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A semi-classical relativistic black hole1

By F. Vendrell2

Institut de physique théorique
Université de Lausanne
CHT015 Lausanne, Switzerland

(7.VIII.1996)

Abstract. A new two-dimensional black hole model, based on the "Ä T" relativistic theory,
is introduced, and the quantum massless scalar field is studied in its classical gravitational field.
In particular infrared questions are discussed. The two-point function, energy-momentum tensor,
current, Bogoliubov transformations and the mean number of created particles for a given test
function are computed. I show that this black hole emits massless scalar particles spontaneously.
Comparison with the corresponding field theory in a thermal bath shows that the spontaneous
emission is everywhere thermal, i.e. not only near the horizon.

1 Introduction

S.W. Hawking discovered that, due to quantum mechanical effects, black holes spontaneously
create and emit particles in 1+3 dimensions. He showed furthermore that the mean number
of spontaneously created particles is thermal near the event-horizon [1]. The two-point
function and the energy-momentum tensor of quantum matter were also computed in the

gravitational field of black holes by other authors and their thermal properties studied [2, 3].
From these results it has been concluded that, near the event-horizon, the radiation of a

1+3 dimensional black hole is indeed thermal, with temperature inversely proportional to
the mass.

'Work done towards a Ph.D. at Lausanne University.
2Leaving for Blackett Laboratory, Theoretical Physics Group, Imperial College. London SW7 2BZ. UK.

October 1996.
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Recently there has been renewed interest in the study of 1 + 1 dimensional black hole
models [4. 5], for which the technical difficulties encountered are of less importance than in
the 1+3 dimensional case. In the present paper I investigate the semi-classical properties
of a new 1 + 1 dimensional black hole model, based on the "fi T" theory. This theory-

was introduced by R- B. Mann [6]. The scalar curvature which defines this model vanishes

everywhere, except on a light-like straight line where it is infinite and from which the horizon
originates. I show that this infinite and localized curvature induces an emission of massless

scalar particles which is thermal everywhere, i.e. not only near the horizon, and that the

temperature of the radiation is proportional to the relative amplitude of the curvature.

In section 2 the "Ii T" theory is reviewed and the new black hole model is introduced.
In section 3 the quantization of the massless scalar field theory is reviewed in 1 + 1 dimensional
Minkowski space-time. The quantization is extended to curved space-times in section 4,
where it is also shown that the two-dimensional massless scalar field theory may be reduced
to two independent one-dimensional scalar field theories under some specified conditions.
Section 5 is devoted to the formal study of one-dimensional field theories obtained in this

way. Relevant observables for the massless scalar field are introduced in section 6. Section 7

is devoted to the study of one-dimensional massless scalar field theories in a thermal bath.
The results obtained are finally applied to the new black hole model in section 8.

2 The relativistic black hole model

The classical Einstein equations for the gravitational field are given by

R^-\g^R SirGTßu, (2.1)

where Ç is the universal gravity constant and c 1. They imply the covariant conservation
of the classical energy-momentum tensor Tßv:

VT^ 0. (2.2)

The l.h.s. of eq. (2.1) vanishes for all 1 + 1 dimensional metrics, so that curvature is arbitrary
and matter is excluded from 1 + 1 dimensional space-times [7]. In consequence the Einstein
equations have no physical contents in two dimensions.

In spite of this fact. R.B. Mann [6] has extracted a non-trivial theory of gravity from the
Einstein equations by considering the limit D —» 2+, where the space-time dimension D is

allowed to take continuum values. The trace of eq. (2.1) is given by

-jj R(x) 8kÇT(x), (2.3)

using gß" gßu D. Assuming that the constant Ç depends on the space-time dimension D
and that the limit

lim %— G (2.4)
D-2+ 1 - D/2
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exists, then equation (2.3) implies

R(x) 8nGT(x), (2.5)

where T(x) Tßß(x) is the trace of the energy-momentum tensor. Equation (2.5) does not
imply the covariant conservation of TßU(x). so eq. (2.2) has to be imposed by hand.

For the trace T(x) Mann et al. [5] have considered the form

M
T(x) — <5(x' -xl), (2.6)

o7ru

and have shown that eqs (2.5) and (2.6) admit eternal black holes with a pair of horizons as
solutions.

