Zeitschrift: Jahresberichte aus Augst und Kaiseraugst

Herausgeber: Augusta Raurica

Band: 5 (1985)

Artikel: Chemische Analyse von 40 Scherben der Grabungen beim Augster

Osttor im Jahre 1966

Autor: Jornet, Albert / Maggetti, Marino

DOI: https://doi.org/10.5169/seals-395432

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Chemische Analyse von 40 Scherben der Grabungen beim Augster Osttor im Jahre 1966

Albert Jornet und Marino Maggetti*

Zusammenfassung: Die 40 untersuchten Scherben der Grabung Osttor bilden eine chemisch homogene Gruppe. Es konnten keine gruppenfremden Stücke nachgewiesen werden. Die Proben wurden alle aus einem ähnlichen Material hergestellt. Die Zusammenschau der bisher vorgelegten (Jornet 1982) und der hier diskutierten neuen chemischen Analysen erlaubt die Definition von drei feinkeramischen Referenzgruppen aus Augst, die mit der Diskriminanzanalyse gut zu trennen sind.

Abstract: Chemical analysis of 40 sherds excavated in the Osttor area reveal the homogeneity of the studied group. Foreign members to the group could not be identified. The samples were produced from a similar raw material and very probably at the same workshop. On the basis of these new data along with the previous ones (Jornet 1982), three reference groups of fine ceramic from Augst can be identified. Discriminant analysis allows for the distinction among them.

* Mineralogisch-Petrographisches Institut der Universität, Pérolles, CH-1700 Freiburg (Beitrag zu: Ludwig Berger mit Arbeitsgruppe des Seminars für Ur- und Frühgeschichte der Universität Basel, Die Grabungen beim Augster Osttor im Jahre 1966, Jahresberichte aus Augst und Kaiseraugst 5, 1985).

1. Einleitung

Die römische Feinkeramik von Augst war schon Gegenstand naturwissenschaftlicher Forschung (Alexander 1975, Jornet 1980, 1982, Jornet und Maggetti 1983). Jornet befasste sich besonders intensiv mit der Produktion der Zentren Kurzenbettli und Venusstrasse Ost (Abb. 1). Dabei stellte sich heraus, dass die keramische Produktion dieser Töpfereien zwei chemischen Referenzgruppen zugeordnet werden kann, einer CaO-armen Hauptgruppe (Augst A, gesichert lokal, da mit Fehlbränden) und einer CaO-reichen Nebengruppe (Augst B, nicht gesichert lokal, da ohne Fehlbrände).

In vorliegender Arbeit stellen wir die Resultate der chemischen Analysen am Material eines weiteren Töpferateliers, demjenigen des Osttors vor (Abb. 1). Die archäologische Bearbeitung erfolgt durch L. Berger (1985).

In dieser Untersuchung ging es um folgende Probleme:

- 1 Bilden die analysierten 40 Proben eine homogene Gruppe oder gibt es Ausreisser? Diese Frage ist insofern von Wichtigkeit, als einige Stücke aus archäologischer Sicht von fraglicher bzw. nicht gesicherter lokaler Herkunft sind (Tab. 1).
- 2 Kann eine chemische Referenzgruppe «Augst-Osttor» definiert werden?
- 3 Unterscheidet sich die Osttorware chemisch von den Produktionen Kurzenbettli und Venusstrasse Ost? D. h. wurden in den verschiedenen Ateliers chemisch anders zusammengesetzte Tone verwendet?

Das Probenmaterial ist in Tab. 1 aufgelistet. Dabei kommt dem Brennständer Nr. 135 eine ganz besondere Bedeutung zu; dieser muss unserer Meinung nach aus lokalem Ton gefertigt worden sein und spielt demnach bei der nun folgenden Diskussion eine entscheidende Rolle.

Abb. 1 Lage der besprochenen Töpferwerkstätten Kurzenbettli (1. Jh. n. Chr.), Venusstrasse (2./3. Jh. n. Chr.) und Osttor (1. Jh. n. Chr. und wenig 2./3. Jh. n. Chr.)

Die Untersuchung wurde in zwei Etappen durchgeführt. In einer ersten haben wir 15 Stück von archäologisch gesichert lokaler Provenienz analysiert (Tab. 1: Nr. 96, 97, 98, 103, 104, 109, 110, 111, 117, 118, 120, 122, 123, 128, 135). Dazu kam noch Nr. 102 als ein erstes Stück fraglicher Provenienz. In dieser ersten Etappe ging es hauptsächlich um die Frage nach der Homogenität der möglichen Referenzgruppe Augst-Osttor und die Herkunft der Probe Nr. 102. Nachdem sich dann die Homogenität erwies, wurden weitere 24 Stück untersucht, die teils gesicherter, teils fraglicher Osttor-Abkunft waren.

Um die Osttorware besser mit den von Jornet (1980, 1982) untersuchten Proben vergleichen zu können, wurden von dem damals untersuchten Material zusätzlich die Spuren von Gallium (Ga), Niob (Nb), Yttrium (Y), Thorium (Th), Blei (Pb) und Vanadium (V) bestimmt.

