Zeitschrift: Illustrierte schweizerische Handwerker-Zeitung : unabhängiges

Geschäftsblatt der gesamten Meisterschaft aller Handwerke und

Gewerbe

Herausgeber: Meisterschaft aller Handwerke und Gewerbe

Band: 28 (1912)

Heft: 13

Artikel: Die Dampfturbine im Wettbewerb mit der Dampfmaschine und ihre

Verwendung in der Holzbearbeitungsfabrik

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-580433

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tonswerke ihrer, durch das Gesetz gestellten Aufgabe, eine möglichst allgemeine Energieversorgung zu schaffen und auch den kleinern Abonnenten in den landwirtschaftlichen Gegenden mit fehr zerftreuter Aberbauung die Benützung der Energie zu annehmbaren Preisen zugänglich zu machen, im weitgehendsten Maße nachgekommen find. Diefes Biel konnte naturgemäß nur erreicht werden, indem beim Bau von sehr vielen Netzen auf die von Privatgesellschaften üblicherweise geforderte Rendite verzichtet wurde. Die Kantonswerke haben Ortsnetze, welche Einnahmen von nur $5-7\,\%$ des Anlagekapitals liefern. Es ist flar, daß mit dieser kleinen Einnahme nicht einmal die Stromkoften, geschweige benn Berzinsung, Amortisation, Unterhalt und Kontrolle beftritten werden konnen. Die durchschnittlichen Einnahmen aus den Ortsverteilungsneben stehen zurzeit noch unter demjenigen Betrag, melcher für die Bestreitung der Ausgaben und ausreichende Rücklagen, Abschreibungen und Reserven erforderlich ift. Die bisher vorgenommenen Abschreibungen im Gefamtbetrage von 616,000 Fr. entsprechen dem Minimum

deffen, mas verlangt werden muß.

Es ist von Interesse, zu konstatieren, wie sich die Anschlußdichtigkeit in den bis jest in das Absatgebiet einbezogenen Gegenden ftellt, und welche Ginnahmen, auf die vorhandene Haushaltung und auf die vorhandenen Einwohner berechnet, die Kantonswerke beziehen. Angeschlossen sind von den laut der Volkstählung in den Detailnehen der E. K. Z. vorhandenen Haushaltungen im Bezirk Affoltern 50%, im Bezirk Andelfingen 38% in Bülach 35%, Dielsdorf 31%, Hinwil 15%, Horgen 37%, Meilen 35%, Pfäffikon 45%, Ufter 61%, Winters thur 52% und Zürich 35%. An Einnahmen entfallen auf die in den Detailneten vorhandenen (nicht etwa angeschloffenen) Haushaltungen im Mittel 29 Fr. im Bezirk Affoltern; 17 Fr. 70 in Andelfingen; 26 Fr. 27 Bülach; 45 Fr. 01 Dielsdorf; 7 Fr. 30 Hinwil; 69 Fr. 61 Horgen; 35 Fr. 47 Meilen; 41 Fr. 17 Pfäffikon; 34 Fr. 94 Ufter; 31 Fr. 64 Winterthur; 29 Fr. 02 Bürich. Die entsprechenden Zahlen auf den Kopf der Bevölkerung im Gebiete der Detailnetze find: Affoltern 6 Fr. 10, Andelfingen 3 Fr. 90, Bülach 5 Fr. 83, Dielsdorf 9 Fr. 16, Hinwil 1 Fr. 95, Horgen 17 Fr. 69, Winterthur 5 Fr. 76, Zürich 5 Fr. 91. In famtlichen Detailnetzen find durchschnittlich 44,05% der vorhandenen Haushaltungen angeschlossen, die mittlere Einnahme auf die Haushaltung beträgt 33 Fr. 37 und die jenige auf den Einwohner 7 Fr. 36. Die Einnahmeziffern auf den Einwohner in den verschiedenen Orten schwanken sehr stark; sie variieren zwischen dem einfachen und dem zwanzigfachen.

