbär

Nagetiere: Lepus variabilis Pall	
Huftiere: Rangifer tarandus L Ren	n
Vögel:	
Lagopus spec Sch Scolopacide (Gallinago media Frisch?) Sch sch	nneehuhnart nnepfenart (grosse Sumpf- nnepfe?)
Unterste Schicht: Moust	térien
Raubtiere:	
Leucocyon lagopus (L.) Eis Vulpes vulpes L. gen Canis spec. Hu Ursus spelaeus Rosenm. Hö Ursus spec. Bär	meiner Fuchs Indeart Ihlenbär
Nagetiere:	
Lepus an Oryctolagus	asserratte
Huftiere:	
Equus caballus L	n inbock
Vögel:	
Lagopus lagopus (L.)	
Reptilien:	
Tropidonotus natrix L Rin	ngelnatter

Literaturverzeichnis

- Baumann F. Die freilebenden Säugetiere der Schweiz. Bern, 1949.
- Blasius J. H. Naturgeschichte der Säugetiere Deutschlands. Braunschweig 1857.
- Blasius W. Über Spermophilus rufescens, Keys. und Blas. Verh. f. Naturw. zu Braunschweig, III. Jahresber. für 1881/82 und 1882/83.
- Spermophilus rufescens, KEYS. und BLAS. (der Orenburger Ziesel) fossil in Deutschland etc. Zoolog. Anz. Nr. 125/1882.
- Hescheler K. Die Tierreste im Kesslerloch bei Thayngen. Neue Denkschr. schweiz. nat. Ges. Bd. XLIII/1907.
- Hinton M. A. C. Monograph of the Voles and Lemmings. London 1926.
- Kafka J. Recente und fossile Nagethiere Böhmens. Arch. d. naturw. Landesdurchforschung von Böhmen, VIII., Bd. 5, Prag 1893.
- Kuhn E. in Тscнимі О.: Urgeschichte der Schweiz: die Tierwelt. Bern 1949.
- Mandach E., von. Die kleineren Wirbeltiere der prähistorischen Station «Bsetzi» bei Thayngen (Kanton Schaffhausen) Schweiz. Ber. nat. Ges. Freiburg i. B. Bd. XXVII, 2/1927.
- Skeletteile von Dicrostonyx groenlandicus. Meddelelser om Gronland, Bd. 112, Nr. 4/1938.
- Die kleinen Wirbeltiere der Kohlerhöhle. Mitt. nat. Ges. Schaffhausen 1946.
- Méhely L., von. Fibrinae Hungariae. Ann. Musei Nationalis Hungari 1914.
- Miller G. S. Catalogue of the Mammals of Western Europe. Brit. Museum London 1912.
- Nehring A. Die quaternäre Fauna von Thiede und Westeregeln nebst Spuren des vorgeschichtlichen Menschen. Arch. Anthropologie Braunschweig 1877 und 1878.
- Einige Notizen über die pleistocäne Fauna von Türmitz in Böhmen. Neues Jahrb. f. Mineralogie etc. Bd. II/1894.
- Rörig G. und Börner C. Studien über das Gebiss mitteleuropäischer recenter Mäuse. Arbeiten aus der kaiserl. biol. Anst. f. Land- u. Forstwirtschaft, V. Heft, II/1905.
- Sarasin F. Die steinzeitlichen Stationen des Birstales zwischen Basel und Delsberg. Neue Denkschr. d. schweiz. nat. Ges. Bd. LIV Abh. II/1918.
- Schaub S. und Jagher A. Zwei neue Fundorte von Höhlenbär und Höhlenhyäne im untern Birstal. Ber. d. schweiz. pal. Ges. in Eclog. geol. Helv. Vol. 38, Nr. 2/1945.
- Studer Th. Die Knochenreste aus der Höhle zum Kesslerloch bei Thayngen. Neue Denkschr. schweiz. nat. Ges. Bd. XXXIX/1904.

DIE MOLLUSKEN DER KASTELHÖHLE

Von Lothar Forcart

Die Kolonnen bezeichnen:

- A Kaltbrunnental. Nordhöhle ohne Schichtangabe. Nach Angabe von Herrn Th. Schweizer direkt aus dem Bereich der Magdalénienschicht.
- B Kaltbrunnental. Nordhöhle untere Schicht (18. August).
- C Kaltbrunnental. Südhöhle, Magdalénien.
- D Kaltbrunnental. Ohne Angabe der Höhle, 40 cm unter der Magdalénienschicht. Schnitt II 1949.

