Zeitschrift: Jahresberichte aus Augst und Kaiseraugst

Herausgeber: Augusta Raurica

Band: 14 (1993)

Artikel: Die Baukeramik von Augusta Raurica : eine mineralogisch-chemisch-

technische Untersuchung : zur Herstellung und Verbreitung der in

Kaiseraugst produzierten Ziegel der Legio Prima Martia

Autor: Maggetti, Marino / Galetti, Giulio

DOI: https://doi.org/10.5169/seals-395550

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Die Baukeramik von Augusta Raurica – eine mineralogisch-chemisch-technische Untersuchung

Zur Herstellung und Verbreitung der in Kaiseraugst produzierten Ziegel der Legio Prima Martia

Marino Maggetti und Giulio Galetti¹

Einführung

Problemstellung

Nachdem die mineralogische und chemische Zusammensetzung der Augster *Feinkeramik* aus den vier Herstellungszentren Kurzenbettli, Liebrüti, Osttor und Venusstrasse (Abb. 1) intensiv erforscht wurde², sollen in vorliegender Arbeit die Resultate der naturwissenschaftlichen Bearbeitung von insgesamt 155 Fragmenten von Augster Baukeramik und 8 Tonproben vorgestellt werden (Abb. 1). Es handelt sich bei ersteren mehrheitlich um Bruchstücke von Dachziegeln, wobei die Beprobung in Zusammenarbeit mit T. Tomasevic-Buck in den Jahren 1980 (Gruppe 1), 1981 (Gruppe 2–6), 1982 (Gruppe 7), 1985 (Gruppe 8) und 1988 (Gruppe 9) erfolgte. Im einzelnen geht es um folgende Fundgruppen (Abb. 1 und 2; Tab. 1):

Gruppe 1: Gestempelte Flachziegel der Legio I Martia³ (Analysen Nr. Z1–Z65, n = 60; vgl. Tab. 1). Fundorte⁴: Augst und Kaiseraugst (verschiedene Fundstellen und -jahre), Biel-Mett⁵, Windisch-Oberburg⁶, Frick⌉.

1 Mineralogisch-Petrographisches Institut, Universität, Pérolles, CH-1700 Freiburg. – Wir danken Frau T. Tomasevic-Buck für die Bereitstellung der Proben, die anregenden Diskussionen und die Bereitschaft, eine solch interessante Problemstellung der archäometrischen Bearbeitung zu übergeben. Unser Dank geht auch ans Amt für Museen und Archäologie des Kantons Basel-Landschaft (J. Ewald) für die finanzielle Unterstützung dieser Arbeit. Dank gebührt Frau O. Marbacher für die speditive Mithilfe im Labor, Frau G. Piller für das sorgfältige Tippen des Manuskriptes, Herrn J. Charrière für die tadellose Reinzeichnung und Herrn J. P. Bourqui für die exakte Herstellung der Dünnschliffe. Wir danken ganz speziell A. R. Furger für die grosse, zeitraubende redaktionelle Arbeit.

Die archäologischen Quellen und Literaturzitate in den Anmerkungen hat die Redaktion (A. R. Furger) zusammengestellt. Bei der Umsetzung und Ergänzung der Tabellen 1 und 2 halfen B. Rütti und S. Huck.

2 Alexander 1975; Jornet 1980; Jornet 1982; Jornet/Maggetti 1983; Jornet/Maggetti 1985; Jornet/Maggetti 1993.

Zu den Ziegeln der Legio I Martia in Augst/Kaiseraugst: Tomasevic-Buck 1977; Tomasevic-Buck 1982a. – Verbreitungskarten der Fundorte mit Ziegelstempel der Legio Prima Martia: R. M. Swoboda, Ein Ziegelstempel der Legio I Martia in Breisach. Germania 53, 1975, 177ff. Abb. 2; A. R. Furger, Römermuseum und Römerhaus Augst. Kurztexte und Hintergrundinformationen. Augster Museumshefte 10 (Augst 19892, 1987–) 73; G. Wesch-Klein, Breisach am Rhein: die gestempelten Ziegel aus den Grabungen 1983–1986. Fundberichte aus Baden-Württemberg 14, 1989, 387ff. Abb. 4; R. Fellmann, La Suisse gallo-romaine. Cinq siècles d'histoire (Lausanne 1992) 316ff. Abb. 281–282. – Zu weiteren Ziegeleien in Augst/Kaiseraugst: Berger, L., Ein römi-

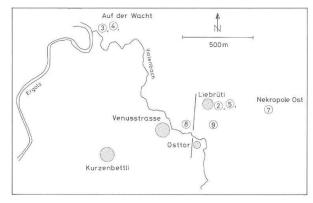


Abb. 1 Lage der Fundgruppen 2-5 und 7-9 in Augst/Kaiseraugst.

Gerasterte Kreisflächen: Töpferwerkstätten (vgl. Anm. 26).

Gruppe 2: Ungestempelte Flachziegel auf dem Boden des kleinen Ziegelbrennofens Kaiseraugst-Liebrüti 1974⁸ (Z66–Z83, n = 18).

scher Ziegelbrennofen bei Kaiseraugst, Ausgrabungen in Augst 3 (Basel 1969); A. R. Furger, Die Töpfereibetriebe von Augusta Rauricorum. JbAK 12, 1991, 259ff. bes. 279. – Zum Grabstein eines signifer der Legio I Martia aus Kaiseraugst: P.-A. Schwarz, L. Berger et al., Inschriften aus Augusta Rauricorum. Katalog und Kommentare zu den Steininschriften aus Augst und Kaiseraugst. Forschungen in Augst (in Vorbereitung) KatNr. 15 (V. v. Falkenstein-Wirth) und Auswertungsteil (P.-A. Schwarz).

- Für einige mitanalysierte Ziegel aus dem Kantonsmuseum Baselland in Liestal (Z47-Z56) war ursprünglich der Fundort Liestal angegeben; es handelt sich aber um Altfunde aus Augst/Kaiseraugst (vgl. Tab. 1; zu den spärlichen Indizien zu Liestals spätantiker Vergangenheit vgl. R. Marti, Zwei frühmittelalterliche Gräber und ihre Bedeutung für die Frühgeschichte Liestals. Archäologie und Museum 11 [Liestal 1988]). Vgl. auch Funde aus Basel: R. d'Aujourd'hui, Basel-Münsterhügel. Archäologie der Schweiz 1, 1978, 156f. (mit Abb.); R. Moosbrugger-Leu, Der Grabungsbefund Augustinergasse 2. In: R. d'Aujourd'hui et al., Archäologische Bodenforschung des Kantons Basel-Stadt. Jahresbericht 1978. Basler Zeitschrift für Geschichte und Altertumskunde 79, 1979, 255f. bes. 348ff. Anm. 128 Abb. 37.
- 5 H.-M. von Kaenel, Das spätrömische Grab mit reichen Beigaben in der Kirche von Biel-Mett BE. Archäologie der Schweiz 1, 1978, 138ff. bes. 146; Hj. Lehner, Die Ausgrabungen in der Kirche Biel-Mett BE. Archäologie der Schweiz 1, 1978, 149ff.

6 Vgl. die Nachweise Anm. 3.

7 M. Hartmann, Eine valentinianische Befestigung auf dem Kirchhügel von Frick (Aargau). In: Festschrift Walter Drack zu seinem 60. Geburststag (Stäfa/Zürich 1977) 104ff. Abb. 1.

8 Tomasevic-Buck 1982a, Abb. 6, unten; 10.

- Gruppe 3: Ungestempelte Flachziegel aus der Ofenmauerung eines Töpferofens in Kaiseraugst-Auf der Wacht II, 1981⁹ (Z84–Z107, n = 24).
- Gruppe 4: Ungestempelte Flachziegel aus der Ofenmauerung eines Brennofens unbekannter Verwendung in Kaiseraugst-Auf der Wacht II, 1981¹⁰ (Z108–Z112, n = 5).
- Gruppe 5: Rundziegel (letzte Charge auf der Lochtenne liegend) des grossen Ziegelbrennofens Kaiseraugst-Liebrüti 1974¹¹ (Z113–Z121, n = 9).
- Gruppe 6: Lehmproben aus der Ost-Nekropole Kaiseraugst-Im Sager 1981 und von Augst-Steinlerstrasse, Insula 35, 1981¹² (Z122–Z129, n = 8).
- **Gruppe 7:** Gestempelte Flachziegel der Legio I Martia aus der Ost-Nekropole Kaiseraugst-Im Sager 1981¹³ (Z130–Z149, n = 20).
- **Gruppe 8:** Ziegel-Überbrände Kaiseraugst-Liebrüti 1971 (Z150–Z157), Ofen- und andere Baukeramik Kaiseraugst-Liebrüti 1971–74 (Z150–Z160), total n = 11.
- **Gruppe 9:** Flachziegel vom Gräberfeld Kaiseraugst-«Thommen» 1986 und aus den Ziegelbrennöfen Kaiseraugst-Liebrüti 1971¹⁴ (SF1) (Z161–Z168, n = 8).

Von nicht allen Stücken konnten, mangels genügendem Probengewicht, vollständige Analysen¹⁵ hergestellt werden. Aus diesem Grunde fehlen für viele Legionsziegel die Spurenelemente (Tab. 2).

Von folgenden Proben wurden Dünnschliffe hergestellt: Z10, Z13, Z19–20, Z23, Z29, Z45, Z47–51, Z54–58, Z60, Z66–74, Z77, Z79–121, Z130–141, Z143, Z145–159.

Die Untersuchung befasste sich mit folgender Fragestellung¹⁶:

- 1. Bilden die Legionsziegel der Gruppen 1 und 7 eine chemisch und mineralogisch einheitliche Gruppe? Gibt es Unterschiede zwischen den in Augst/Kaiseraugst gefundenen Proben und denjenigen der anderen Fundorte? Existieren naturwissenschaftliche Kriterien welche für eine lokale Herstellung dieser Legionsfabrikate sprechen?
- 2. Sind die Gruppen 2–5 und 9 selbständige Gruppen oder können sie zu einer einzigen zusammengefasst werden?
- 3. Wie unterscheiden sich die Gruppen 1–9 von der Augster Feinkeramik?
- 4. Wie war die Herstellungstechnik (Natur des Rohtones, Aufbereitung, Brenntemperatur)?

Chemische Homogenität der Ziegel

Zur Überprüfung dieses Aspektes, der gleichzeitig auch einen Hinweis auf die Qualität der Aufbereitung gibt, wurden an drei Flachziegeln der Gruppe 2 Mehrfachproben genommen (Z75–Z78, Z80+Z81, Z79+Z83). Mit Ausnahme von Z75, der leicht niedri-

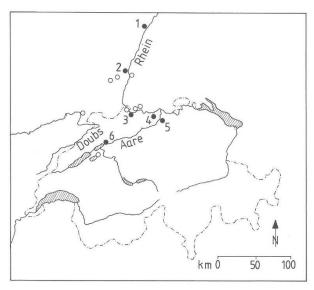


Abb. 2 Lage der Fundorte von gestempelten Ziegeln der Legio I Martia.

- Fundorte mit in dieser Arbeit nachgewiesenen Kaiseraugster Produkten: 1 = Strassburg; 2 = Biesheim; 3 = Augst/Kaiseraugst; 4 = Frick; 5 = Windisch-Oberburg; 6 = Biel-Mett. Die Stücke aus Strassburg (1) und Biesheim (2) wurden von T. Kilka (1985; 1987a) analysiert.
- O weitere Fundorte (nicht analysiert)

gere SiO₂- und erhöhte CaO-, K₂O- und Rb-Werte aufweist, ist die Schwankungsbreite für alle untersuchten chemischen Parameter gering (Tab. 2). Die beprobten Ziegel sind demnach von sehr *homogener* Zusammensetzung.

- 9 Kaiseraugst, Auf der Wacht II, 3. Teil, Parz. 231, Grabung 1981.01: Töpferofen für Geschirrkeramik. Vgl. T. Tomasevic-Buck, Ausgrabungen in Augst und Kaiseraugst im Jahre 1981, JbAK 8, 1988, 7ff. bes. 17f. Abb. 12–15 Plan 3; Furger (wie Anm. 3) 275 Kat.Nr. 37.
- 10 Kaiseraugst, Auf der Wacht II, 3. Teil, Parz. 237 («in der [modernen] Strasse»), Grabung 1981.01: Ziegelbrennofen oder Geschirrbrennofen oder Räucherkammer? Vgl. Furger (Anm. 3) 277 Kat.Nr. 36.
- 11 Tomasevic-Buck 1982a, 11 und Umschlagbild; Abb. 6, oben.
- 12 Zum Gräberfeld Kaiseraugst-Im Sager vgl. Tomasevic-Buck 1982b; U. Müller, Das Gräberfeld Im Sager Ostteil. In: Ausgrabungen in Kaiseraugst im Jahre 1991. JbAK 13, 1992, 207ff. bes. 213ff. Abb. 7–39. – Grabung Augst-Steinlerstrasse, Parz. 1101: unpubliziert.
- 13 Areal «Tennisplätze und -halle», 400–500 m nordöstlich der Ziegelbrennöfen der Legion I Martia (moderne Überbauung «Liebrüti»). Vgl. Tomasevic-Buck 1982b.
- 14 Kaiseraugst-«Thommen»: U. Müller, Ausgrabungen in Kaiseraugst im Jahre 1986, JbAK 9, 1988, 227ff. bes 231 Abb. 10–13 (mit gestempeltem Ziegel Abb. 12); Kaiseraugst-Liebrüti 1997: Grabungsdetails unpubliziert.
- 15 Zur Methodik siehe Maggetti et al. 1988.
- 16 Über die archäologische Problematik orientieren: Tomasevic-Buck 1977, 1982a und 1982b.

Einfluss der Bodenlagerung

Sekundäre Veränderungen der chemischen Zusammensetzung eines keramischen Objektes sind im nachhinein schwer zu fassen. Ein Kriterium, die grosse Schwankungsbreite einer chemischen Variable für die betrachtete Population, könnte nämlich auch mit der mangelnden Aufbereitung eines inhomogenen Rohstoffes erklärt werden. Hingegen ist die sekundäre Anreicherung von Phosphor¹⁷ problemlos zu identifizieren, da der P₂O₅-Gehalt in natürlichen To-

nen den Grenzwert von 0,2 Gew.% nicht überschreitet¹⁸. Betrachtet man nun die entsprechenden Analysenwerte der Tabelle 2, so liegen von insgesamt 155 Keramikproben nur zwei Stücke (Z30 und Z54) knapp über 1 Gew.% P₂O₅. Es kann also davon ausgegangen werden, dass die Baukeramik während der Bodenlagerung keine grossen messbaren Veränderungen in ihrer chemischen Zusammensetzung erlitt – auch nicht die Proben aus den Gräberfeldern, wo ja Phosphor durch die Zersetzung der Knochen in reichem Masse zur Verfügung stand.

Chemische Klassifikation

Die Leistenziegel der Legio I Martia

Zum besseren Verständnis wurden die chemischen Analysen - unter Vernachlässigung des mobilen Phosphors (P2O5) und des gewichtsmässig untergeordneten Mangans (MnO) - der 60 analysierten Proben der Fundgruppe 1 in vier Korrelationsdiagrammen dargestellt (Abb. 3). Dabei schält sich die erstaunliche Homogenität der Gruppe 1 heraus. Mit Ausnahme der Stücke Z11 (viel Aluminium, Abb. 3a), Z13 und Z28 (viel Kalium, Abb. 3d) und Z35 (hoher Eisengehalt, Abb. 3c) sind die Scherben von Augster Provenienz eng gruppiert. Die Ziegel von «nicht-Augster» Fundorten liegen dabei in der Punktwolke des Augster Komplexes - nur im K₂O-Gehalt sondern sich fünf Proben (Z50, Z51, Z55, Z56, Z63; Abb. 4d) ab. Aus gewichtsmässigen Gründen konnten nur von elf Ziegeln auch die Spuren gemessen werden. Deswegen wurde auf eine visuelle Darstellung dieser Elemente verzichtet.

Wie ist nun die Abbildung 3 zu interpretieren? Da sich die sog. «Ausreisser» nur in einem einzigen Element von den übrigen Proben signifikant unterscheiden, sind wir der Auffassung, dass dies kein stichhaltiger Grund ist, um sie aus der Gruppe auszuschliessen. Die Abweichungen können durch lokale Variationen des Rohstoffes bedingt sein. Diese Erklärungsmöglichkeit wird durch die Lage der gestempelten Flachziegel der Fundgruppe 7 in denselben Diagrammen unterstützt (Abb. 4). Man erkennt sehr gut die homogene Gruppierung dieser Provenienzen, die aber - mit Ausnahme von Abbildung 4c, signifikant marginal zur Punktwolke (gerastetes Feld) der Gruppe 1 liegen. Es wird somit deutlich, dass der chemische Streubereich der Legio I Martia-Ziegel viel grösser ist und dass jede Ziegelcharge zwar aus einem homogen zusammengesetzten Rohstoff hergestellt wurde, der aber von Charge zu Charge differiert. Eine zusätzliche Stützung erfährt die Hypothese der lokalen chemischen Variabilität des Rohstoffes durch den Vergleich mit den Proben, die T. Kilka untersucht hat¹⁹. Wie Abbildung 5 zeigt, liegen diese Stücke von den Fundorten Strassburg und Biesheim²⁰ teils in, teils ausserhalb der Streubereiche der zwei bisher besprochenen Populationen. Weitere Korrelationsdiagramme können nicht vorgelegt werden, da T. Kilka weniger Elemente analysiert hat als wir.