I assume now that T(x) is given by

M
T(x) —6(x+-xt), (2.7)

where x (x° ± x1) jy/2 and the constant M is strictly positive. Equation (2.7) is
consistent with eq. (2.2) and describes a pulse of classical matter traveling with the velocity of
light towards the left at x+ xj". From eqs (2.5) and (2.7) the scalar curvature is given by

R(x) 4M <S(x+- x+). (2.8)

This equation defines a black hole model, as shown below, and is solved in the conformai

gauge

ds2 C(x) dx+dx~. (2.9)

Equation (2.8) implies that the ronformal factor C(x) satisfies the non-linear equation

d+d_\og\C(x)\ MC(x)6(x+ -x+). (2.10)

This may be rewritten as:

"0C0, if x4

d_log|C(x)| { (2.11)
MC(xt,x-) + C0, if x+ >x+,

where C0 is a real constant, which shows that the metric is modified at x+ x+ by the pulse
of matter. This last equation implies that the conformai factor C(x) depends only on x~ in
the half-plane x+ > x+, and that this is discontinuous at x+ x+. This discontinuity comes
from the singularity of the curvature (2.8) at this same value of x+ and it may be removed
by replacing the delta function (2.7) by a sharp continuous pulse centered in a neighborhood
of x+ x+. It is easy to check that a solution of eq. (2.11) for C0 0 is given by

dx+ dx~. if x+ < x+,

' dx+ dx~ if T+ ^ T+
*

M(A-x-)' U > °'
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Figure 1: The space-time structure of the relativistic black hole. The broken line denotes
the curvature singularity superimposed on the pulse of matter; T and E are the time-like
and space-time regions respectively; H is the horizon.

where A is an arbitrary constant reflecting the invariance of curvature (2.8) under translations

of x-. Note that to obtain this solution the continuity of C(x)_1 has been required at
x~ A and x+ > x4/, where the metric is singular.

In a given set of conformai coordinates the horizon will be defined as the curve where the
metric reverses its sign. It thus divides space-time into a time-like and a space-like region,
where the conformai factor is positive and negative respectively. The value of the metric

may be null or singular on the horizon. In our case it is singular. The horizon associated

with the metric (2.12) is made up of (see figure 1):

- a half-straight line defined by x+ > xj" and x.~ A which originates from the singularity

of the curvature;

- a half-straight line defined by x+ xj" and x~ > A superimposed on the singularity
of the curvature.

The space-like region is identified as the interior of a black hole, since the events located
in it are not in the past of any observer situated in the flat part of the time-like region for
all times. This black hole will be called a relativistic black hole, because it is based on the
relativistic equation (2.5).

Since the coordinates (x+, x~) G IR2 are Minkowskian in the "past" half-plane Mp defined

by (seeeq. (2.12))

Mp {x€ IR2 | x+ <x+}, (2.13)
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they will be called incoming coordinates. Another set of conformai coordinates (y+,y G IR2

is defined by the transformation

i+(y+) y+,

x-(y-) A-e"M"-,

which satisfies:

fim x~(y-) A, (2.15)
y hco

lim x~(y~) -co. (2.16)
y~ — -co

The horizon is located at y~ +oo in the new coordinates. These coordinates cover only
the lower part of space-time R defined by

R {xe IR'2 | x- < A }, (2.17)

where the metric (2.12) is given by

f Me-My-dy+dy-, if y+ < y+,
els2 I (2.18)

[ dy+ dy', if y+ > y+,

where y+ xj". Since the coordinates (y+,y~) are Minkowskian in the "future" half-plane
Mp defined by

MF {y GIR2 I y+>y:), (2.19)

they will be called outgoing coordinates.

The transformation (2.14). which relates incoming and outgoing coordinates, is intimately
related to the space-time structure. It will play an important role in the analysis of the black
hole semi-classical properties. Note that the right transformation x~(y~) may be extended

analytically in the whole complex plane and that it exhibits an imaginary period given by

jj for all the values of its argument:

x-(y-) x' (y- + i -^ n) Vn 6 Z, Vy" G IR. (2.20)

This period will turn out to be the inverse temperature 3 of the black hole radiation.

3 Quantization of the massless scalar field

Before considering the quantum physics of the massless scalar field in 2D curved space-times,
its quantization in 2D Minkowski space-time should be reviewed. This cannot be carried
out by imposing all the Wightman axioms [8] in a standard way. In particular the positivity
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of the Wightman function cannot be satisfied for all Schwartz test functions because of its
bad infrared behavior. Consequently either the massless scalar field should be quantized in

an indefinite metric following G. Morchio et al. [9], or the space of test functions should
be restricted in order to satisfy the positivity condition, as proposed by S. Fulling and
S. Ruijsenaars [10]. For simplicity I will adopt the second point of view.