Von Interesse dürfte sein, zu konstatieren, daß im Kanton Freiburg mit seiner fast ausschließlich landwirtichaftlichen Bevölkerung die Einnahmen auf den Ropf 7 Fr. 72 betragen, mährend sie im Kanton Zürich mit seiner zahlreichen Industrie nur 7 Fr. 36 ausmachen. Wenn man in Betracht zieht, daß der Kanton Freiburg sur Aufgabe gestellt hat, den abgelegenen Landgemeinden möglichst weit entgegenzukommen, und wenn man ferner in Berücksichtigung zieht, daß die freiburgischen Berke schon seit einer langen Reihe von Jahren betrieben werden, also auf eine viel längere Entwicklungszeit zurückblicken können, als die E. K. Z., so darf die Tatsache, daß im Kanton Zürich die Auslagen für die Glektrizität auf den Kopf der Bevölkerung 36 Rp. weniger betragen als in Freiburg, doch als Beweis dafür gelten, daß die Kantonswerke ihren Abnehmern in weitgehendster Weise entgegenkommen. Einen weitern Beweis für diese Tat-sache liefert die Statistit über die Einnahmen, welche die Kantonswerke aus den landwirtschaftlichen Motoren beziehen. Es waren in den eigenen Detailnetzen auf 30. Juni 1911 223 landwirtschaftliche Motoren mit einer Leiftung von zusammen 731 KW angeschloffen. An Einnahmen lieferten diese Motoren nur 3870 Fr. 15, was auf den Motor 17 Fr. 35, auf die KW 5 Fr. 29 ausmacht. Wenn man diefe Bahlen ben Pauschalpreifen (von 100 bis 150 Fr.) gegenüberstellt, welche früher für PS und Jahr für Tagesmotoren bezahlt werden mußten, so kommt man zu dem Schluß, daß die Kantonswerke den Landwirten die elektrische Antriebskraft zu Preisen zur Verfügung stellen, welche ungefähr den dreißigsten Teil von dem ausmachen, was früher den privaten Unternehmungen bezahlt werden mußte. Gbenfo ift es klar, daß diefe mechanische Arbeitsfraft nur einen Bruchteil derjenigen Rosten verursacht, welche bei Verwendung menschlicher Arbeitskräfte für die gleiche Arbeit hätte ausgegeben werden müffen.

Als Resultat der bisherigen Entwicklung der Kantonswerke kann konstatiert werden, daß von den 187 politischen Gemeinden des Kantons heute 149 mit elektrischer Energie versorgt sind. Davon beziehen 137
Gemeinden die Energie von den Kantonswerken, während
zwöls Gemeinden eigene Anlagen haben oder die Energie
von dritter Seite beziehen. Der Rest von 38 Gemeinden
ist noch unversorgt. Mit siedzehn von diesen Gemeinden
sind zurzeit Vertragsunterhandlungen im Gange, die
zum größten Teil zu einem Vertragsabschluß führen

dürften.

Die nächsten Bestrebungen der Kantonswerke muffen nun neben der Einbeziehung der noch nicht an das Net angeschlossener Gemeinden und der Dertlich= keiten, auf welche in den angeschlossenen Gemeinden das Verteilungsnet noch nicht ausgedehnt ift, darauf gerichtet sein, die bestehenden Rete besser auszu= nüten. Da, wie erwähnt, in den Detailneten erst 44% der vorhandenen Haushaltungen angeschlossen sind, sa bietet sich hier noch ein weites Arbeitsfeld. Ebenso sind noch eine große Anzahl industrieller Stablissemente für den elektrischen Antrieb zu gewinnen. Die Kantons= werke tun ihr möglichstes, um nicht nur in territorialer Hinsicht, sondern auch in Bezug auf die Bewölkerung die Energieversorgung des Kantons zu einer allgemeinen zu machen. Sie sind im Begriffe, zu diesem Zwecke, außer einer Tarifrevission mit wesentlicher Reduktion der Minimalgarantie, insbesondere auch weitgehende Erleichterungen in Bezug auf die Zahlung der Inftallationen zu schaffen. Namentlich die lettere Maßregel dürfte den Kantonswerken noch eine große Abonnenten= zahl zuführen, da erfahrungsgemäß sehr viele kleine Leute nicht durch die Stromkosten, sondern durch die einmaligen Ausgaben für die Erstellung der Installa= tionen von der Benützung der Elektrizität abgehalten werden. Da bei Strompreisen, wie sie kantons= werke verlangen und der Verwendung der Metallfadenlampen die elektrische Beleuchtung erfolgreich auch mit dem Petroleumlicht konkurrieren kann, so dürfte eine Erleichterung hinsichtlich der Installationen, welche eine Abzahlung in kleinen Raten ermöglicht, eine bedeutende Vergrößerung des Stromkonsums für Beleuchtungs- und andere Zwecke im Gefolge haben.