2. Methodik

Probenvorbereitung: Abschleifen der kontaminierten Oberflächenschicht mit einer Dia-

mantsäge. Mahlen in einer Scheibenschwingmühle (WC-Mahlge-

fäss).

Pulverpille: 8 g Probenpulver wurden mit einer 2,5prozentigen Mowiol-Lösung

vermischt und bei 6 Tonnen Druck zu einer Pille gepresst.

Glaspille: 1,2 g geglühtes Pulver (1 Stunde bei 1000°C) wurden mit 5,7 g Li-

Tetraborat und 0,3 g LiF vermischt, bei 1150°C während 10 Minuten geschmolzen und auf eine glühende Pt/Au-Form zu einer Pille ge-

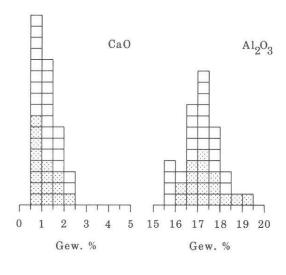
gossen.

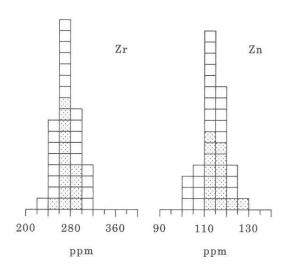
Chemische Analysen: PW 1400 als Messgerät (Röntgenfluoreszenz). Bestimmung der

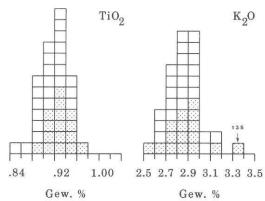
Hauptelemente an der Glaspille, der Spuren an der Pulverpille.

Clusteranalyse: BMDP 2M (Dixon 1979); Euklidische Distanz.

Diskriminanzanalyse: BMDP 7M (Dixon 1979); unter Benützung der Mahalanobis-


Distanz «D» zwischen jedem Individuum und dem Gruppen-


Mittel.


3. Die chemische Referenzgruppe Augst-Osttor

Die chemische Zusammensetzung der 40 Proben kann Tab. 2 entnommen werden. Aus ihr geht hervor, dass die Stücke zur CaO-armen Keramik gehören und damit für dieses Oxid mit der Augster Hauptgruppe Augst A laut Jornet (1982) übereinstimmen. Sie unterscheiden sich in ihrer Zusammensetzung nicht sehr stark untereinander. Diese Gruppen-Homogenität kann anhand von Histogrammen ausgewählter Elemente dokumentiert werden. In Abb. 2 wurden 4 Hauptelemente bzw. deren Oxide dargestellt. Die Verteilung ist normal, wie für fast alle gemessenen Elemente. Man sieht auch, dass sich die beiden Analysenserien (punktiert = archäologisch gesichert lokale Serie 1) vollständig überlappen. Einzig der Brennständer Nr. 135 fällt durch seinen leicht höheren Kaliumgehalt auf. Auf Abb. 3 figurieren vier Spuren. Auch hier zeigt sich deutlich die vollständige Überlappung beider Analysenserien und die Homogenität der untersuchten Proben. Nr. 134 hat aber einen leicht erhöhten Rb-Gehalt.

Nachdem sich die homogene Zusammensetzung der Analysenserie mittels einfacher Histogramme gezeigt hat, wurde anhand der Clusteranalyse getestet, ob sich dieser homogene Aspekt auch bei gleichzeitiger Berücksichtigung mehrerer chemischer Parameter erweisen lässt. Da von der Probe Nr. 102 wegen zu niedrigem Probengewicht nur die Hauptelemente bestimmt werden konnten, haben wir in Abb. 4 das Resultat der Clusteranalyse mit den Hauptelementen dargestellt. Das Bild bleibt sich aber ähnlich, wenn für die übrigen 39 Proben gleichzeitig alle Haupt- und Spurenelemente geclustert werden. Was lässt sich nun aus dieser Abbildung herauslesen? Auf den ersten Blick scheint das Material in viele Gruppen zu zerfallen; man kann eine Hauptgruppe erkennen (Nr. 97 bis 96) und mehrere Nebengrup-

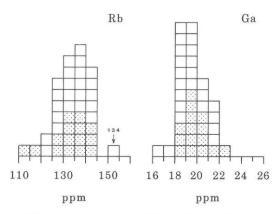


Abb. 2 Histogramme ausgewählter Oxide der Osttorware. Jedes Viereck entspricht einer Probe, d. h. einer chemischen Analyse. Punktiert = Scherben der ersten Analysenserie. – Al_2O_3 = Aluminiumoxid, CaO = Kalziumoxid, K_2O = Kaliumoxid, TiO_2 = Titanoxid.