In the 2D Minkowski space-time the Wightman distribution of the massless scalar field
is defined on the Schwartz space 5(IR2) by [11]

W0[h,xh'2] f 2d2kW0(k)h,(k)h2(k)', (3.1)
J IR

where

W0(k) \ Ì6(k-)-^[O(k+)logk+} + 6(k+)-jj-[0(k-)logk.} J. (3.2)

Performing a 2D Fourier transform3, the Wightman distribution may also be expressed in
the form

w, [A,xA;] j 2d2x f 2d2xh,(x)W0(x,x)h2(x)', (3.3)

where lV0(a:, x) W0(x — x) is the Wightman function and is given by

W0(x) --^log(-x2 + ix°0+)--^, (3.4)

where 7 is the Euler constant. The Wightman function (3.4) satisfies i) the covariance

property, W0(Ax) W0(x) for any Lorentz transformation A; ii) the spectral condition,
W0(k) 0 if k2 < 0; iii) the locality property, W0(x) W0(-x) if x2 < 0. However
the positivity condition, W0[h x h" ] > 0 Vh G <S(IR2), is not generally satisfied (consider
h(k) e~ak In consequence a standard quantum relativistic interpretation of the theory
is not possible.

To elude this difficulty, the function space is restricted to all Schwartz functions vanishing
for null momentum. The test function space <So(IR is defined by

50(IR2) ÙgS(IR2) I M0) 0}, (3.5)

and the Wightman distribution (3.1) restricted to this space function is given by

where h,,h2 G <S0(IR2). This clearly satisfies the positivity condition and thus defines a

scalar product on 5o(IR2). A restricted Hilbert space H may now be constructed from the

3The 2D Fourier transform is defined by h(k) A- f,oid-xh(x)t
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Wightman distribution (3.6), which is related to the two-point function of the sca.ar field cf>

by

(fto.dAMAaltn.) W0[h,xh'2], (3.7)

where fl0 is the vacuum of Ti.

In 2D Minkowski space-time the scalar field cj>(x) satisfies the massless Klein-Gordon

equation:

âxW °- (3-8)

Its general solution will be written in the form

4>(x) -~ [ f>+(x+) + cpAx-) ] (3.9)

where 0+(x+) and cfr_(x~) are the left and right moving fields. These will be called ID fields,
in opposition to f>(x) which is a 2D field.

The quantum scalar field tf> is defined as a distribution by

ó[h] f 2d2xcj>(x)h(x), (3.10)
•^ IR

where h is any 2D test function belonging to Sq(\R The ID test functions h± are
constructed from the test function h by integrating on xT:

1 r+°°
h±(x±) -= / dx* h(x). (3.11)

The Fourier transforms of h and h± are related by4

Mfcf) Mk)\k±=0, (3.12)

and this shows that the functions h± belong to the ID test function space S0(R) defined by

So(IR) {À±g5(IR) I À±(0) 0}, (3.13)

if ft G 50(IR2). The ID scalar field distributions are defined by

<t>±[h±] r^dx±ó±(x±)h±(x±), (3.14)
J—oo

where h± G <Sq(IR). From the previous definitions we deduce that the 2D field distribution
(3.10) is equal to the sum of the ID field distributions (3.14):

tj>[h] <j>+[h+] + 4>_[h_]. (3.15)

4The ID Fourier transform is defined by h ±(kT) -A—fa dx± h±(x±) e ,kfx
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The ID Wightman distributions will be defined on 50(IR) x 50(IR) by

/+O0
r+oo

dx± / dx* Aafi*) W0±(x± - x±) h3±(x*)', (3.16)
-oo J — oo

where the ID Wightman functions W^(x±ix±) W^(x^ — i*) are given, up to a constant,
by

1

w.'^(x±-x±) ---\og(x±-x±+iO+). (3.17)

From these definitions and eq. (3.4) we deduce that the 2D Wightman distribution (3.3) is

equal to the sum of the ID Wightman distributions (3.16)

W0{h,xh\) W+[h1+x h'i+] + W0-[h,_ xh;_], (3.18)

which are also given by

/¦oo die
W±[h1±xh2±] Jo 77~ h1±(kT)K2±(kT)', (3.19)

where h\, h2 G <So(IR). These are related to the two-point functions by the equations

(0o,^(x)^(x)tnD) W0(x-x), (3.20)

(«„^(»^(î^n,,) W?(x± - xè), (3.21)

(n0,^±(x±)^(xT)t(]0) 0. (3.22)

from which the fields commutators are computed5:

U(x),4>(x)t\ -^0[(x-x)2]sgn(xo-xo), (3.23)

[ó±(x±), cpz^x^} ^sgnf^-x*), (3.24)

^+(x+), <f>-(x-y] 0. (3.25)

Equations (3.15), (3.18), (3.22) and (3.25) show that the 2D massless scalar field may be

considered as two uncoupled right and left ID fields.

We close this section by defining the notion of particle in one and two dimensions. These
definitions will be useful below. The function h G 5o(IR2) is said to be a 2D particle test

function if

Hk)\ko=_M 0, V*,eR. (3.26)

Similarly, the functions h± G <S0(IR) are said to be ID particle test functions if

l±(k*) 0, VfcT<0. (3.27)

In the 2D Minkowski space-time eq. (3.12) implies that these definitions are equivalent.