										A	В	С	D
Vitrinidae													
Eucobresia diaphana	٠	•	•	•	•	•	٠		٠	x			
Zonitidae											·		
Aegopinella nitens (Michaud)	٠	•	•	•		•	•			×			×
Nesovitrea hammonis (Ström)										x			
Oxychilus cellarius (Müller).	•	٠	•	•		٠	•		•	X	x	x	×
Oxychilus depressus (Sterki)	•	٠	•	•	٠	٠	٠		•		×	X	
Vitrea diaphana (Studer)		•	•	•	•	•	•	•	1.0				
Vitrea crystallina (Müll.)	٠	٠	•		•	•	•	•		×)
Euconulus fulvus (Müll.)	•	•	•		•	•	•	•	•	×			
Endodontidae													
Discus rotundatus (Müller) .			•	•		•	19.07		100	x	x	x)
Discus ruderatus (Hartm.).													
Helicidae													
Trichia hispida (L.)	•			1.0		٠				×			
Trichia villosa (Drap.)										x	10		i
Trichia montana (Stud.))
Euomphalia strigella (Drap.)											x	x	
Helicodonta obvoluta (Müll.)	•		•	•		•	•	٠	•	x	×	x	,
Helicigona arbustorum (L.) .	٠		•	•	×	•	•	¥	٠		x		,
Helicigona lapicida (L.)	٠		٠	٠	٠	•	•	•	•		X		
Isognomostoma isognomostor	na	(IM	rel.	.)	1.0	•				X		l
Cepaea hortensis (Müller) Cepaea sylvatica (Drap.)	•	•	•	٠	•	•	•	•			X		
Cepaea sylvatica (Drap.)	li•	•	•	•	٠	*	3 • 3	•	٠		×		
Fruticicolidae													
Fruticicola fruticum (Müll.)	•		39 1•1	•			•		•		×		
Valloniidae											2		
Vallonia costata (Müll.)			•			g/ (* €)	5			x		340	
Pleurodiscidae												+02	
Pyramidula rupestris (Drap.)	•	•	•	•		٠		•	•	×	5 s		

		A	В	С	Γ
Pupillidae					
Abida secale (<i>Drap.</i>)	1 10	x x x		x	
Enidae					
Ena obscura (Müll.)	•				>
Cochlicopidae					
Cochlicopa lubrica (Müll.)	• •	x			
Clausiliidae					
Cochlodina fimbriata (Rossm.)		x x			
Succineidae					
Succinea oblonga (Drap.)		×			
Ellobiidae					
Carychium minimum (Müll.)	• •	×			
Lymnaeidae					
Lymnaea truncatula (Müll.)	• •	×	æ		
Planorbidae					
Anisus leucostoma (Müll.)	•	×			
Cochlostomatidae					
Cochlostoma septemspirale (Raz.)	• •	×			:
Acmidae					
Acme lineata (Drap.)		x			

Zu den vorstehenden Faunulae kann man, soweit dies ohne Besichtigung der Grabstellen und ohne Profile möglich ist, folgende Bemerkungen machen:

A. Kaltbrunnental Nordhöhle, aus dem Bereich der Magdalénienschicht konnten 28 Molluskenarten bestimmt werden, von welchen 27 auch rezent im Gebiet vorkommen.

Die einzige rezent im Gebiet nicht mehr vorkommende Art ist der in einem Fragment vorliegende Discus ruderatus (Studer). Diese Art ist rezent in den Alpen und im Norden der palaearktischen Region häufig. Im Jura sind einige isolierte rezente Vorkommen bekannt. Die Art wurde in postglacialen Ablagerungen häufig in der Ebene gefunden, doch meist in grosser Individuenzahl. Dass nur eine Schale gefunden wurde, kann vielleicht darauf zurückgeführt werden, dass sie aus einer anderen Schicht durch Zufall in diese Schicht gelangte.