Die Dampfturbine im Wettbewerb mit der Dampfmaschine und ihre Verwendung in der Holzbearbeitungsfahrik.

Die fortschreitende Vergrößerung unserer Betriebe aller Art stellt immer größere Ansprüche an die Kraftquellen der Technift und diese Ansprüche erstrecken sich

in der Hauptsache auf Berbefferung derjenigen Kraftmaschinen, welche der eine oder der andere als für seinen Betrieb am geeignetsten findet. Daß aber bei dieser Auswahl der Maschinen fast alle Typen in Betracht fommen, ift ja klar und wir dürfen ohne weiteres behaupten, daß sich die Verbefferung auf alle Kraftmaschinen ertreckt. Hieher gehört in erster Linie die Dampfmaschine, welche heute noch, trot der enormen Zahl verschiedener Kraftmaschinen, immer noch das Hundertfache leistet, gegenüber diesen anderen Maschinen. Unmittelbar neben die Dampfmaschine sind die Gasmotoren zu stellen, besonders diejenigen, welche mit flüssigen Olen gespeist werden, mit Benzin, Benzol, Gasolin, Betroleum usw. Die Motoren haben in den letten Jahren eine hohe Vollendung erfahren. Sie haben durch stete Steigerung ihrer Stärke und außerordentlichen Berbilligung ihrer Unterhaltungskoften der Dampfmaschine schweren Wettbewerb bereitet, ja fie sogar überflügelt. Schon seit langer Bett machen die Dampsmaschinenbauer die größten Unftrengungen, Schritt halten zu können mit der Entwicklung der Motorindustrie. Infolgedessen wurden werts volle Neuerungen an den Dampsmaschinen getätigt, so der überhitzer und auch die übrigen Einrichtungen zur äußerften Ausnützung der Abgangswärme. Aber auch biese Neuerungen genügten noch nicht, und man war gezwungen, ganz neue Wege einzuschlagen, um den Unsprüchen doch genügen zu können. In diesen Ansprüchen ift allerdings wetter nichts mehr enthalten, als das Verlangen nach höheren Umdrehungszahlen, und gerade dieses Verlangen schien unbefriedigt zu bleiben, soweit es sich um Beschaffung einer Dampfmaschine handelte.

Bet den Arbeitsmaschinen aller Werkstätten wird jetzt vielfach der elektrische Antrieb gewählt und hat bereits auch einen Vorzug gegenüber den Vorgelegen mit der umftandlichen Riemenübertragung. Zwischen der Kraftmaschine und der Verbrauchsstelle der erzeugten Arbeits= kraft wird die Dynamomaschine eingeschaltet, welche die Dampffraft in elektrische Kraft verwandelt. Diese Dynamomaschinen verlangen aber eine hohe Umdrehungszahl für ihren Betrieb, wie die bisherigen Kolbendampfmaschinen sie nicht haben und auch nicht erreichen können. Nur dadurch, daß man die hin und hergehende Bewegung in eine brehende umwandelte und die Drehbewegung des Maschinenrades dazu benütte, durch schwerfällige Riemenübertragung der Dynamomaschine die nötigen Umdrehungen zu geben, genügten vorerft bie Unforderungen. Mit diesem Resultate, welches schon angewendet wurde, als die Dynamo ihre Geburt feierte, begnügte man sich nicht auf die Dauer und somit sehen sich die Techniker vor die schwere Frage gestellt, wie erhalten wir Dampfmaschinen, welche die geforderten Umdrehungszahlen aufweisen?

Von neuem arbeiteten die Technifer an einer Joee, um auch diese Frage lösen zu können. Man kam auf den Gedanken, den gespannten Dampf auf die gleiche Weise zu verwenden wie das Wasser bei der Turbine. Man läßt also den Dampf unmittelbar auf ein Schauselzrad wirken. Durch diese Wirkung der Dampskraft entssteht also nicht eine gradlinige Hinz und Herbewegung, sondern sofort die verlangte Drehbewegung.

Aus vier Dampfrohrendungen von besonderer innerer Beschaffenheit (Düsen genannt) strömt der Dampf auf einen Radkamm, stößt das Rad vorwärts, nimmt seinen Weg durch die offenen, schaufelförmig ausgehöhlten Kämme und tritt auf der Rückseite des Rades als Auspuffdampf heraus.

