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Abstract. The completeness of a two-space scattering system given by two selfadjoint operators

Hi and H2 acting in different Hilbert spaces f)i and fj2 is considered. In virtue of the
invariance principle it suffices to study this problem for the scattering system [tp(H2), tp(Hi)}
where cp is an admissible function. If tp(H,),i 1,2, are both integral operators an elementary

L'-condition is sufficient for the completeness. If for instance fji 9)2 L2(Rd) and if
tp(H,) are integral operators with the kernels tp,(-, •) : Rd x Rd —» JR, the scattering system
{H2, Hi} is complete if

dx dy \tp2(x, y) - tpx(x, y)\ < oo.

Rd R*

Keywords: mathematical scattering theory, integral operators.
AMS-classification: 35P25, 47A40, 47G10, 81U99

1 Introduction

Let Hi and H2 be two selfadjoint semibounded linear operators acting in possibly different
Hilbert spaces f)i and r)2, linked by a bounded identification operator J. The main objective

of this article is to give a criteria ensuring the completeness of the scattering system
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{H2,J, Hi} in terms of an integral condition for operator-valued functions of H{,i 1,2.

It is sufficient to prove the existence and completeness of the scattering system {tp(H2). J.tp(Hi)}
where tp : IR —> R, is an admissible function such that the invariance principle holds in its
strong form. The normal trace class condition for that is

tp(H2)J-Jtp(Hi)t<&i(?)i,9)2), (l.l)
(25i - trace class operators from 9)i to f)2). The condition in (1.1) is generalized in section
2. The main remaining completeness assumption for the system {tp(H2), J,tp(Hi)} is

tp(H2)(tp(H2)J - Jtp(Hf))tp(Hi) e 8i(J)i,J53). (1.2)

This last condition is a '"sandwiched" version of (1.1). This implies an easy and smooth integral

conditon if tp(H,) are integral operators, which occurs very often in concrete examples.

Take f>i L2(Rd), S)2 L2(T.) with S Ç Rd. Let tp(Hi),tp(H2) be integral operators in
L2(Rd) or L2(E), respectively. Denote their kernels by

tpi(;-) : Rd x Rd ->• R,

tp2(.,.):ZxZ--rR.

Then the scattering system {H2,J, Hi} is complete (see section 3) if |JR"\S| < oo and if

/*/ dy \<P2(x,y)xs(y) ~ Xz(x)tpi(x,y)\ < oo. (1.3)

The most important examples for <p(H,) are semigroups, e~2H', and powers of resolvents,
(Hi + a)'2rri, m> 1, a > c > 0. If J JÎ the only completeness condition is then for instance

j dx j\(e-2H*)(x,y) - (e-2^)(x,y)\ < oo. (1.4)

Rd Rd

Applications for potential scattering, for obstacle scattering and for scattering systems with
magnetic fields are explained in section 4.

Trace class conditions play an important role in abstract mathematical scattering theory.
They are very useful if the information about the unperturbed system is small, i. e. if
properties for the dynamics of e~'tH' are unknown.

Trace class conditions go back to Kato [10], Rosenblum [13] and Birman [3]. The two space
trace class criterion is due to Pearson [11].

The reader may find a long list of references on this topic in the standard textbooks on
scattering theory such as Baumgärtel, Wollenberg [2], Yafaev [16] or Reed, Simon [12]. The
case of trace class integral operators was studied by Deift, Simon [5] and summarized in
Simon [14], chapter VII. There they used the restrictive method explained in Example 2.5.
A preresult of the present article for obstacle scattering was given by Stollmann [15].
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2 Generalized criterion for the completeness of scatte¬

ring systems

DEFINITION 2.1. (Wave operators) Let Hi, H2 be two selfadjoint semibounded operators
acting in possibly different Hilbert spaces f)i and f)2. Let J be a bounded identification
operator from f)i onto i}2.

The two-space wave operators are given by

n±(H2,J,Hx) := s-lim e""2Je-""'fac(>y1). (2.1)
£-+±co

Fac(Hi) is the projection operator onto the absolutely continuous subspace of Hy.

DEFINITION 2.2. (Completeness) Assume that fi+ Q+(H2,J,Hi) exists. Let Fl+

sgnfi+|fi+| be its polar decomposition.

fi+ is called //^-semicomplete if

(sgnn+)-(sgnn+) Pac(/71) (2.2)

and /72-semicomplete if
sgnf7+(sgnn+)- Pac(//2). (2.3)

fl+ is called complete, if it is both Hi- and .rY2-semicomplete.