Die Differenzen sind aber – im Vergleich zu den Stücken lokaler Provenienz – nicht so gravierend, um die 19 Proben von T. Kilka als gruppenfremd zu deklarieren. Wir sind der Auffassung, dass auch diese Stücke aus demselben Material (und wohl auch an demselben Ort) wie die Proben der Gruppen 1 und 7 hergestellt wurden. Die Hypothese, dass die am Rhein flussabwärts gelegenen Stützpunkte der Legio I Martia mit Liebrüti-Ziegeln beliefert wurden²¹, findet hier die naturwissenschaftliche Bestätigung. Hingegen ist die andere Hypothese zu verwerfen, wonach die Stützpunkte flussaufwärts von einer anderen Produktionsstätte beliefert wurden²², denn die Proben von *Biel-Mett* usw. gleichen in ihrer chemischen Zusammensetzung den übrigen Stücken.

Wenn nun zwar gewisse Variationen in der chemischen Zusammensetzung von Gruppe zu Gruppe bzw. von Fundort zu Fundort festzustellen sind, diese aber durch Variationen des Rohstoffes erklärt werden können und somit die Hypothese einer Fertigung aller untersuchten Flachziegel der Legio I Martia am gleichen Ort aus demselben Rohstoff gerechtfertigt erscheint, können die Analysen zur Definition einer neuen chemischen Referenzgruppe zusammengefasst werden (Tab. 3).

- 17 Duma 1971; Franklin/Vitali 1985, Freestone et al. 1985; Lemoine/Picon 1981; Maggetti et al. 1988; Picon 1976; Picon 1985; Rottländer 1980; Rottländer 1981–1983; Schneider/Hofmann 1976; Walter/Besnius 1989.
- 18 Koritnig 1978.
- 19 Kilka 1985; Kilka 1987a.
- 20 P. Biellmann, Les tuiles estampillées de la Ière Légion Martia trouvées à Biesheim/Oedenbourg. Annuaire de la Société d'Histoire de la Hardt et du Ried 2, 1987, 9–14; R. Fellmann, Le site gallo-romain de Biesheim-Oedenbourg dans le cadre des camps et postes militaires dans la plaine méridionale du Haut-Rhin. In: Y. Le Bohec (Hrsg.), Militaires Romains en Gaule civile. Collections du Centre d'Etudes Romaines et Gallo-Romaines n.s. 11 (Lyon/Paris 1993) 73–81 Abb. 4,M. Vgl. auch Funde in Breisach: Swoboda (wie Anm. 3).
- 21 Vgl. Anm. 3.
- 22 Tomasevic-Buck 1977.

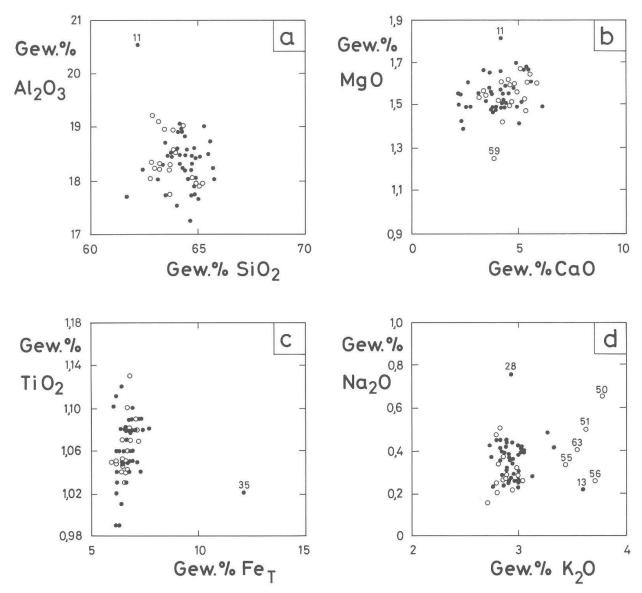


Abb. 3 Chemischer Vergleich der gestempelten Ziegel der Legio I Martia (Fundgruppe 1, n = 60).

- Fundort Augst/Kaiseraugst
- O Fundorte ausserhalb Augst. Bei den Ausreissern ist die Analysen-Nr. (ohne Präfix Z) angegeben.

Zum Herstellungsort der Legionsziegel und der übrigen Baukeramik

Im Gegensatz zur engen Scharung der Legionsziegel streuen die Analysen der übrigen Baukeramik stark (Abb. 6 und 7). Eine Sonderstellung kommt dabei der Probe Z160 zu, die sich in fast allen Diagrammen deutlich von den restlichen Proben absondert. Sie hat z.B. viel weniger SiO₂, aber viel mehr CaO als die übrigen Stücke. Wir haben sie daher in der folgenden Diskussion weggelassen. Analysiert man die Abbildung 6 im Detail, so wird eine Zweiergruppierung der Baukeramik sichtbar. Dies wird besonders deutlich beispielsweise in der Abbildung 6a, wo eine Al₂O₃-reiche und SiO₂-ärmere Materialgruppe (= vorwiegend

gestempelte Legionsziegel) von einer Al₂O₃-ärmeren, SiO₂-reicheren Materialgruppe unterschieden werden kann. Dieselbe Zweiteilung kann, wenn auch viel weniger ausgeprägt, in den Korrelationsdiagrammen der Spurenelemente beobachtet werden (Abb. 7). Einige Proben kommen immer wieder ins Feld der Legionsziegel zu liegen und haben demnach eine gleichartige chemische Zusammensetzung. Zu diesen gehören:

- die Rundziegel der Fundgruppe 5 (von der Lochtenne im grossen Kaiseraugster Ziegelbrennofen),
- der Tubulus Z158 (Fundgruppe 8, Überbrand vom Ziegelbrennofen Kaiseraugst-Liebrüti)
- und Z161, Z162, Z164–168 der Fundgruppe 9 (Nekropole Kaiseraugst-«Thommen» und Ziegelei Kaiseraugst-Liebrüti).

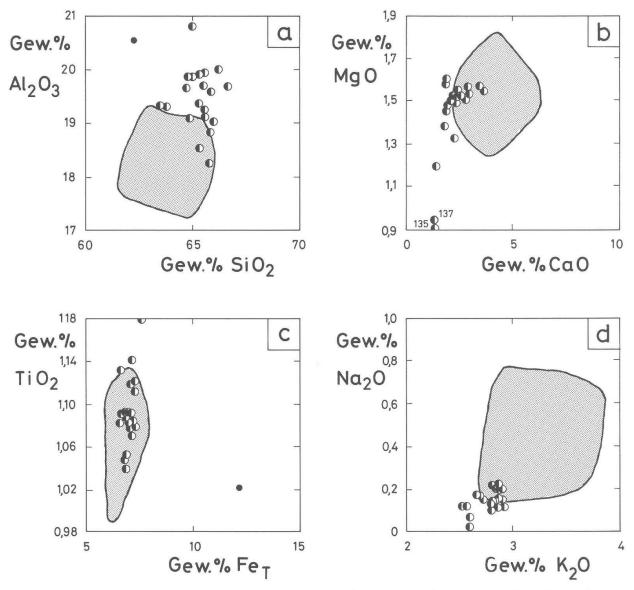


Abb. 4 Analysen der gestempelten Ziegel der Legio I Martia von der Kaiseraugster Nekropole «Im Sager» (Fundgruppe 7) im Vergleich mit denjenigen der Fundgruppe 1.

Rasterfläche: Fundgruppe 1 (n = 59; Abb. 3)
Fundgruppe 7 (n = 20; Abb. 6)
Ausreisser der Fundgruppe 1.

Eine lokale Produktion dieser Stücke kann nicht bezweifelt werden, ganz sicher nicht im Fall der Rundziegel, die eindeutig die nicht ausgeräumten Reste des letzten Brandes darstellen²³. Wenn nun diese Produktion chemisch gänzlich mit der Zusammensetzung der Legionsziegel übereinstimmt (Tab. 3), ist zu folgern, dass die besprochene Legionsware auch in Liebrüti hergestellt worden ist. Damit wird die u.a. von T. Tomasevic-Buck²⁴ und L. Berger²⁵ mehrmals geäusserte Hypothese einer Augster Produktion der Legio I Martia-Ziegel naturwissenschaftlich zweifelsfrei abgesichert.

Auch die restliche Baukeramik ist an Ort und Stelle hergestellt worden, wie dies die Lage der grauen Überbrände der Fundgruppe 8 zeigt, die eng gruppiert im Feld der übrigen Baukeramik liegen. Eine Auflösung der Punktwolke spezifisch nach den Fundgruppen ist nicht durchführbar. Aus der Interpretation der Abbildungen 6 und 7 schält sich also folgendes heraus: Die römische Baukeramik von Augst/Kaiseraugst kann zwei chemischen Materialgruppen zugeordnet werden.

²³ Gruppe 5. Tomasevic-Buck 1982a, 11 und Umschlagbild.

²⁴ Vgl. Anm. 3.

²⁵ R. Laur-Belart, Führer durch Augusta Raurica, 5. erweiterte Auflage, bearbeitet von L. Berger (Basel 1988) 17 Abb. 8 und 168ff. Abb. 174–176.

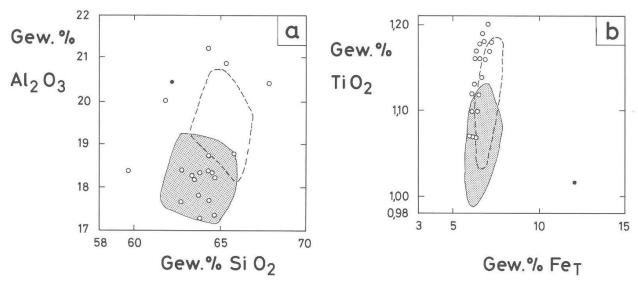
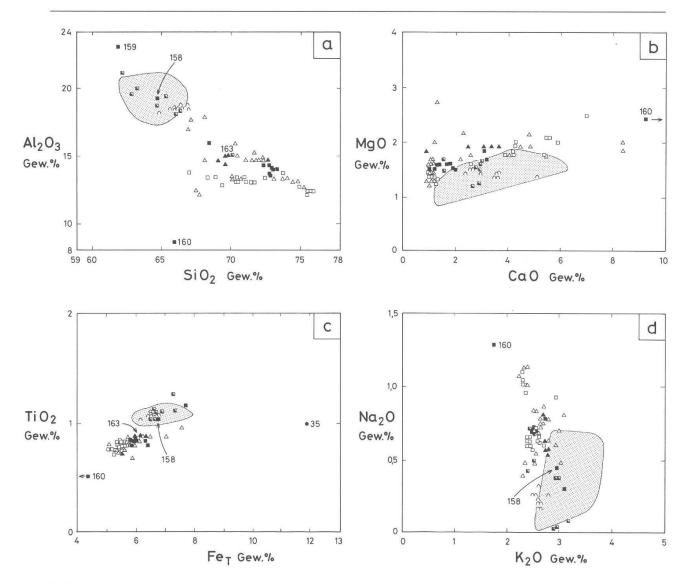



Abb. 5 Ziegel Legio I Martia. Vergleich der Fundgruppe 1 mit der Fundgruppe 7 und den von T. Kilka (1985; 1987a) analysierten Proben.

Rasterfläche: Fundgruppe 1 (n = 59; Abb. 3)
---- umrandet: Fundgruppe 7 (n = 20; Abb. 6)

von T. Kilka analysierte Proben aus Strassburg und Biesheim (n = 19)

Ausreisser der Fundgruppe 1.

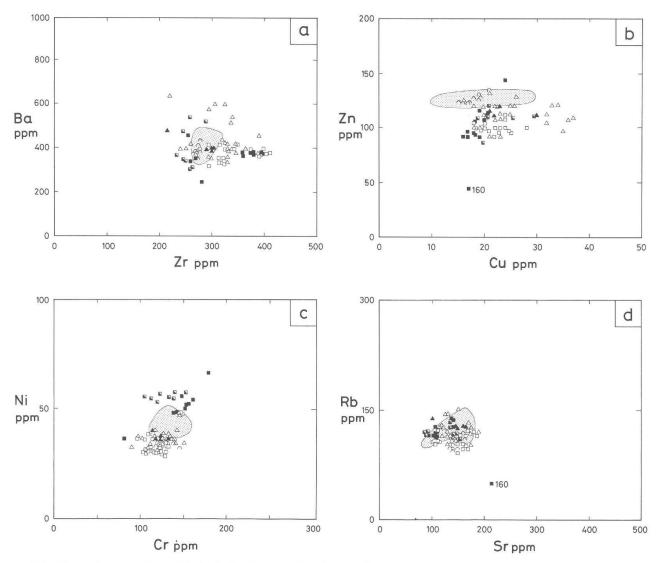


Abb. 7 Wie Abbildung 6, jedoch für ausgewählte Spurenelemente.

Abb. 6 174 chemisch untersuchte Fragmente Kaiseraugster Baukeramik in vier Korrelationsdiagrammen der sog. Hauptelemente. Überlappungen von Punkten wurden nicht speziell markiert.

Rasterfläche: Ziegel der Legio I Martia (Fundgruppen 1 + 7 inkl. Proben von T. Kilka [1985; 1987a], n = 99 in Abb. 4a.b.d, n = 98 in Abb. 4c)

□ Fundgruppe 2 (n = 18; Kaiseraugst-Liebrüti, kleiner Ziegelbrennofen, ungestempelte Flachziegel)

□ Fundgruppe 3 (n = 24; Kaiseraugst-Auf der Wacht II, aus der Ofenmauerung eines Töpferofens, ungestempelte Flachziegel)

□ Fundgruppe 4 (n = 5; Kaiseraugst-Auf der Wacht II, Ofenmauerung eines Brennofens, ungestempelte Flachziegel)

□ Fundgruppe 5 (n = 9; Kaiseraugst-Liebrüti, grosser Ziegelbrennofen, letzte Charge auf der Lochtenne, Rundziegel)

□ Fundgruppe 8 (n = 11; Kaiseraugst-Liebrüti, Ziegel-Überbrände und div. Baukeramik)

□ Fundgruppe 9 (n = 8; Nekropole Kaiseraugst-«Thommen» und Ziegelei Kaiseraugst-Liebrüti, z.T. gestempelte Flachziegel).

- a) In einer scharen sich die gestempelten Legionsziegel (Prima Martia) aller betrachteten Fundorte, die lokalen Rundziegel, ein lokal hergestellter Tubulus und einige ungestempelte Flachziegel (Materialgruppe 1). Die chemische Übereinstimmung der Legionsprodukte mit der lokalen Baukeramik ist ein Beweis für eine Augster Produktion der Legionsziegel.
- b) Die zweite Materialgruppe umfasst die übrige, ungestempelte Baukeramik. Überbrände dokumentieren deren lokale Produktion.
- c) Die chemischen Unterschiede zwischen beiden Materialgruppen sind auf die Verwendung zweier differierender Rohstoffe und/oder auf unterschiedliche Aufbereitungstechniken, unter Verwendung desselben oder verschiedener Rohstoffe, zurückzuführen.

Vergleich mit der Augster Feinkeramik

Gestützt auf die naturwissenschaftliche Untersuchung der feinkeramischen Herstellungszentren von

Augst²⁶ schien es sinnvoll, die chemische Zusammensetzung der Feinkeramik mit derjenigen der Baukeramik zu vergleichen. Die Ergebnisse der Hauptelement-Korrelationen sind in den Abbildungen 8a bis 8d vorgelegt. Man erkennt sehr gut die ± homogene Zusammensetzung der Legio I Martia-Ziegelgruppen, die grosse Variabilität der restlichen Baukeramik und die zwei Materialgruppen. Im Gegensatz dazu streuen die feinkeramischen Produkte der diversen Töpferzentren viel weniger, ihre Variationsfelder überlappen sich meistens und sind nie deckungsgleich mit einer der beiden Baukeramik-Hauptgruppen. Demzufolge wurde für die Herstellung der Feinkeramik ein anderer Rohstoff verwendet oder einer der Baukeramik-Rohstoffe wurde so aufbereitet, dass ein anderes chemisches Muster entstand; die chemische Charakteristik der Feinkeramik könnte aber auch durch das Zusammenwirken beider Möglichkeiten zu erklären

26 Jornet 1980; Jornet 1982; Jornet/Maggetti 1985; Jornet/Maggetti 1993; Martin-Kilcher et al. 1987. – Zusammenfassend aus archäologischer Sicht: Furger (wie Anm. 3).

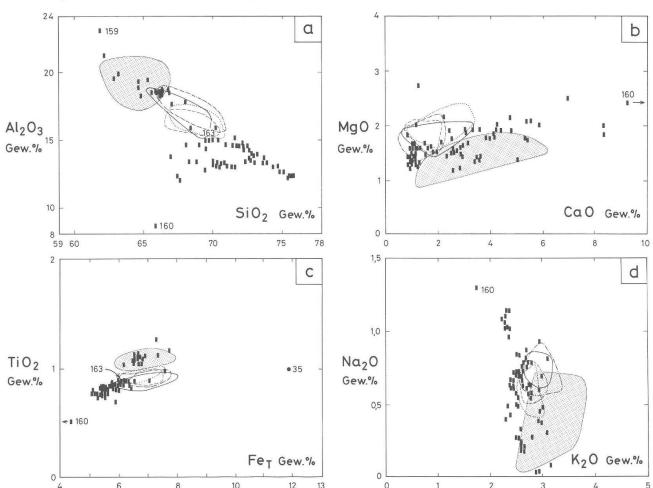


Abb. 8 Vergleich der Kaiseraugster Baukeramik mit der Augster Feinkeramik (Töpferzentren Kurzenbettli, Liebrüti, Osttor, Venusstrasse). Literaturnachweis der feinkeramischen Werkstätten s. Anm. 26.