5The equality 2B(x2) sgnx0 sgnx4" + sgnx is used to obtain eq. (3.24) from eq. (3.23).
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4 The massless scalar field in curved space-times

In this section the field distribution in curved space-times is introduced and the relationship
between field distributions in different coordinates is considered. The ID field distributions
are defined as in the 2D Minkowski space-time, whereas the ID test functions are defined so

as to take into account the metric. I show that, under specified conditions, the relationship
between the 2D field distributions breaks down into two relationships between ID field
distributions, so that the 2D quantum problem is reduced to two independent ID quantum
problems. The particle and vacuum concepts are discussed for asymptotically Minkowskian
coordinates at the end of this section.

I assume that the coordinates x G IR cover a whole 2D space-time. New coordinates y
are introduced by the transformation

y —-» i(y), y GIR2, (4.1)

and they will cover in general only a part R oi space-time contained in the time-like region.
A

The scalar fields tp(x) and <f>(y) in these coordinates will be called the incoming and outgoing
fields respectively. They are related by

${y) <t>(x(y)), V.VGIR2. (4.2)

The field distributions in both coordinates are defined as follows [12]:

4>[h) d2x y/-g{x) </>(x) h(x). (4.3)
J IK

kf) JB2d2y\J-g(y)ky)f(y), (4.4)

where h. f G 5n(IR2)- These definitions are a generalization of eq. (3.10) to curved space-

times. The determinants g(x) and g(y) of the metric are related by

g(y) >' g(x(y)), Vy G R", (4.5)

where \dy/dx\ is the Jacobian of the transformation (4.1).

Field distributions are considered as geometrical objects whose values do not depend on
the coordinates chosen to express them. The distributions (4.3) and (4.4) are thus related
by6

hf] <t>[f], V/G5o(IR2). (4.6)

6Note that / £ 5o(R2) does not necessarily imply / € 5o(R2). If / 0 50(R2), eq. (4.6) is only valid
formally.
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In the region R, this last equation defines the incoming test function f (x) in terms of the

outgoing test function f(y), and I will assume that f (x) vanishes outside the region R.

Equations (4.2), (4.5) and (4.6) imply that these test functions are related in R by

f(y) f(x(y)), Vy G IR2. (4.7)

Assuming now that the coordinates x are conformai and that the transformation of
coordinates x x(y) is given by

(y\y~) —» (x+(y+),x-(y-)), (y+,y~)e\R2, (4.8)

then the coordinates y are also conformai. The property (4.8) is satisfied for the relativistic
black hole model (see eq. (2.14)). In 2D curved space-times, the massless Klein-Gordon
equation for conformai coordinates is formally identical to the one in 2D Minkowski space-

A
time. Thus the incoming cp(x) and outgoing è(y) fields satisfy respectively eq. (3.8) and

a4
- 0, (4.9)

dy+ dy

whose solutions are given by eq. (3.9) and

r a ai (4.10)(y)
'

$+(y+) A $-(y~
lit L

The relation between the left and right fields is deduced from eq. (4.2) up to a constant:

^(v*) - **(**(»*)), V^GlR. (4.11)

In 2D curved space-times the ID test functions are defined by

1 r+°° /
&*(»*) -== / dx*j-g(x)h(x), (4.12)

y/lit J-oo

f±(y±) 4= f+°°dy*\]-g(y)f(y). (4.13)
yl lit J-oo

These definitions include the determinant of the metric and are a generalization of eq. (3.11).
The ID incoming and outgoing field distributions are defined as in Minkowski space-time and

are given by eq. (3.14) and

/, r + OO

4±\f±] / dy±ó±(y±)f±(y±)- (4.14)

Equation (3.15) is still valid in 2D curved space-times in the x and y coordinates:

t[h] <t>+[h+] A 4>-[h_], (4.15)

$[f] 0+[/+] + <£_[/_]. (4.16)
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The transformations for the ID test functions are deduced from eqs (4.7), (4.12) and (4.13):

f±(y±) |^(y*)/±(**(y*)), y* € R. (4.17)

The metric does not appear explicitly in these transformations although they contain the
dynamics of the problem. They imply that the 2D field transformation (4.6) may be broken
down into two ID left and right field transformations:

£+17+] M/+], L[f-] *-[/-]• (4-18)

A
I must emphasize that the ID field distributions <j>± and cf>± are formally identical with their
Minkowskian counterparts. Equations (4.18) imply that the left and right modes of the fields
are not mixed up by changing coordinates. They are thus dynamically independent.

Note that the definitions (3.26) and (3.27) for 2D and ID particle test functions are not
strictly equivalent in curved space-times in any coordinates (see eq. (4.12) or (4.13)). There

may however be approximate equivalence if the 2D test function is "well localized" ' in a

space-time region M where the metric is (asymptotically) Minkowskian. This shows that it
is difficult to give a precise meaning to the notion of particle in curved space-time and in

particular to make this meaning coincident with that of the Minkowskian field theory.

