Zeitschrift: Jahresbericht der Geographischen Gesellschaft von Bern

Herausgeber: Geographische Gesellschaft Bern

Band: 10 (1890)

Artikel: Ueber eine geographisch-statistische Methode und ihre Verwerthung zu

einer Darstellung betreffend die Universitäts-Frequenz durch

schweizerische Studierende

Autor: Moser, C.

DOI: https://doi.org/10.5169/seals-321697

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

III.

Ueber eine geographisch-statistische Methode

und ihre

Verwerthung zu einer Darstellung

betreffend die

Universitäts-Frequenz durch schweizerische Studierende.

Vortrag des Herrn Dr. Ch. Moser in der Monatsversammlung vom 27. März 1890.

T.

Der Werth der Methoden, welche dazu dienen, gewisse statistische Thatsachen dem Auge übersichtlich darzustellen, findet immer allgemeinere Anerkennung.

Vor den blossen Zahlentabellen, besonders wenn diese sehr umfangreich sind, kommen den graphischen Methoden die grossen Vortheile zu, uns schnell, mit einigen Blicken orientiren zu lassen, und auch Gesetze und Regeln, welche gewisse Beziehungen der Thatsachen uns lehren, viel leichter erkenntlich zu machen.

Diese Vorzüge sind jedoch nicht allen Darstellungsweisen in gleichem Masse eigenthümlich. Im Fernern kommt es auch wesentlich darauf an, was man darstellen und was man dabei besonders hervortreten lassen will. In der Art, wie gewisse Thatsachen graphisch dargestellt sind, kann sich hinwiederum die besondere Auffassung und Denkungsweise des Darstellers wiederspiegeln.

Von diesen Gesichtspunkten aus bot die grosse Manigfaltigkeit der graphischen Methoden, welche bei den Uebersichtstabellen und statistischen Arbeiten der *Pariser Weltausstellung* des letzten Jahres für die verschiedenen Zweige und bei den verschiedenen Ländern zur Verwendung gelangten, ein sehr lehrreiches Studium.

Ich will jedoch im allgemeinen hierüber nicht weiter sprechen, sondern blos, wie die Einladung anzeigt, mich auf eine spezielle Methode einschränken, die dazu dient, statistische Thatsachen, welche sich an gewisse geographische Centren heften, darzustellen.

Es schien mir diese Methode vor den andern Methoden, welche dem erwähnten Zwecke dienten, einer Würdigung werth zu sein. Einmal zeichnet sie sich aus durch grosse Einfachheit und dann vermeidet sie in derselben Darstellung variable Winkel einzuführen.

Wir setzen voraus, dass die in Betracht fallenden geographischen Centren auf irgend eine Weise auf der Bildfläche verzeichnet seien.

Die Anzahl der in jedem geographischen Centrum darzustellenden Quantitäten sei n. Die einzelnen coordinirten Quantitäten für denselben Ort seien:

$$q_1, q_2, q_3, \ldots, q_{\lambda}, \ldots, q_n$$

 $q_1,\ q_2,\ q_3,\ \ldots,\ q_{\lambda},\ \ldots,\ q_{n}.$ Diese sind so darzustellen, dass ihre Zugehörigkeit zu dem Orte sofort, ohne weitere Erklärung, ersichtlich ist.

Die zu betrachtende Methode besteht nun darin, dass die Grössen q, als ähnliche Kreisausschnitte dargestellt werden.

Der Kreisausschnitt ist eine Figur, die begrenzt wird von zwei Radien und einem Kreisbogen. Die beiden Radien treffen im Kreismittelpunkte zusammen, und den Winkel, den sie einschliessen, nennen wir Mittelpunktswinkel. Der ganze Winkelraum um einen Punkt herum wird bekanntlich in 360 Grade getheilt, oder wenn man den Winkel durch Bogen des Einheitskreises misst, so kommt dem Einheitskreise der Umfang 2 π zu, wo π die bekannte Verhältnisszahl 3,14159 bedeutet.