Die Wirkungsweise des gespannten Dampses, so einsleuchtend und praktisch dieselbe auch zu sein schien, machte aber den Technikern einen abermaligen Strich durch die Rechnung, denn die auf diese Weise erzielte Geschwindig-

feit der Drehachse wies Zahlen auf, die für die Prazis direkt unbrauchbar war. Während nämlich bei der Wasserturbine höchstens eine Geschwindigkeit von 50 m in der Sekunde entsteht, legt der Dampf bei 4 Atm. sogar 832 m zurück. So erhält man bei der Dampfsturbine dis zu 30,000 Umdrehungen in der Minute. Allerdings bekommt man bei solchen Geschwindigkeitswirkungen recht beträchtliche Arbeitsleistungen, so daß beispielsweise eine 10 PS-Dampsturbine nur ein 14 cm großes Schauselrad ersordert; eine 300 PS ein solches von 70 cm, wobei aber bei letzterer die Umdrehungszahl immer noch 7500 beträgt.

Diese rasende Geschwindigkeit beliebig regulieren zu können, mußte nun ebenfalls technisch gelöst werden. Der erste, dem es gelang, eine Verminderung der Umdrehungszahl herbeizusühren, durch eine Anderung der inneren Konstruktion der Turbine, war der Amerikaner Barson.

Ihm gelang es, seine Dampfturbine mit solchen Umdrehungszahlen zu bauen, daß diefelbe ohne weiteres mit einer Dynamo auf derfelben Welle gekuppelt werden konnte. Durch Vermehrung der Laufräder ließ fich die Leiftung gleichzeitig fo fteigern, daß die Dampfturbine heute für jeden Großbetrieb genügt. Trothdem ift man aber noch nicht am letten Ende der Berbefferung angelangt. Eine wertvolle Verbefferung haben die Dampfturbinenbauer unter anderm auch dem deutschen Ingenieur Riedler, Professor an der Technischen Hochschule zu Charlottenburg, zu verdanken. Nach seiner Anordnung wirkt der Dampf nicht mehr, wie dies anfangs der Fall war, auf die Seitenflächen, sondern auf die Kanten der Lauf-räder, die zu diesem Zwecke mit zwei Reihen taschenförmiger Vertiefungen versehen find, in die die Stoßfraft des Dampfes sich richtet. Durch gleichzeitige Vergrößerung der Laufräder ließ fich dann auch die Tourenzahl so regulieren, daß die Dampfturbine heute schon ganz erhebliche Vorzüge aufweist gegenüber der Kolbendampfmaschine.

In ihrer Bauart ist sie einsacher und besonders die lästigen Bentile kommen bei ihr zum größten Teil in Wegfall. Sie nimmt, was ja ebenfalls von großer Bedeutung ist, sehr wenig Plat ein, und das wichtigste ist, daß man Dampsturdinen mit jener Umdrehungsgeschwindigseit bauen kann, wie sie eine jede Arbeitsmaschine ersordert und somit mit diesen direkt gekuppelt werden kann, so daß man mit derselben einen Betrieb einrichten kann, in welchem keine Riemen, Zahnräder oder Transmissionen nötig sind. Durch diese Anpassungssähigkeit ist die Dampsturdine in der Elektrotechnik bereits zu hohem Wert gelangt und es ist durchaus nicht ausgeschlossen, daß die Dampsturdine über kurz oder lang, wie heute der Elektromotor, an jede Arbeitsmaschine gekuppelt und vom Dampskessel aus mit Damps versehen wird.

Nach den Erfahrungen, die man bis jetzt in dieser Beziehung gemacht hat, kann man zum mindesten zufrieden sein, da der Dampfverbrauch durch die hiedurch nötigen Haupt- und Zweigrohrleitungen sich immer noch erheblich billiger stellt, als ein Betrieb mit einer Kolbendampfmaschine, bei welcher Transmissionen, Borgelege und die sehr teuren Riemen sich nicht vermeiden lassen und außerdem noch eine erhebliche Summe Geldes an Reparatur erfordern.

Obwohl nun die Dampfturbine eine h he Vollendung ausweist, bleibt es doch fraglich, ob dieselbe durch die Gasexplosionsmotoren übertroffen wird.