Die Zusammensetzung dieser Faunula spricht dafür, dass sie wahrscheinlich in die Höhle eingeschwemmt wurden. Die meisten Schalen haben einen feinen Kalküberzug, der sich leicht in destilliertem Wasser auflösen lässt.

B. Kaltbrunnental Nordhöhle, untere Schicht. Interessant ist das häufige Vorkommen von Oxychilus depressus (Sterki). Diese Art wird rezent in den Alpen und im Jura selten gefunden, was sowohl auf ihre Seltenheit, wie auch auf ihre verborgene Lebensweise zurückzuführen ist. Postglacial wird sie häufiger als rezent gefunden und hatte auch ein grösseres Verbreitungsgebiet.

Die Faunula zeigt eine auffallende Übereinstimmung mit der Molluskenfauna der Magdalénien-Station Veyrier am Salève, wie sie von Favre (1927: 349)³ mitgeteilt wurde.

- C. Südhöhle, Magdalénien. Diese Faunula ist mit derjenigen von B übereinstimmend, nur ärmer an Arten.
- D. 40 cm unter der Magdalénien-Schicht. Das Vorkommen von Cochlostoma septemspirale (Raz.) spricht für das verhältnismässig junge Alter dieser Schicht. Favre (1927: 263) schrieb: Cochlostoma septemspirale, die heute häufig ist, fehlt vollständig den alten postglacialen Ablagerungen mit Gonyodiscus ruderatus . . . Es ist demnach eine Art, die unser Land sehr langsam erreicht hat, aber sich hier stark und sehr schnell verbreitet hat. Nach Favre (1927: 416) erreichte diese Art die Schweiz in der atlantischen Epoche.

³ Favre J. 1927: Les Mollusques post-glaciaires et actuels du Bassin de Genève. – Mém. Soc. Phys. Hist. Nat. Genève, 40 (3): 169–434, pl. 14–27.

V. ZUSAMMENFASSUNG UND SCHLUSS

Von Leo Fey

Der Kanton Solothurn ist reich an urgeschichtlichen Fundstellen und wurde bis in die jüngste Zeit eifrig nach steinzeitlichen Siedlungen durchforscht. Eine Reihe prominenter Forscher untersuchten Höhlen, Freilandstationen und Pfahlbauten.

Erstmals bot sich im Kaltbrunnental die Gelegenheit zur umfassenden, systematischen Ausgrabung einer Höhle, zur genauen Profilaufnahme und zur Auswertung der Beobachtungen in verschiedener Hinsicht, aber doch so, dass alle die wissenschaftlichen Mitarbeiter in harmonischer und freudvoller Zusammenarbeit mit dem Ausgräber die in Erscheinung tretenden Probleme zu lösen und zu deuten versuchten. Das Resultat dieser zeitraubenden und oft sehr mühsamen Anstrengungen kommt in ihren Hauptzügen in der vorliegenden Veröffentlichung zum Ausdruck. Ihre Bedeutung wird dadurch erhöht, dass die Kastelhöhle im Gebiet des höhlenreichen Birstales liegt.

Mit zahlreichen bis auf den anstehenden Fels entnommenen Proben und deren Analysen gelang es Frau Prof. Dr. Elisabeth Schmid, die Entstehungsgeschichte der Höhle zu erklären. Ihre geologisch-sedimentologischen Untersuchungen brachten sie in Beziehung zum Fundgut und sie konnte so eine genaue Datierung, d.h. eine Einordnung in die einzelnen Phasen der letzten Eiszeit herstellen. Die detaillierten Angaben sind von ihr in: «Höhlenforschung und Sedimentanalyse », ein Beitrag zur Datierung des Alpinen Palaeolithikums (Basel 1958) festgehalten. Dort schreibt sie: dadurch «dass Th. Schweizer seine Leidenschaft für die Funde bezwang und die von mir vorgeschlagenen, zunächst aussichtslosen Schnittgrabungen in das steinige, schwer bearbeitbare Liegende vornahm ...» seien die zahlreichen, unbedingt erforderlichen Probenentnahmen möglich geworden.

