Zeitschrift: Beiheft zum Jahrbuch der Geographischen Gesellschaft von Bern

Herausgeber: Geographische Gesellschaft Bern

Band: 1 (1975)

Artikel: Bewölkungsuntersuchungen über der Sahara mit Wettersatellitenbildern

Autor: Winiger, Matthias

Inhaltsverzeichnis

DOI: https://doi.org/10.5169/seals-960237

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

INHALTSVERZEICHNIS	Seite
Vorwort Inhaltsverzeichnis Verzeichnis der Figuren und Abbildungen Abkürzungen Zusammenfassung - Résumé - Summary	5 7 9 12 13
1. Einführung 1.1. Trockenraum und Klimabeobachtung 1.2. Satellitenklimatologie	19 19 20
1. TEIL: METHODEN DER BEWOELKUNGSAUSWERTUNG	23
 Verwendetes Datenmaterial Satelliten Flugbahnen Sensoren Datenform Bildeigenschaften Technik der Bildauswertung Definition Bewölkungsgrad Datenreduktion und -verarbeitung Automatisierte Verfahren Semiautomatische Verfahren Manuelle Verfahren Genauigkeit der Schätzungen Vergleich der verschiedenen Auswertungsverfahren Einfluss des Bewölkungstagesganges Zusammenfassung von Teil 1 	24 24 24 25 26 27 31 31 31 32 34 34 42
2. TEIL: BILDAUSWERTUNG IN VERSCHIEDENEN SPEKTRAL- BEREICHEN	53
 6. Bewölkungsauswertungen in verschiedenen Spektralbereichen 6.1. IR oder Visible? 6.2. Bisherige Versuche und Probleme 6.3. Bildmaterial 6.4. Auswertungsverfahren 7. Ergebnisse des Bildvergleiches 	54 54 58 58 60 62
 7.1. Bedeckungsgrad im VIS- und IR-Spektralbereich. Bestimmung eines B-Wertes 7.2. B-Wert und Bewölkungsgrad 7.3. B-Wert und Wolkenarten 7.4. Jahreszeitliche Verteilung der Wolkenarten 8. Verifikation der Auswertung 8.1. Hauptschwierigkeiten 8.2. Terrestrische Bewölkungsgradbestimmungen mit Fischaugaufnahmen 	62 62 65 67 68 68
8.2.1. Bedeckungsgrad	71

	Seite
8.2.2. Abgrenzung des terrestrischen Gesichtsfeldes 8.2.3. Wolkenhöhebestimmung	71 71
8.2.4. Ergebnisse	79
9. Einfluss der Bewölkung auf Strahlung im VIS- und	7.5
IR-Spektralbereich	80
9.1. Strahlenarten	80
9.2. Atmosphärische Einflüsse auf Strahlung	83
9.3. Strahlungsmessungen über der Sahara	83
9.4. Strahlung und Bewölkung	85
9.4.1. Kurzwellige Strahlung	85
9.4.2. Langwellige Strahlung	85
10. Zusammenfassung von Teil 2	87
3. TEIL: BEWOELKUNGS- UND ZIRKULATIONSVERHAELTNISSE	
DER SAHARA AM BEISPIEL DES JAHRES 1968	89
11. Einführung und Problemstellung	90
12. Auswertung und Verifikation	91
13. Die langjährige mittlere Bewölkungsverteilung	
über der Sahara	100
14. Die Bewölkungsverhältnisse 1968	101
14.1. Bewölkung im Jahresablauf	104
14.2. Bewölkungsverteilung im Tibesti	107
15. Bewölkung und Niederschläge 15.1. Korrelation der Daten	111
15.2. Situation des Tibesti	111 114
15.2.1. Einflüsse der Zirkulation	114
15.2.2. Höhenstufung der Niederschläge	118
15.2.3. Hypothetische Niederschlagsverteilung inner-	110
halb des Tibesti	119
15.3. Starkregen	120
16. Ergebnisse von Teil 3	125
4. TEIL: MEHRJAEHRIGE BEWOELKUNGSANALYSEN UEBER DEN	
ZENTRALSAHARISCHEN HOCHGEBIRGEN TIBESTI, HOGGAR UND	
TASSILI N'AJJER	127
17. Einführung und Problemstellung	128
18. Auswertung und Verifikation	129
18.1. Satelliten	129
18.2. Datenausfälle	130
18.3. Auswertungsverfahren	130
18.4. Verifikation	131
19. Ergebnisse	131
19.1. Schwankungen der Gesamtbewölkung im mehrjäh-	
rigen Verlauf	131
19.2. Mittlerer Jahresablauf der Gesamtbewölkung 19.3. Jahreszeitliche Bewölkungskarten für die zen-	134
tralsaharischen Hochgebirgszonen	134
19.3.1. Höhenverteilung der Gebirge	135
19.3.2. Hoggar und Tassili n'Ajjer	135
19.3.3. Tibesti	136
20. Zusammenfassung von Teil 4	137
Literaturverzeichnis	138
Anhang	145