Wir fordern nun, dass der Mittelpunktswinkel des Kreisausschnittes gleich dem n. Theile von 360° oder 2π werde. Sie sehen, dadurch ist die Constanz dieses Winkels für alle n Kreisausschnitte gewahrt und wir können die einzelnen Kreisausschnitte so aneinanderlegen, dass sie just den ganzen Winkelraum erfüllen.

Die Radien für die verschiedenen Kreisausschnitte mögen bezeichnet werden mit

$$r_1, r_2, r_3, \ldots, r_{\lambda}, \ldots, r_n$$

Der Inhalt I_{λ} eines Kreisausschnittes wird dann:

$$I_{\lambda} = \frac{r_{\lambda} \cdot 2\pi}{n} \cdot \frac{r_{\lambda}}{2}$$

und dieser hat der Quantität q_{λ} zu entsprechen, so dass

$$q_{\lambda} = p. \frac{\pi r_{\lambda}^2}{n}$$

wird. p bedeutet einen Proportionalitätsfaktor und ist für dieselbe Darstelluny eine Constante.

Aus dieser Grundgleichung folgt:

$$r_{\lambda} = \sqrt{\frac{n \ q_{\lambda}}{p. \ \pi}}$$

Der Radius des Kreisausschnittes ist demnach proportional der Quadratwurzel aus der Quantitöt der darzustellenden Grösse. Setzt man abkürzend

$$k = \sqrt{\frac{n}{p. \pi}},$$

so folgt

$$r_{\lambda} = k \sqrt{q_{\lambda}}$$

Die Gesammtquantitit sei Q und die mittlere Quantitit q. Es wird also

$$Q = \Sigma q_{\lambda}$$

und

$$q = \frac{Q}{n}$$

Daher ist nach der Grundgleichung

$$Q = \frac{p. \ \pi}{n} \ \Sigma \ r_{\lambda^2}$$

und

$$q = \frac{p. \pi}{n^2} \Sigma r_{\lambda^2}.$$

Der, der Gesammtquantität entsprechende Radius ist

$$R = k \, \mathbf{V} \, Q$$

und der q entsprechende Radius:

$$r = k \sqrt{q},$$

$$= \sqrt{\frac{n}{p. \pi} \cdot \frac{Q}{n}},$$

$$= \sqrt{\frac{Q}{p. \pi}}.$$

Der $mittlere\ Radius\ r$ ist also unabhängig von der Anzahl n, was auch sonst sofort ersichtlich ist.

Wir wollen den mittlern Radius r als Funktion der Radien r_{λ} darstellen. Indem man in der letzten Gleichung für Q seinen Werth substituirt, folgt:

$$r = \sqrt{\frac{1}{p \pi}} \cdot \frac{p \pi}{n} \sum r_{\lambda}^{2},$$

also

$$r^2 = \frac{1}{n} \sum r_{\lambda}^2$$

das heisst:

Das Quadrat des mittlern Radius r ist das arithmetische Mittel aus den Quadraten der einzelnen Radien.

Die Differenz zweier Quantitäten q_{μ} und q_{λ} ist

$$q_{\mu} - q_{\lambda} = \frac{p. \pi}{n} (r_{\mu}^2 - r_{\lambda}^2).$$

Hieraus ist

$$r_{\mu}-r_{\lambda}=rac{n}{p.\ \pi}\cdotrac{q_{\mu}-q_{\lambda}}{r_{\mu}+r_{\lambda}}$$

Aber es ist auch

$$r_{\mu}-r_{\lambda}=\sqrt{rac{n}{p.\,\pi}}\,(\sqrt{q_{\mu}}-\sqrt{q_{\lambda}}),$$

daher muss

$$\frac{n}{p.\,\pi} \cdot \frac{q_{\mu} - q_{\lambda}}{r_{\mu} + r_{\lambda}} = \sqrt[p]{\frac{n}{p.\,\pi}} \, (\sqrt[p]{q_{\mu}} - \sqrt[p]{q_{\lambda}})$$

sein. Hieraus ist

$$r_{\mu} + r_{\lambda} = \sqrt{\frac{n}{p. \pi}} (\sqrt{q_{\mu}} + \sqrt{q_{\lambda}}),$$

was stimmt.