Abb. 3 Histogramme ausgewählter Spurenelemente der Osttorware. – Ga = Gallium, Rb = Rubidium, Zn = Zink, Zr = Zirkon.

pen. Es stellt sich nun die Frage, wie diese Gruppierungen zu interpretieren sind. Können die Nebengruppen als Ausreisser angesehen werden und sind diese Stücke etwa nicht lokaler Produktion? Als erstes lässt sich sagen, dass die Gruppierungen keiner bestimmten archäologischen Form zuzuweisen sind. Zudem streuen die Stücke der ersten Analysenserie, also der archäologisch gesicherten lokalen Produktion, über das gesamte Dendrogramm. Man könnte nun einwenden, dass dies noch kein Hinweis auf eine gesamthaft lokale Produktion sei, da z. B. die Proben Nr. 98 und 117 irrtümlicherweise als lokal angesehen wurden. Nun liegt aber der Brennständer Nr. 135 in der Ausreisser-Gruppe! Wenn er aber aus berechtigten Gründen als lokal anzusehen ist, müssen alle Proben bis zur Amalgamationsdistanz von 2.99 auch lokal sein. Damit bleiben die Stücke Nr. 117, 132, 133, 98 und 107. Die marginale Position der Proben Nr. 98, 117, 132 und 133 ist nur auf den erhöhten Phosphorgehalt zurückzuführen. Da dies auf sekundäre Anreicherungen während der Bodenlagerung zurückzuführen ist (Lemoine und Picon 1982, Picon 1976, Rottländer 1980, Schneider und Hofmann 1976), kommt diesem Argument keine Bedeutung zu. Die restlichen Proben Nr. 107 und 99 haben gegenüber den übrigen Scherben leicht höhere Magnesium- resp. Natrium-

K: Krug OS: Brennständer D: Amalg. Distanz

N: Nuppenbecher S: Schüssel ... Erste Serie

O: Inhalt Ofen2 T: Topf

Zweite Serie

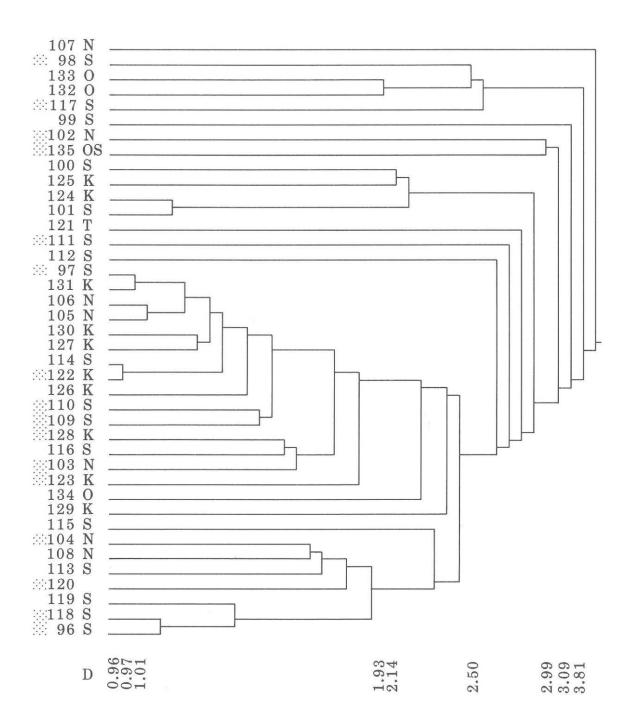


Abb. 4 Clusterdiagramm der 40 analysierten Proben vom Osttor. Berücksichtigt wurden nur die Hauptelemente.

gehalte. Da sie aber in allen anderen Elementen mit der Gesamtgruppe übereinstimmen, möchten wir sie auch als zur Gruppe gehörend ansehen – die Amalgamationsdistanz ist für die Gesamtgruppe ja sehr niedrig und weist wiederum auf eine sehr grosse Homogenität! Wenn wir nun betrachten, wohin die laut Tab. 1 als «nicht Osttorware» definierten Stücke fallen, so zeigt sich erstaunlicherweise, dass sie nicht nur in den marginalen Gruppen, sondern auch in der sog. «Hauptgruppe» anzutreffen sind.

Es sei nicht verschwiegen, dass die zwei Analysenserien sich doch in einem Spurenelement, nämlich Thorium (Th), unterscheiden. Für die erste Serie liegen die Werte zwischen 7 bis 16 ppm, für die zweite zwischen 0 und 11 ppm. Wir sind aber der Meinung, dass dieser Unterschied nicht entscheidend sein kann, wenn sich die Stücke für die übrigen 23 Elemente nicht wesentlich unterscheiden.

Die Analyse der chemischen Zusammensetzung der 40 Proben hat also gezeigt, dass die Osttorware eine homogene Gruppe bildet. Wir sind der Meinung, dass alle aus dem gleichen Rohstoff gefertigt sind und verwandten Produktionsstätten entstammen. Dieses Resultat ermöglicht die Definition einer chemischen Referenzgruppe «Augst-Osttor», die in Tab. 3 aufgelistet ist.

4. Die römische Feinkeramik von Augst

Nachdem die beiden ersten Fragen gelöst sind, bleibt noch abzuklären, ob sich die Osttor-Ware von der früher analysierten römischen Feinkeramik von Augst chemisch unterscheiden lässt. Wir können dabei auf die von Jornet (1980, 1982) definierten CaO-armen Referenzgruppen Kurzenbettli und Venusstrasse Ost A zurückgreifen (Tab. 3).