VERZEI	CHNIS DER ABBILDUNGEN, FIGUREN UND TABELLEN	Seite
Abb.1	Veränderlichkeit des Bewölkungsgrades inner-	
	halb kurzer Zeitspannen	51
Abb.2	Synchrone NOAA-2-Aufnahmen vom 21.10.73	55
Abb.3	Mercator Satellite Relative Cloud Cover	33
	Dec. 1967-1970 (MILLER, FEDDES, 1971)	57
Abb.4	Auswertungsverfahren am Beispiel eines	3,
	IR- und VIS-Bildes (17.10.73)	61
Abb.5	Auswertung einer Fischaugaufnahme am CLASSIMAT	72
Abb.6	Vergleich von IR-, VIS- und Fischaugaufnahmen	73
Abb.7	Wolkenbrücke zwischen Niger und Sirte, 8.4.1968	106
Abb.8	Wolkenverschleppung in den höheren tropischen	
	Ostwinden, 18.8.1968	106
Abb.9	Bewölkungs"quellgebiete" und Jetstreambewöl-	
	kung, 29.11.1968	112
Abb.10	Frontalniederschläge im Tibesti, 26.5.1968	121
Abb.11	Tropischer Sturm über Tunesien, 2129.9.1969	122
Fig.l	Bodenauflösung eines Satellitensensors	28
Fig.2	Die Abbildung von Koordinatennetzen in APT-	2.0
	und Scanneraufnahmen	29
Fig.3	Abhängigkeit des Bewölkungsgrades vom Beobach-	2.0
D: 4	tungsstandort	30
Fig.4	Punktauswertungen	36
Fig.5	Flächenhafte Auswertungen	37
Fig.6	Häufigkeitsverteilung der Bewölkungsgrade	
Pia 7	in Alger, Tamanrasset und Abidjan Abweichungen bei wiederholten Auswertungen	40
Fig.7 Fig.8	Verteilung synoptischer Stationen in Nordafrika	43 44
Fig.9	Testauswertung: August 1968: Synop.stationen	46
	Testauswertung: August 1968: Punktauswertung	47
	Testauswertung: August 1968: Flächenauswertung	47
	Häufigkeit der Bewölkungsklassen der ver-	47
119.12	schiedenen Auswertungsmethoden	49
Fig 13	Bewölkungstagesgang in Tamanrasset	51
	Häufigkeitsverteilung der Wolkenarten in	31
119.11	Tamanrasset	59
Fig.15	Anzahl wolkenfreie Tage im Satellitenbild	59
	Histogramm für B-Werte	63
	Schwankungsbereich der B-Werte	63
	Verteilung der Bewölkungsgrade von 230 Mess-	
,	feldern	64
Fig.19	Wolkenarten während der Messperiode	66
	Vergleich von B-Wert und Bewölkungsgrad	66
-	Die terrestrische Gesichtskreisberechnung	70
	Abgrenzung des terrestrischen Gesichtskreises	
=07	im Satellitenbild	70