Rasterfläche: gestempelte Ziegel (Legio I Martia; n = 99)
ungestempelte Ziegel (n = 75)

Kaiseraugst-Kurzenbettli (n = 24)

Kaiseraugst-Liebrüti (n = 14)

Augst-Osttor (n = 39)

Augst-Venusstrasse (n = 26)

Mikroskopische Analyse

Die mineralogisch-petrographische Zusammensetzung der Baukeramik ist sehr einheitlich, was die Natur der mikroskopisch erkennbaren Gemengteile angeht. Im Dünnschliff dominiert das Mineral Quarz. Mengenmässig untergeordnet finden sich Plagioklas, Erzagglomerate, Hellglimmer, Epidot und Gesteinsfragmente von Kalk (bzw. rekarbonatisierte Kalkkörner), Glimmerschiefer, Gneis, karbonatische Sandsteine, Chert, Tongallen, Quarzporphyr, Granit sowie Schamotte-Fragmente.

Zwischen den Fundgruppen und den beiden Materialgruppen gibt es also bezüglich Qualität der Magerung keine Unterschiede. Diese eintönige, unspezifische, d.h. keinem bestimmten geologischen Her-

kunftsgebiet zuordenbare Zusammensetzung stimmt sehr gut mit dem mineralogisch-petrographischen Aufbau der Augster Feinkeramik überein.

Deutliche Unterschiede lassen sich hingegen im *Magerungsgehalt* erkennen. Man findet so alle Übergänge zwischen der sehr «fetten», d.h. magerungsarmen Variante Z95 (10–15 Vol.% Magerung, geschätzt) und der sehr «mageren», d.h. magerungsreichen Variante Z96 (60–70 Vol.%). Da – bei vergleichbarem CaO-Gehalt – die Magerungsgehalte mit dem SiO₂- bzw. Al₂O₃-Gehalt gekoppelt sind, können SiO₂-reiche und Al₂O₃-arme Ziegel als magerungsreiche Typen angesprochen werden.

Zur Herkunft des Rohstoffes

Über die mineralogische und chemische Zusammensetzung der im Bereiche der heutigen Schweiz von der Tonindustrie aller Zeiten genutzten Rohstoffe liegen viele Untersuchungen vor²⁷. Beschränkt man sich auf die nähere Umgebung von Augst und Kaiseraugst, so könnten von den römischen Zieglern folgende Tonvorkommen genutzt worden sein (Abb. 9): Mergel des Keuper, Mergel des Lias (Insektenmergel), Tone des Dogger (Opalinuston), pleistozäne Lehme der Hochterrasse (Lösslehm) und pleistozäne Lehme der Nie-

derterrasse. Diese engere Eingrenzung des Herkunftsraumes ist sicher gerechtfertigt, denn die römischen Handwerker werden das Rohmaterial wohl an Ort und Stelle gesucht und die nötigen beträchtlichen Mengen nicht von weit her beschafft haben.

27 Z.B. Janke 1989; Jornet 1982; Letsch et al. 1907; Maggetti et al. 1988; Niggli et al. 1930; Peters 1962; Peters 1964; Peters 1969; Peters/Jenni 1973; de Quervain 1969.

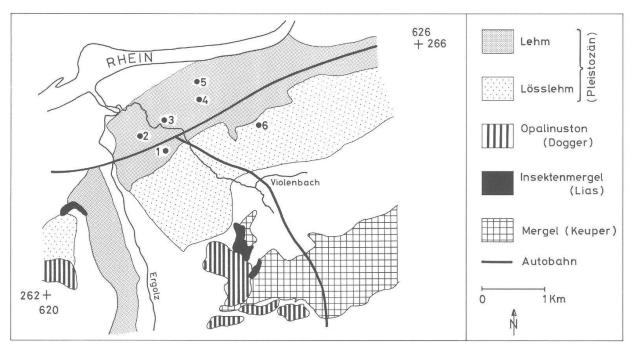
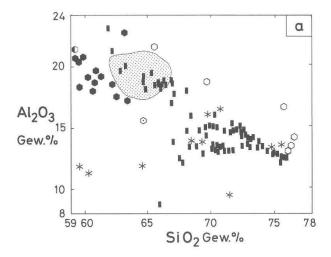



Abb. 9 Vereinfachte geologische Karte der Umgebung von Augst (nach Isler et al. 1984). Eingetragen sind nur geologische Formationen mit potentiellen Ton-Rohstoffen. Probenahmestellen:

1 = A-91, A-92 (Jornet 1980); 2 = Z129 (Tab. 1); 3 = A-89 (Jornet 1980); 4 = Z122-Z128 (Tab. 1); 5 = A-93, A-94, A-95 (Jornet 1980); 6 = Abbaustelle von Lösslehm (Letsch et al. 1907).

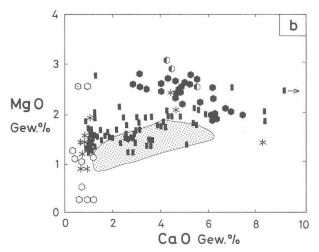


Abb. 10 Vergleich der Kaiseraugster Baukeramik mit den potentiell möglichen Rohstoffen. Die Keupermergel sind ihres hohen CaO-Gehaltes wegen nicht dargestellt worden.

Rasterfläche:	gestempelte Legionsziegel
1	ungestempelte Ziegel
\odot	Keuperton
•	Insektenmergel
•	Opalinuston
0	Lösslehm
*	Lehme der Niederterrasse

Für die Vergleiche wurden Tonanalysen aus folgenden Quellen verwendet:

- 2 Keupermergel, 1 Keuperton²⁸
- 3 Insektenmergel des Lias²⁹
- 28 Opalinustone³⁰
- 11 Lösslehme³¹
- 14 Niederterrassenlehme³².

Die zwei Keupermergel können wegen ihres sehr hohen CaO-Gehaltes (über 14 Gew.%) nicht in Betracht gezogen werden. Der Keuperton hingegen käme schon eher in Betracht, er hat aber keine ähnliche Zusammensetzung (Abb. 10).

Von den drei publizierten Analysen der Insektenmergel passt keine zu den beiden Ziegel-Hauptgruppen (Abb. 10). Dieser Rohstoff ist also auszuschliessen. Obwohl von den Lösslehmen nur auf elf Analysen zurückgegriffen werden konnte, zeigt deren marginale Position in der Abbildung 10 (Analysenpunkte

teilweise ausserhalb der Diagramme!), dass dieser Rohstoff auch nicht in die engere Wahl zu ziehen ist.

Die pleistozänen Lehme der Niederterrasse schwanken in ihrem SiO2-Gehalt beträchtlich (Abb. 10a). Dieses Phänomen kann im Lichte ihrer Entstehung ohne weiteres verstanden werden. E. Letsch et al. interpretieren diese Rohstoffe als sedimentierte Feinschlämme des Rheines, die sich bei den periodischen Überflutungen in den Vertiefungen des Schotters der Niederterrasse abgesetzt hätten³³. Solche Vorkommen, deren Mächtigkeit bis 2 m betragen kann, wurden nach diesen Autoren zu Beginn dieses Jahrhunderts im Rheintal zwischen Basel und Koblenz (AG) von mehreren, inzwischen eingegangenen Ziegeleien genutzt. Die im Bereiche der römischen Töpfereien beprobten Pleistozän-Lehme passen in Abbildung 10a und 10b (A-91, Z126, Z127, Z128, Z129) nicht schlecht zur zweiten Ziegel-Materialgruppe. Es ist demnach anzunehmen, dass die Ziegel dieser Gruppe aus den pleistozänen Niederterrassenlehmen der nächsten Umgebung gefertigt wurden. Laut A. Jornet³⁴ bestehen diese Tone aus wechselnden Anteilen von Ouarz, Kalifeldspat, Plagioklas, Dolomit, Kalzit, Illit und Chlorit. Die eigenen Untersuchungen an den Proben Z122-Z129 bestätigen diesen Befund. Es handelt sich aber mehrheitlich um CaO-arme Tone (Tab. 2).

Der Rohstoff für die Herstellung der anderen Ziegel-Materialgruppe, d.h. derjenigen der Legio I Martia, ist schwerer zu fassen. Der beträchtliche Aluminiumgehalt lässt vermuten, dass hier kaolinithaltige Tone verwendet wurden. Nun zeichnen sich die Opalinustone durch den Kaolinit-Gehalt aus³⁵! Die relativ gute Übereinstimmung mit der latènezeitlichen Referenzgruppe Sissach-Brühl (ausser im CaO- und Ba-Gehalt, Tab. 3), deren feinkeramische Produkte laut M. Maggetti et al. aus quartär verschwemmtem Opalinuston hergestellt sein sollen³⁶, kann als weiteres Indiz für den Gebrauch von Opalinuston gewertet werden. Diese Hypothese scheint durch die Abbildung 10a auch gestützt zu werden, denn die Opalinusanalysen liegen relativ nahe beim Feld der Legionsziegel. In der Abbildung 10b hingegen sind sie, wegen ihres signifikant höheren MgO-Gehaltes, beträchtlich vom Bereich der Legio I Martia entfernt.

Die Frage nach der Art des Rohstoffes für die Gruppe der Legio I Martia (verschwemmte Opalinustone = Transport von weit her, artifizielle Tongemische, geschlämmte pleistozäne Lehme?) kann momentan nicht schlüssig beantwortet werden.

- 28 Maggetti et al. 1988.
- 29 Matter et al. 1988a; Nagra 1984; de Quervain 1969.
- 30 Janke 1989; Maggetti et al. 1988; Matter et al. 1988 a.b; Nagra 1984; de Quervain/Friedländer 1942; de Quervain 1969.
- 31 Letsch et al. 1907; de Quervain und Friedländer 1942; de Quervain 1969.
- 32 Jornet 1982 und Analysen dieser Arbeit.
- 33 Letsch et al. 1907.
- 34 Jornet 1982.
- 35 Peters 1962
- 36 Maggetti et al. 1988.

Zur Technik der Fabrikation

Aufbereitung

Die mikroskopische Untersuchung liefert keine Hinweise für eine aufwendige Vorbereitung des Rohmaterials. Die reichliche Präsenz von 3–4 mm grossen Tongallen³⁷ in fast allen untersuchten Objekten spricht gegen eine lange Lagerung (Mauken) des Rohstoffes; das Vorkommen von groben (max. 6 mm grossen) Gesteins- und Schamottebruchstücken zeigt, dass der Rohstoff nicht geschlämmt wurde. Der schlierige Aufbau ist ein Indiz für eine – wenn überhaupt – nur sehr kurzfristige Durchknetung bzw. Homogenisierung des Materials.

Aus allen diesen Merkmalen ist zu folgern, dass die antiken Ziegler die Rohmaterialien ohne intensive Aufbereitung verwendet haben.

Brenntemperaturen

Es ist eine bekannte Tatsache, dass die Ausgangsminerale, d.h. die im Rohstoff vorhandenen Phasen, während des Brandes zerfallen und sich zu neuen, stabileren Phasen kombinieren. Werden nun ein oder mehrere, mit der Keramik chemisch und mineralo-

gisch vergleichbare Tone kontrolliert gebrannt und die bei den einzelnen Temperaturen röntgenographisch ermittelten Phasenbestände mit den in den antiken Proben nachgewiesenen verglichen, so können die antiken Brenntemperaturen abgeschätzt werden, falls nicht allzugrosse Umbildungen, z.B. während der Bodenlagerungsphase, stattfanden³⁸.

Phasenbestand und Brenntemperaturen der roten Scherben

Der *röntgenographisch* ermittelte Phasenbestand erlaubt die Gruppierung der roten Scherben in zwei Hauptgruppen:

Hauptgruppe I: Scherben ohne eine Ca-Phase wie Kalzit, Gehlenit, Diopsid.

Hauptgruppe II: Scherben mit einer oder mehrerer Ca-Phasen.

Bezüglich CaO-Gehalt liegt die Grenze bei etwa 3 Gew.% CaO.

- 37 Whitbread 1986.
- 38 Heimann 1978/79; Maggetti 1979; Maggetti 1982.

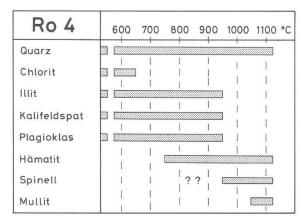
				rote	Sch	nerbe	en e						
Gruppe / Assoziation		1	[II					
Phasen	R1	R2	R3	R4	R5	R6	R7	R8	R 9	R 10	R11	R12	R13
Quarz													
Illit (001,002,110)													
Illit (110)													
Kalifeldspat													
Plagioklas	**						= =				* **		
Kalzit						₩ ₩				■ ■			
Dolomit								? ?	? ?				
Hämatit													
Spinell	■ ■					? ?							
Gehlenit						? ?							
Diopsid							? ?					? ?	
Wollastonit									? ?				
Garronit													3
Anzahl Proben	21	3	9	9	13	19	12	8	16	5	10	9	3
Brenn - T (°C)	650- 750/800	800 - 950	950-	-1050	650 - 750	750-	-850	750/800 -950	The state of the s	900 /1000	950) — 1	050

Abb. 11 Phasenassoziationen in den rot gefärbten Scherben. (001) usw. beim Illit bezeichnet die Präsenz der jeweiligen Reflexe im Diffraktogramm.

Eine weitere Unterteilung innerhalb dieser Hauptgruppen erfolgt nach den Phasenassoziationen (Abb. 11):

Hauptgruppe I:

- R 1 Quarz + Illit (001, 002, 110) + Kalifeldspat ± Plagioklas ± Hämatit ± Spinell Scherben: Z44, Z79, Z84, Z93, Z98, Z99, Z100, Z104, Z107, Z130, Z131, Z132, Z135, Z136, Z137, Z138, Z140, Z145, Z147, Z148, Z149.
- R 2 Quarz + Illit (110) + Kalifeldspat + Plagioklas + Hämatit + Spinell Scherben: Z77, Z85, Z90.
- R 3 Quarz + Kalifeldspat + Plagioklas + Hämatit Scherben: Z70, Z74, Z75, Z76, Z78, Z89, Z91, Z95, Z103.
- **R 4** Quarz + Kalifeldspat + Hämatit + Spinell Scherben: Z96, Z102, Z110, Z133, Z139, Z141, Z142, Z146, Z164.


Hauptgruppe II:

- R 5 Quarz + Illit (001, 002, 110) + Kalifeldspat + Plagioklas + Kalzit Scherben: Z80, Z106, Z113, Z114, Z116, Z117, Z118, Z119, Z120, Z121, Z163, Z167, Z168.
- R 6 Quarz + Illit (001, 002, 110) + Kalifeldspat ±
 Plagioklas ± Kalzit + Hämatit ± Spinell(?) ±
 Gehlenit(?)
 - Scherben: Z14, Z21, Z34, Z39, Z45, Z47, Z48, Z59, Z65, Z66, Z69, Z81, Z82, Z83, Z101, Z105, Z115, Z134, Z159.
- R 7 Quarz + Illit (110) + Kalifeldspat ± Plagioklas + Kalzit + Hämatit + Spinell + Diopsid(?) Scherben: Z33, Z35, Z41, Z42, Z43, Z49, Z52, Z53, Z56, Z57, Z64, Z109.
- R 8 Quarz + Illit (001, 002, 110) + Kalifeldspat ±
 Plagioklas + Kalzit ± Dolomit(?) + Hämatit
 + Gehlenit
 - Scherben: Z2, Z5, Z10, Z22, Z25, Z37, Z54, Z63.
- R 9 Quarz + Illit (110) + Kalifeldspat + Plagioklas +
 Kalzit ± Dolomit(?) + Hämatit + Gehlenit ±
 Diopsid ± Wollastonit(?)

Scherben: Z3, Z4, Z7, Z8, Z13, Z15, Z16, Z17, Z20, Z26, Z27, Z29, Z30, Z58, Z61, Z162.

- R 10 Quarz + Illit (110) + Kalifeldspat ± Plagioklas ± Kalzit + Hämatit ± Gehlenit + Diopsid Scherben: Z67, Z68, Z71, Z72, Z73.
- R 11 Quarz + Kalifeldspat ± Plagioklas + Kalzit + Hämatit + Spinell Scherben: Z86, Z87, Z97, Z111, Z112, Z143, Z158, Z161, Z165, Z166.
- R 12 Quarz + Kalifeldspat + Plagioklas + Hämatit + Spinell + Gehlenit + Diopsid(?) Scherben: Z1, Z6, Z9, Z12, Z18, Z32, Z60, Z62, Z144.
- R 13 Quarz + Plagioklas ± Kalzit + Hämatit ± Spinell ± Gehlenit + Diopsid ± Garronit Scherben: Z50, Z92, Z160.

Eine erste Beurteilung der Verteilung der Proben auf die diversen Phasenassoziationen zeigt, dass die Stücke der Materialgruppen 1 und 2 statistisch verteilt sind. Die Abschätzung der Brenntemperatur er-

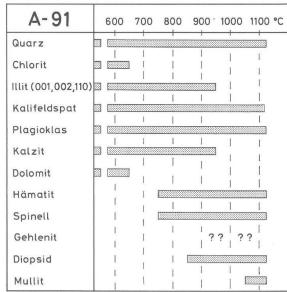


Abb. 12 Veränderung des Mineralbestandes zweier Rohtone mit zunehmender Brenntemperatur (oxidierende Bedingungen, 1 h Haltezeit bei Maximaltemperatur). A-91 (Jornet 1982), Ro 4 (Czysz et al. 1984).

folgt im Vergleich zu chemisch ähnlichen Rohstoffen. Für die Proben der Materialgruppe 2, die zur röntgenographischen Hauptgruppe II gehören, haben wir den von A. Jornet minutiös analysierten Rohton A-91³9 als Grundlage verwendet; dieser gehört nach den oben gemachten Feststellungen zu den potentiellen antiken Rohstoffen dieser Hauptgruppe. Da in der Diskussion des möglichen Rohstoffes für die Materialgruppe 1 kein eindeutiger Nachweis gelungen ist – wenn auch ein ± veränderter Opalinuston am wahrscheinlichsten scheint – haben wir uns auch für diese Proben des A-91 bedient. Für die Brenntemperaturschätzung der röntgenographischen, CaO-ärmeren Hauptgruppe I, wurde der von W. Czysz et al. 40 untersuchte Ton «Ro 4» verwendet (Abb. 12).