Da es sich um CaO-arme Keramik handelt, haben wir die Referenzgruppe als Kurzenbettli CA (= CaO-arm) und als Venusstrasse CA bezeichnet. Verglichen mit den Tabellen von Jornet (1980, 1982) ergeben sich Unterschiede in der benützten Anzahl Scherben. In vorliegender Arbeit basiert die Referenzgruppe Kurzenbettli CA nur auf 25 Proben, weil die CaOreichen Nr. 16, 17 und 29 weggelassen wurden.

Die Referenzgruppe Venusstrasse CA umfasst hier 28 Proben. Sie ist identisch mit der Referenzgruppe Venusstrasse Ost A von Jornet (1982), hat aber eine Probe weniger als die in Jornet (1980) definierte Referenzgruppe Venusstrasse Ost A, denn Nr. 39 wurde seither als Ausreisser betrachtet. Der Vergleich der Mittelwerte zeigt, dass sie nicht sehr stark differieren (Tab. 3).

Dies kommt auch in den Korrelationsdiagrammen zum Ausdruck (Abb. 5, 6). In Abb. 5 sind zwei Hauptelemente, nämlich Aluminiumoxid (Al₂O₃) und Siliziumoxid (SiO₂) korreliert. Das Aluminium ist bekanntlich in einem Ton praktisch nur in den Tonmineralien gebunden, während das SiO₂ sowohl in den Tonmineralien als auch im Quarz, d. h. in den nichtplastischen Bestandteilen der Magerung, fixiert ist. Beide Oxide sind hier deutlich miteinander korreliert. Die Felder der feinkeramischen Produkte von der Venusstrasse und von Kurzenbettli überlappen sich total, während sich das Material vom Osttor durch eine markante Tendenz zu höheren Al₂O₃-Werten auszeichnet. Es ist demnach anzunehmen, dass diese Gruppe aus einem fetteren Ton hergestellt wurde als die beiden anderen.

Bei den übrigen Hauptelementen lassen sich die drei Gruppen noch schlechter trennen; dies gilt auch für die meisten Spuren, wenngleich das Kupfer/Nickel-Korrelationsdiagramm (Abb. 6) die stärkste Trennung bringt. Die drei Ausreisser der Venusstrasse unterscheiden sich nur durch hohe Kupfergehalte, ansonsten passen sie gut zur Referenzgruppe.

Der Einsatz der Diskriminanzanalyse (unter Berücksichtigung aller Elemente, weswegen Probe Nr. 102 nicht dargestellt werden konnte) führt nun zu einem unverhofften Resultat:

die drei Referenzgruppen lassen sich mit diesem multivariaten statistischen Verfahren klar trennen (Abb. 7)!

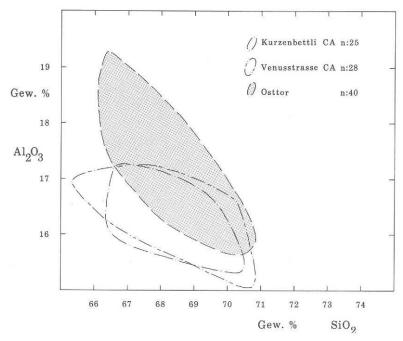


Abb. 5 Aluminiumoxid(Al₂O₃)-Siliziumoxid(SiO₂)-Korrelationsdiagramm.

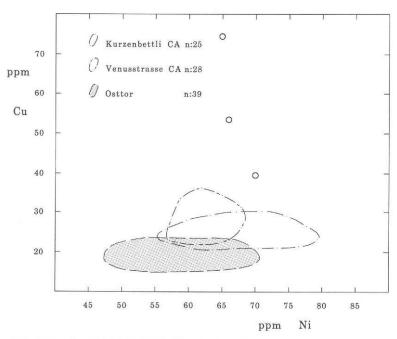


Abb. 6 Kupfer(Cu)-Nickel(Ni)-Korrelationsdiagramm.

Die leichte Überlappung der Referenzgruppe Kurzenbettli CA und Venusstrasse CA ist auf die Lage der Proben 20 und 62 zurückzuführen. Die Diskriminanzanalyse wies nun aber Nr. 20 (Kurzenbettli) mit höherer Wahrscheinlichkeit der Referenzgruppe Venusstrasse CA, und Nr. 62 (Venusstrasse) der Referenzgruppe Kurzenbettli CA zu; damit wird dokumentiert, dass beide einem Rohton entstammen, der diesen Referenzgruppen ähnlicher ist als den archäologisch zugewiesenen Referenzgruppen! In Abb. 8 haben wir beide Proben ver-

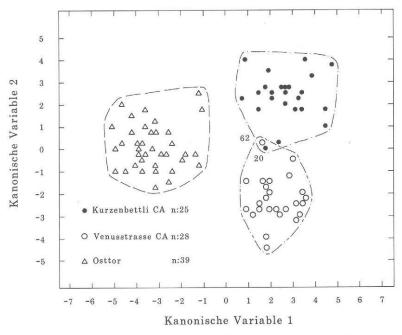


Abb. 7 Korrelationsdiagramm der Kanonischen Variablen 1 und 2 nach der Diskriminanzanalyse. – Für Analysen mit identischer Lage wurde nur 1 Symbol gezeichnet!