Fig.23	Die Berechnung von Wolkenhöhen	76
Fig.23	Beziehung zwischen Strecken im Satellitenbild	70
119.24	und auf der Erdoberfläche	78
Fig.25	Spektrale Energieverteilung der Sonnenstrahlung	
Fig. 26	Spektrale Energieverteilung der terrestri-	02
119.20	schen Emission	82
Fig.27	Messung der direkten Sonnenstrahlung in Bardai,	02
119.21	Hassi Messaoud und auf dem Assekrem	84
Fig.28	Die Albedoverhältnisse von Cirrus-Wolken	86
Fig. 29	Die Abhängigkeit der Himmelsstrahlung vom	00
119.25	Bewölkungsgrad	86
Fig.30	Transmission von Cirrus-Bewölkung	86
Fig.31	Häufigkeitsverteilung von 120 K-Werten	90
Fig.32	Jahresgang der Bewölkung in Bengasi, Faya-	, ,
119.01	Largeau und N'Djamena	93
Fig.33	Langjährige mittlere Bewölkung über der	, ,
119.00	Sahara (Karte von DUBIEF, 1959)	96
Fig.34	Mittlere Bewölkung 1968 über der Sahara	97
Fig.35	Die saisonalen Bewölkungsverhältnisse 1968	98
Fig. 36	Jährliche und saisonale Bewölkung 1968	, ,
119.00	im Tibesti	102
Fig.37	Jährliche und saisonale Bewölkung 1968	102
119.57	im Hoggar	103
Fig.38	Jahresgang der Bewölkung entlang des Meridians	103
119.30	durch das Tibesti	105
Fig.39	Jahresgang der Bewölkung entlang des Meridians	103
119.33	durch den Hoggar	105
Fig.40	Mittlere Bewölkung 1968 für Tibesti und Hoggar	108
Fig.41	Bewölkung 1968 für Toussidé, Mouskorbé und	100
119.11	Emi Koussi	108
Fig.42	Regenerzeugende Wolkenzellen über dem Sudan	112
Fig. 43	Vergleich Bewölkungsmenge / Niederschlag über	112
119.10	Ostpakistan (BARRETT, 1974)	113
Fig.44	Regression zur Darstellung der Fig. 43	113
Fig. 45	Bewölkungs- und Niederschlagsprofil durch die	110
119.10	Sahara	115
Fig.46	Auslösungsmechanismus von Starkregen (VANNEY,	110
1 19.10	1960)	121
Fig.47	Bewölkung von Tamanrasset 1966-1972 aus Boden-	121
119.11	und Satellitenbeobachtungen	132
Fig.48	Schwankungen der Jahresbewölkung 1966-1972	132
	für Sahara, Tibesti und Hoggar	132
Fig.49	Bewölkungsgang im Tibesti und Hoggar für Höhen	101
5	oberhalb 1000 m	133
Fig.50	Streuung der monatlichen Bewölkung 1966-1973	
	für Hoggar, Tassili n'Ajjer und Tibesti	133
Fig.51	Bewölkungskarte 1966-1973 für den Hoggar	136a
Fig.52	Bewölkungskarte 1966-1973 für das Tibesti	136k

Seite

Tab.1	Verzeichnis der Satelliten	Anhang
Tab.2	Bewölkungsklassen bei der Flächenauswertung	41
Tab.3	Mittlere Bewölkung nach unterschiedlichen	
	Erhebungsverfahren	48
Tab.4	Albedowerte im sichtbaren Spektrum für ver-	
	schiedene Oberflächen	56
Tab.5	Bewölkungsschätzungen durch verschiedene	
	Beobachter	68
Tab.6	Veränderung der Gesichtsfeldanteile in terre	est-
	rischer Sicht und vom Satelliten	69
Tab.7	Vergleich unkorrigierter Bewölkungsgrade	79
Tab.8	Verlauf der monatlichen Transmissionskoef-	
	fizienten für Tamanrasset	83
Tab.9	Koeffizient K für 10 Kontrollstationen	94
Tab.10	Niederschlagswahrscheinlichkeit und -inten-	
	sität für verschiedene Wolkenarten	111
Tab.ll	Monatsniederschläge für 3 Tibestistationen	116
Tab.12	Lage der ITC 1968	117
Tab.13	Niederschlagsverteilung im Tibesti nach	
	verschiedenen Autoren	119
Tab.14	Liste der ausgewerteten Satellitendaten	129
Tab.15	Mittlere monatliche Datendichte 1966-1973	130