The scattering systems {H2, J, Hi} is complete if fì+ and Îl_ are complete, i. e. if

ranfi+ ranfL. (2.4)

In this case Hi f Pac(#i)i5i is unitarily equivalent to H2 \ P<,C(H2)$}2.

For a detailed overview on mathematical scattering theory the interested reader should
consult the book by Baumgärtel, Wollenberg [2].

Sufficient conditions for a scattering system {H2, J, Hi} to be complete are

(i) n±(H2.J,Hi), n±(HuJ-,H2)exist, (2.5)

(ii) s-lim(J-J-IS)l)e-"//'Pac(//1) 0 (2.6)
f-*±oo

(iii) s-l.m(J./" - lf:2)e-'^P,c(H2) 0. (2.7)
t—»ico

DEFINITION 2.3. (Admissible function) Let tp(-) : R -> JR. Take mutually disjoint
intervalls /„ (an,bn) with (jn_
In the following conditions hold:
intervalls In (an,bn) with [Jn=1 In JR, N finite, rp is called admissible on JR if for every
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(i) rp(-) is continuously differentiable,

(ii) ¦<]>' > 0,

(iii) rp'(.) is locally of bounded variation.

The property below will prove to be particularly useful in the forthcoming analysis:

rp~1(.) is an admissible function on rp(In) if rp is admissible.

Then a possible version of the invariance principle in its strong form is (see Baun.gaitel,
Wollenberg [2], p. 246):
lì Q.+ (4~1(H2),J,4>~]-(Hi)) exists, then Q+(H2. J. Hi) exists and we have

n+{r\H2),J,r\Hi)) û+(H2,J,Hi). (2.S)

If the function satisfies (i) and (iii) but is decreasing, i. e. rp' < 0 on every In, the invariance
principle holds in the sense

n+(rp-1(H2),J,V-1(H1)) 9.-(H2,J,Hi).

The invariance principal in its strong form holds for wave operators defined in Abelian sense.
However we study here only trace class perturbations. In this case the invariance principle
in its strong form does hold also for the wave operator definded as strong limits (2.1). A
proof can be found in [2] p. 343.

EXAMPLES 2.4.

(a) Take

then

rp-\p) e-2A (2.10)

If Fl+(e~2H-, J. e~2H') exists, then the invariance principle entails the existence of
V.-(H2,J.Hi).

(b) Take

rf(X) -^-a, X^0,a>c>0. (2.11)
vA

Then

(p + a)2

i. e. one has to study the existence of

Çl+((H2+a)-2,J,(Hi+a)-2).
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The usual trace class criterion ensures the existence of the wave operators Fl±(H2, J, Hi), Q±(Hi,
J',H2)A

rp-l(H2)J-Jrf-l(Hi) e «8,(531,^2).

(03, - trace class operators). This condition is commonly used in the literature, but it is

rather restrictive. This is illustrated in the following example.

EXAMPLE 2.5. Take rf'l(p) e~2ti and study

e~2H*J-Je-2Hi =e-Hi(x)-a(x)a(e'H2J-Je-Hi) + (e-^-J-Je-H')(x)a(x)-ae-Hi. (2.13)

Here (x)a : (1 + |.r|2)Q/'2, q > 0. Assume that e~H2, e~Hl are integral operators with kernels

(e~H')(x,y),i 1,2. Assume that a is large enough so that

e-"»(x)-Q€ Bj(i5a,J5î),
(2.14)

(x)-ae-"' €»2(«i,i5i)

(Q32 - Hilbert-Schmidt operators). Then the wave operators Q±(H2, J, Hi) exist if

dx j dy \(x)a(e~H2J- Je-H>)(x,y)\2 < oo. (2.15)

This should be compared to the final result of this article (see Corollary 3.4), according to
which the condition

jdx j dy \(e~HlJ - Je'H')(x,y)\ < oo (2.H

is sufficient. In order to prove this, a modified or generalized completeness condition will be

established.

CRITERION 2.6. Let H\,H2,J and Sji, S)2 be given as above. Let rp(.) be an admissible

function and set rp'1 tp. Assume va.ntp(H,) is dense in fj,-,i 1,2.

Then the wave operators Q±(H2, J, Hi), Q±(Hi, J", Hf) exist if

tp(H2)(tp(H2)J - Jtp(H{))tp(Hi) € <8i(S)i,Sj2), (2.17)

tp(H2)J- J<p(H!) £ %«,(%!,%2) (2.1S)

fâçv - compact operators).