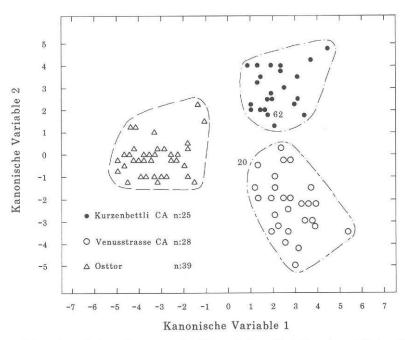


Abb. 8 Korrelationsdiagramm der Kanonischen Variablen 1 und 2 der Diskriminanzanalyse. Die Nummern 20 und 62 wurden neu zugewiesen. – Für Analysen mit identischer Lage wurde nur 1 Symbol gezeichnet!

suchsweise den «neuen» Referenzgruppen zugewiesen, wobei sich letztere noch deutlicher trennen lassen. Die Mittelwerte der Tab. 3 basieren aber auf den archäologisch gesicherten Referenzgruppen, das heisst Nr. 20 gehört zu Kurzenbettli und Nr. 62 zur Venusstrasse. Bevor wir zu diesem endgültigen Bild gelangten, haben wir mehrere Varianten geprüft. Zuerst wurden die Analysenserien 1 und 2 vom Osttor als zwei separate Gruppen behandelt; die

Scherben wurden in der Rechenoperation wahllos der einen wie der anderen zugewiesen – ein Zeichen mehr, dass mit diesem Verfahren beide Analysenarten nicht zu trennen sind. Dann haben wir geprüft, ob willkürlich herausgenommene Proben der drei Referenzgruppen, die als unbekannte Stücke eingegeben wurden, der richtigen Referenzgruppe zugewiesen würden. Dies was ausnahmslos der Fall! Als Letztes haben wir alle fraglichen Osttor-Scherben (Bezeichnungen O und N der Tab. 1) als unbekannte Proben eingegeben; auch diese wurden ohne Ausnahme in der übrigen Osttorware klassiert. Die Diskriminanzanalyse zeigt also, dass wir momentan 3 gut definierte Referenzgruppen für die Augster Feinkeramik besitzen, und dass wir sie gut trennen können.

Danksagung

Wir danken Prof. L. Berger und Dr. T. Tomasevic-Buck für ihre Bemühungen um die Finanzierung. Insbesondere ist ein namhafter Zuschuss der Ceramica-Stiftung, Basel, zu verdanken. Den vorgenannten sowie Dr. J. Ewald, Dr. A. Furger und der Arbeitsgruppe «Osttor» sei unser Dank für die fruchtbaren Diskussionen ausgesprochen. Wir danken auch Frau Marbacher für die Hilfe im Labor und Dr. Galetti für die RFA-Messungen.

Literatur

- Alexander, W. C. (1975): A Pottery of the Middle Roman Imperial Period in Augst. (Venusstrasse-Ost 1968/69). Forschungen in Augst 2. Stiftung pro Augusta Raurica. Basel/Augst/Liestal.
- Berger, L. mit Arbeitsgruppe (1985): Die Grabungen beim Augster Osttor im Jahre 1966. Jahresberichte aus Augst und Kaiseraugst 5, 1985, Liestal.
- Dixon, W. J. (1979): BMDP Statistical Software. University of California Press. Los Angeles.
- Jornet, A. (1980): Composition de la céramique romaine d'Augusta Raurica (Augst). Schweiz. Min. Petr. Mitt., 60, 271-285.
- Jornet, A. (1982): Analyse minéralogique et chimique de la céramique suisse à enduit brillant. Thèse N. 846. Université de Fribourg.
- Jornet, A. und Maggetti, M. (1983): Die Terra Sigillata von Baden: Ergebnisse einer naturwissenschaftlichen Studie. Handel und Handwerk im Römischen Baden. Museumskommission Baden, Buchdruckerei AG, Baden, 51–59.
- Lemoine, C. und Picon, M. (1982): La fixation du phosphore par les céramiques lors de leur enfouissement et ses incidences analytiques. Revue d'Archéométrie 6, 101-112.
- *Picon, M.* (1976): Remarques préliminaires sur deux types d'altération de la composition chimique des céramiques au cours du temps. Figlina 1, 159–166.
- Rottlaender, R. C. A. (1980): Zum Phosphatgehalt keramischer Scherben. Naturwissenschaftliche Beiträge zur Archäologie, Archaeo-Physika 7, 87–94.
- Schneider, G. und Hofmann, B. (1976): Bestimmung der Herkunft antiker Keramik (Terra Sigillata) mit Hilfe der Röntgenfluoreszenzanalyse. Berichte Deutsche Keram. Ges. 53, 12, 417–422.

Tabelle 1: Probenverzeichnis.