We note furthermore that the notions of particle are different in the x and y coordinates.
In the ID language, the particles test functions are defined respectively by

Kiik*) 0, if** < 0. (4.19)

/±(p*) 0, ifpT<0. (4.20)

These conditions are incompatible unless the transformation x(y) is the identity, i.e. the
scalar curvature vanishes everywhere. This incompatibility is the key to understanding the
creation of particles in curved space-times.

We assume from now on that the coordinates x and y are (asymptotically) Minkowskian in

past and future space-time regions Mp and Mp respectively (as is the case in the relativistic
black hole model). In consequence, they will be called incoming and outgoing coordinates

respectively. If the test functions h(x) and f(y) are well localized in Mp and Mf, and satisfy
respectively eqs (4.19) and (4.20). then they will respectively describe incoming and outgoing
particles.

The incoming and outgoing vacuums, Sl0 and $>0, will be defined in the ID language by

ó±[h±]iì0 0, (4.21)

£fc[/±]*o 0, (4.22)

7Note that a 2D particle test function cannot in general be strictly localized, since its Fourier transform
does not contain negative contributions.
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where h±(x±) and f±(y±) are arbitrary ID particle test functions (i.e. they satisfy respectively

eqs (4.19) and (4.20)). Furthermore, if the corresponding 2D test functions h(x) and

f(y) are also well localized in Mp and Mp respectively, these equations imply from eqs (4.15)
and (4.16)

tp[h]ü0 « 0, (4.23)

£[/]*. « 0, (4.24)

and the functions h(x) and f(y) are 2D particle test functions (i.e. h(x) satisfies eq. (3.26) in
the incoming coordinates and f(y) satisfies a similar equation in the outgoing coordinates).
We thus conclude that the vacuums fi0 and ^0 are ordinary Minkowskian vacuums. In
particular, the incoming vacuum Q0 is formally equivalent to the vacuum of the preceding
section and consequently eqs (3.20) to (3.22) for the two-point functions are also valid in
curved space-times.

5 One-dimensional scalar field theory

In this section the one dimensional scalar field theories are studied. I show that the commutation

relations of the fields are invariant under any change of coordinates. The Bogoliubov
transformations between the incoming and outgoing field operators are obtained and their
implementability is discussed. Note that, for the relativistic black hole model, the physics
of the left moving field cj>+ is trivial, since the transformation (2.14) between the left coordinates

is the identity. I shall consider from now on only the right moving field cf>- and shall

drop the subscript —.

The scalar product of two test functions is given by (see eq. (3.19))

(/a./i) H ^ Ï2(PÏ !i(p), (5.1)
Jo lp

where fi,f2 G 50(IR). The norm || || is defined by

II/f </,/}• (5-2)

We define furthermore the function spaces

5(R+) {/ eSo(R)| f(p) 0(p)f(p) VpelR}, (5.3)

L2(dfp,\R+) {/ | } (p) 6(p) f (p) VpGlR and ||/||<oo}. (5.4)

Note that

S(R+)"" L2(df.R+). (5.5)
-2p

The set <5>o(R) is the particle test function space and L2(-^, IR+) is the particle wave function
space.
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We recall that the incoming and outgoing test functions are related by (see eq. (4.17))

f(y) ~{y)f(x(y)). VyeR. (.5.6)

It is not clear whether the inverse Fourier transform f(y) and the Fourier transform f (k)
exist if/ G L2(|£,IR+). For simplicity, I will assume in the following that f(y) exists a.e. and

À
is integrable, so that the existence of / (k) is certain. Note that / € L^(dy, IR) implies that
A

f (x) is also integrable. This hypothesis is thus formulated in a way which is invariant under
À

any transformation of coordinates. It also implies that the Fourier transforms / (p) and f (k)
are continuous everywhere and vanish at infinity. The incoming and outgoing momenta will
be denoted by k and p respectively.

The Fourier transforms of the incoming and outgoing wave functions will be related by
the operator U defined by

f(k) / dpU(k,p)f(p), (5.7)

whose kernel U(k,p) is given by

1 r+°°
U(k,p) — / dy e-ikxM e[py. (5.8)

2lt J-oo

For any transformations x x(y), this satisfies the property

U(0.p) 6(p). VpGlR+. (5.9)

A _which implies / (0) / (0) 0 under our assumptions.

The positive and negative momentum components of the outgoing and incoming test

functions / (p) and / (k) are defined as

/» o(p)f(p), Up) 0(p)!(-p),
X À À X (5.10)
/,(p) 0(k)f(k), Up) o(k)f(-k).