The wave operators are complete if

(JV-Ifl,Mffi)€ »„(fli,Sji), (2.19)

(JJ- - h2)tp(H2) € 23oo0$2,i3». (2.20)

In the one space situation with J 1 only (2.17) and (2.18) are sufficient.
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PROOF. Define J tp(H2)Jtp(Hf) then (2.17) means that

tp(H2)J-MHi) e 95i(fli,i52).

Therefore Cl±(<p(H2),J,<p(Hi)) exist, i. e.

s-lim e,'^V(772)J9(//I)e*MH,)JPac(^(^i))
t—f±co

exist. Now ran(^(//,) was assumed to be dense in fj,. Hence

s-lim e'^W2V(//2)Je-^(//')Pac(^(7/,))
(-»¦±00

exist. The Riemann-Lebesgue lemma together with (2.18) yield the existence of

s-lim e '*<">> J^(#0e-''MHl)PacM#i)).
(—>±oo

The same density argument implies the existence of il±(<p(H2), J,cp(Hf)). The imariance
principle can be used for the existence of Çl±(H2, J, Hi).

The /7,-completeness follows via (2.19) i. e.

s-lim(JV - I(5l)^(//1)e-"//|/:5ac(//i) 0.
t~A±O0

The same density argument yields

s-lim(JV-i)i,)e-"w'Pac(7/1) 0.
(-»¦±00

The assumption that ran^(#2) is dense in S)2 is used for (2.7), i. e.

s-lim( JJ' - lz2)e-<tH> Pac(/72) 0.

q. e. cl.

In the Examples 2.4 the admissible functions have the form rp'1 tp2 with tp(p) e~*

or <p(p) -A-. In order to avoid square roots in the following section we work with this
notation.

The next corollary is only a reformulation of Criterion 2.6.

COROLLARY 2.7. Let H\.H2.J and Sjx,fj2 given as above. Let y(-) be an admissible

function and set rp'1 — tp2. Assume that i&ntp2(H,) is dense in F),,i 1.2. Set

D:=?2(H2).]-Jcp2(Hi). (2.21)

The wave operators Q±(H2, J, Hi) exist and are complete if
p2(H2)Dv2{Hl)e<Bi($ii,f)2) (2.22)

D e »„(ux.ifc) (2-23)

(J-J - Ifll)v»2(^i) e »«(fl,. fix) (2-24)

(JJ' - U2)p2(H2) e Boo(*2,$2). (2-25)

The main condition is (2.22). In the next section we study this generalized completeness
criterion if tp(H,) are integral operators.
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3 Integral conditions

The generalized completeness conditions in Criterion 2.6 or Corollary 2.7 are now considered
for admissible functions tp1 for which tp(Ht) are integral operators. In this case the difference
D in (2.21) is also an integral operator and the trace class condition in (2.22) is satisfied if

f dx j dy \D(x,y)\ < oo, (3.1)

where D(-, ¦) is the kernel of D.

CRITERION 3.1. Let jj, L2(Rd) and ij2 L2(E), where S Ç Rd is an open set. The

identification operator is defined by

Jf:=f/z, (3-2)

the restriction of f £ L2(Rd) to E. Hi is a selfadjoint semibounded operator in L2(Rd), H2
is a selfadjoint semibounded operator in L2(E).

Let rp be an admissible function. As in the last criterion we set rp'1 tp2. Assume now
tp(Hi),tp(H2) are bounded selfadjoint integral operators in L2(Rd) or L2(YZ), respectively.
Their symmetric kernels arc denoted by tp,(., ¦), i 1,2.

Suppose we have, that

\MHi)\\ < sup \tpi(x,y)\ dy:=ai (3.3)
xERd J

Rd

\\tp(H2)\\ < sup f\p2(x,y)\dy=:a2 (3.4)
res J

and assume a max{a,,a2} < oo.

Assume additionally that tp,(-, •) are Carleman kernels, i. e.

sup / \tpi(x,y)\ dy := 6, (3.5)
xeRd J

Rd

sup / \<p2(x,y)\2dy := b2 (3.6)
res Js

D:=92(tf2)J-V(#i); (3-7)

this is an integral operator from L2(Rd) to L2(E)- ^s kernel is denoted by D(x,y), x G S,

y e Rd.

Then tp2(H2)Dtp2(Hi) is a trace class operator, i. e.