	Analyse Nr.	Inventar Nr.	Katalog Nr.	
Schüsseln mit eingezogenem, aussen	A 96	66. 775	241 = 207	0
gekehltem Horizontalrand	A 97	66. 9614a	242 = 208	O
	A 98	66. 708 a	243 = 209	O
	A 99	66. 146	249	O
	A 100	66. 578	-	O
	A 101	66. 812	247	0
Nuppenbecher	A 102	66. 2540	120	N
	A 103	66. 368	-	O
	A 104	66. 716	230	O
	A 105	66. 2618	139	N
	A 106	66. 371	227	0
	A 107	66. 67	1000 1000-1000	О
	A 108	66. 476	238	0
Schüsseln mit Horizontalrand	A 109	66. 9617b	250 = 203	O
und Randleiste	A 110	66. 9617 d	251 = 204	O
	A 111	66. 808	253	O
	A 112	66. 2482	8	N
	A 113	66. 2303	256	O
	A 114	66. 806	-	N
	A 115	66. 2859	-	N
	A 116	66. 104	-	N
Schüsseln mit S-förmig	A 117	66. 9613	283 = 202	О
geschwungener Wand	A 118	66. 491	282	O
Schüssel Drack 20	A 119	66. 490	284	О
Tonne	A 120	66. 472	286	O
Topf mit flachgestrichenem Rand	A 121	66. 481	288	Ο?
Krüge - getreppter Kragenrand	A 122	66. 459	266	O
	A 123	66. 435	265	O
	A 124	66. 2952	43	N
	A 125	66. 392	262	O
	A 126	66. 76	268	O
	A 127	66. 77	272	0?
 gerillter Kragenrand 	A 128	66. 827	278	O
	A 129	66. 729	280 = 197	O?
	A 130	66. 781	279 = 213	0?
- zweihenklig	A 131	66. 9619 b	281 = 211	0?
Inhalt Ofen 2	A 132	66. 137 (Becher)	214	N
	A 133	66. 139 (Lampe)	215	N
	A 134	66. 138 (Krug)	216	N
Brennständer	A 135	66. 813	291	?

Archäologische Bestimmung vorgängig der chemischen Analysen:

O = «sichere» Osttorware
O? = «nicht gesicherte, aber wahrscheinliche» Osttorware

N = «nicht» Osttorware

Tabelle 2: Liste der chemischen Analysen. Fe_{tot} als Fe_2O_3 ; G.V. = Glühverlust

Gew. %	A- 96	A- 97	A- 98	A- 99	A-100	A-101	A-102	A-103
SiO ₂	68,21	69,01	67,48	68,81	70,72	70,33	66,48	68,00
TiO ₂	0,93	0,91	0,91	0,91	0,88	0,87	0,91	0,92
Al ₂ O ₃	17,49	17,22	16,85	17,15	15,79	15,71	19,22	16,82
Fe _{tot}	6,94	6,88	7,23	6,72	6,59	6,16	7,47	7,08
MnO	0,03	0,03	0,04	0,04	0,04	0,05	0,04	0,06
MgO	1,55	1,71	1,60	1,72	1,42	1,78	1,96	1,86
CaO	0,98	0,78	2,12	0,79	0,95	1,17	0,81	1,20
Na ₂ O	0,61	0,65	0,65	0,89	0,66	0,67	0,64	0,67
K₂O	2,74	2,89	2,61	2,96	2,69	2,76	3,12	2,91
P ₂ O ₅	0,53	0,26	0,92	0,22	0,28	0,25	0,19	0,30
Total	100,00	100,34	100,40	100,19	100,02	99,76	100,84	99,84
G.V.	2,27	1,43	4,75	0,57	1,61	0,61	1,33	1,32
H ₂ O ⁻	0,70	0,11	1,52	0,12	0,53	0,16	0,21	0,08
ppm				~				
Nb	22	22	21	22	19	20	_	22
Zr	272	272	270	272	316	307	-	285
Y	38	39	41	42	36	40	-	47
Sr	128	120	250	107	131	108	-	117
Rb	132	140	112	139	133	131	-	135
Th	11	15	15	4	3	8	_	11
Pb	18	14	17	10	9	14	-	12
Ga	19	22	18	20	17	18	_	20
Zn	113	114	112	108	105	103		117
Cu	19	19	22	23	19	18	-	23
Ni	54	55	64	55	48	51		67
V	180	185	173	186	147	163	_	181
Cr	168	154	156	164	162	167		169
Ba	471	399	648	392	569	393	-	421

