Zeitschrift: Illustrierte schweizerische Handwerker-Zeitung : unabhängiges

Geschäftsblatt der gesamten Meisterschaft aller Handwerke und

Gewerbe

Herausgeber: Meisterschaft aller Handwerke und Gewerbe

Band: 26 (1910)

Heft: 20

Artikel: Schallsicherheit in Häusern

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-580137

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Schallsicherheit in Bäusern.

Schalldämpfer.

In Bezug auf die Mittel, die man bisher zur Ab-haltung des Schalles verwendete, kann man zwei große Gruppen unterscheiden. Zunächst einmal solche, bei denen ein bestimmtes, den Schall schlecht leitendes Material in den zwischen zwei Wänden aufgesparten Hohlraum eingefüllt wird. Als solches Material kommt in der Haupt-sache Asche, Sand, Torsmull usw. zur Verwendung. Die zweite Gruppe bilden jene Foliermaterialien, die birekt auf die Fußboden und Wande aufgebracht werden. Hierher gehören verschiedene Holzarten, die in Form von Holzvertäfelungen Unwendung finden, ferner Rupfen und sonstige Stoffe, die, aufgespannt gleichzeitig als Tapete wirken, ferner Pappe sowie Kork, die in der Regel unter Teppichen zu liegen kommen und endlich Linoleum, das die Eigenschaften des Schalldämpfers und Teppichs gleichzeitig in sich vereinigt.

Stoffe und Gewebe.

Neuerdings haben nun A. Behm und Dr. Sievefing eine neue Methode zur Anwendung gebracht, die Schallabsorption der verschiedenen Stoffe genau zu prüfen und die erhaltenen Ergebnisse in Form von Vergleichszahlen auszubrücken. Zunächst zeigte sich die beachtenswerte Tatsache, daß die schalldampfenden Eigenschaften, die man bisher ben Stoffen und Gewebe zuschrieb, in Wirklichkeit taum existieren. Alle die geprüften Gewebe sießen ben größten Teil der erzeugten Schallwellen hindurchgeben. Dies gilt insbesondere vom Filz, der sich mit Unrecht bisher eines ganz besonderen Rufes als Schalldampfer erfreute. Aehnlich verhalten sich alle übrigen Gewebe. Der Träger der Schallwellen ist die Luft und da alle Gewebe sehr porös sind, also sehr viel mit Luft gefüllte Zwischenräume enthalten, so kann durch ihre Poren der Schall ungehindert hindurchgehen. Sorgt man aber für Beringerung der Porofität oder für Ausfüllung der Poren, so wächst die Jsolationskraft gegen den Schall. So wirft gepreßter Filz bereits 58 % der auf ihn treffenden Schallwellen zurück und taucht man Gewebe in Waffer ein, daß ihre Poren anstatt mit Luft mit Fluffigkeit ausgefüllt find, fo nimmt ihre Durchläffigfeit gegen den Schall beträchtlich ab.

Der Korkstein.

Von den übrigen Isolationsmitteln gegen den Schall hat sich am besten der Kork bewährt. Der sogenannte "Korkstein", also die aus Korkabfällen, Ton und Lust-kalk durch Pressen und Trocknen in der Hise hergestellten Steine und steinartigen Platten lassen bei einer Dicke von 3,5 cm nur 36 % der fie treffenden Schallwellen hindurch. Beklebt man nun den Korkstein noch mit Papier, so gehen nur noch 6 % des Schalles hindurch. Diese Dampfung wird noch mehr vergrößert, wenn man auf den Korkstein einen Belag von Zement oder Gips von 3 cm Stärke aufbringt. In diesem Falle geht nur ein sehr geringer Bruchteil der Schallwellen, nämlich 2,5 % hindurch. Die Prüfung der Stoffe als Ausfüllmaterial wurde in der Weise vorgenommen, daß ein Doppelrahmen hergestellt wurde, deffen Zwischenraume die zu prüfenden Stoffe aufnahm. Bestand der Doppelrahmen aus Korkstein, und wurde er mit Sand gefüllt, so wurde die Schallstärke bei loser Füllung auf 28 % vermindert, bei fester Füllung auf 18 %. Bei loser Füllung mit Korkschrot auf 15 %, bei fester Füllung damit hingegen auf 10,5 %. Das so viel gebrauchte Linoleum vermindert in einer Dicke von 0,4 cm die Schallstärke auf 15 %. Es ist also einer Vertäfelung von Tannenholz vorzuziehen, die bei ftarkerer Dicke,

nämlich bei 0,5 cm eine Verminderung der ursprünglichen Schallstärke auf nur 29 % bewirkt. So beweisen die oben wiedergegebenen Versuche über den Korkstein, ba in den meisten Fallen in einfaches Berputen mit Bemen oder Givs oder ein Ueberfleben mit Papier genugt um eine bedeutende Schalldampfung herbeizuführen. ("Bauwelt")