Es kann nämlich nicht in Abrede gestellt werden, daß die Dieselmotoren mit ihren kolossalen Arbeitsspannungen von 30—40 Atm., eine einfache Bauart, unerreichte Betriebsbilligkeit und geringe Plazbeanspruchung in sich vereinigen, und deshalb imstande zu sein scheinen,

sich das ganze Gebiet der Krafterzeugungsmaschinen zu erobern.

Tritt nun der Fall ein, daß sich ein Fabrikherr in die Lage versetzt sieht, eine neue Antriedsmaschine aufzustellen, so wird er heute nicht mehr so leicht wählen können, als dies in früheren Jahren der Fall war. Bon allen Seiten erhält er Angebote und die Rentabilität der verschiedenen Systeme ist so günstig, daß es für den Fabriksherr eine Qual bedeutet, unter diesen scheindar günstigen Angeboten die richtige Wahl zu treffen.

In der Holzbearbeitungsfabrik dürste sich diese Wahl jedoch nicht so weit erstrecken, als in Fabriken, in denen es keine Abfälle zu Beizzwecken gibt. In einem Sägewerk z. B., wo es Abfälle in Menge gibt, die nicht mehr anders verwertet werden können, als zu Heiz oder Streuzwecken, wird man fast immer dem Dampf den Borzug geben müfsen, weil hier der Abdampf wie in den Möbelfabriken und sonstigen Holzbearbeitungsfabriken

noch wertvoll verwendet werden fann.

Ein weiterer Grund, und zwar der wichtigste ist der, daß in Holzbearbeitungsfabriken der Kraftverbrauch ein sehr schwankender ist, dem die Explosionsmaschinen nicht, oder doch nur bei wenigen Ausnahmen gewachsen sind. Dieser übelstand, welcher bei allen Motoren fast täglich beobachtet werden kann, wenn dieselben auch nur um ein Geringes über ihre Normalstärke beansprucht werden, spricht ebenfalls für Dampf und nach dem schon weiter oben Gesagten kann es kaum mehr einem Zweisel unterliegen, welche der beiden Krastmaschinen (die Kolbenmaschine oder die Turbine) den Sieg davontragen wird.

Da nun allerdings beide Maschinen den Kraftschwankungen gleich gut gewachsen sind und auch die Bedienung bei beiden eine gewisse Sorgsalt ersordert, darf man aber doch nicht außer acht lassen, daß der geringe Raumbedars, die Anpassangssähigseit an jeden Betrieb in beliebiger Tourenzahl, die direkte Kuppelung mit sämtlichen Transmissionen und damit Fortsall der teueren Riemen und der nicht unerheblichen Unterhaltungskosten derselben

zugunsten der Dampfturbine sprechen.

Wenn nun damit auch noch nicht gesagt sein soll, daß die Dampsturdine in Zukunft an Stelle des Elektromotors tritt und wie dieser mit der jeweiligen Arbeitsmaschine in Gang geset wird, so wird man doch heute schon sagen können, daß die Dampsturdine nicht, wie dies bei den Kolbenmaschinen noch der Fall ist, mittels Riemen auf die Haupttransmission wirkt, sondern mit dieser direkt gekuppelt, ihre Arbeit verrichten wird.

Wie man in Sägewerken des öfteren Walzenrollgatter mit einer Dampsmaschine gekuppelt sieht, so dürfte dies in Zukunft auch bei den Dampskurbinen der Fall sein, wenn letztere Kuppelung schließlich auch eine andere Un-

ordnung erfordern wird.

Ebenso dürfte eine direkte Kuppelung der Dampfturdine mit der fast in jedem größeren Sägewerk vorhandenen doppelten Bauholzkreissäge sehr von Rugen sein, da das Anlassen und Abstellen derselben ja ebenso schnell geschehen kann, wie dei einem Riemenbetrieb, letzterer aber, welcher bekanntlich einer starken Abnuzung unterworsen ist, in jenem Fall nicht benötigt wird, da keine Maschine besser mit so hoher Tourenzahl, als sie die Bauholzkreissägen benötigen, ausgestattet werden kann, als gerade die Dampsturdine.

Holz-Marktberichte.