Setzt man

$$q_{\mu} = q$$

so wird

$$q-q_{\lambda}=rac{p.\,\pi}{n}\,(r^2-r_{\lambda}^2).$$

Durch Summation $(\lambda = 1 \text{ bis } \lambda = n)$:

$$n q - \sum q_{\lambda} = p \cdot \pi r^2 - \frac{p \cdot \pi}{n} \sum r_{\lambda}^2$$

Die linke Seite ist *null*, somit muss es auch die rechte sein. Dies ist nur möglich, wenn

$$r^2 = \frac{1}{n} \sum r_{\lambda}^2$$

ist, eine Formel, welche wir bereits kennen.

Wünscht man für zwei verschiedene Darstellungen den Flächenmassstab constant zu erhalten, so hat man, wenn die Anzahl der Quantitäten n und n_1 ist, und die Radien der Kreissektoren mit rund r_1 bezeichnet werden:

$$\frac{\pi r^2}{n} = \frac{\pi r_1^2}{n_1}.$$

Hieraus wird

$$r: r_1 = \sqrt{n}: \sqrt{n_1}$$

$$r_1 = r \sqrt{\frac{n_1}{n}}.$$

oder

Die Radien verhalten sich wie die Quadratwurzeln aus den Quantitätenzahlen.

Ueber die Konstruktion des Winkels $\frac{2\pi}{n}$ will ich mich nicht verbreiten. Sie beruht auf der Theilung des Kreises in eine gegebene Anzahl gleicher Theile. Diese Aufgabe in ihrer Allgemeinheit genommen, bietet ein in vielen Beziehungen sehr interessantes Problem. Die einfachern Fälle lassen sich konstruktiv leicht behandeln.

Dass jede graphische Darstellung ebenfalls von den Grundlagen der Darstellung, den betreffenden statistischen Daten, begleitet sein muss, versteht sich für genauere Berechnungen von selbst. Jede graphische Methode will ja nur ein Hülfsmittel sein. Die Brauchbarkeit eines solchen aber ist stets relativer Natur.

II.

Zur Illustration der vorgeführten Methode könnte eine ganze Menge von treffenden Beispielen herangezogen werden. Ich habe ein solches gewählt, das sich auf die Frequenz der Universitäten bezieht, und dies nicht etwa nur aus dem Grunde, weil die vorstehende Methode dadurch auf einfache Weise veranschaulicht werden kann, sondern auch deshalb, weil meines Wissens zum erstenmale eine offizielle Statistik der schweizerischen Studierenden an den Universitäten der Nachbarländer vorliegt (s. "Zeitschrift für schweizerische Statistik" vom Jahre 1889).

Die Darstellung auf Tafel I will die Frage beantworten: Wo studiert unsere schweizerische academische Jugend? Wo studieren die Theologen, die Juristen, die Mediziner, und die Philosophen? Zur Orientirung ist links oben auf der Tafel angezeigt, welche Stelle die Kreisausschnitte für die einzelnen Fakultäten erhalten haben.

Die Erhebung der hier zu Grunde gelegten Zahlen verdanken wir dem eidgenössischen statistischen Bureau.

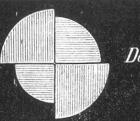
Bei den schweizerischen Universitäten ist die Zusammenstellung leicht, weil man da blos die Studentenverzeichnisse zu Rathe zu ziehen hat. Bei den ausländischen Universitäten ist es schwerer die gewünschten Zahlen zu eruiren, doch können wir uns füglich auf die vier angrenzenden Staaten Deutschland, Frankreich, Italien und Oesterreich-Ungarn beschränken.