J(H2)Dp2(Hi) e <Bi(L2(Rd),L2(JZ)) (3.8)

with b := max{ò,,ò2} < oo.

Define
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(see (2.22)), if

j dx J dy\D(x,y)\<oo, (3.9)

S Rd

and the trace norm can be estimated by

\\tp2(H2)Dtp2(Hi)\\u <a2-b- Jdxjdy \D(x, y)\. (3.10)

S Rd

REMARK. Concerning the situation in Example 2.5 (3.9) corresponds to (2.16) and is thus
an improvement for any condition of the form

jdxj (x)a \D(x,y)\2<œ, (3.11)

S Rd

a > 0.

PROOF. The proof is based on a trace class lemma given by van Casteren, Demuth. Stoll-
mann, Stolz in [4],. If A and B are integral operators with measurable kernels .4(-, •). £?(•, •),
their product AB is trace class if

j\\A(-,x)\\\\B(x,.)\\dx<oo,

and the trace norm can be estimated by

\\AB\\lT< [\\A(.,x)\\\\B(x,.)\\dx.

This is used for cp2(H)D<p2(Hi). We have

\\tp2(H2)D^2(Hi)\\tr < \\v2(H2)Ds(Hi)\\tr\\tp(Hi)\\

< a- dxy dy \tp2(y, x)|2J
'

S s

•f / dy\ I du / dv tp2(x,u)D(u,v)tpi(v,y)\ j
Rd £ RJ

< a ¦ b? / dx(^ dy dui / dv, tp2(x,Ui)D(ui,Vi)<pi(vi,y)
S Rd S Rd

¦ / du2 / dv2 tp2(x,u2)D(u2,v2)pi(v2,y)j
S Rd

< a ¦ b dx du dv tp2(x,u) \D(u, v)\

:-i':

_2< a ¦ b j du du\D(u,v)\. q. e. d.

Rd
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The next two Lemmas refer to the other conditions in Corollary 2.7.

LEMMA 3.2. Take the assumptions of Criterion 3.1. Then D is a compact operator, i. e.

D tp2(H2)J - Jtp\Hx) e ^800(L2(Rd), i2(S)) (3.12)

(see (2.23)),. if
r

dx j dy |£>(x,y)| < oo. (3.13)

S Rd

PROOF. If (3.13) is satisfied D is even a Hilbert-Schmidt operator. This follows easily by
the boundness of the kernel, i. e. by

lö(a',!/)l | / ^2(x,u)p2(u,y)du xz(y) - \s(.r) / tpi(x,u)tpi(u,y) du| < 2 • b.

S Rd

q. e. cl.

Finally, in our special integral operator setting we have

JJ" ItfCZ) Ufa

such that (2.7) is trivially satisfied and (2.25) is superfluous.

It remains to verify (2.24).

LEMMA 3.3. Assume the same conditions as in Criterion 3.3. Then (J"J — lf)l)tp2(Hi)
is a Hilbert-Schmidt operator if the measure |JR \S| is finite.

PROOF. We habe

((J'J - lL2{Rd))f)(x) XRd\^(x)f(x).
Hence the Hilbert-Schmidt norm of (J'J — lf)i)p2(Hi) is the square root of

dx / dy \xr*\z(x) / tpi(x,u)pi(u,y) du\

Rd Rd

< / dx dy du / dv \tpi(x,u)tpi(u,y)tpi(x,v)tpi(v,y)\
Rd\S Rd Rd Rd

< / dx / du / dv |^1(x,ti)ll<f,i(^,)l( / dy \<fi(u,y)\2)
* / dy \si(v,y)\2) '

Rd\Z Rd Rd

< b ¦ a2 |JRrf\S|. (|-| - Lebesgue-measure) q. e. d.
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The last two Lemmas and Criterion 3.1 may be summarized.

Corollary 3.4. Assume the same conditions as in Criterion 3.1. In brief these were:
Hi,H2 selfadjoint semibounded operators in L2(Rd),L2(YZ). Jf f/z- V^-) the inverse

of an admissible function. cp(H,) selfadjoint bounded, Carleman integral operators. D —

tp2(H2)J - Jtp2(Hi). Then

(a) One-space formulation.
If E Rd, i. c. 5, fy L2(Rd), i. t. J 1, the scattering system {H2.Hi} is

complete if
/ dx / dy\D(x,y)\ < co.

Rd Rd

(b) Two-space formulation.
The wave operators for the scattering system {H2,J, Hi} exist, if

J dx j dy \D(x,y)\< oo.