The operators A and B will be defined respectively as the positive and negative incoming
momentum contributions of U

(Af)(k) (Uf)p(k), (Bf)(k) (Uf)N(k), (5.11)

and the bilinear operator G by

] f+oo r+oo
G (fix ft) -— / dy dy' h(y) log

47T ./-oo J-oo

x(y) - x(y')
y -y' /2(y')- (5.12)

The logarithm in the integrand of this double integral is well defined since x(y) is always
an increasing function. The scalar product of incoming functions such as (5.11) may be

expressed in terms of the bilinear operator G evaluated for the corresponding outgoing
functions, as shown in the following theorem.
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Theorem 1 If fi,f2 G L2(^-,\R+) are two wave functions such that their inverse Fourier
transforms exist and are integrable, then

(Af2,Afx) G(f,xf2) + (/„£),
(Bf2,Bf,) G(hxf2),

(A'fY,Bf~,) G(f,xf2),
(B'f2*,Af,) G(f,xf2),

id hana hence

AXA B^B + E,

ATB BTA,

(5. 13)

(5. 14)

(5. 15)

(5. 16)

(5. 17)

(5.18)

where E is the identity.

Equation (5.14) is proved in appendix A.l and the others results of this theorem are proved
in a similar way.

We recall that the incoming and outgoing fields are related by (see eq. (4.11))

$(y) cj>(x(y)), V?,GlR. (5.19)

The Wightman function for the incoming fields is given by the equation (see eq. (3.19))

TOO rlU
(no.flAilMal'n.) I 7^h2(k)'h,(k), (5.20)

from which their commutator is deduced9

r+°° dkr i f-roo Ml-

if fti, h2 G So(IR). We have a similar result for the outgoing fields. The equality

r+co dk À À /-+00 dv „
/-co 2km'm /oo Yph[PTh{Pl (5'22)

proved in appendix A.2, implies that the field commutator is invariant under any transformation

of coordinates x x(y)

4>[fl], <P[I2. [ tifi], 4>[fiY } (5-23)

where fi,f2 G 5o(IR). The Wightman function (5.20) is, however, not invariant under any
non-trivial transformation of coordinates.

equations (5.17) and (5.18) were first obtained by R. M. Wald [13].

'Equation (5.21) may also be obtained from the commutator (3.24) using ^ f_00 dk Pj- e~'kl sgnx.
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In the real scalar fields, the incoming and outgoing field operators am,Dut and a]n t are
defined by splitting the positive and negative momentum contributions of the incoming and
outgoing fields:

4>[h] a,n{Kp] + al[hN], (5.24)

$[f] <w[/p] + alt[fN], (5.25)

and they are annihilation and creation operators respectively. By applying the incoming
and outgoing creation operators respectively on the vacuums 0o and $„ (see def. (4.21) and

(4.22)), the Hilbert spaces Tt,n and TLout are constructed. The incoming and outgoing field
operators are related by

aUf] hf] 4>\h a,n[(UÌ)P\ + alKUfU, (5.26)

if / G iSo(IR), and the Bogoliubov transformations are thus given by

<W[/] a,n[Af~] + a\n[Bf),

*Llf] a.nlB'f] A allA'f}.
(5.27)

Since é[h] a,n[h] if h G 5(IR+), we deduce from eq. (5.21) that the field operator
commutators are

[ ^„[Sx], ain[K2y ] (K2,K,), (5.28)

[ a,n[Ki], ain[n2] ] [ am[Ä,]t, o,„[K2]4 ] 0, (5.29)

where hx,h2 G 5(IR+). From the invariance of the field commutator (5.23), it is clear that
the field operator commutators are also invariant:

[ Oin[Si], o,-„[Sj]t j [ aout[hf\, aout\h2\i ] (5.30)

[ a,n\Hi], a,n[h2] ] [ aout[Äi], a0Uj[Ä2] J (5.31)

where hi, ti2 G 5(IR+). Note that eqs (5.28) to (5.31) also imply the fundamental relations
(5.17) and (5.18).

The field operator modes aout(p) and am(k) are defined by

f°° do r°° dk
<W[7] jo 7^aout(p)f(p), a,n[h] Jo —a,n(k)h(k), (5.32)

where h,f Ç 5(1R+). Expansions (5.24) and (5.25) are rewritten as

6(x) -= / - [ain(k)e-ikxAal(k)elkx\, (5.33)
v27r Jo 2k l '

hy) 4= T? Uout(p)e-mAa\ut(p)e^). (5.34)
V27r Jo 2p l J
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These are representations of the fields 4>(x) and tj>(y) in the Hilbert spaces Tt,n and Ttout
A

respectively. The representation of the outgoing field é(y) in the incoming Hilbert space
Tt,n is deduced from eqs (5.19) and (5.33):

hv) -^ /f § [ *»(*) z-',kx{y) + *LW eiMy) ] • (5-35)

The operator V is defined by the kernel

V(k,p) -!- dx e-'kx évv{x), (5.36)
2it Ji

where I {x(y) | y G IR}. The operators U and V satisfy the properties

V(k,p) jU(k,p), V/c, pG IR, (5.37)
fc

V]U E, (5.38)

U Vf E <=> I IR, (5.39)

where /J is the identity operator. Thus U is non-singular if and only if I IR, and if I IR,

we have U~l V'.