In der Assoziation R1 ist kein Chlorit mehr nachzuweisen, somit ergibt sich eine minimale Brenntemperatur von etwa 650°C. Da Hämatit nur vereinzelt auftritt, wird die obere Temperaturgrenze bei 750/800°C gelegen haben.

³⁹ Jornet 1982.

⁴⁰ Czysz et al. 1984.

Der Illit zeigt in der Assoziation R2 keine Basalreflexe. Gemäss verschiedener Autoren werden deshalb für diese Assoziation untere Brenntemperaturen von ca. 850°C angezeigt⁴¹. Auch die Präsenz von Hämatit ist ein Indiz dafür, dass Temperaturen von 800°C sicher erreicht wurden. Illit verschwindet im Experimentalbrand bei ca. 950°C, womit die obere Temperatureingabelung gegeben ist.

Das Fehlen von Illitreflexen in den Assoziationen R3 + R4 ergibt minimale Brenntemperaturen von etwa 950°C. Mullit konnte nirgends nachgewiesen werden, was auf maximal 1050°C hinweist.

Die Proben der Assoziation R5 sind - wie R1 schwach gebrannt. Durch das Fehlen von Chlorit und Hämatit + Spinell wird eine untere Brenntemperatur von 650°C bzw. eine obere von 750°C angezeigt. Der Kalzit ist in diesen Stücken demzufolge noch primärer Genese (er verschwindet im Experimentalbrand von A-91 erst über 900°C), was durch das mikroskopische Bild bestätigt wird.

In den Assoziationen R6 und R7 deuten das Vorhandensein von Hämatit (+ Spinell?) auf minimal 750°C, das Vorkommen von Illit auf maximal 950°C. Diopsid fehlt, somit sind die Maximaltemperaturen noch niedriger anzusetzen (850°C). Obwohl im Experimentalbrand des Tones A-91 die drei Reflexe des Illites gleichsinnig verschwinden, sind wir der Meinung, dass die Assoziation R7 eher bei 800-850°C gebrannt wurde, weil die Illit-Basalreflexe fehlen. R6 wäre dann im Temperaturbereich von 750-800°C gebrannt. Kalzit ist sowohl primärer wie sekundärer Entstehung⁴².

In der Assoziation R8 kann die gleichzeitige Präsenz von Gehlenit und Illit mit Brenntemperaturen von mindestens 900 bzw. maximal 950°C interpretiert werden. Demgegenüber könnte das Vorhandensein der Basalreflexe aber Maximaltemperaturen von 750-800°C anzeigen, was gut mit dem Fehlen von Spinell zu vereinbaren wäre. Dieses relativ breite Temperaturintervall könnte aber durch den «thermometrisch» inhomogenen Aufbau (s. vorne) gegeben sein! Der Kalzit wurde sekundär retrograd gebildet.

Für die Assoziation R9 und R10 lässt sich ein Brennintervall, gestützt auf das Vorkommen der Illit(110)-Reflexe, von 800/850-950°C ermitteln. Dies passt gut zum Nachweis von Hämatit (mindestens 750°C) und Diopsid (mindestens 850°C) und Gehlenit (mindestens 900°C). Hingegen fehlt Spinell in beiden Assoziationen, obwohl er laut den Experimentalbränden in diesem Temperaturbereich gebildet wird. Kalzit ist eindeutig sekundärer Genese.

Für die Proben der Assoziationen R11, R12 und R13 sind Minimaltemperaturen von 950°C, gestützt auf die Abwesenheit von Illit, zu postulieren. Die obere Grenze von etwa 1050°C ist durch die Abwesenheit von Mullit gegeben.

Wie real sind nun diese Temperatureingabelungen, wenn man sie mit den Temperaturbereichen gleichaltriger römischer Keramik vergleicht bzw. wenn man sich überlegt, dass es sich bei diesen Ziegelbruchstükken um dicke Fragmente handelt, die im Ofen wahrscheinlich nicht durchgehend homogen gebrannt wurden und somit je nach Probennahme eine andere Temperatur anzeigen bzw. im Querschnitt eine Temperaturzonierung (d.h. innen schwächer gebrannt als aussen) aufweisen können?

Werden alle 137 roten Scherben gesamthaft analysiert, so lassen sie sich zu drei Temperaturbereiche zusammenfassen:

- 650–850°C (R1, R5, R6, R7): 65 Proben (47%)
- 750/800–950/1000°C (R2, R8, R9, R10): 32 Proben (24%)
- 950–1050°C (R3, R4, R11, R12, R13): 40 Proben (29%).

Die Hälfte der Untersuchungsobjekte gehört also zum niedrigen Temperaturbereich von 650-850°C, ist demnach schwach gebrannt. Die Rundziegel der Gruppe 5, die ja laut T. Tomasevic-Buck die in situ erhaltene letzte Charge im grossen Ziegelbrennofen repräsentieren⁴³, gehören ohne Ausnahme zu diesem Temperaturbereich – es ist demnach zu folgern, dass dieses Intervall von den Zieglern als Optimum angestrebt wurde. Ein solcher Temperaturbereich stimmt aber gut mit den postulierten Ziegel-Garbrandtemperaturen von 720-810° C44 bzw. 750-850° C45 überein! Die Brenntemperaturen für die gallorömische schweizerische Feinkeramik sind vergleichsweise bei höheren Temperaturen anzusetzen: 850–1050° C⁴⁶. Sie passen aber gut zu den Temperaturbereichen der gallorömischen Keramik von Aegerten⁴⁷ und Seeb⁴⁸. Einschränkend ist aber zu bemerken, dass es sich hierbei um Töpfereiabfall, also um nicht verhandelte Ware handelt, was für die hier besprochene Baukeramik nicht unbedingt zutrifft. Die in Augst produzierten Weinamphoren ergaben Temperaturen über 850°C⁴⁹.

Die generell niedrige Brenntemperatur der analysierten Augster Baukeramik stimmt also mit den Garbrandtemperaturen anderer Ziegelfabrikate überein und ist demnach ein Indiz, dass die Probennahme das Resultat nicht allzustark beeinflusste. Im Einzelfall lassen sich aber solche Temperaturinhomogenitäten in verschiedenen Proben desselben Ziegels fassen, wie z.B. Z75, Z76, Z78 (950-1050°C) und Z77 (800-950°C), Z80 (650-750°C) und Z81 (750-850°C) bzw. Z79 (650-750/800°C) und Z83 (750-850°C). Derartige Unterschiede können problemlos mit den Temperaturfluktuationen im Ofen und/oder der Probennahme erklärt werden.

Eine kritische Wertung der Temperaturbestimmungen muss auch die Tatsache berücksichtigen, dass gewisse Ziegel der Fundgruppen 1, 3 und 4 aus der Ofenmauerung der Ziegelöfen stammen bzw. auf dem Boden eines Ziegelofens (Fundgruppe 2) lagen;

- 41 Maggetti/Rossmanith 1981; Maggetti 1982; Kilka 1987b.
- 42 Maggetti 1986.
- 43 Tomasevic-Buck 1982a, 11 und Umschlagbild.
- 44 Bohn 1962.
- 45 Maggetti/Galetti 1990.
- 46 Benghezal 1989; Jornet 1980; Jornet 1982; Jornet/Maggetti 1983; Kaenel et al. 1981; Küpfer/Maggetti 1978; Maggetti 1980; Maggetti 1981; Maggetti/Küpfer 1978.
- 47 Kilka 1987b; Kilka 1988: 40% unter 850°C, 24% zwischen 850-950°C, 31% zwischen 950-1100°C, 5% über 1100°C. 48 Benghezal 1989; Benghezal 1990: 41% unter 850°C, 43% zwi-
- schen 800/850-950°C, 16% zwischen 900-1050°C.
- 49 Martin-Kilcher et al. 1987.

letztere entsprechen der zusammengestürzten Überwölbung des Brennofens⁵⁰. Die geschätzte Brenntemperatur könnte demzufolge nicht die ursprüngliche Garbrandtemperatur anzeigen, sondern eventuell die subsequente, in der Zweitverwendung erreichte «Betriebstemperatur» des Ofens anzeigen. Dass solche Phänomene fassbar sind, haben wir an Ziegeln nachgewiesen, die in der Ofenmauerung eines Terra Sigillata-Ofens von ursprünglichen Garbrandtemperaturen von 750–850°C sekundär auf über 1050°C erhitzt wurden⁵¹!

Um solche sekundäre Temperatur-Einflüsse zu fassen, müssen die «Nicht-Ofenmauer»-Proben aus den Fundgruppen 1, 5, 7, 9 mit den sog. «Ofenmauer-Proben» (Fundguppen 2, 3, 4) verglichen werden. Die Abbildung 13 zeigt nun deutliche Unterschiede. Die «Ofenmauer»-Proben haben vergleichsweise einen grösseren Anteil an Stücken im höchsten Intervall von 950–1050°C. Wir interpretieren diesen Befund als Anzeichen einer sekundären Temperatureinwirkung.

Schliesslich muss noch die von T. Tomasevic-Buck⁵² gestellte Frage nach den Ursachen der Farbunterschiede für ihre Farbgruppe F11, E9 und H9 beantwortet werden. Nimmt man z.B. die Proben Z18 und Z42 (beide Farbgruppe F11), so sind beide chemisch gleich, aber verschieden hoch gebrannt (Z18: 950–1050°C; Z42: 750–850°C)! In der Farbgruppe E9 sind beide untersuchten Proben (Z21, Z44) chemisch und temperaturmässig verschieden. Diese beiden Parameter sind demnach nicht für die Farbunterschiede zwischen den Farbgruppen verantwortlich; vielleicht spielen Fluktuationen in der Ofenatmosphäre eine Rolle.

Phasenbestand und Brenntemperaturen der grauen Scherben

Die 18 grauen Proben können – wiederum nach dem CaO-Gehalt – zwei Hauptgruppen zugeordnet werden, die auch in je zwei Assoziationen gegliedert sind (Abb. 14).

- G1 Quarz + Sanidin + Plagioklas + Herzynit + Magnetit Scherben: Z94, Z108.
- G2 Quarz + Sanidin(?) + Plagioklas ± Kalzit ± Hämatit + Herzynit + Magnetit + Fe-Cordierit + Cristobalit
 - Scherben: Z150, Z151, Z152, Z153, Z154, Z155, Z156, Z157.
- G3 Quarz + Sanidin + Plagioklas + Kalzit ± Hämatit + Herzynit + Magnetit + Gehlenit + Diopsid
 - Scherben: Z24, Z31, Z88, Z92.
- G4 Quarz + Sanidin + Plagioklas ± Hämatit + Herzynit + Magnetit + Gehlenit + Fe-Cordierit + Cristobalit(?)
 - Scherben: Z11, Z38, Z51, Z55.

- 50 Tomasevic-Buck 1982a
- 51 Maggetti/Galetti 1990.
- 52 Tomasevic-Buck 1977, 111.

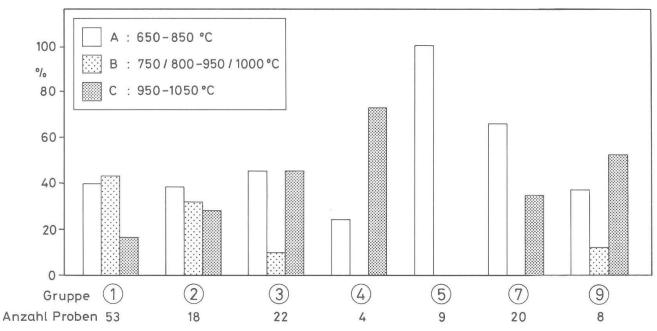
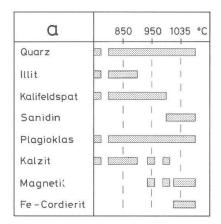



Abb. 13 Prozentuale Verteilung der Fundgruppen 1-5 und 7 auf die drei Brenntemperaturbereiche.

	Gra	ue	Scherbe	en	violetter
Gruppe/ Assoziation		I	11		Scherber
Phasen	G1	G2	G3	G4	V1
Quarz					
Sanidin		? ?			
Plagioklas					
Kalzit					
Hämatit		■ ■			
Herzynit					
Magnetit					
Gehlenit					
Diopsid					
Fe-Cordierit					
Cristobalit				??	??
Anzahl Proben	2	8	4	4	1
Brenn-T (°C)	900-1000	> 1000	900-1000	> 1000	>1000

Abb. 14 Phasenassoziationen der grau und «violett» gefärbten Scherben.

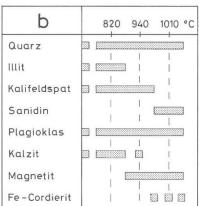


Abb. 15 Veränderung des Mineralbestandes eines illitischen Rohstoffes mit zunehmender Brenntemperatur (Heimann et al. 1980).

a = stark reduzierend, fO₂ <10⁻⁴ atm; b = schwach reduzierend, fO₂ 10⁻⁴ bis 2.10⁻¹ atm.

Mit dem experimentellen Brennverhalten reduziert gebrannter Rohtone haben sich bisher leider nur wenige Autoren befasst. Die beiden kaolinitischen Tone von H.-J. Schwarz⁵³ unterscheiden sich von unseren postulierten Tonen durch den sehr hohen Al₂O₃-Gehalt (27–31 Gew.%!). Die von J. W. H. Letsch und W. Noll untersuchten Tone⁵⁴ kommen unseren vermuteten Rohstoffen schon näher. Die beste mineralogische und chemische Übereinstimmung ist durch die illitisch-chloritische Mischung der Experimente von R. B. Heimann et al. gegeben⁵⁵. Nur in diesen Bränden wurde Fe-Cordierit beobachtet (Abb. 15), was mit den zwei Assoziationen G2 und G4 übereinstimmt.

Versucht man nun eine Temperatureingabelung, so sind die sekundären Phasen wie Kalzit und Hämatit nicht zu berücksichtigen. Letzterer hat sich durch Reoxidation des Magnetites beim Abkühlen gebildet. Dieser Prozess ist sehr schön sichtbar im Falle der roten Aussenbereiche der Überbrände (Gruppe 8). In unseren Proben fehlt überall Illit, somit sind Temperaturen von 900°C mit Sicherheit überschritten worden. Enthält eine Probe zusätzlich noch Fe-Cordierit, so müssen minimale Brenntemperaturen von 1000°C angenommen werden. Fehlt diese Phase, ist eine obere Temperaturlimite von 1000°C gegeben. Die Proben der Gruppen G2 und G4 müssen aber noch viel höher gebrannt worden sein, denn sie zeigen makroskopisch und mikroskopisch Anzeichen von Schmelzbildungen! In unseren Proben sind noch zusätzliche Phasen wie Herzynit, Gehlenit, Diopsid, Cristobalit zu erkennen, die in den Experimenten von R. B. Heimann et al. nicht nachgewiesen wurden⁵⁶. Die d-Werte der Cordieritphase stimmen viel besser mit denjenigen eines Fe-Cordierites überein als mit denjenigen eines reinen Mg-Cordierits. Dies ist auch zu erwarten, da die Tone viel mehr Eisen als Magnesium enthalten. Die Ofenatmosphäre war, gestützt auf das reichliche Vorkommen von Fe-Cordierit (Abb. 16), stark reduzierend. Dies wird durch den hohen FeO-Gehalt vieler grauer Scherben bezeugt; ist er niedrig, so spielen Reoxidationsprozesse eine Rolle.

Die in der archäologischen Erstpublikation erwähnten grauen Fehlbrände⁵⁷ erwiesen sich wirklich – mit Ausnahme von Z45 – als höchst gebrannte Fehlbrände. Ob dieser Zustand schon im ersten Garbrand oder erst in Zweitverwendung als Ofenmauerungs-Element erreicht wurde, muss wegen der fehlenden Funddokumentation offenbleiben. Dass aber auch gewisse Ziegel der Legio I Martia hohe Brenntemperaturen dokumentieren, zeigen die Fragmente der Gruppe 7 (Abb. 14).

⁵³ Schwarz 1989.

⁵⁴ Vgl. Letsch 1981 sowie Letsch/Noll 1983.

⁵⁵ Heimann et al. 1980.

⁵⁶ Heimann et al. 1980.

⁵⁷ Tomasevic-Buck 1977, 111.

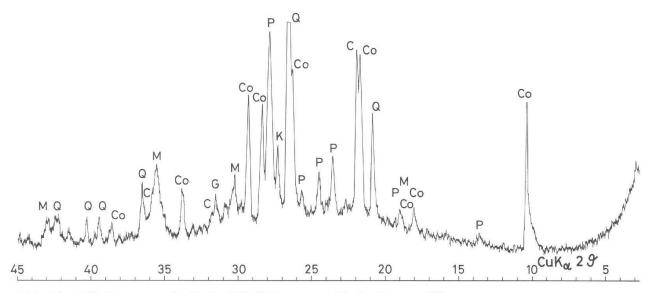


Abb. 16 Diffraktogramm der Probe Z51 (Röntgenographische Gruppe G4).

C = Cristobalit, Co = Fe-Cordierit, G = Gehlenit, K = Kalifeldspat, M = Magnetit, P = Plagioklas.