Gew. %	A-104	A-105	A-106	A-107	A-108	A-109	A-110	A-111
SiO ₂	67,72	68,97	68,92	66,64	67,67	68,23	68,54	70,53
TiO ₂	0,95	0,92	0,91	0,88	0,93	0,93	0,92	0,94
Al_2O_3	17,80	17,64	17,24	17,52	17,75	17,12	17,18	16,35
Fe _{tot}	7,14	6,79	6,81	6,96	7,33	7,33	7,05	6,11
MnO	0,04	0,03	0,03	0,06	0,05	0,05	0,04	0,05
MgO	1,71	1,83	1,73	2,16	1,63	1,80	1,82	1,73
CaO	1,00	0,70	0,63	2,02	1,04	0,77	1,04	0,93
Na₂O	0,64	0,57	0,58	0,78	0,69	0,62	0,63	0,65
K ₂ O	2,80	2,92	2,88	3,09	2,76	2,98	2,95	2,84
P ₂ O ₅	0,56	0,20	0,19	0,26	0,58	0,23	0,23	0,32
Total	100,35	100,56	99,92	100,39	100,44	100,06	100,41	100,45
G.V.	1,83	0,48	0,48	0,59	1,62	1,17	1,19	0,52
H_2O^-	0,40	0,18	0,17	0,14	0,95	0,04	0,04	0,08
ppm								
Nb	22	20	22	20	24	17	19	24
Zr	274	275	276	242	272	264	273	298
Y	40	37	38	39	47	43	39	41
Sr	132	108	106	147	127	105	110	119
Rb	132	142	141	144	129	132	136	137
Th	9	0	0	2	3	11	8	13
Pb	14	12	11	9	11	12	10	18
Ga	20	18	19	20	18	19	19	20
Zn	117	115	112	113	121	113	112	110
Cu	21	20	18	17	22	18	19	17
Ni	58	55	52	61	63	61	58	52
V	195	183	185	177	191	186	187	163
Cr	172	170	179	161	171	159	167	155
Ba	452	386	390	392	465	380	370	426

Gew. %	A-112	A-113	A-114	A-115	A-116	A-117	A-118	A-119
SiO ₂	68,46	67,00	68,94	66,36	67,69	68,33	69,06	67,97
TiO ₂	0,88	0,94	0,93	0,94	0,92	0,91	0,94	0,94
Al_2O_3	16,77	18,32	17,41	18,63	17,31	16,96	17,59	17,90
Fe _{tot}	6,71	7,08	6,87	7,69	6,84	6,96	7,05	6,99
MnO	0,08	0,05	0,03	0,06	0,05	0,03	0,03	0,03
MgO	1,79	1,69	1,66	1,70	1,80	1,41	1,49	1,41
CaO	1,57	1,31	0,63	1,09	1,69	1,58	0,87	1,01
Na₂O	0,71	0,63	0,69	0,61	0,66	0,62	0,60	0,62
K ₂ O	2,85	2,93	2,85	2,88	2,85	2,58	2,73	2,72
P ₂ O ₅	0,41	0,49	0,20	0,64	0,35	1,20	0,46	0,64
Total	100,23	100,43	100,20	100,61	100,17	100,59	100,81	100,24
G.V.	1,21	2,05	1,16	1,90	1,24	4,51	2,68	3,09
H_2O^-	0,34	0,99	0,27	0,62	0,24	1,64	0,56	1,10
ppm								
Nb	21	24	22	22	21	23	21	24
Zr	279	258	277	255	253	267	278	279
Y	41	39	36	40	36	36	40	41
Sr	126	115	102	123	116	232	127	136
Rb	137	134	143	139	129	117	128	130
Th	4	8	7	6	3	15	11	0
Pb	14	19	17	16	8	18	17	13
Ga	19	20	21	21	21	18	19	19
Zn	113	120	115	118	106	110	115	117
Cu	18	20	21	17	18	21	16	19
Ni	61	61	49	59	58	56	54	54
V	186	204	163	199	183	175	163	182
Cr	164	179	169	175	158	150	173	180
Ba	461	461	390	481	386	670	462	510

Gew. %	A-120	A-121	A-122	A-123	A-124	A-125	A-126	A-127
SiO ₂	67,77	68,08	69,30	68,39	70,53	70,34	69,18	69,72
TiO ₂	0,96	0,85	0,93	0,89	0,88	0,89	0,91	0,90
Al_2O_3	17,53	16,35	17,41	16,49	15,75	15,98	16,86	16,87
Fe_{tot}	7,41	7,16	6,75	6,86	6,15	6,62	6,71	6,67
MnO	0,05	0,10	0,04	0,05	0,05	0,06	0,05	0,04
MgO	1,70	1,81	1,68	1,83	1,64	1,39	1,73	1,77
CaO	1,23	2,02	0,73	1,70	1,01	1,09	1,02	0,69
Na ₂ O	0,57	0,68	0,70	0,64	0,67	0,72	0,69	0,67
K ₂ O	2,79	2,86	2,89	2,91	2,77	2,67	2,93	2,89
P_2O_5	0,64	0,26	0,24	0,28	0,23	0,37	0,21	0,18
Total	100,64	100,16	100,67	100,03	99,68	100,12	100,28	100,39
G.V.	2,29	1,85	1,28	1,64	1,12	2,40	0,48	1,04
H_2O^-	0,81	0,07	0,15	0,19	0,00	0,58	0,03	0,02
ppm		- VIII.VIII. 4						
Nb	22	20	21	20	22	22	21	21
Zr	289	276	268	285	309	310	288	286
Y	50	43	36	42	41	42	39	41
Sr	126	116	117	126	107	129	110	105
Rb	125	129	142	132	137	129	138	138
Th	11	1	12	7	6	0	6	0
Pb	16	12	17	14	13	10	9	12
Ga	19	18	20	18	19	16	18	19
Zn	120	110	114	110	101	103	106	112
Cu	19	18	21	21	18	18	19	22
Ni	70	63	53	62	50	54	57	54
V	183	170	189	163	158	137	177	173
Cr	178	163	167	156	169	184	165	175
Ba	482	377	406	447	396	527	364	387