Vom Holzmarkt des Rheines berichtet die "Frkf. 3tg.": Infolge der Zurückhaltung am Niederrheine sind die Holzlager teilweise schlecht und unzureichend versehen, so daß man sich bemüht Lieserungsverträge für den Sommer abzuschließen. Während in den Vogesen in

den letten Wochen selbst bei großen Verkäufen und gutem Holze für die Tannen oft kaum die Taxe zu erreichen war, hatte die Oberförsterei Kaltenbronn bei Gernsbach im badischen Schwarzwald, einen Termin mit recht guten Breisen, bei dem die Taxe um 9,4% überschritten wurde. Dieselbe sah vor für die 6330 m³ Mt. 130,112. Man zahlte die Tannenftamme mit Mf. 24.40, Mf. 23.22, Mf. 22.27, Mf. 20.52, Mf. 18.50, Mf. 13.93 und die Abschnitte mit Mt. 22.20, Mt. 18.45, Mt. 13.35. Die Kiefern waren noch mehr gesucht, so daß man für die Stämme bewilligte: Mt. 30.55, Mt. 29.85, Mt. 26.10, Mt. 22.25 und für die Abschnitte zweiter Klasse noch Mt. 25.35. Es handelte sich um einen Submissions verkauf, bei dem 23 Offerten einliesen. Für Eichen hölzer bewegte sich die Nachfrage wieder in den besten starken Sortimenten, für die man immer Abnehmer findet während auch hierbei die schwächeren Klassen schwer an= zubringen waren. Wie die Eichen im Speffart vor allem für Fourniere gesucht sind, da dieselben keinen Leim durchdringen laffen und daher jede Politur annehmen, so sind die Lothringer Eichen sehr gesucht für die Möbelschreinerei und man zahlt für zarte Hölzer gute Preise. Die Oberförsterei Saarburg verkaufte bei reger Nachfrage hiervon 650 m3. Man bot für die Stämme 1. Klaffe Mf. 149 und Mf. 67.68 bei einer Taxe von Mf. 70 und Mt. 50, für 2. Al. Mf. 83.46 und Mf. 58.40 (Mt. 60 und Mt. 44), für 3. Al. Mt. 59.49 und Mt. 42.61 (Mt. 44 und Mt. 34), für 4. und 5. Al. Mf. 22.25 und Mf. 12.45 (Mf. 25 und Mf. 16). Rot= ulmen konnten 45 m³ gut angebracht werden und be-willigte man für die Stämme Mk. 29.24, Mk. 26.10, Mf. 23.98, Mf. 14.22, sodaß also auch in den stärkeren Abmessungen die Taxe um mehr als 20% überboten wurde. Ahnlich verlief ein Termin in Dieuze mit 1790 m3 Eichen, denn man notierte hier, bei annähernd gleicher Tage für 1. Kl. Mf. 93.61 und 70.29, 2. Kl. Mf. 77.24 und 49.66, 3. Kl. Mt. 55.69 und 38.33, 4. Kl. Mt. 30.91 und 22.98 und 5. Rl. 15.17.

Verschiedenes.

Parqueterie et Menuiserie mécanique de Bassecourt (Bern). Für das Jahr 1911 (zweites Geschästsjahr) wird eine Dividende von 4% ausgerichtet gegen 3,5% im Vorjahr.

Einen Kitt für Holzbecken stellt man her, indem man einen ziemlich starken Kölnerleim kocht und diesen einem dicken Teig aus Wasser und Kreide beirührt, so daß eine dicke Kreidemasse entsteht. Dieser werden soviel seingesiebte Sägespäne zugesetzt, dies der Kitt die ersorderliche Konsistenz hat, um die Fugen und Spalten auszufüllen. Der Kitt muß warm verarbeitet werden, weil der Leim erstarrt, sobald er kalt wird. Deshalb stellt man das Gesäß, in dem er enthalten ist, während der Arbeit in heißes Wasser. Der Kitt hastet sehr gut in den Fugen und wird steinhart.

Das größte Geschäftshaus der Welt ist das Woolsworth-Haus, welches am Broadway in New York errichtet wird. Sein Gesamtgewicht wird sich auf 250 Millionen Tonnen belaufen, die auf 69 Zementsäulen ruhen. Diese sind auf sestem Felsboden aufgesührt und in Stahlfäulen eingehüllt, die allein je 1500 Tonnen wiegen. Das Gebäude wird 20,000 Tonnen Baustahl enthalten, darunter Träger von 44 zu 30 Zoll. Das 750 Fuß hoch emporragende Turmlicht wird 96 Meilen weit von See aus gesehen werden können. In den Wänden und Böden werden über 30,000 Duadratsuß Hohlziegel oder Terrakotta verwendet, und der Zement wird in Zehntausenden von Säcken gebraucht.