ABKUERZUNGEN

APT Automatic Picture Transmission ATS Applications Technology Satellite AVCS Advanced vidicon camera system DIBIAS Digitales Bildauswertungssystem ERTS Earth Resources Technology Satellite (heute Landsat) **ESSA** Environmental Survey Satellite GARP Global Atmospheric Research Program GATE GARP Atlantic Tropical Experiment HRIR High-resolution infrared Scanners IDCS Image Dissector Camera System IR Infra-Rot ITC Inter-tropical Convergence Zone Improved TIROS Operational Satellite ITOS MRIR Medium-resolution infrared Scanners NESS National Environmental Satellite Service, Suitland, Md. (früher NESC) National Oceanic and Atmospheric Administration NOAA Synchroneous Meteorological Satellite SMS Scanning Radiometer SR SSCC Spin-scan cloud camera TIROS Television Infrared Observation Satellite TIROS Operational Satellite TOS VHRIR Very high resolution Infrared VIS Visible (sichtbarer Spektralbereich) WAB W.A. Bohan Comp. OMW World Meteorological Organization

World Weather Watch

WWW

Die Arbeit umfasst methodische Aspekte der Satellitenbildauswertung bezüglich der Bewölkungsverhältnisse am konkreten Beispiel der Sahara und speziell seiner Hochgebirge. Die Bewölkung beeinflusst ihrerseits zahlreiche Klimaelemente und gibt in ihrer Dynamik ein Bild über die raum-zeitliche Dynamik der Atmosphäre. Es ergeben sich damit Ansätze zu einer Satelliten-Klimatologie.

Methodisch stehen folgende Fragen im Vordergrund:

- Kritische Würdigung des heute allgemein zugänglichen Datenmaterials.
- Ueberblick über die vorhandenen Auswertungsverfahren.
- Zur Problematik der Automatisierbarkeit der Bewölkungsauswertung in ariden Gebieten.
- Untersuchung über die Anwendbarkeit von Aufnahmen verschiedener Spektralbereiche und quantitative Bestimmung der Unterschiede in den Bewölkungsmessungen von Bildern im sichtbaren und infraroten Spektralbereich.
- Einfluss des Beobachtungstermines (Tagesgang der Bewölkung).
- Vergleichbarkeit der Boden- und Satellitenbeobachtungen durch genaue Messungen (Einsatz einer Spezialkamera).
- Entwicklung und Test vereinfachter Auswertungsverfahren, z.T. im Hinblick auf Anwendung in einfach ausgerüsteten Instituten in Entwicklungsländern. Ueberprüfung der Ergebnisse mit Hilfe eines quantitativen Auswertegerätes (CLASSIMAT).

Drei grössere Auswertungen wurden vorgenommen, die sich bezüglich Datenmaterial, Auswertungsmethode, Untersuchungsgebiet und -zeit unterscheiden.

- Untersuchung der Bewölkungssituation ganz Afrikas nördlich des Aequators mit Hilfe entzerrter Bildmosaike für das Jahr 1968.
- Eine Langfriststudie (1966-1973) über die zentralsaharischen Gebirge (Tibesti und Hoggar) unter Verwendung unentzerrter Bilddaten aus dem Observatorium Bochum.
- Feldarbeit im Hinblick auf die Verwendbarkeit von Daten unterschiedlicher Spektralbereiche.