Die Resultate stammen, wie das statistische Bureau mittheilt, für Deutschland aus den Studentenverzeichnissen oder — wo dieselben, wie bei Tübingen, über die Nationalität nichts enthielten — aus den Mittheilungen der betreffenden Rektorate; für Frankreich aus den Angaben, welche durch Vermittlung der schweizerischen Gesandtschaft in Paris die dortige Direktion des höheren Unterrichts-

wesens gab, und für Italien und Oesterreich-Ungarn aus kollegialischen Mittheilungen der dortigen statistischen Bureaux.

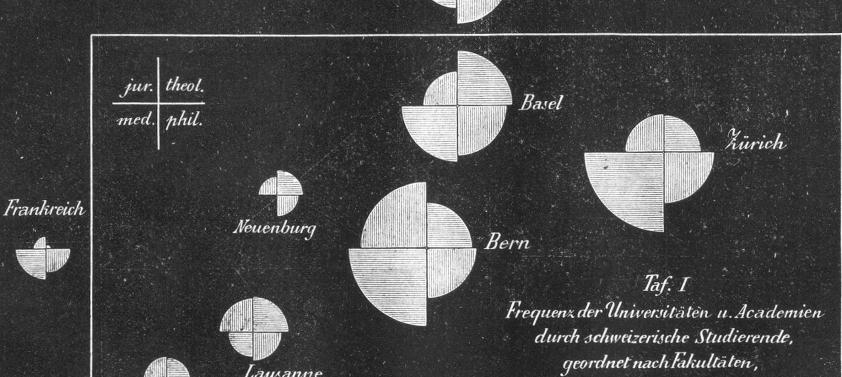
Ich lasse hier eine Uebersicht der Zählung der schweizerischen Studenten folgen:

Studienort	Theologen	Juristen	Mediziner	Philo- sophen	Total	Bemerkungen über das Semester der Zählung
Basel	84	36	100	73	293	1889, Sommer
Bern	62	124	173	71	430	n))
Genf	14	15	104	84	217	9)
Lausanne	35	30	19	29	113	» » »
Neuenburg	20	9	_	15	44	» »
Zürich	38	44	181	72	335	» »
Deutschland	68	98	57	83	306	1888 89, Winter
Frankreich	1	4	29	16	- 50	» »
Italien	<u>-</u>	8	30 ,	1	39	» »
Oesterreich-Ung arn	56	5	20	4	85	1888, Sommer

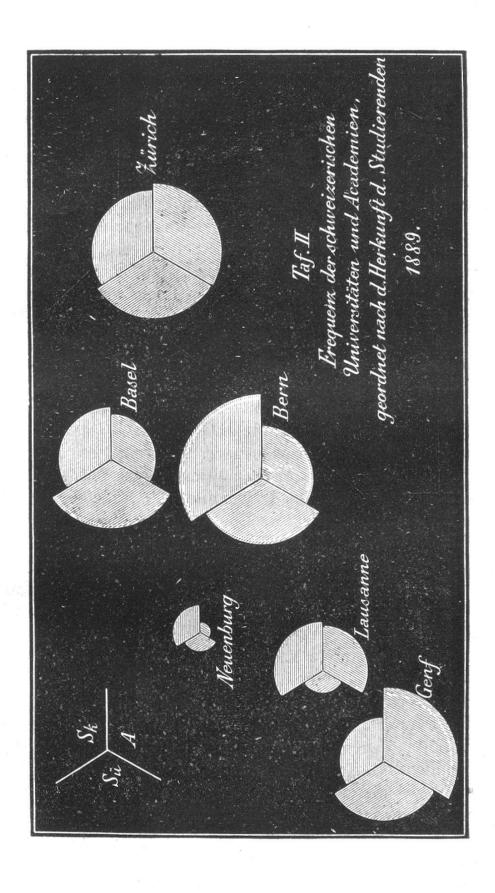

Die ganze Summe macht 1912 aus. Um die hier gegebenen Zahlen nach der entwickelten Methode darzustellen, haben wir zu setzen n=4, entsprechend den 4 Fakultäten. Die Mittelpunktswinkel werden also zu rechten Winkeln.