Rd

And they are complete if additionally

|JRd\E| < oo.

PROBLEM. The completeness of scattering systems implies the invariance of the absolutely
continuous spectra. Here <rac(i/i) cr^c(H2) if

I dx I dy \D(x,y)\ < oo.

On the other hand one knows that the essential spectra are stable, i. e. acss(Hi) cress(H2),

if
/ dx / dy \D(x,y)\2 <co.

A possible problem is to find similar integral conditions to study the behaviour of the
singularly continuous spectra. This may be possible, for instance, if the absolutely continuous
spectra are empty.

4 Applications

In the following applications our results are used for semigroups and resolvents, i. e. for
tp(p.) e~" or tp(p) -i-j, p > —c.c > 0,a > c. In such cases one has to verify

j dx j dy \(e'2"2J - Je'2Hi)(x,y)\ < co (4.1)
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dxi dij\((H2Aa)-2J-J(Hi+a)'2)(x,y)\<oo. (4.2)

S Rd

Via the Laplace transform (4.2) is related to (4.1).

If we assume that e~tHi and e~tH2 are Li-Lco smoothing, then the semigroups possess a

kernel, denoted by (e~tH')(x,y), satisfying

s...,/,-tH,up(e'tH-)(x,y) < ct (4.3)
¦'¦¦y

where c( has typically the form t °e"' with positive constants a,u>.

The semigroup kernels have to satisfy (3.3) and (3.4), i. e.

sup / \e~'H'(x,y)\ dy < a < oo. (4.4)

Rd or s

If (4.3) and (4.4) are given these are Carleman kernels such that (3.5) and (3.6) are fulfilled.

This means that for L1-L°° smoothing semigroups the generators form a complete scattering
system if (4.4) and (4.1) are true. Till now we have not assumed any relationship between
Hi and H2, except the condition in (4.1). H2 can be a perturbartion of Hi in zero order,
i. e. a potential perturbation or a perturbation arising from the imposition of boundary
conditions, or H2 can also be a perturbation of Hi of first or second order. We give here
four examples for each of these situations. They are known in the literature. Hence we shall
largely omit the proofs. Our purpose is simply to illustrate the results of Corollary 3.4.

4.1 Potential perturbations

Let V be a realvalued function such that H2 — Hi + V is a selfadjoint operator in L2(Rd).
Here fj, f>2 L2(Rd). Assume that 77, and H2 generate L1-L°° smoothing strongly
continuous semigroups. Let

sup / \(e-tHl)(x,y)\dy<a (4.5)

where a is independent oft. Assume

\(e-^^)(x,y)\<ce-\(e'^)(x,y)f (4.6)
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with c > 0,3 > 0. Using the formula of Duhamel the condition in (4.1) is

j dx j dy\(e-2^^)(x,y)-(e'^)(x,y)\
Rd Rd

< j ds j dx f dy i du \(e-{2-s){H'+v))(x,u)\\V(u)\\(e'sHi)(u,y)\
Rd Rd Rd

< a2 -c-e2c j \V(u)\du. (4.7)

Rd

This means that {Hi, Hi + V} forms a complete scattering system if V € L1(Rd) and if
Hi +V generates a selfadjoint semigroup the kernel of which satisfies (4.6). In order to verify
(4.6) one can use the Feynman-Kac-formula (see Demuth, van Casteren [7]) or in a more
abstract operator theoretical way the Trotter-product formula (see Arendt, Demuth [1]).

4.2 Higher order perturbations

In a similar way one can study perturbations of higher order (see Demuth, Ouhabaz [9] for
details). Let Hi be the selfadjoint realization of the Laplacian in L2(Rd). Let H2 be an

operator of a system with a magnetic field. H2 is given via sesquilinear forms, i. e. H2 is

the operator associated to the form

d

- Y, {ak,(Dk - ibk)u, (Dj - ibj)v) (4.9)
k.j=i

with u,v from the corresponding form domain, Dk '¦= g—. The coefficients have to satisfy

(i) akj — a3k, ak] real valued, bounded,

EL=i °«(*)firfj ^ «iei2,« > 0 for all x € Rd, £ (f,.... Çd) € C.
au(') - 4; 6 L\Rd) for all fc, j € {1,2,... d}.

(ii) bj are realvalued, bounded, b} € L1(Rd), j 1,2,... ,d.