Die Ergebnisse können wie folgt zusammengefasst werden:

- Methodisch: Grossräumig und langfristig sind statistische Erhebungsverfahren (punktuelle Binärentscheide) zweckmässig.
 - Kurzfristig ergeben flächenhafte Bestimmungen gute Ergebnisse.
 - Boden- und Satellitenbeobachtungen sind im Einzelfall nur über Umrechnungen miteinander vergleichbar (Ein Algorithmus dazu wird entwickelt und dargestellt).
 - Die Beeinflussung des Strahlungshaushaltes (versch. Spektralbereiche) durch verschiedene Wolkenarten erweist sich als äusserst komplex. Im Mittel ist der Bewölkungsgrad im IR-Bild doppelt so gross wie im sichtbaren Spektralbereich (Einfluss der Cirren).
- Räumlich: Raum-zeitlich ergeben sich aufschlussreiche Gliederungen in der Bewölkungsverteilung, insbesondere für die zentralsaharischen Gebirge, die sich mit anderen Bewölkungsuntersuchungen nur teilweise, mit Feldbefunden (z.B. Morphologie, Vegetation) dagegen sehr gut decken. Eine Feingliederung innerhalb der völlig stationslosen Gebirgsräume, die als klimatische Reaktivierungs- und Gunsträume angesprochen werden können, ist möglich.
 - Bezüglich der atmosphärischen Zirkulation konnte eine überragende Bedeutung meridionaler Austauschvorgänge nachgewiesen werden (Wolkenbrücken).
 - Eine Koppelung globaler Vorgänge insbesondere zwischen der Westwinddrift und den Meridionaldurchbrüchen lässt sich belegen.
 - Von Interesse ist die Lokalisierung von Quellgebieten der Jetstreambewölkung über dem östlichen Atlantik. Damit ist auch ein häufiger Ausgangspunkt des Subtropen-Strahlstromes festgelegt.
 - Der Einfluss der Bewölkung auf andere Klimaelemente wird diskutiert, insbesondere der Zusammenhang zwischen Bewölkung und Niederschlag (gezeigt am Beispiel des ersten Dürrejahres im Sahel).

RESUME

Recherches sur la nébulosité saharienne par l'image des satellites météorologiques.

Méthodes, problèmes et résultats présentés à l'appui de trois exemples.

Le travail comprend, relativement à la couverture nuageuse du Sahara et particulièrement de ses massifs montagneux, des aspects méthodiques quant à l'évaluation de l'image des satellites. La

nébulosité influe pour sa part sur de nombreux éléments climatiques et rend compte, dans sa dynamique, de la dynamique spatio-temporelle de l'atmosphère. Il en résulte ainsi un certain nombre d'hypothèses pour une climatologie par satellites.

Du point de vue méthodique, les questions suivantes se posent en priorité:

- Appréciation critique des données aujourd'hui accessibles dans leur ensemble.
- Contrôle des procédés disponibles d'évaluation.
- Possibilité d'automatiser l'évaluation de la nébulosité dans les contrées arides.
- Examen de l'applicabilité de prises de vue de domaines spectraux différents et définition quantitative des différences dans les mensurations d'images des domaines spectraux visibles et infrarouges.
- Influence du moment d'observation (évolution journalière de la nébulosité).
- Degré de comparaison entre les observations terrestres et par satellites par les biais de mesures précises (recours à une caméra spéciale).
- Elaboration et test de procédés d'évaluation simplifiés, notamment en vue d'une application dans les instituts sombrement équipés. Contrôle des résultats à l'aide d'un appareil d'évaluation quantitatif (Leitz-Classimat).

Trois évaluations d'importance ont été effectuées, lesquelles divergent quant aux données, quant à la méthode, quant au lieu et au temps de l'étude.

- Examen de l'état de la nébulosité africaine au nord de l'équateur à l'aide de mosaïques restituées pour l'an 1968.
- Etude à longue échéance (1966-1973) sur les massifs montagneux du centre Sahara (Tibesti, Hoggar, Tassili n' Ajjer) avec utilisation d'images non restituées de l'observatoire de Bochum.
- Travail sur le terrain en vue d'une possible utilisation de données relatives à des domaines spectraux différents.

Les résultats peuvent être récapitulés comme suit:

- Méthodiquement:

- La procédure par recherches statistiques (décisions binaires ponctuelles), appliquée dans un espace d'importance et à longue échéance, se montre appropriée.

- A brève échéance, les conclusions relatives à la superficie donnent de bons résultats.
- Les observations au sol et par satellite ne sont, dans chaque cas, comparables entre elles qu'une fois converties (un algorythme est élaboré et présenté à cet effet).
- L'influencabilité de la radiation (domaines spectraux divers) par diverses formations de nuages se révèle être de nature assez complexe. Dans l'image IR, le degré de nébulosité est en moyenne deux fois aussi important que dans le domaine spectral visible (influence de cirrus).