Phasenbestand und Brenntemperatur des «violetten» Fragments

Eine einzige Probe der Gruppe 1, Z28, hat eine violette Farbe. Makroskopisch ist die starke Sinterung zu erkennen und mittels röntgenographischer Analyse konnte folgender Phasenbestand nachgewiesen werden:

Quarz + Plagioklas + Hämatit + Magnetit + Gehlenit + Fe-Cordierit + Cristobalit(?).

Leider konnte das FeO nicht bestimmt werden, so dass die Ofenatmosphäre nicht zu erfassen ist – wurde oxidierend und/oder reduzierend gebrannt? Bisher wurde Fe-Cordierit nur bei Reduktionsbränden ermittelt, und wir sind deswegen der Meinung, dass diese Probe grösstenteils reduziert gebrannt wurde. Dafür spricht auch die Präsenz von Magnetit. Der Hämatit wäre dann auf Reoxidationsprozesse zurückzuführen. Der Nachweis von Cordierit deutet somit auf Minimaltemperaturen von 1000°C.

Zusammenfassung

Die mineralogische, chemische und technische Analyse von 155 Fragmenten Augster und Kaiseraugster Baukeramik (davon 80 gestempelte Ziegel der Legio I Martia) und 8 Tonproben ergab folgendes:

- Die untersuchten Proben der Legio I Martia bilden eine homogene, CaO-haltige (ca. 1-6 Gew.%) Gruppe, die sich *chemisch* deutlich von derjenigen der restlichen Baukeramik unterscheidet. Sie kann als Referenzgruppe definiert werden.
- 2. Von den 75 ungestempelten Baukeramikfragmenten haben aber einige diesselbe chemische Zusammensetzung wie die Legionsziegel. Dazu gehören die Rundziegel, die als letzte Charge auf der Lochtenne im Ziegelbrennofen Kaiseraugst-«Liebrüti» vorgefunden wurden sowie ein Tubulus. Damit ist indirekt bewiesen, dass die Legionsziegel an Ort und Stelle fabriziert worden sind.
- 3. Eine differenzierte Bewertung der chemischen Analysen zeigt, dass wahrscheinlich jede Ziegelcharge aus einem homogen zusammengesetzten Rohstoff hergestellt wurde, der aber von Charge zu Charge differiert.

- 4. Die 18 mitanalysierten Legionsziegelfragmente der Fundorte Frick, Windisch-Oberburg und Biel-Mett passen chemisch sehr gut zur Referenzgruppe und wurden auch in Augst fabriziert. Auch die von T. Kilka⁵⁸ publizierten 19 Analysen von Ziegeln der Legio I Martia der Fundorte Biesheim und Strassburg sind aufgrund des ähnlichen Chemismus als Augster Produktion zu werten.
- 5. Die chemische Übereinstimmung der Fehlbrände (Überbrände) mit der restlichen ungestempelten, CaO-haltigen (ca. 0–8 Gew.%) Baukeramik zeigt, dass auch diese in Augst/Kaiseraugst hergestellt worden ist.
- 6. Die chemischen Unterschiede zwischen beiden Hauptgruppen der Kaiseraugster Baukeramik (gestempelte Legionsziegel, ungestempelte Ziegel) sind auf die Verwendung zweier differierender Rohstoffe und/oder auf unterschiedliche Aufberei-

58 Kilka 1985; Kilka 1987a.

tungstechniken zurückzuführen. Für die ungestempelten Ziegel sind aufgrund der mineralogischen und chemischen Ähnlichkeit lokale, pleistozäne Lehme der Rhein-Niederterrasse als Rohstoffe anzunehmen, die praktisch unverändert verwendet wurden. Die Frage nach dem Rohstoff für die Herstellung der Legionsziegel kann nicht schlüssig beantwortet werden. Der hohe Aluminiumgehalt könnte mit der Verwendung von Opalinustonen erklärt werden, die aber nicht lokal anstehen.

- 7. Die Rohstoffe wurden nicht sonderlich aufbereitet. Eine Schlämmung hat nicht stattgefunden.
- 8. Die Brennatmosphäre war oxidierend. Die Hälfte der Untersuchungsobjekte wurde im Temperaturbereich von ca. 650–850°C gebrannt, was als normale Garbrandtemperatur für römische Ziegel interpretiert wird. Die restlichen verteilen sich gleichmässig auf die Bereiche 750/800–950/1000°C und 950–1050°C.

Summary

The mineralogical, chemical and technical analyses of 155 fragments of construction ceramics from Augst (80 of which are stamped tiles Legio I Martia) and 8 clay samples gave the following results:

- 1. The Legio I Martia tiles form a homogeneous, CaO-bearing (app. 1–6 wt%) group, which can be clearly distinguished from the other construction ceramics. She can be defined as a reference group.
- 2. Some of the 75 unstamped construction ceramic fragments have the same chemical composition as the legions tiles. They contain semicircular tiles which have been found as last charge in the tile kiln Kaiseraugst-«Liebrüti», as well as one tubulus. Therefore it is indirectly prooved that the legion tiles were fabricated on the spot.
- A differentiated evaluation of the chemical analyses shows that probably every tile charge was made up of a homogeneous raw material, which differed from charge to charge.
- 4. The 18 analysed legion tiles fragments of *Frick, Windisch-Oberburg and Biel-Mett* coincide chemically with the reference group and were also made in Augst. The 19 analyses published by T. Kilka⁵⁹ of tiles of the Legio I Martia, which were found in *Biesheim and Strasbourg* are of similar chemistry and are therefore also a production of Augst.

- 5. The chemical correspondance of overfired tiles and the remnant unstamped, CaO-bearing (app. 0-8 wt%) construction ceramics shows that there were also produced in Augst/Kaiseraugst.
- 6. The chemical differences between the two main groups of construction ceramics of Augst/Kaiseraugst (stamped legion tiles, unstamped tiles) are due to the application of two different raw materials and/or different processing technics. As raw materials for the unstamped tiles the local pleistocene clays of the lower Rheinterrasse are proposed due to mineralogical and chemical similarities. The loam was applied principally unchanged. A solution for the problem of the raw material for the fabrication of the legion tiles can not be offered definitely. The high aluminium content could be inherited from the opalinus clays, which do not outcrop at this place.
- 7. The raw materials haven't been especially processed. A wash hasn't been performed.
- 8. The firing temperature was held under oxidizing conditions. Half of the analysed objects were burned in the temperature range between 650–850°C, which is interpreted as the normal firing temperature for roman tiles. The residuals spread equally into the temperature ranges from 750/800–850/1000°C and 950–1050°C.

Literatur

Alexander 1975: W. C. Alexander, A pottery of the Middle Roman Imperial Period in Augst (Venusstrasse-Ost 1968/69). Forschungen in Augst 2 (Basel/Augst/Liestal 1975).

Benghezal 1989: A. Benghezal, Groupes de reference des poteries gallo-romaines de Seeb (ZH-Suisse) et Oberwinterthur (ZH-Suisse): Caractéristiques mineralogiques, chimiques et techniques (unveröff. Diplomarbeit Universität Freiburg/Schweiz 1989).

Benghezal 1990: A. Benghezal, Les poteries gallo-romaines de Seeb: analyses chimiques et mineralogiques. In: W. Drack, Chr. Meyer-Freuler, K. Roth-Rubi et al., Der römische Gutshof bei Seeb, Gem. Winkel. Ausgrabungen 1958–1969. Berichte der Zürcher Denkmalpflege. Archäologische Monographien 8 (Zürich 1990) 240–253.

Bohn 1962: P. Bohn, Rómaikori téglák vizsgálata. Archaeologiai Értesito 89, 1962, 250ff. (zitiert in P. Arnold, Die römischen Ziegeleien von Hunzenschwil-Rapperswil. Jahresbericht der Gesellschaft Pro Vindonissa 1965 [1966] 37–55).

Czysz et al. 1984: W. Czysz, M. Maggetti, G. Galetti, H. Schwander, Die spätrömische Töpferei und Ziegelei von Rohrbach im Landkreis Aiach-Friedberg. Bayerische Vorgeschichtsblätter 49, 1984, 215–256

Duma 1971: G. Duma, Phosphate content of ancient pots as indication of use. Current Anthropology 13, 1971, 127–130.

59 Kilka 1985; Kilka 1987a.

- Franklin/Vitali 1985: U. W. Franklin, V. Vitali, The environmental stability of ancient ceramics. Archaeometry 27, 1, 1985, 3-15.
- Freestone et al. 1985: I. C. Freestone, N. D. Meeks, A. P. Middleton, Retention of phospate in buried ceramics: an electron microprobe approach. Archaeometry 27, 2, 1985, 161–177.
- Heimann 1978/79: R. B. Heimann, Mineralogische Vorgänge beim Brennen von Keramik und Archaeothermometrie. Acta Praehist. Archaeol. 9/10, 1978/79, 79–102.
- Heimann et al. 1980: R. B. Heimann, M. Maggetti, H. C. Einfalt, Zum Verhalten des Eisens beim Brennen eines kalkhaltigen illitischen Tons unter reduzierenden Bedingungen. Berichte der Deutschen Keramischen Gesellschaft 57, 6–8, 1980, 145–152.
- Isler et al. 1984: A. Isler, F. Pasquier, M. Huber, Geologische Karte der zentralen Nordschweiz 1:100000. Geologische Spezialkarte Nr. 121 (NAGRA, Schweizerische Geologische Kommission).
- Janke 1989: D. M. Janke, Technik und Herkunft mittelalterlicher Ofenkacheln aus der Nordwestschweiz (unveröff. Diplomarbeit, Universität Freiburg/Schweiz).
- Jornet 1980: A. Jornet, Composition de la céramique romaine d'Augusta Raurica (Augst). Schweizerische Mineralogisch-Petrographische Mitteilungen 60, 1980, 271–285.
- Jornet 1982: Analyse minéralogique et chimique de la céramique romaine en Suisse à enduit brillant. Thèse présentée à la Faculté des Sciences de l'Université de Fribourg/Suisse No. 846 (Fribourg 1982).
- Jornet/Maggetti 1983: A. Jornet, M. Maggetti, Die Terra Sigillata von Baden: Ergebnisse einer naturwissenschaftlichen Studie. In: Handel und Handwerk im Römischen Baden (Museumskommission Baden 1983) 51–59.
- Jornet/Maggetti 1985: A. Jornet, M. Maggetti, Chemische Analyse von 40 Scherben der Grabungen beim Augster Osttor im Jahre 1966. JbAK 5, 1985, 107–122.
- Jornet/Maggetti 1993: A. Jornet, M. Maggetti, Analyse chimique, minéralogique et technologique de la céramique fine de Liebrüti (in Vorbereitung).
- Kaenel et al. 1981: G. Kaenel, D. Paunier, M. Maggetti, G. Galetti, Les ateliers de céramiques gallo-romaine de Lousonna (Lausanne-Vidy VD): analyses archéologiques, minéralogiques et chimiques. Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 65, 1981, 93–132.
- Kilka 1985: T. Kilka, Etude de la composition chimique des tuiles portant la marque de la I Legio Martia trouvées en Alsace (rapport de maîtrise, Université de Strasbourg 1985).
- Kilka 1987a: T. Kilka, Etude chimique des tuiles de la Légion Martia trouvées en Alsace. Annales de la Société d'Histoire de la Hardt et du Ried, 1987, 15–18.
- Kilka 1987b: T. Kilka, Groupes de références des poteries romaines d'Aegerten (Ct. Berne) (unveröff. Diplomarbeit Universität Freiburg/Schweiz 1987).
- Kilka 1988: T. Kilka, Groupes de référence des poteries romaines d'Aegerten (canton de Berne-Suisse): caractéristiques minéralogiques, chimiques et techniques. Revue d'Archéometrie 12, 1988, 71–80
- Koritnig 1978: W. Koritnig, Phosphorus. In: Wedepohl, Handbook of Geochemistry II-1 (Berlin 1978) 15k1–15k5.
- Küpfer/Maggetti 1978: T. Küpfer, M. Maggetti, Die Terra Sigillata von La Péniche (Vidy/Lausanne). Schweizerische Mineralogisch-Petrographische Mitteilungen 58, 1978, 189–212.
- Lemoine/Picon 1981: C. Lemoine, M. Picon, La fixation du phosphore par les céramiques lors de leur enfouissement et ses incidences analytiques. Revue d'Archéométrie 6, 1981, 101–112.
- Letsch et al. 1907: E. Letsch, B. Zschokke, L. Rollier, R. Moser, Die schweizerischen Tonlager. Beiträge zur Geologie der Schweiz, Geotechnische Serie, IV. Lieferung (1907).
- Letsch 1981: J. W. H. Letsch, Neolithische und chalkolithische Keramik Thessaliens: Material, Rohstoff und Herstellungstechnik (Dissertation Universität Köln 1981).
- Letsch/Noll 1983: J. W. H. Letsch, W. Noll, Phasenbildung in einigen keramischen Teilsystemen bei 600°C–1000°C in Abhängigkeit von der Sauerstofffugazität. Ceramic Forum International 7, 1983, 259–267.
- Maggetti 1979: M. Maggetti, Mineralogische und chemische Zusammensetzung hallstattzeitlicher Keramik von Châtillon-s-Glâne (Kt. Fribourg, CH) und der Heuneburg (Kr. Sigmaringen, BRD). Fortschritte der Mineralogie 57, 1, I-II, 1979, 93–94.

- Maggetti 1980: M. Maggetti, Recherches minéralogiques, chimiques et technologiques sur la terre sigillée de l'atelier de La Péniche (Vidy/Lausanne). In: A. Laufer, La Péniche. Un atelier de céramique à Lousonna. Cahiers d'Archéologie Romande 20. Lousonna 4 (Lausanne 1980) 81–95.
- Maggetti 1981: M. Maggetti, Composition of roman pottery from Lousonna (Switzerland). British Museum Occasional Paper 19, 1981, 33–49.
- Maggetti 1982: M. Maggetti, Phase Analysis and its Significance for Technology and Origin. Archaeological Ceramics (Smithsonian Institution Press, Washington 1982) 121–133.
- Maggetti 1986: M. Maggetti, Majolika aus Mexiko ein archäometrisches Fallbeispiel. Fortschritte der Mineralogie 64, 1, 1986, 87–103
- Maggetti/Küpfer 1978: M. Maggetti, T. Küpfer, Composition of the Terra Sigillata from La Péniche (Vidy/Lausanne, Switzerland). Archaeometry 20, 2, 1978, 183–188.
- Maggetti/Rossmanith 1981: M. Maggetti, M. Rossmanith, Archeothermometry of Kaolinitic Clays. Revue d'Archéometrie, Supplément 5, 1981, 185–194.
- Magetti et al. 1988: M. Maggetti, G. Galetti, R. Schneuwly, Die Feinkeramik von Sissach-Brühl: eine spätlatènezeitliche Referenzgruppe. Archäologie und Museum 013 (Amt für Museen und Archäologie des Kantons Baselland, Liestal 1988).
- Maggetti/Galetti 1990: M. Maggetti, G. Galetti, Naturwissenschaftliche Untersuchungen an der Terra Sigillata von Schwabegg (im Druck).
- Martin-Kilcher et al. 1987: S. Martin-Kilcher, M. Maggetti, G. Galetti, Fabrikation von Weinamphoren der Form Dressel 2–4 in Augusta Rauricorum (Augst/BL). Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 70, 1987, 113–132.
- Matter et al. 1988a: A. Matter, Tj. Peters, Ch. Isenschmid, H.-R. Bläsi, H.-J. Ziegler, Sondierbohrung Riniken. Geologie. Textband, Beilagenband. Geologische Berichte der Landeshydrologie und -geologie 5 (1988) (sowie NAGRA, Technischer Bericht 86–02).
- Matter et al. 1988b: A. Matter, Tj. Peters, H.-R. Bläsi, J. Meyer, M. Ischi, Ch. Meyer, Sondierbohrung Weiach. Geologie. Textband, Beilagenband. Geologische Berichte der Landeshydrologie und -geologie 8 (1988) (sowie NAGRA, Technischer Bericht 86– 01).
- Nagra 1984: Die Kernbohrung Beznau. Beiträge zur Geologie der Schweiz, Geotechnische Serie 66 (Schweizerische Geotechnische Kommission, Bern 1984) (sowie NAGRA, Technischer Bericht 84–34).
- Niggli et al. 1930: P. Niggli, F. de Quervain, R. U. Winterhalter, Chemismus schweizerischer Gesteine. Beiträge zur Geologie der Schweiz, Geotechnische Serie 14, 1930, 294–301.
- Peters 1962: Tj. Peters, Tonmineralogische Untersuchungen an Opalinustonen und einem Oxfordienprofil im Schweizer Jura. Schweizerische Mineralogisch-Petrographische Mitteilungen 42, 1962, 359–380.
- Peters 1964: Tj. Peters, Tonmineralogische Untersuchungen an einem Keuper-Lias-Profil im Schweizer Jura (Frick). Schweizerische Mineralogisch-Petrographische Mitteilungen 44, 1964, 559– 588
- Peters 1969: Tj. Peters, Mineralogische Untersuchungen an einigen schweizerischen Ziegeleirohstoffen. Beiträge zur Geologie der Schweiz, Kleinere Mitteilungen 46, und Schweizerische Mineralogisch-Petrographische Mitteilungen 49, 2, 1969, 391–405.
- Peters/Jenni 1973: Tj. Peters, J.-P. Jenni, Mineralogische Untersuchungen über das Brennverhalten von Ziegeltonen. Beiträge zur Geologie der Schweiz, Geotechnische Serie 50, 1973.
- Picon 1976: M. Picon, Remarques préliminaires sur deux types d'altération de la composition chimique des céramiques au cours du temps. Figlina 1, 1976, 159–166.
- *Picon 1985:* M. Picon, Un exemple de pollution aux dimensions kilométriques: la fixation du baryum par les céramiques. Revue d'Archéometrie 9, 1985, 27–29.
- de Quervain 1969: F. de Quervain, Die nutzbaren Gesteine der Schweiz (Bern 1969)
- de Quervain/Friedländer 1942: F. de Quervain, C. Friedländer, 1. Nachtrag zum Chemismus schweizerischer Gesteine. Beiträge zur Geologie der Schweiz, Geotechnische Serie 20 (Schweiz. Geotechnische Kommission, Bern 1942).