In this case {Hi,H2} forms a complete scattering system. In particular, this is true for
non-regular magnetic potentials. The proof uses Corollary 3.4 for tp(p) (ßA a)~m, i. e. for

powers of resolvents. The details are given in [9]. Typical are the L'-conditions for ak] — 5kj

and bj, which have the same background as the L'-condition for the potential in section 4.1.

4.3 Perturbations by boundary conditions

First let us consider pure obstacle scattering where no potentials are present. Let A, be a

selfadjoint, positive generator of a strongly continuous semigroup in L2(Rd). Assume that
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this semigroup is an integral operator with the kernel (e thl)(x,y) tpi(t,x,y). Let tpi be

a continuous function mapping (0,oo) x Rd x Rd to [0,oo). Assume

j tp,(t,x,y)dy l (4.10)

Rd

and

sup tpi(t,x,y) < oo. (4.11)
x,y£Rd

Denote by Cao(Rd) the set of continuous functions vanishing at infinity. For / € Ccc(JR'i) we

suppose
l\m(e'"<'f)(x) f(x) (4.12)

ami
e-'A'CM Ç Cra. (4.13)

(4.12) and (4.13), the Feller property, ensures that tp1 generates a strong Markov process,
denoted by ((0., ZF, Px), X(-), (Rd, ?ßd)), having the generator A',. The interested reader may
find details in [7] and [8].

Ex{-} denotes the exspectations with respect to the Feller measure Px. The conditional
Feller measure E^'(-) pins the motion {X(t),t > 0} at x at time 0 and at y at time t. It
can be defined by

El-t(A):=Ex{tpi(t-s,X(s),y)lA} (4.14)

whenever .4 is an event in the field ZF,, s < t. Clearly, we have that

E^(Rd) tpi(t,x,y). (4.15)

Obstacles can be introduced stochastically. Let T be a closed subset of Rd with positive and
finite Lebesgue measure. Its first hitting time is given by

Tr:=in{{s>0,X(s) (E F}. (4.16)

Setting E Rd\F we can introduce

(U(t)f)(x):=Ex{f(X(t)),Tr>t}. (4.17)

U(t)/l2(S) forms a strongly continuous semigroup in L2(T,). Its generator is now A'2. A'2

corresponds to A', together with Dirichlet boundary conditions on ÔE dF. K2 is selfadjoint
in i2(S). Its semigroup has the kernel

(e-"<2)(x,y) tp2(t,x,y) E»x'{Tr > t}. (4.18)

The kernels cpx and tp2 satisfy all the conditions of Corollary 3.4(b). Note that |T| < oo was

already assumed.

Hence {A'2l J, A',} forms a complete scattering system if the following integral is finite:

j dx f dy \E*z*(Rd) - Ef{Tr > t}\ f dx Ex{Tr < t}
S Rd S
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This can be estimated by:

j dx Ex{Tr<l} < é I dxEx{e-Tr,Tr < oo}
S Rd

< e'cap(r). (4.19)

In (4.19) cap(r) means the capacity of F which is defined as

cap(r) := mf {(Kl/2f, Af2/) + (/, /), / 6 dorn I<\'2, f > Xo,

0 open, reo}. (4.20)

The conclusion is that {A',, J, IA} forms a complete scattering system if the capac.ty of F
is finite.

A similar result will be obtained in obstacle scattering if the potentials are not neglected. Let
K\ be a free Feller operator as described above such that (4.10)-(4.13) is satisfied. Assume a

Kato-Feller potential V, such that the form sum A',+V is a well-defined selfadjoint operator
generating a L1-Lc° smoothing semigroup. Assume that

(e-l^ + v))(x.y) < cecttpi(0t,x,y) (4.21)

for c > 0,ß > 0, (compare this with (4.6)). Now. the family

f - fV(X(s))d> i
(W(t)f)(x):=Ex{el f(X(t)),Tr > tj. (4.22)

restricted to L2(T,) forms again a strongiy continuous semigroup in L2(E) as in the
unperturbed case (see (4.17)). Its generator is know K2- One can give conditions such that A'2 is

exactly the Friedrichs extension of A',+V restricted to dom(A',-j-V) fl £2(S).

The kernei of e~th2 is here

c -fV(X(s))ds -,

tp2(t,z.y) E*xt{e » ,Tr>t]. (4.23)

Define the (A + V)-harmonic function by

r - IA+v(x(S))ds -,

hxMx) ¦= Ex{e o ,rr<coj (4.24)

the scattering system with potential V and obstacle on F is then complete if

dx h\+v(x) < oo. (4-25)

RJ
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