Gew. %	A-128	A-129	A-130	A-131	A-132	A-133	A-134	A-135
SiO ₂	68,15	69,12	69,09	69,55	67,92	66,52	67,57	66,50
TiO ₂	0,91	0,90	0,90	0,92	0,92	0,89	0,92	0,94
Al_2O_3	16,85	16,83	16,72	17,24	17,57	17,39	18,08	18,08
Fe _{tot}	6,96	7,00	6,99	6,73	6,62	6,67	7,03	7,67
MnO	0,05	0,04	0,04	0,03	0,04	0,04	0,05	0,05
MgO	1,77	1,75	1,74	1,70	1,70	1,66	1,82	1,91
CaO	1,52	0,63	0,61	0,76	1,66	1,84	1,09	0,82
Na₂O	0,72	0,74	0,65	0,62	0,67	0,68	0,72	0,59
K ₂ O	2,94	3,13	2,90	2,93	2,65	2,74	3,02	3,36
P ₂ O ₅	0,30	0,27	0,23	0,21	1,00	1,05	0,22	0,21
Total	100,16	100,40	99,85	100,71	100,75	99,49	100,52	100,14
G.V.	1,67	1,13	1,17	0,64	4,78	4,22	0,65	0,89
H_2O^-	0,18	0,07	0,02	0,21	1,43	2,11	0,21	0,10
ppm								3
Nb	20	18	21	22	24	21	24	21
Zr	275	284	292	280	241	229	243	246
Y	41	45	45	37	37	35	42	47
Sr	119	104	105	111	166	196	131	116
Rb	136	131	134	141	122	122	151	144
Th	10	0	7	5	1	4	10	14
Pb	15	8	8	12	10	13	14	18
Ga	19	18	19	18	18	18	21	21
Zn	113	113	111	111	122	112	118	129
Cu	22	18	21	20	23	19	21	17
Ni	62	56	57	53	61	59	64	64
V	161	170	173	178	191	196	190	175
Cr	154	161		177	172	163	170	168
Ba	419	389	375	381	777	714	395	389

Tabelle 3: Mittelwerte der Referenzgruppen Kurzenbettli CA, Venusstrasse CA, Osttor. $\bar{x}=Mittelwert,\ s=absolute\ Standardabweichung,\ s\%=relative\ Standardabweichung;\ Fe_{tot}\ als\ Fe_2O_3$

S ec 	Kur	zenbettli n = 25	CA	Venusstrasse CA Ostto $n = 28$ Ost $n = 6$					
Gew. %	$\bar{\mathbf{x}}$	S	s %	$\overline{\mathbf{x}}$	S	s ⁰ / ₀	$\bar{\mathbf{x}}$	S	s %
SiO ₂	68,33	0,90	1,32	68,66	1,09	1,59	68,49	1,15	1,68
TiO ₂	0,93	0,02	2,63	0,93	0,02	2,52	0,91	0,02	2,68
Al_2O_3	16,46	0,45	2,72	16,23	0,45	2,80	17,14	0,69	4,00
Fe _{tot}	7,01	0,27	3,94	6,72	0,24	3,56	6,90	0,34	5,00
MnO	0,06	0,01	16,21	0,07	0,01	18,63	0,04	0.01	31,33
MgO	1,83	0,14	7,79	1,99	0,14	7,09	1,71	0,15	8,68
CaO	1,22	0,41	33,57	2,06	0,64	31,24	1,13	0,43	37,94
Na₂O	0,65	0,09	13,54	0,57	0,09	15,28	0,66	0,06	9,08
K ₂ O	2,84	0,12	4.21	2,77	0,09	3,32	2,86	0,15	5,14
P ₂ O ₅	0,70	0,59	84,23	0,27	0,07	25,15	0,40	0,26	65,28
Total	100,03			100,27			100,24		
ppm									
Nb	21	2	8,43	21	2	8,69	21	2	7,72
Zr	273	22	8,21	290	17	5,73	274	19	7,09
Y	46	4	8,40	39	2	5,20	40	4	8,72
Sr	112	10	9,33	115	8	7,41	128	32	25,20
Rb	123	10	8,05	125	7	5,98	136	8	5,78
Th	12	7	55,56	13	7	53,61	7	5	71,75
Pb	17	6	37,62	20	9	46,17	13	3	24,58
Ga	21	2	10,62	20	2	7,97	19	1	8,81
Zn	128	24	18,81	115	13	11,27	113	6	4,96
Cu	25	2	9,66	31	10	34,23	19	2	9,72
Ni	69	5	7,91	63	3	4,68	57	5	8,86
V	167	8	5,12	153	9	5,91	177	14	7,90
Cr	160	7	4,38	161	12	7,74	164	17	8,32
Ba	479	116	24,14	415	56	13,45	451	99	22,01