- Rottländer 1980: R. C. A. Rottländer, Zum Phosphatgehalt keramischer Scherben. Archaeophysika 7, 1980, 87–94.
- Rottländer 1981–83: R. C. A. Rottländer, Über die Veränderungen von Elementkonzentrationen in keramischen Scherben während der Bodenlagerung. Teil I, Sprechsaal 114, 10, (1981) 742–745; Teil II, Sprechsaal 115, 3, (1982) 210–218; Teil III, Sprechsaal 7, (1983) 571–577.
- Schneider/Hofmann 1976: H. Schneider, B. Hofmann, Bestimmung der Herkunft antiker Keramik (Terra Sigillata) mit Hilfe der Röntgenfluoreszenzanalyse. Berichte der Deutschen Keramischen Gesellschaft 53, 12, 1976, 417–422.
- Schwarz 1989: H.-J. Schwarz, Chemische und mineralogische Untersuchungen an Keramik und miozänen Tonen aus dem Kröning (Niederbayern) (unveröff. Dissertation Universität München 1989).
- Tomasevic-Buck 1977: T. Tomasevic-Buck, Die Ziegelstempel der Legio I Martia im Römermuseum Augst. In: Festschrift Walter Drack zu seinem 60. Geburtstag (Stäfa/Zürich 1977) 109–119.
- Tomasevic-Buck 1982a: T. Tomasevic-Buck, Die Ziegelbrennöfen der Legio I Martia in Kaiseraugst, AG und die Ausgrabungen in der Liebrüti 1970–1975. Archäologische Führer durch Augst und Kaiseraugst 1 (Liestal 1982).
- Tomasevic-Buck 1982b: T. Tomasevic-Buck, Augusta Raurica Ein neuentdecktes Gräberfeld in Kaiseraugst AG. Archäologie der Schweiz 5, 1982, 141–147.
- Walter/Besnius 1989: V. Walter, Y. Besnius, Un exemple de pollution en phosphore et en manganèse de céramiques anciennes. Revue d'Archéometrie 13, 1989, 55-64.
- Withbread 1986: I. K. Whitbread, The characterisation of argillaceous inclusions in ceramic thin sections. Archaeometry 28, 1, 1986, 79–88.

Abbildungsnachweis

- Abb. 1; 3–16: Entwürfe Marino Maggetti, Reinzeichnungen Jean Charrière.
- Abb. 2: Zeichnung Sylvia Fünfschilling, nach Angaben von Marino Maggetti, Alex R. Furger sowie Wesch-Klein und Fellmann (wie Anm. 3).
- Tab. 1-3: EDV-Grafik Alex R. Furger.

Tabelle 1: Probenverzeichnis der analysierten Ziegel (mit Stempel der Legio I Martia und ungestempelte Stücke), der übrigen Baukeramik und von Vergleichs-Lehmproben (vgl. Fortsetzung).

1515	e 1 (gestemp Augst/Ka	iseraugst un	d ander	e Fundo	orte)
Analy-	Inv.	Fund-	Arch.	Stem-	Fundort,
sen-Nr.	(RMA)	komplex	Nr.	pel	Grabungsnummer
Z1	A 1631	1 - 1	A1	1	Augst
Z2	1906.356b(?)	-	A2	1	Kaiseraugst
Z3	1906.356d(?)	- 1	A3	1	Kaiseraugst
Z4	1906.356f	—	A4	1	Kaiseraugst
Z5	1906.356g	-	A5	1	Kaiseraugst
Z6	1906.356h	1 -	A6	1	Kaiseraugst
Z7	1906.356k	-	A7	1	Kaiseraugst
Z8	1906.356r	_		1	
Z9		-	A8	1	Kaiseraugst
Ly	1937.784	-	A9	1	Kaiseraugst, Kastellmauer bei Turm 6, 1937.01
Z 10	1961.136A	V04899	A10	1	Kaiseraugst, Kirche, 1961.02
Z 11	1972.3708	A00952	A11	1	Kaiseraugst, Liebrüti, 1972.08
Z12	1972.6960	A00938	A12	1	dito
Z13	1974,7730	A00959	A13	1	Kaiseraugst, Lieb
					rüti, Ziegelbrenn- ofen, aus der Ofer mauerg., 1974.11
Z14	1974.7731	A00959	A14	1	dito
Z15	1906.356e	-	A15	2	Kaiseraugst
Z 16	1906.356i	-	A16	2	Kaiseraugst
Z17	1974.7493	A00968	A17	2	Kaiseraugst, Lieb rüti, Ziegelbrenn- ofen, 1974.11
Z18	1906.356b(?)	-	A18	3	Kaiseraugst
Z20	1974.7727	A00974	A20	3	Kaiseraugst, Lieb- rüti, Ziegelbrenn- ofen, 1974.11
Z21	1974.7728	A00959	A21	3	dito, aus der Ofenmauerung
Z22	1898.345c	-	A22	4	Wyhlen-Brücken- kopf ("gegenüber von Kaiseraugst")
Z24	1968.2170	X08353(?)	A24	4	Kaiseraugst, Liebrüti, 1968.05
Z25	1971.9713	A00861	A25	4	Kaiseraugst, Lieb rüti, Ziegelbrenn- ofen, 1971.08
Z26	1898,345a	-	A26	5	Wyhlen-Brücken- kopf ("gegenüber von Kaiseraugst")
Z27	1898.345b	-	A27	5	dito
Z28	1906.356a	-	A28	5	Kaiseraugst
Z29	1906.356c	-	A29	5	Kaiseraugst
Z30	1906.356(?)	-	A30	5	Kaiseraugst
Z31	1953.35	-	A31	5	Augst, Steinler, Streufund, 1953.7
Z32	1972.3707a.b	A00952	A32	5	Kaiseraugst, Liebrüti, 1972.08
Z33	1974.6082	A05522	A33	5	Kaiseraugst, Lieb rüti, Ziegelbrenn- ofen, 1974.11
Z34	1974.7725	A00994	A34	5	dito
Z35	1974.7729	A00959	A35	5	dito, aus der Ofenmauerung
Z37	1898.342	-	A37	6	Augst, Theater, südl. Treppenhau
Z38	1906.356(?)	-	A38	6	Kaiseraugst
Z39	1943.259	V00456	A39	6	Augst
Z41	1971.10600	A00855	A41	6	Kaiseraugst, Lieb rüti, Ziegelbrenn- ofen, 1971.08

10000				_	ere Fundorte)
Z42	1971.9714	A00861	A42	6	dito
Z 43	1971.9715	A00861	A43	6	dito
Z44	1974.7726	A00994	A44	6	dito
Z45	1971,6075	A00854	A45	7	dito
ZA7	A 1687/ Rc 129a	-	L1	6	Augst
Z 48	A 7.22	-	L2	3	Augst
Z 49	-	-	L3	6	Augst oder Kanton Basel-Landschaft
Z50	A 1629/ Aug 7.22	-	L4	6	Augst
Z51	A 1628/Rc 174	-	L5	3	Augst
Z52	-	•	L6	-	Augst oder Kanton Basel-Landschaft
Z53	-	-	L7	-	dito
Z54		-	L8		dito
Z55	-	-	L9	-	dito
Z 56	-	-	L10	-	dito
Z57	-	-	F1	-	Frick
Z58	-	-	F2	-	Frick
Z59	-	-	F3	-	Frick
Z 60	-	-	WO1	-	Windisch- Oberburg
Z61	-	-	M158	-	Biel-Mett
Z62	-	-	M181	-	Biel-Mett
Z63	1969.11149	Z02002	KA1	-	Kaiseraugst, Hauptstrasse, 1969.01
Z64	-	-	-	-	Biel-Mett
Z65	-	-	-	-	unbekannt

Analy-	Inv.	Fund-	Arch.	Stem-	Fundort,
sen-Nr.	(RMA)	komplex	Nr.	pel	Grabungsnummer, Material
Z 66	1974.10511	-	1	-	Kaiseraugst, Lieb- rüti, Kleiner Zie- gelbrennofen, 1974.11, Flachzie- gel auf dem Boder
Z67	1974.10512	-	3	-	dito
Z68	1974.10513	-	4	-	dito
Z 69	1974.10514	-	5	-	dito
Z70	1974.10515	-	6	-	dito
Z71	1974.10516	-	7	-	dito
Z72	1974.10517	-	8	-	dito
Z73	1974.10518	-	9	-	dito
Z74	1974.10519	-	10	-	dito
Z75	1974.10520	-	11A	-	dito
Z 76	1974.10521	-	11B	-	dito
Z77	1974.10522	-	11C	-	dito
Z78	1974.10523	-	11D	-	dito
Z79	1974.10524	-	12A	-	dito
Z80	1974.10525	-	13A	-	dito
Z81	1974.10526	-	13B	-	dito
Z82	1974.10527	-	14/19?	-	dito
Z83	1974.10528	-	12B	-	dito

Analy-	Inv.	Fund-	Arch.	Stem-	Fundort,
sen-Nr.	(RMA)	komplex	Nr.	pel	Grabungsnummer,
	, , ,	1	132.00		Material
Z84	1981.21450	-	-	-	KA, Auf der Wacht II, Töpfer- ofen, Parz. 231, 1981.01, Flachzie gel aus der Ofen- mauerung
Z85	1981.21451	-	-	-	dito
Z 86	1981.21452	-	-	-	dito
Z87	1981.21453	-	-	-	dito
Z88	1981.21454	-	-	-	dito
Z89	1981.21455	-	-	-	dito
Z 90	1981.21456	-	-	-	dito
Z91	1981.21457	-	-	-	dito
Z92	1981.21458	-	-	-	dito
Z93	1981.21459	-	-	-	dito
Z94	1981.21460	-	-	-	dito
Z95	1981.21461	-	-	-	dito
Z 96	1981.21462	-	-	-	dito
Z97	1981.21463	-	-	-	dito
Z 98	1981.21464	-	-	-	dito
Z 99	1981.21465	-	-	-	dito
Z100	1981.21466	-	-	-	dito
Z101	1981.21467	-	-	-	dito
Z102	1981.21468	-	-	-	dito
Z103	1981.21469	-	-	-	dito
Z 104	1981.21470	-	-	-	dito
Z105	1981.21471	-	-	-	dito
Z106	1981.21472	-	-	-	dito
Z107	1981.21473	-	-	-	dito

Analy- sen-Nr.	Inv. (RMA)	Fund- komplex	Arch. Nr.	Stem- pel	Fundort, Grabungsnummer, Material
Z113	1974.10529	-	-	-	Grabung 1974.11. Letzte Charge auf dem Brennrost (Lochtenne)
Z114	1974.10530	-	-	-	dito
Z115	1974.10531	-	-	-	dito
Z116	1974.10532	-	-	-	dito
Z117	1974.10533	-	-	-	dito
Z118	1974.10534	-	-	-	dito
Z119	1974.10535	-	-	-	dito
Z120	1974.10536	-	-	-	dito
Z121	1974,10537	-	-		dito

Grupp	e 4 (ungester Brennofe	npelte Flach	ziegel, (augst-A	Dfenmau uf der V	uerung eines Vacht II)
Analy- sen-Nr.	Inv. (RMA)	Fund- komplex	Arch. Nr.	Stem- pel	Fundort, Grabungsnummer, Material
Z108	1981.21474				KA, Auf der Wacht II, Brenn- ofen unbekannter Verwendung, Parz. 237, 1981.01, Flachzie- gel aus der Ofen- mauerung
Z 109	1981.21475	-		-	dito
Z110	1981.21476	-	-	-	dito
Z111	1981.21477	-	-	-	dito
Z112	1981.21478	-	-	-	dito

Grupp		ben, Nekro einlerstrasse			t-Im Sager und
Analy- sen-Nr.	Inv. (RMA)	Fund- komplex	Arch. Nr.	Stem- pel	Fundort, Grabungsnummer, Material
Z122	1981.21442	-	1 (c)	-	KA-Im Sager, 1981.03, Parz. 351/352/360/361, Koord. 622.500/ 265.120. Aus Son- diergraben Nr. 1, neben Grab 29
Z123	1981.21443		2 (G)	-	dito, aus Sondier- graben Nr. 2, neben nördlicher Mauer
Z124	1981.21444		3 (H)	-	dito, aus Sondier- graben Nr. 3, neben Grab 21
Z125	1981.21445	-	4 (D)	-	dito, aus Sondier- graben Nr. 4, neben Grab 15
Z126	1981.21446	-	5 (B)	-	dito, aus Sondier- graben Nr. 5, neben Grab 12
Z127	1981.21447	-	6 (F)	-	dito, aus Sondier- graben Nr. 6, neben Grab 4
Z128	1981.21448	-	7 (A)	-	dito, aus Sondier- graben Nr. 7, neben Grab 2
Z129	1981.21449	-	(=)	-	Augst, Insula 35 (Steinlerstrasse), 1981.51, Lehm- probe, Parz. 1101, Koord. 621.420/ 264.530, Schicht 28, Profil 6

Analy-	Inv.	kropole Im	Arch.	Stem-	Fundort,
sen-Nr.	(RMA)	komplex	Nr.	pel	Grabungsnummer, Material
Z130	1981.20743	B05667		7	KA-Im Sager, 1981.03, Grab 4, Ziegel 1
Z131	1981.20744	B05667	-	2	dito, Ziegel 2
Z132	1981.20734	B05667	-	1	dito, Ziegel 3
Z133	1981.20738	B05667		6	dito, Ziegel 4
Z134	1981.20735	B05667	-	2	dito, Ziegel 5
Z135	1981.20741	B05667	-	2	dito, Ziegel 5
Z136	1981.20739	B05667	-	2	dito, Ziegel 6
Z137	1981.20745	B05667	-	6	dito, Ziegel 7
Z138	1981.20742	B05667		1	dito, Ziegel 8
Z139	1981.20732B	B05666	-	3	KA-Im Sager, 1981.03, Grab 5, Ziegel 5
Z140	1981.20732A	B05666	-	5	dito
Z141	1981.20731	B05666	-	5	dito, Fussende
Z142	1981.20218A	B05604	-	-	KA-Im Sager, 1981.03, Streufund
Z143	1981.20746	B05668	-	-	KA-Im Sager, 1981.03, Grab 14, Ziegel 1
Z144	1981.20747	B05668		5	dito, Ziegel 2
Z145	1981.20797	B05685	-	5	KA-Im Sager, 1981.03, Grab 20, Ziegel 1
Z146	1981.20810	B05685	-	3	dito, Ziegel 13
Z147	1981.20761	B05670	le l	5	KA-Im Sager, 1981.03, Grab 21, Ziegel 2
Z148	1981.20783	B05678	•	3	KA-Im Sager, 1981.03, Grab 49, Ziegel 1
Z149	1981.20784	B05678	-	1	dito, Ziegel 2

Analy-	Inv.	Fund-	Arch.	Stem-	From decent
sen-Nr.	(RMA)	komplex	Nr.	pel	Fundort, Grabungsnummer, Material
Z150	1971.9999C	A00853	-	-	KA-Liebrüti, Ziegelbrennofen, 1971.08, Überbrand SS20
Z151	1971.9999D	A00853	-	-	dito
Z152	1971.9999E	A00853	-	-	dito
Z153	1971.9999F	A00853	-	-	dito
Z154	1971.9999G	A00853	-	-	dito
Z155	1971.9999Н	A00853	-	-	dito
Z156	1971.99991	A00853	-	-	dito
Z157	1971.9999K	A00853		-	dito
Z158	1971.9999	A00865	-	-	KA-Liebrüti, Ziegelbrennofen, 1971.08, Tubulus SS4
Z159	1972.3918A	A00952	-	-	KA-Liebrüti, Ziegelbrennofen, 1972.08, Leitungsrohr SF3
Z160	1974.9468	A00970	•	-	KA-Liebrüti, Ziegelbrennofen, 1974.11, Ziegel oder Ziegel- aufstrich? SF9a

Analy- sen-Nr.	Inv. (RMA)	Fund- komplex	Arch. Nr.	Stem- pel	Fundort, Material
Z161	1986,28154	C02479	-	?	KA-«Thommen», 1986.04, Grab 12, Leistenziegelkiste
Z162	1986.28137	C02469		6	KA-«Thommen», 1986.04, Skelett 4, Abdeckung
Z163	1971.9426	A00858	-	-	KA-Liebrüti, Ziegelbrennofen, 1971.08, SF 1, Flachziegel
Z164	1971.6076B	A00854	-	-	dito
Z165	1971,6076A	A00854	-	-	dito
Z166	1971.9425	A00858	-	-	dito
Z167	1971.9307	A00856	-	-	dito
Z168	1971,9308	A00856	-	-	dito

Tabelle 2: Chemische Analysen von Augster Baukeramik und Tonen. GV = Glühverlust. * Fetot liegt als Fe₂O₃ vor.