- Spatialement:

- Du point de vue spatio-temporel découlent d'instructives structurations dans la répartition nébuleuse, surtout pour ce qui a trait aux massifs montagneux du Sahara central, lesquelles structurations ne coincident que partiellement avec les résultats d'autres études sur la nébulosité, parfaitement toutefois avec les enseignements tirés du terrain (voir la géomorphologie, la végétation). Une structuration précise dans le contexte d'espaces montagneux non observés, lesquels peuvent être désignés d'espaces de réactivation climatique favorables, est possible.
- Quant à la circulation atmosphérique, il a été reconnu une signification de première importance aux phénomènes d'échanges méridionaux ("ponts nuageux").
- Un couplage des phénomènes globaux peut être prouvé plus particulièrement entre la dérive nuageuse ouest et les percées meridionales.
- La localisation des origines de la nébulosité des jetstreams au-dessus de l'est de l'Atlantique se montre digne d'intérêt. Par là est également déterminée la fréquence d'un point de départ du jet-stream subtropical.
- On discute de l'influence de la nébulosité sur d'autres éléments climatiques, spécialement du rapport entre la nébulosité et les précipitations (montré par l'exemple de la première année de sécheresse dans le Sahel).

SUMMARY

Cloud studies over the Sahara by the use of weather satellite pictures.

Methods, problems and results.

The study comprises methodical aspects of the evaluation of weather satellite pictures related to cloud conditions over the North African dry belt and in particular over its high mountains.

Cloud influences many climatic elements and its changes are a measure of the dynamics of the atmosphere in time and space.

The following methodical questions and problems have been studied:

- Critical assessment of data material available today.
- Review of evaluation methods.
- Problems of automatic cloud evaluation methods over arid areas.
- Examination of the applicability of weather satellite pictures in different spectral ranges (visible and 10,5 12,5 µm IR) and determination of the differences in the amount of cloudiness.
- Influence of the observation time (daily course of the amount of cloud).
- Comparability of ground and satellite observations.
- Testing of simplified evaluation methods and control of the results by using semi-automatic measuring equipment (Leitz-Classimat).

Three evaluations have been undertaken with different data, methods, areas and for different periods of time:

- Examination of the cloud situation for the whole of Africa north of the Equator with the aid of rectified picture mosaics (digital products) for the year 1968.
- A long-term study (1966-1973) of the Central Saharian Mountains (Tibesti, Hoggar, Tassili n'Ajjer) using non-rectified images collected by the Bochum Observatory (FRG).
- Investigation into the applicability of the data of different spectral ranges (Terrestrial measurements of direct solar radiation).

The results can be summarized as follows:

- Methods:

- Statistical sampling methods (binary point decisions) are suitable for long observation periods. For very local and short-term investigations data retrieval based on grids (units of areas) gives better results.
- Comparison of ground observations with satellite data is possible over a long period by using a certain transformation factor. For a single day geometric conversion is necessary.

- The influence of cloud on solar radiation in the different spectral bands is very distinct. It varies with the cloud type. As a mean, cloud in the IR image is approximatively double that of the visible range.

- Climatology:

- The investigation shows a quite distinct distribution of the cloud cover in time and space, especially in the Central Saharian Mountains. There the results coincide only partially with other cloud maps but coincide well to many field observations (vegetation, geomorphology). We can conclude that the mountain areas have the function of climatic reactivating centers (monsoon, depressions from the Atlantic and the Mediterranean).
- With reference to atmospheric circulation great importance of the meridional exchange of air masses ("cloud-bridge" Niger-Mediterranean) can be proved.
- A linking mechanism between depressions of the west wind drift and the meridional break-throughs from the South is postulated.
- The origin of the subtropical jet-stream (STJ) can be located over the Eastern Atlantic quite regularly.
- The influence of cloud on other climatic elements is discussed, especially the relation between the amount of cloud and the amount of precipitation (cross-section trough the Sahara).