Using the kernel (5.36), the Bogoliubov transformations (5.27) may be rewritten in the
form

Equation (5.39) implies that the Bogoliubov transformations (5.27) and (5.40) are invertible
if and only if I IR.

Assuming now that / R, we split the outgoing positive and negative momentum
contributions of V^h, defining the operators C and D by

(C~h)(p) (V<K)p(p), (DK)(p) (l/t£)„(p). (5.41)

The inverse of the Bogoliubov transformation (5.27) is then given by

a,n[ìi} aout[Ch\ + alut[Dh~],

aL[h} aout[D'h] + a\ut[C"h],

if K G 5(IR+), or by

(5.42)

a,n(k) \ r™ I U(-k,-p) -U(-k,p)\ (aout(p)\ (,.^al(k) Jo dp[-U(k,-p) U(k,p) [aUp))- (5 3)
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The previous results are easily generalized to the complex scalar field, for which the field
operators a,nout and b,nout are defined by

0[h] a,n[Kp} + bln[KN}, (5.44)

hf] <w[/p] + blt[fN], (5-45)

~ ~ A
if h,f G 5o(IR). The representation of the complex scalar field f>(y) in the Hilbert space
Hin is given by

dk
0(2/)

and the relations

-j=ja a±[ain(k)e-^'Ab\n(k)^x(v)], (5-46)

(5.47)
<w[/] ain[Af] + bl[Bf],

bUf] a,n{B'f] + bUA'f},

where / G <5(IR+), are the associated Bogoliubov transformations.

The outgoing test functions fPo of mode p0 are defined formally as

fPo(p) 2p8(p-p0)- (5.48)

This definition is correct only if p0 > 0. The null mode /Po o is defined as the limit n —> oo
of the series [9]

e\p) T^TT, (5.49)
(n,tin)

where n(p) e~p and hn(p) \(np) h(p), with the function x defined by

0, if p < 0,
0 < XÌp) < 1, Vp G IR, and x(p) {

.r ^ (5-50)
1, it p > 1.

The series (5.49) satisfies

nlim(/0(n),/) /(0), if/~G5(IR), (5.51)

liin||/0,n,|| 0. (5.52)

The generalized functions fPo (p0 > 0) are not normalizable and thus they are not
associated to a state in the Hilbert space H.out.

Let {/i}r=i C <S(IR+) be a set of normalized particle test functions. The n-particle test

function /'"' is defined as

/(n) Chxf2x...xfn, (5.53)
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where x is the tensor product and C a constant. A product of fields is also defined,

hf{n)i Chh] hh] - hfn], (5.54)

and the state denoted ^ ,<„> is given in terms of this product by

9 fin) hf(n)i1Vo- (5.55)

The state 9 f<„) is normalized by imposing the equation

(*,<„>,¥,(„)) (®.,^[/(n)]^[/(n)]t*o) 1. (5-56)

which fixes the constant C.

6 Observables in the outgoing coordinates

In this section mean values of observables, built into the outgoing coordinates, are computed
in the incoming vacuum. These quantities describe the properties of the outgoing particles
created by the space-time curvature. The two-point function, energy-momentum tensor,
current for the complex scalar field and the mean number of spontaneously created particles
for a given outgoing test function are considered. The total mean number of particles is

computed and the implementability of U is also considered.

The outgoing two-point function W0(y,y') is defined as the mean value of outgoing fields
in the incoming vacuum:

W0(y,y') (noJ(y)hy'ytl0). (6.1)

This is given from eq. (3.17) by

W0(y,y') W0(x(y).x(y')) -£ log [x(y') - x(y) + Ì0+ ]. (6.2)

The energy-momentum observables in the incoming and outgoing coordinates are given
by the products of derivatives of the field at the same point:

0(x) dxcj>(xy dxct>(x), (6.3)

ê(y) dj(y)* dy$(y). (6.4)

Their mean value in a given state must thus be regularized. This regularization may be

carried out in a covariant way along a geodesic by subtracting the mean value in Minkowski
space-time [14], or by ordering the fields normally following a covariant procedure [15]. These

two methods must give identical results and their application is made simpler in (asymptotically)

flat space-time regions10. The regularized mean value of Q(y) in the incoming vacuum

10The normal order regularization was applied for the Dirac field in asymptotically flat space-time regions
by Th. Gallay and G. Wanders [16].
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will be computed here in the outgoing (asymptotically) flat space-time region Mf. This is
called the energy-momentum tensor and will be denoted by T0(y).