Gew.%

Gew.%	Z1	Z2	Z3	Z 4	Z 5	Z 6	Z 7	Z8	Z 9	Z 10
SiO ₂	64.81	65.68	64.83	64.67	64.82	65.83	64.34	64.52	63.69	64.98
TiO ₂	1.08	1.05	1.06	1.09	1.05	1.04	1.08	1.08	1.05	1.05
Al ₂ O ₃	18.60	18.22	17.86	18.43	17.73	18.05	18.23	18.59	18.58	18.04
Fetot*	6.91	6.98	6.62	6.76	6.43	7.31	6.80	6.81	6.79	6.46
MnO	0.07	0.09	0.07	0.06	0.08	0.08	0.07	0.08	0.08	0.09
MgO	1.53	1.43	1.55	1.46	1.57	1.39	1.51	1.56	1.48	1.50
CaO	3,44	2.24	4.32	3.78	4.11	2.46	4.49	3.62	3.84	4.10
Na ₂ O	0.26	0.38	0.35	0.22	0.26	0.34	0,36	0.25	0.41	0.29
K ₂ O	2.88	2.94	2.90	2.97	2.94	2.91	2.89	2.89	3.05	2.93
P ₂ O ₅	0.39	0.30	0.35	0.39	0.37	0.40	0.35	0.40	0.43	0.38
Total	99.98	99.31	99.92	99.84	99.36	99.81	100.11	99.81	99.40	99.82
GV	2.55	1.79	1.86	1.64	2.78	1.82	2.36	2.47	1.6	2.6
FeO	0.97			0.66	0.50			0.41	0.33	0.24
H ₂ O ⁻	0.74	0.54	0.54	5.26	0.52	0.51	0.71	4.05	1.41	0.88
ppm										
Ba								388		394
Zr								285		286
Sr								154		158
Rb								128		131
Zn								132		133
Cu								28		23
Ni								44		46
Cr								126		139

SiO ₂	64.67	64.00	64.71	64.37	64.90	64.28	63.68	63.49	65.03	65.56
TiO ₂	0.99	0.99	1.07	1.09	1.00	1.03	1.06	1.01	1.05	1.05
Al ₂ O ₃	17.22	17.58	18.19	19.07	17.70	18.60	18.44	17.72	18.42	18.48
Fetot*	6.06	6.26	6.57	6.80	6.12	6.78	6.22	6.36	6.60	7.06
MnO	0.07	0.07	0.08	0.09	0.08	0.08	0.08	0.09	0.08	0.08
MgO	1.49	1.49	1.46	1,66	1.52	1.48	1.66	1.60	1.65	1.49
CaO	6.04	4.89	3.80	3,31	5.14	3.89	5.18	5.61	3.61	2,51
Na ₂ O	0.46	0.48	0.41	0.25	0.28	0.70	0.26	0.38	0.43	0.42
K ₂ O	2.78	3.32	3.01	2.96	2.83	2.89	2.90	2.83	2.88	2.91
P2O5	0.33	0.30	0.36	0.33	0.29	0.32	0.33	1.17	0.47	0.41
Total	100.11	99.38	99.65	99.92	99.85	100.03	99.81	100.27	100.22	99.97
GV	3.68	0.91	2.47	1.68	3.19	1.16	2.12	3.03	1.87	1.48
FeO	0.52		0.32	0.71			0.30			0.70
H ₂ O ⁻	0.68	0.60	0.89	0.58	1.11	0.60	1.73	0.89	0.72	0.49
ppm										
Ba										
Zr										
Rb										
Zn										
Cu										
Cr										

Gew.%	Z11	Z12	Z13	Z14	Z15	Z16	Z17	Z18	Z20	Z21
SiO ₂	62.07	64.65	62.72	64.33	64.16	63.46	64.07	64.96	65.01	64.28
TiO ₂	1.11	1.08	1.08	1.08	1.06	1.05	1.08	1.04	1.03	1.12
Al ₂ O ₃	20.53	18.89	18.20	18.92	18.30	18.27	18.97	18.41	17.53	18.59
Fetot*	6.19	6.53	6.51	7.41	6.32	6.34	7.16	6.25	6.22	6.43
MnO	0.07	0.09	0.08	0.07	0.07	0.08	0.09	0.06	0.07	0.07
MgO	1.81	1.55	1.69	1.55	1.55	1.66	1.49	1.65	1.41	1.49
CaO	4.24	3.06	4.98	2.02	4.50	5.47	2.83	4.20	5.00	4.14
Na ₂ O	0.41	0.26	0.22	0.45	0.39	0.23	0.27	0.45	0.31	0.23
K ₂ O	3.31	2.93	3.58	2.80	3.00	2.83	3.10	2.86	2.85	2.76
P ₂ O ₅	0.25	0.37	0.33	0.34	0.34	0.35	0.31	0.33	0.30	0.34
Total	99.99	99.43	99.39	98.99	99.70	99.91	99.36	100.22	99.74	99.46
GV	0.67	1.41	2.81	1.88	2.06	2.40	1.57	1.77	2.40	3.32
FeO		0.27	1.31	0.57	0.59	0.26	0.62		0.20	
H ₂ O ⁻	0.38	0.55	0.64	0.73	0.45	0.60	0.44	0.49	3.62	1.46
ppm										
Ba			360						355	
Zr			292						282	
Sr			162						171	
Rb			149						126	
Zn			126						119	
Cu			20						18	
Ni			49						42	
Cr			125						121	

Gew.%	Z33	Z34	Z35	Z37	Z38	Z39	Z41	Z42	Z43	Z44
SiO ₂	64.12	65.70	61.71	63.73	63.26	64.41	64.77	64.39	63.51	65.44
TiO ₂	1.06	1.10	1.02	1.06	1.02	1.09	1.08	1.04	1.08	1.09
Al ₂ O ₃	18.47	18.76	17.66	18.49	18.07	18.82	18.20	18.21	18.71	19.07
Fetot*	6.69	6.98	12.14	6.90	6.14	7.30	6.44	6.63	7.84	7.31
MnO	0.08	0.08	0.09	0.12	0.08	0.08	0.07	0.07	0.10	0.08
MgO	1.53	1.55	1.60	1.59	1.67	1.57	1.49	1.58	1.56	1.50
CaO	4.32	2.14	2.62	4.31	5.40	3.56	4.36	4.79	3.72	2.11
Na ₂ O	0.42	0.38	0.36	0.39	0.40	0.42	0.35	0.41	0.43	0.35
K ₂ O	2.87	2.84	2.71	3.07	3.03	2.68	2.81	2.81	2.88	2.90
P ₂ O ₅	0.44	0.43	0.31	0.53	0.28	0.47	0.36	0.39	0.70	0.40
Total	100.00	99.96	100.22	100.19	99.35	100.39	99.93	100.33	100.52	100.25
GV	2.20	2.57	1.95	2.03	0.59	3.09	2.68	1.96	2.00	2.33
FeO	0.17	0.38	0.20	0.67	4.80	1.04	0.19	0.32	0.34	0.17
H ₂ O ⁻	3.52	1.70	0.93	0.53	0.45	1.28	0.88	0.56	0.94	1.31
ppm										
Ba										
Zr										
Rb										
Cu										
Ni										
Cr										

Tabelle 2: (Fortsetzung)

Gew.%	Z45	Z47	Z48	Z49	Z50	Z51	Z52	Z53	Z54	Z55
SiO ₂	64.80	64.88	63.94	64.26	62.95	63.31	65.01	63.96	62.91	62.81
TiO ₂	1.08	1.05	1.10	1.08	1.04	1.05	1.04	1.07	1.13	1.07
Al ₂ O ₃	18.31	17.94	18.56	19.02	18.06	18.34	17.96	18,95	19.21	18.38
Fetot*	6.53	6.38	6.63	7.04	6.48	6.47	6.49	7.18	6.74	6.59
MnO	0.07	0.07	0.08	0.08	0.08	0.07	0.07	0.08	0.09	0.08
MgO	1.49	1.58	1.52	1.54	1.67	1.53	1.52	1.56	1.62	1.58
CaO	3.78	4.72	4.06	3.24	5.15	5.14	4.59	3.32	4.37	4.89
Na ₂ O	0.39	0.37	0.25	0.45	0.65	0.50	0.42	0.34	0.15	0.33
K ₂ O	2.84	2.81	2.81	2.77	3.74	3.77	2.84	2.79	2.69	3.41
P ₂ O ₅	0.47	0.39	0.68	0.75	0.29	0.30	0.36	0.73	1.04	0.30
Total	99.76	100.19	99.63	100.23	100.11	100.48	100.30	99.98	99.93	99.43
GV	2.76	3.44	3.25	2.59	1.13	0.77	3.17	2.54	3.78	0.67
FeO	0.41	0.28	0.22	0.25	1.83	4.00	0.26	0.23	0.41	3.82
H ₂ O ⁻	0.90	1.68	1.63	2.08	1.02	0.35	0.60	1.01	1.52	0.36
ppm										
Ba			392			342	381		398	
Zr			293			284	285		307	
Sr			150			167	160		154	
Rb			122			137	130		122	
Zn			129			123	126		133	
Cu			19			10	20		23	
Ni			42			47	47		46	
Cr			140			126	131		138	

Gew.%	Z56	Z57	Z58	Z59	Z60	Z61	Z62	Z63	Z64	Z65
SiO ₂	63.04	63.15	63.88	65.23	63.48	64,64	63.78	63.72	63.22	63.65
TiO ₂	1.05	1.08	1.06	1.07	1.09	1.05	1.03	1.05	1.05	1.04
Al ₂ O ₃	18.22	19.10	18.58	17.91	18.94	18.08	18.28	18.21	18.22	17.76
Fetot*	6.35	6.65	6.57	6.31	7.16	6.18	6.55	5.92	6.28	6.41
MnO	0.08	0.09	0.07	0.09	0.09	0.08	0.07	0.12	0.08	0.08
MgO	1.63	1.60	1.43	1.25	1.54	1.60	1.52	1.58	1.60	1.47
CaO	5.36	4.17	4.21	3.98	3.38	5.40	4.50	4.40	5.80	5.24
Na ₂ O	0.25	0.29	0.25	0.20	0.32	0.29	0.27	0.40	0.25	0.21
K ₂ O	3.64	2.95	2.97	2.77	2.97	2.84	2.83	3.53	2.78	2.92
P ₂ O ₅	0.29	0.46	0.48	0.62	0.56	0.32	0.32	0.67	0.32	0.84
Total	99.91	99.53	99.50	99.42	99.52	100.48	99.15	99.60	99.59	99.60
GV	2.14	3.06	2.59	5.74	2.04	2.86	2.55	2.31	3.11	4.95
FeO	0.93	0.16	0.16		0.17			0.47	0.31	0.17
H ₂ O ⁻	0.54	1.75	0.93	3.41	0.99	0.55	0.58	0.82	0.49	1.84
ppm			***************************************							
Ba	347		380							480
Zr	267		266							270
Sr	179		161							171
Rb	129		127							106
Zn	123		128							122
Cu	20		18							19
Ni	41		41							38
Cr	118		136							114

Gew.%	Z 66	Z67	Z68	Z 69	Z 70	Z71	Z72	Z 73	Z74	Z75
SiO ₂	70.97	70.47	66.90	70.43	76.05	69.45	68.84	68.27	75.92	73.81
TiO ₂	0.83	0.83	0.84	0.80	0.75	0.82	0.83	0.83	0.75	0.78
Al ₂ O ₃	13.45	13.42	13.73	13.06	12.33	12.96	13.34	13.50	12.36	13.63
Fetot*	5.70	5.69	5.79	5.47	5.24	5.40	5.69	5.78	5.11	5.46
MnO	0.06	0.06	0.07	0.06	0.08	0.06	0.06	0.06	0.07	0.07
MgO	1.92	2.02	2.52	1.75	1.32	1.99	2.06	2.10	1.40	1.45
CaO	4.34	4.79	6.99	5.38	1.16	5.90	5.47	5.62	1.04	1,05
Na ₂ O	0.58	0.67	0.60	0.64	1.03	0.73	0,64	0.64	1.10	0.94
K ₂ O	2.50	2.61	2.70	2.40	2.32	2.54	2.61	2.60	2.28	2.94
P ₂ O ₅	0.25	0.24	0.24	0.24	0.23	0.22	0.23	0.22	0.23	0.24
Total	100.61	100.29	100.38	100.25	100.50	100.07	99.76	99.62	100.28	99.92
GV	3.25	1.27	1.90	5.25	0.63	1.49	1.74	1.28	0.54	0.70
FeO	0.09	0.11	0.34	0.06	0.09	0.17	0.13	0.12	0.09	0.08
H ₂ O ⁻	0.53	0.33	0.47	0.95	0.20	0.37	0.31	0.33	0.19	0.19
ppm										
Ba	423	348	329	415	391	337	346	343	387	397
Zr	313	323	294	296	398	320	324	314	410	376
Sr	160	157	182	149	106	183	168	167	107	110
Rb	101	113	118	91	108	113	117	113	105	117
Zn	119	106	96	96	98	92	96	94	101	112
Cu	22	24	21	23	28	22	25	25	23	24
Ni	30	33	38	30	28	35	36	35	29	32
Cr	114	129	107	106	128	97	116	106	124	132

Gew.%	Z 76	Z77	Z78	Z 79	Z80	Z81	Z82	Z83	Z84	Z85
SiO ₂	75.44	75.05	75.67	72.54	71.45	71.23	70.55	71.81	70.44	74.00
TiO ₂	0.74	0.77	0.76	0.83	0.80	0.80	0.81	0.81	0.90	0.79
Al ₂ O ₃	12.30	12.66	12.58	13.43	13.11	13.03	13.04	13.24	16.03	13.56
Fe*	5.28	5.52	5.17	5.40	5.48	5.48	5.56	5.48	6.29	5.60
MnO	0.07	0.07	0.07	0.06	0.06	0.06	0.07	0.06	0.07	0.08
MgO	1.25	1.37	1.33	1.60	1.81	1.77	1.78	1.73	1.48	1.43
CaO	1.16	1.18	1.13	2.63	4.17	4.23	5.39	3.86	1.17	1.00
Na ₂ O	1.06	0.96	1.01	0.64	0.61	0.67	0.60	0.66	0.63	0.83
K ₂ O	2.29	2.34	2.33	2.47	2.44	2.43	2.41	2.42	2.80	2.56
P ₂ O ₅	0.23	0.24	0.23	0.23	0.24	0.25	0.25	0.23	0.35	0.25
Total	99.82	100.16	100.27	99.83	100.18	99.95	100.47	100.30	100.15	100.10
GV	0.78	0.78	0.54	2.29	3.72	3.84	4.81	3.85	2.93	1.08
FeO	0.04	0.10	0.10	0.09	0.06	0.09	0.02	0.06	0.10	0.17
H_2O^-	0.24	0.20	0.25	1.07	0.97	1.15	0.98	1.03	2.20	0.44
ppm										
Ba	373	385	379	429	359	399	357	408	605	397
Zr	404	391	397	350	325	331	313	343	323	330
Sr	112	106	109	148	160	158	170	149	177	109
Rb	108	107	105	103	101	97	93	98	121	108
Zn	99	102	101	101	99	99	99	103	121	107
Cu	22	20	24	18	19	20	19	18	33	36
Ni	29	29	29	30	30	30	31	29	38	34
Cr	124	130	118	113	109	105	110	106	133	127

Tabelle 2: (Fortsetzung)

Gew.%	Z86	Z87	Z88	Z89	Z90	Z 91	Z92	Z93	Z94	Z 95
SiO ₂	70.30	70.86	68.17	67.21	72.31	75.26	70.16	74.93	67.00	68.18
TiO ₂	0.32	0.83	0.85	0.96	0.83	0.76	0.81	0.77	0.88	0.87
Al ₂ O ₃	13.41	13.39	14.59	17.59	14.58	12.82	13.48	13.16	17.03	17.99
Fetot*	5.81	5.71	6.06	7.60	6.14	5.43	5.60	5.34	7.08	6.52
MnO	0.05	0.05	0.05	0.12	0.08	0.10	0.05	0.09	0.07	0.03
MgO	1.93	1.76	2.14	2.00	1.57	1.32	1.95	1.18	2.17	1.83
CaO	4.52	4.07	4.77	1.17	1.07	0.90	4.89	1.05	2.30	0.90
Na ₂ O	0.54	0.47	0.54	0.49	0.79	1.13	0.72	1.07	0.68	0.61
K ₂ O	2.54	2.53	2.76	3.04	2.78	2.33	2.63	2.24	3.02	2.93
P ₂ O ₅	0.25	0.24	0.26	0.26	0.28	0.24	0.25	0.26	0.22	0.16
Total	100.17	99.91	100.19	100.44	100.43	100.28	100.55	100.10	100.47	100.02
GV	3.13	2.89	1.51	1.42	1.70	0.84	0.89	1.82	0.60	1.02
FeO	0.78	0.17	2.20	0.10	0.10	0.21	2.39	0.10	3.14	0.46
H_2O^-	0.58	0.58	0.49	0.48	0.85	0.24	0.30	1.16	0.24	0.34
ppm										
Ba	369	341	369	419	416	393	355	462	390	405
Zr	330	332	297	260	325	363	301	389	251	238
Sr	147	138	175	125	121	102	164	129	149	130
Rb	109	107	127	142	112	109	115	101	148	146
Zn	101	100	112	129	119	106	121	110	131	122
Cu	18	19	20	26	34	23	20	32	21	16
Ni	35	29	40	48	37	33	36	12	47	34
Cr	96	117	117	145	132	130	102	124	143	150