Ueber das Einzelne wollen wir uns nur wenige Bemerkungen erlauben.

Um für die Frequenz der Universitäten durch schweizerische Studierende allgemeine Schlüsse ziehen zu können, wäre es nothwendig, dass das Material für einen längern Zeitabschnitt zur Verfügung stände. Dies ist wohl für die schweizerischen Universitäten der Fall, in beschränktem Masse aber für das Ausland. Allein, die Frequenz der Hochschulen gehört nur in geringerem Grade zu jenen statistischen Thatsachen, welche nach einer Konstanz hinzielen. Vielmehr ist es die Aenderung eines früher vorhandenen Zustandes, welche zu besondern Ueberlegungen Anlass bieten kann. Gerade wie man bei den Volkszählungen die Statistik auch nur für einen Tag erhält, aber durch Vergleichen mit den Resultaten früherer Zählungen zu verschiedenen Schlüssen gelangt, so ist es auch hier Es ist also nothwendig, dass von Zeit zu Zeit eine neue Zählung vorgenommen werde. Dies wird auch vom eidgenössischen statistischen Bureau in Aussicht gestellt.


Obschon es für den Besuch der schweizerischen Universitäten leicht geworden wäre das Mittel der Frequenz für eine Anzahl von Jahren zu erübrigen, so habe ich doch vorgezogen, um eine ver-

Öst:Ung.


Deutschland

unter Xugrundelegung des Ergebnisses der ersten allg. Kählung, 1889.

Lausanne

Italien

gleichbarere Masse zu haben, auch nur die Frequenz eines Semesters zu berücksichtigen. Die ganze Tabelle repräsentirt also die Frequenz wie sie sich im *Frühling 1889* darstellte, sei es am Ende des Wintersemesters oder am Anfang des Sommersemesters. Nur bei Oesterreich-Ungarn liegt die Zählung etwas zurück.

Was die Homogenität des vorliegenden Materials weiter anbelangt, so ist noch die Bemerkung nicht überflüssig, dass nur immatrikulirte Studierende gezählt sind. Dieser Umstand bedingt jedoch, dass für Deutschland das Resultat ein günstigeres ist als für Frankreich. Die Schweizer-Studenten, welche nach Deutschland gehen, lassen sich dort meistens immatrikuliren, weil dies neben Studienvortheilen auch anderweitige Vergünstigungen zur Folge hat. In Frankreich dagegen wird, da der Studierende im bürgerlichen Leben keine besondern Vortheile geniesst, und der Zutritt zu den Vorlesungen ein freier ist, die Zahl der immatrikulirten schweizerischen Studierenden nicht die Zahl der sämmtlichen schweizerischen Studierenden angeben. Für Frankreich sind also die vorgeführten Zahlen zu klein. Es würde dies, wie ich aus Erfahrung schliesse, selbst dann noch der Fall sein, wenn die vorliegenden Zahlen nicht nur die «étudiants inscrits» sondern auch die von der Direktion angegebenen «auditeurs» einschliessen würden.

Immerhin beweist die Zusammenstellung, welch' grosse Anziehung Deutschland für die schweizerischen Studierenden hat. Ja, Deutschland ersetzt der Schweiz eine Universität von ungefähr der Grösse der schweizerischen Universitäten.

Bei Frankreich und Italien sind die Mediziner verhältnissmässig am besten vertreten.

Die vielen Theologen, welche nach Oesterreich-Ungarn (Innsbruck) gehen, dürften sich in der Zukunft wohl theilweise der neuen katholischen Universität in Freiburg zuwenden.

Bei den im Zeitpunkte der vorstehenden Statistik existirenden vier schweizerischen Universitäten sind überall die Mediziner am zahlreichsten vertreten.