Die exakt beschriebenen Sediment- und Kulturschichten liessen eine genaue typologische und statistische Bearbeitung des Fundgutes als wertvoll und notwendig erscheinen. Diese besorgte in freundschaftlicher Verbundenheit mit dem Ausgräber Prof. Dr. Roland Bay. Noch nie wurde ein unserem solothurnischen Boden entnommenes Fundinventar derart analysiert und mit den Artefakten analoger Schichten aus französischen und deutschen Höhlen verglichen. Da das Inventar aus den bekannten Fundschichten der beiden andern Höhlen des Kaltbrunnentals noch nicht bearbeitet ist, handelt es sich bei unserer Ausgrabung um die ersten derart stratigraphisch gesicherten Funde, welche hier eine Unterteilung des Magdaléniens zulassen. Somit ist

eine genaue Altersbestimmung des Birstal-Magdaléniens möglich, dies umso mehr, als die Fundstücke in genügender Anzahl, auch in bezug auf die vorkommenden Typen, vorhanden sind. Zur Erstellung der Statistik diente das gesamte Material, welches in den Museen von Dornach und Olten verwahrt bleibt und dort eine besondere Wertschätzung verdient.

Ebenso gründlich sind die faunistischen Überreste durch den Ausgräber gehoben und von Dr. H. R. Stampfli und L. Forcart bestimmt und bearbeitet worden.

Der Wunsch nach Vollständigkeit unserer Untersuchungen blieb unerfüllt. Die Ergebnisse der 1954 genommenen Proben für die Pollenanalyse waren für diese Publikation leider nicht beizubringen, wiewohl sie eine sehr wertvolle Ergänzung bedeutet hätten.

Zum Schluss kann der Verfasser dieser Zusammenfassung nicht alle, die mitgeholfen haben, dieses Werk zu ermöglichen, namentlich aufführen; allen aber gehört der wärmste Dank, sei es für die umfangreichen manuellen Vorbereitungen oder für die wissenschaftliche Bearbeitung.

Nach dem zu früh erfolgten Tode von Theodor Schweizer hat die A. K.⁴ den Verfasser mit der Betreuung und Auswertung der umfangreichen Funde aus der Kastelhöhle in dem Sinne beauftragt, dass er für die vollständige Bearbeitung besorgt sei, damit die von Anfang an vorgesehene und wünschbare Publikation im « Jahrbuch für solothurnische Geschichte » möglich werde. Der Aufgeschlossenheit und dem Verständnis der Mitglieder dieser Kommission, dem Einsatz des beauftragten Ausgräbers, sowie den gründlichen Kenntnissen seiner wissenschaftlichen, mit den modernsten Methoden arbeitenden Mitarbeitern verdankt diese Gesamtarbeit ihre Entstehung. Dass Th. Schweizer mit den grössten sich bietenden Schwierigkeiten fertig geworden ist, darf als besonders glücklich und wertvoll anerkannt werden. Leider hat die Veröffentlichung etwas lange auf sich warten lassen, und es blieb daher dem Ausgräber nicht vergönnt, die nun vorliegenden, beinahe vollständigen Resultate zu erfahren und die Diskussion mit seinen vielen Einzelbeobachtungen zu Ende zu führen. Dafür haben ihm seine beiden treuesten Mitarbeiter «auch in der Höhle » (Dr. E. Schmid, Dr. R. Bay) durch die Exaktheit ihrer Beiträge die letzte Ehre und Anerkennung erwiesen. Noch vor seinem Tode bedauerte er, dass die grosse Arbeit, die er mit so viel Freude in Angriff genommen, bei der ihm aber auch Enttäuschungen nicht ausblieben, unvollendet war. Nun geht das ihm gegebene Versprechen, dafür besorgt zu sein, dass Aufopfe-

⁴ A.K.: Kommission für Altertümer des Kantons Solothurn.

rung und Mühsal für die Erforschung der Kastelhöhle nicht nutzlos gewesen seien, in Erfüllung. Theodor Schweizer dürfte jetzt die Gewissheit haben, dass durch seinen Willen die solothurnische Urgeschichtsforschung um einen bedeutenden Beitrag auf dem Gebiete der Höhlenforschung bereichert wurde, der für unsere Verhältnisse erstmalig und einzigartig ist, dass die ihm anvertrauten reichlichen Mittel gerechtfertigt waren und dass das ihm entgegengebrachte grosse Vertrauen in schönster Weise im Dienste der Heimatforschung reichliche Früchte trug.