Gew.%	Z106	Z107	Z108	Z109	Z110	Z111	Z112	Z113	Z114	Z115
SiO ₂	71.16	73.90	69.67	69.58	72.71	69.90	69.09	66.41	66.14	64.90
TiO ₂	0.83	0.78	0.88	0.86	0.71	0.89	0.88	1.08	1.07	1.05
Al ₂ O ₃	14.68	13.46	14.92	14.45	14.73	14.92	14.70	18.69	18.48	18.22
Fetot*	5.93	5.62	6.13	5.93	5.52	6.35	6.00	6.60	6.61	6.20
MnO	0.08	0.08	0.05	0.05	0.11	0.04	0.05	0.08	0.09	0.09
MgO	1.70	1.32	1.95	1.93	1.87	1.92	1.92	1.46	1.40	1.35
CaO	2.23	1.10	3.11	3,42	0.90	2.52	3.69	2.96	3.59	5.15
Na ₂ O	0.69	1.02	0.58	0.64	0.82	0.53	0.57	0.22	0.18	0.27
K ₂ O	2.62	2.47	2.80	2.74	2.69	2.80	2.77	2.62	2.60	2.78
P ₂ O ₅	0.30	0.27	0.26	0.26	0.17	0.29	0.28	0.30	0.30	0.29
Total	100.22	99.98	100.34	99.86	100.24	100.16	99.93	100.42	100.47	100.29
GV	3.71	1.84	1.09	1.93	1.57	1.60	2.06	4.95	5.39	4.14
FeO	0.10	0.20	2.57	0.50	0.34	0.61	0.52	0.58	0.05	0.05
H_2O^-	2,66	1.84	0.40	0.60	0.47	0.46	0.66	3.05	3.00	1.81
ppm										
Ba	594	429	394	399	472	390	400	415	372	362
Zr	306	344	298	304	217	291	298	277	271	274
Sr	176	134	147	160	101	144	166	137	142	164
Rb	101	112	126	125	139	123	124	111	104	114
Zn	110	108	115	112	112	119	113	134	127	130
Cu	25	22	21	22	30	23	20	21	19	19
Ni	33	34	39	36	36	35	37	36	34	35
Cr	141	119	115	118	133	124	124	124	119	121

Gew.%	Z96	Z97	Z98	Z 99	Z100	Z101	Z102	Z103	Z104	Z105
SiO ₂	74.50	73.25	70.53	71.70	71.62	67.83	71.97	72.11	72.39	67.60
TiO ₂	0.75	0.79	0.68	0.88	0.85	0.81	0.84	0.84	0.82	0.81
Al ₂ O ₃	13.09	13.29	15.05	15.29	14.83	12.73	14.75	14.65	14.65	12.36
Fetot*	5.45	5.11	5.89	6.29	6.20	5.43	5.94	5.97	6.02	5.47
MnO	0.08	0.06	0.08	0.06	0.07	0.09	0.07	0.07	0.07	0.09
MgO	1.44	1.73	2.73	1.32	1.59	2.02	1.69	1.70	1.60	1.82
CaO	1.06	2.61	1.26	1.19	0.98	8.36	1.12	1.12	1.16	8.45
Na ₂ O	1.13	0.69	0.81	0.75	0.75	0.39	0.78	0.87	0.83	0.47
K ₂ O	2.40	2.56	3.12	2.68	2.65	2.32	2.67	2.68	2.57	2.34
P ₂ O ₅	0.24	0.27	0.20	0.32	0.25	0.35	0.25	0.24	0.26	0.36
Total	100.15	100.36	100.36	100.48	99.80	99.84	100.08	100.24	100.38	99.78
GV	0.69	2.02	2.78	3.20	1.09	8.03	1.96	1.79	2.95	7.94
FeO	0.22	0.11	0.07	0.30	0.25	0.10	0.34	0.33	0.45	0.14
H ₂ O ⁻	0.22	0.49	2.01	1.99	0.40	2.47	0.42	0.37	0.72	2.46
ppm										
Ba	377	379	640	589	422	513	409	405	437	548
Zr	347	388	221	296	324	333	332	337	318	338
Sr	105	129	172	192	118	300	116	117	132	267
Rb	111	114	131	120	125	83	124	128	120	82
Zn	107	105	95	113	119	92	118	119	119	93
Cu	37	32	35	23	18	23	55	56	52	21
Ni	35	34	37	35	39	31	35	36	35	31
Cr	117	112	123	136	141	107	139	137	130	89

Gew.%	Z116	Z117	Z118	Z119	Z120	Z121	Z122	Z123	Z124	Z125
SiO ₂	66.94	66.12	67.05	65.99	65.74	66.39	80.63	80.29	64.80	76.42
Tio ₂	1.09	1.08	1.09	1.08	1.07	1.10	0.79	0.85	0.61	0.94
Al ₂ O ₃	18.75	18.55	18.66	18.60	18.53	18.78	10.30	10.99	12.16	13.27
Fetot*	6.82	6.53	6.53	6.57	6.47	6.54	3.59	3.61	4.50	4.62
MnO	0.10	0.08	0.10	0.08	0.08	0.10	0.05	0.04	0.06	0.04
MgO	1.43	1.40	1.52	1.47	1.44	1.53	0.89	0.90	2.65	1.17
CaO	2.43	3.54	2.69	3.60	3.63	2.65	0.92	0.67	11.81	0.76
Na ₂ O	0.27	0.25	0.28	0.17	0.20	0.33	0.88	0.81	0.91	0.54
K ₂ O	2.53	2.62	2.51	2.63	2.61	2.58	2.06	2.14	2.42	2.31
P ₂ O ₅	0.31	0.30	0.31	0.30	0.30	0.31	0.17	0.15	0.17	0.16
Total	100.66	100.48	100.73	100.49	100.08	100.29	100.28	100.47	100,10	100,40
GV	4.71	5.16	5.02	5.13	5.45	5.69	3.36	3,33	11.54	4.41
FeO	0.37	0.04	0.09	0.11	0.08	0.07	0.54	1.40	0.68	0.62
H ₂ O ⁻	3.47	3.08	3.47	2.86	2.85	4.15	1.81	1.84	1.83	2.41
ppm										
Ba	445	377	408	374	375	404	366	379	279	402
Zr	282	269	282	269	265	280	317	330	182	313
Sr	136	140	136	139	139	161	100	104	196	107
Rb	104	103	99	105	102	120	89	96	94	110
Zn	126	125	124	129	124	123	66	70	78	90
Cu	18	17	17	19	15	16	11	10	15	12
Ni	34	33	37	34	31	32	13	14	27	16
Cr	137	126	123	119	130	146	103	110	89	115

Tabelle 2: (Fortsetzung)

Gew.%	Z126	Z127	Z128	Z129	Z130	Z131	Z132	Z133	Z134	Z135
SiO ₂	71.01	69.98	69.46	74.97	65.29	66.32	65.55	64.91	65.26	64.94
TiO ₂	0.98	0.81	0.66	0.92	1.13	1.14	1.09	1.08	1.09	1.18
Al ₂ O ₃	16.74	16.27	14.10	13.62	19.94	20.03	19.21	19.12	19.40	20.82
Fetot*	6.02	6.21	5.26	4.75	6.44	7.00	6.75	6.58	6.76	7.16
MnO	0.05	0.05	0.05	0.06	0.07	0.09	0.08	0.08	0.08	0.08
MgO	1.41	1.92	2.08	1.54	1.52	1.20	1.56	1.55	1.49	0.90
CaO	0.81	1.11	4.87	0.90	2.02	1.35	2.29	2.91	2.22	1.25
Na ₂ O	0.55	0.79	0.89	0.76	0.i5	0.11	0.20	0.12	0.16	0.03
K ₂ O	2.70	2.93	2.73	2.65	2.87	2.56	2.85	2.95	2.68	2.61
P ₂ O ₅	0.17	0.20	0.20	0.29	0.38	0.45	0.46	0.39	0.40	0.67
Total	100.44	100.27	100.30	100.46	99.81	100.25	100.04	99.69	99.54	99.64
GV	5.89	5.20	7.19	4.38	2.53	4.94	2.12	1.54	2.33	5.62
FeO	0.84	0,82	0.71	0.57						
H_2O^-	3.52	2.82	2.38	2.47	2.12	6.29	1.88	1.14	1.79	6.33
ppm										
Ba	403	390	339	396	377	467	381	363	388	469
Zr	259	204	163	346	297	304	297	291	292	313
Sr	111	110	146	102	119	78	131	144	127	90
Rb	137	129	113	124	123	101	129	133	116	99
Zn	108	109	94	101	124	129	127	129	127	126
Cu	17	19	16	18	21	23	21	26	22	24
Ni	24	32	28	24	40	45	44	46	41	46
Cr	131	135	112	124	155	139	132	144	139	142

Gew.%	Z136	Z137	Z138	Z139	Z140	Z141	Z142	Z143	Z144	Z145
SiO ₂	65.59	66.66	65.55	65.77	64.88	65.67	65.49	63.73	63.78	65,46
TiO ₂	1.11	1.12	1.08	1.08	1.12	1.04	1.05	1.08	1.07	1.09
Al ₂ O ₃	19.72	19.68	19.29	18.84	19.90	18.26	18.56	19.30	19.31	19.97
Fetot*	6.81	6.76	6,60	6.65	7.06	6.40	6.41	6.81	6,98	6.96
MnO	0.08	0.08	0.08	0.08	0.07	0.08	0.08	0.08	0.08	0.08
MgO	1.39	0.96	1.49	1.54	1.58	1.53	1.59	1.55	1.53	1.48
CaO	1.77	1.39	1.92	2.53	1.84	2.87	3.00	3.65	3.61	1.91
Na ₂ O	0.15	0.06	0.21	0.20	0.15	0.23	0.17	0.15	0.13	0.17
K ₂ O	2.73	2.60	2.82	2.91	2.91	2.88	2.88	2.80	2.80	2.69
P ₂ O ₅	0.56	0.63	0.71	0.51	0.49	0.56	0.53	0.64	0.61	0.36
Total	99.91	99.94	99.75	100.11	100.00	99.42	99.76	99.79	99.90	100.17
GV	3.28	4.88	2.26	2.43	2.74	2.16	1.97	2.53	2.51	2.63
FeO										
H_2O^-	3.21	4.03	1.53	1.63	1.52	1.02	1.13	1.32	1.34	2.66
ppm				***			-			
Ba	411	452	391	369	372	378	362	362	356	383
Zr	295	295	295	292	295	284	294	279	276	284
Sr	113	96	127	123	115	134	143	144	142	118
Rb	113	103	129	124	129	129	139	125	127	118
Zn	129	129	131	126	127	127	127	132	131	133
Cu	22	21	20	29	21	22	25	22	20	23
Ni	42	39	44	41	44	41	49	45	47	42
Cr	142	151	149	142	145	142	136	130	146	148

Gew.%	Z146	Z147	Z148	Z149	
SiO ₂	64.74	65.71	66.02	65.41	
TiO ₂	1.08	1.09	1.05	1.09	
Al ₂ O ₃	19.62	19.55	19.12	19.24	
Fetot*	7.30	6.87	6.71	6.73	
MnO	0.09	0.08	0.09	0.09	
MgO	1.62	1.33	1.53	1.52	
CaO	1.79	2.06	2.15	2.27	
Na ₂ O	0.20	0.16	0.16	0.18	
K ₂ O	2.89	2.58	2.84	2.86	
P ₂ O ₅	0.44	0.44	0.47	0.45	
Total	99.77	99.87	100.14	99.84	
GV	1.86	3.25	2.00	2.08	
FeO					
H ₂ O ⁻	0.97	3.27	1.45	1.43	
ppm					
Ba	363	383	374	373	
Zr	276	293	286	294	
Sr	124	111	129	135	
Rb	132	106	125	129	
Zn	132	131	124	128	
Cu	23	21	23	23	
Ni	46	44	41	43	
Cr	152	139	144	140	

Gew.%	Z150	Z151	Z152	Z153	Z154	Z155	Z156	Z157	Z158	Z159
SiO ₂	68.49	72.54	73.10	72.78	73.50	72.84	72.97	72.86	64.62	61.88
TiO ₂	0.81	0.85	0.84	0.83	0.85	0.80	0.86	0.84	1.04	1.16
Al ₂ O ₃	15.99	14.43	14.14	14.55	14.06	13.90	14.17	13.86	19.29	23.11
Fe _{tot} *	6.44	6.06	5.97	6.34	5.78	5.93	5.96	5.92	6.78	7.73
MnO	0.06	0.06	0.06	0.07	0.07	0.06	0.06	0.07	0.08	0.07
MgO	1.88	1.60	1.57	1.64	1.56	1.56	1.52	1.55	1.70	1.63
CaO	3.12	1.82	1.73	1.21	1.00	1.97	1.18	1.93	3.19	1.38
Na ₂ O	0.78	0.72	0.83	0.70	0.69	0.69	0.69	0.70	0.46	0.30
K ₂ O	2.77	2.56	2.54	2.56	2.53	2.50	2.50	2.50	2.93	3.08
P ₂ O ₅	0.19	0.24	0.23	0.25	0.23	0.23	0.24	0.24	0.33	0.40
Total	100.53	100.88	101.01	100.93	100.27	100.48	100.15	100.47	100.42	100.74
GV	0.84	0.20	0.67	0.14	0.15	0.45	0.10	0.63	1.84	2.14
FeO	3.77	4.33	1.815	4.27	3.46	3.595	4.235	1.42	0.115	0.135
H ₂ O ⁻	0.22	0.28	0.24	0.23	0.19	0.24	0.20	0.26	0.62	0.84
ppm			***							
Nb	23	22	22	24	21	20	21	21	22	26
Zr	261	360	375	396	397	358	382	382	269	255
Y	40	43	45	46	43	43	43	46	35	38
Sr	142	107	107	104	96	108	99	106	142	139
Rb	136	116	116	124	115	114	116	114	126	136
Th	17	11	17	21	14	15	15	17	10	17
Pb	18	16	17	20	14	12	12	19	14	19
Ga	19	17	17	19	16	16	17	16	21	26
Zn	107	97	95	103	93	92	93	94	114	144
Cu	20	17	18	18	17	19	16	18	19	24
Ni	56	52	48	54	47	48	48	50	52	66
V	158	144	140	151	151	132	145	141	148	161
Cr	147	152	146	159	141	148	139	150	156	176
Ba	338	371	374	376	379	364	381	370	357	460

Tabelle 2: (Schluss)

Gew.%	Z160	Z161	Z162	Z163	Z164	Z165	Z166	Z167	Z168
SiO ₂	66.10	65.43	64.84	71.20	62.18	63.16	63.04	66.13	66.70
TiO ₂	0.48	1.08	1.09	0.91	1.17	1.08	1.08	1.04	1.03
Al ₂ O ₃	8.72	19.35	19.65	15.01	22.33	20.05	19.81	18.58	18.59
Fetot*	2.75	6.87	7.38	6.00	7.27	6.76	6.98	6.61	6.51
MnO	0.09	0.07	0.09	0.07	0.06	0.08	0.07	0.08	0.08
MgO	2.79	1.55	1.57	1.62	1.76	1.64	1.62	1.39	1.29
CaO	15.65	2.91	2.78	1.74	1.64	3,35	3.60	3.10	2.70
Na ₂ O	1.29	0.01	0.01	0.55	0.05	0.39	0.39	0.46	0.50
K ₂ O	1.77	2.97	2.95	2.56	3.20	3.01	3.00	2.42	2.50
P ₂ O ₅	0.16	0.42	0.39	0.31	0.36	0.33	0.33	0.33	0.40
Total	99.80	100.66	100.75	99.97	100.02	99.85	99.92	100.14	100.30
GV	10.98	1.65	1.64	3.63	1.22	1.81	1.77	5.48	4.93
FeO	0.215								
H ₂ O ⁻	1.57	0.70	0.72	2.43	0.38	0.43	0.34	3.06	3.45
ppm		-							
Nb	12	21	21	17	22	21	23	20	19
Zr	279	265	257	297	236	253	258	262	275
Y	26	38	37	38	40	38	39	35	37
Sr	214	164	154	96	145	147	150	97	95
Rb	50	128	132	99	146	135	140	96	97
Th	4	15	15	6	6	4	9	7	8
Pb	3	24	22	14	18	10	14	6	10
Ga	6	26	26	16	32	26	28	20	21
Zn	42	118	118	88	139	118	123	110	111
Cu	17	29	24	20	23	21	22	19	21
Ni	36	59	61	55	67	61	59	57	57
V	35	118	111	113	177	134	141	141	132
Cr	80	139	130	127	154	146	145	121	121
Ba	237	369	373	542	371	355	343	473	519

Tabelle 3: Mittelwerte (x) und Standardabweichungen (s) der Referenzgruppe «Legio I Martia» (Fundgruppen 1+7, n = 80 für die Hauptelemente, n = 31 für die Spuren), der Rundziegel (Fundgruppe 5, n = 9) und der latènezeitlichen Referenzgruppe «Sissach-Brühl» (Maggetti et al. 1988; n = 50).

	Fl	achziege	el	Rundzie-	Referen	zgruppe
	Leg	jio I Mar	tia	gel Fund-	Sissach	-Brühl
	Fundgr	uppen 1	und 7	gruppe 5	(Lat	ène)
Gew.%	х	S	s%	х	х	S
SiO ₂	64.46	0.98	1.52	66.19	65.93	1.21
TiO ₂	1.07	0.03	2.80	1.08	1.13	0.08
Al ₂ O ₃	18.65	0.70	3.75	18.58	19.12	1.15
Fe _{tot} als Fe ₂ O ₃	6.74	0.71	10.53	6.54	6.65	0.64
MnO	0.08	0.01	12.50	0.08	0.06	0.01
MgO	1.52	0.13	8.55	1.44	1.63	0.40
CaO	3.66	1.22	33.33	3.36	1.68	1.08
Na ₂ O	0.30	0.12	40.00	0.24	0.24	0.43
K ₂ O	2.92	0.24	8.22	2.61	2.77	0.29
P ₂ O ₅	0.45	0.17	37.78	0.30	0.46	0.33
ppm	х	S	s%	x	x	s
Ba	387	35	9.04	392	472	89
Zr	289	11	3.81	274	289	24
Sr	136	25	18.38	144	104	25
Rb	124	11	8.87	107	103	21
Zn	128	4	3.12	127	121	13
Cu	22	3	13.64	18	25	4
Ni	44	3	6.82	33	71	6
Cr	138	10	7.25	127	134	13