Es ist frappant, dass die Juristen ihre Studien hauptsächlich in Bern und in Deutschland absolviren. Von den schweizerischen juristischen Fakultäten wird die bernische weitaus am meisten frequentirt. Der Grund dieser Erscheinung kann nicht nur etwa von der Zahl der zum Notariate sich vorbereitenden Berner herrühren. Selbst wenn man bei den einzelnen Universitäten diejenigen, welche dem betreffenden Universitätskantone angehören, subtrahirte und nur die Schweizer aus den andern Kantonen zählte, so würde die bernische juristische Fakultät jede der andern juristischen Fakultäten in der

Schweiz an Zahl bedeutend übersteigen. Es scheint also Bern hierin bevorzugt zu sein, was bei dem Zustandekommen einer eidgenössischen rechts- und staatswissenschaftlichen Hochschule von einigem Interesse sein mag. Die Juristen hoffen wohl, in der Bundesstadt den nationalen, eidgenössischen Gedanken in hervorragender Weise vertreten zu finden.

Tafel II bezieht sich blos auf die schweizerischen Universitäten und Academien. Sie enthält drei Gruppen:

- 1. Studierende aus dem betreffenden die Hochschule unterhaltenden Kantone (Sk).
 - 2. Uebrige schweizerische Studierende (Sü).
 - 3. Ausländer (A).

Die Zahl n wird also hier gleich 3, und die Mittelpunktswinkel werden zu 120°. Die kleine Orientirungsskizze links oben auf der Tafel gibt die Lage der Kreisausschnitte für jede der drei Gruppen an.

Die v	verwertheten	Zahlen	sind	die	folgenden:	:
-------	--------------	--------	------	-----	------------	---

Studienort	Sk	Sü	A	Total	Zeit der Zählung
Basel	111	182	65	358	1889, Sommer
Bern	259	171	99	529	» » »
Genf	84	133	218	435	.))))
Lausanne	90	23	66	179	» »
Neuenburg	30	14	3	47))
Zürich	157	178	179	514))
Schweiz	731	701	630	2062	

Bekanntlich haben in der Schweiz die Universitäten und Academien nur einen kantonalen Charakter. Auch finanziell werden diese Lehranstalten lediglich durch die betreffenden Kantone unterhalten. Aus diesem Grunde sind die Zahlen für die beiden ersten Gruppen getrennt aufgeführt.

Tafel II bildet insofern eine Ergänzung zu Tafel I, als sie die Frage beantwortet, in welchem Masse die Ausländer die Universitäten der Schweiz besuchen. Da die Zahl der schweizerischen Studierenden 1912 ist und diejenige der in der Schweiz überhaupt Studierenden 2062 beträgt, so sieht man, dass etwas mehr ausländische Studenten die Schweiz besuchen, als schweizerische das Ausland.

An Studierenden aus dem betreffenden Kantone ist besonders die Universität Bern reich. Dies ist nicht zu verwundern, da der Kanton Bern mehr als den sechsten Theil der schweizerischen Bevölkerung repräsentirt. Man ersieht übrigens, dass die Universitäten von den Angehörigen der betreffenden Kantone ziemlich stark frequentirt werden. In Basel wiegt die Zahl der Schweizer aus andern Kantonen bedeutend vor. In Zürich sind alle drei Gruppen gleichmässig vertreten.

Während die erste Tafel zeigt, dass die Universitäten Basel und Bern in eben demselben oder in noch stärkerem Masse von den Schweizern besucht werden als Genf und Zürich, ergiebt die zweite Tafel, dass die Ausländer sich mit Vorliebe nach den beiden letztgenannten Orten wenden.

Es wäre allerdings noch manche Bemerkung anzufügen. Aber weil ich durch die Darstellung dieses Beispiels nur die vorgeführte einfache Methode illustiren wollte und weil, um weitergehende Schlüsse zu ziehen, das Material einer längern Beobachtungszeit vorliegen müsste, begnüge ich mich mit dem Mitgetheilten.

Bei den grossen Fluktuationen, welchen die Frequenz der einzelnen Universitäten im Laufe der Jahrzehnte und Jahrhunderte unterworfen ist, bieten immerhin solche Stichproben ein gewiss nicht ganz zu unterschätzendes Material zu kulturhistorischen Studien.