Die Wasserversorgungs-Unlagen des Kantons Zürich.

Wir sind in der Schweiz im allgemeinen arm m statistischen Darstellungen aus dem technischen Gebiet. Um so ersreulicher ist es, wie wir einem Artikel des Hm. Ingenieur A. Haerry in Zürich in der "Schweiz. Wasser wirtschaft" entnehmen, daß einmal eine Arbeit in dieser Richtung vorliegt, von der man nur wünschen kann, das fie zu ähnlichen Unternehmungen ansporne. Das Zürcher kantonale statistische Bureau hat eine Statistik der Wasser versorgungsanlagen im Kanton Zürich für das Jahr 1908 herausgegeben, unseres Wiffens die erfte Statistit auf diefem Gebiet.

Im Vorwort wird darauf hingewiesen, daß trot der großen Wichtigkeit der Versorgung der Einwohnerschaft mit Wasser, Licht und Kraft verhältnismäßig wenn Angaben darüber vorhanden find. Die amtliche Statiff wird daher hier eingreifen müffen und als erste dieset Zusammenstellungen ist die Statistik der Wasserversor gungsanlagen vollendet worden. Nachdem bis vor etm 40 Jahren die Trink- und Brauchmasserversorgung der Einwohnerschaft des Kantons durch Gemeinden, Koppe rations= oder Privatbrunnen erfolgte, sind heute auf diesen Brunnenverbanden Unternehmungen größeren Still entstanden, welche die Aufgaben rationell durchzusühren imstande sind.

Es bestanden Ende 1908 311 Wasserversorgungs unternehmen; von diesen sind 178 oder 57,5% Gemeinde betriebe, und 132 oder 42,5 % find im Besitze von 90 noffenschaften und Einzelpersonen. Von drei Unterneh mungen waren keine Angaben erhältlich. 78,4% bet Wohnhäuser sind im Bereich einer Wafferversorgung 21,6% find an keine Versorgung angeschlossen, und zwar stehen die Bezirke mit vorwiegendem Gemeindebetrich günstiger da. In 11 Gemeinden sind gar keine Häufer angeschlossen. Bei 90 % der Anlagen werden für der Bezug der Gebühren die Hausbesitzer belangt, und mir bei 10% ift Gebührenbezug von den Mietern oder Bittern vorgesehen. Bon den Genoffenschaften geben 58 nur an Genoffenschafter, 66 auch an andere Intereffenten Waffer ab. Die erste Anlage wurde 1867—1868 Laufen-Uhwiesen erstellt, die größte Entwicklung erfolgt im letzten Dezennium des vergangenen Jahrhunders. Die Gesamtlänge der Rohrleitungen beträgt 1,508,868 m die Lichtweite 120—900 mm. Frreführend ist die Bemerkung, daß bei der Wahl des Kalibers nicht der linfang der Anlage oder das Wafferquantum, sondern tel nische Gründe (Feuerlöschzwecke) maßgebend waren. Die Bahl der Hydranten beträgt 11,015, im Durchschnitt es auf 3,6 Säuser einen Sydranten. Bei über 40 der Anlagen beträgt die Minimalhöhendifferenz zwifden Refervoir und Hydrant bis 25 m, bei 54,5% der lagen dagegen beträgt der Maximalhöhenunterschied mehr als 50 m.

Interessant sind die Angaben über das Wasserquantum beträgt im Minimum 69,978,7 Minutenliter om Minutenliter pro Wasserbezüger. Das Quantum steigert sich bis zum Maximum von 145,530 Minuter liter oder 3,7 Minutenliter pro Wasserbezüger.

Wie daraus ersichtlich ist, sind die Berhältnisse M