The observables 0.(x) and Qe(y) are defined by

ec(x) -[dxep(xy dx<p(x + e) A dxtj>(x A e)<dx<j>(x)}, (6.5)

1 r a
&Ay) dyé(yy dvé(y Ae) + dy4>(y A £? dy<f>(y) j (6.6)

The energy-momentum tensor T0(y) regularized by subtraction is given by the limit

t(y) iim(ne,fê.(y)-e,(*(y))ln,), (6.7)
£—.0 L J

which is well defined. It is computed using the representation (5.35) or (5.46) of the outgoing
field in the incoming Hilbert space ri,n and is given by (see appendix A.3)

Uy) -^SvWy)]. f6-8)

where Sj,[x(?/)] is the Schwartzian derivative of x(y) with respect to y u:

The energy-momentum tensor may also be regularized normally as follows

t(y) (ii0,:ê(y):mt il0), (6.10)

where the outgoing normal ordering has to be carried out before computing the incoming

vacuum mean value. This definition also implies the result (6.8) but in this case the
computation is laborious (see appendix A.4).

From eq. (6.8) the transformation law for the energy-momentum tensor is deduced under
the change of coordinates y y(z)

T0(y)—>T0(z) y'(z)2f0(y(z))--^-S:[y(z)}, (6.11)
Z47T

where T0(y) and T0(z) are the regularized mean values of the energy-momentum observables
in the incoming vacuum in the coordinates y and z respectively.

For the complex scalar field the incoming and outgoing current observables are given by

T(x) i<p(x)*dx<l>(x), (6.12)

T(y) ihyVdyhv), (6.13)

"We have also Sy[x] ^r - § (^Y ~2 ^ dv~7~! dv logx' " \ (ô" ioSx')2-
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and the observables T£(x) and Ae(y) are defined as

Tf(x) i[<t>(x + e)idxct>(x)-dxcp(x)'.ci>(x + £)},

T.(») i 4>(y A £)1 dy4>(y) - dy<f>(yy .cj>(y + e)

The outgoing current J0(y) is defined in the subtraction regularization scheme as

J0(y) \\m(no,[Â€(y)-re(x(y))} Ù0).

This limit is well defined and is computed in appendix A.512:

Ûv) o.

(6.14)

(6.15)

(6.16)

(6.17)

The outgoing current vanishes for any transformation of coordinates x x(y), i.e. particles
and antiparticles are always created locally in pairs.

The outgoing current J0(y) in the normal order regularization scheme is defined by the
equation

My) (fio, : A(y) :out Q0),

which also implies the result (6.17) (see appendix A.6).

(6.18)

In the real scalar fields, the mean number of spontaneously created particles for a normalized

particle test function / G >S(IR+) is defined by

No[f] (ft0,aout[/]+<w[/]no),

and using the Bogoliubov transformations (5.27) this implies

Nolfì (Sl0,ain[BT]al[Bf]iio).

This quantity is thus expressed in terms of the Fourier transform / (p) by

No[f] ||B/II2,

(6.19)

(6.20)

(6.21)

showing that the mean number N0[f] depends only on the negative momentum contributions
A

of the incoming test function f(x). N0[f] is also expressed directly in terms of the outgoing
test function f(y) using eq. (5.14)

No[f]
1 f~^°° r+oo

— / dy dy' f(y) log
lit J—oo J-oo

t(y)- x(y')

y-y' f(y') (6.22)

It may be checked that the l.h.s. of eq. (6.22) is always positive if f(y) is a particle test
function. The results (6.21) and (6.22) are extended to any wavefunction / G i.2(^2, IR+) if
f(y) exists a.e. and is integrable.

2The same result was obtained for the Dirac field [16].
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The mean number of spontaneously created particles in the mode fp, given by eqs (5.48)
and (5.49), is defined formally as

/"OO flh
No[fP] 4p2yo -\B(k,p)\2, (6.23)

in agreement with eq. (6.21). The total mean number Nl"1 of spontaneously created particles
is defined as the sum of the contributions (6.23) for each mode /p,

- r°° dv - r00 r00 dk
AT I £W\ I Wo Tk\B(k,P)\2, (6.24)

which can also be expressed as (see appendix A.7)13

I f + oo r+oo I

NT 7-7 / dy dy'P—
4 It J-oo J-oo y-y

x'(y)
x(y)-x(y') y-y' (6.25)

The operator U is said to be unitarily implementable if there exists a unitary operator
M : Tt,n —> Ttout which satisfies

4>{f] U^lfìU, V/G50(IR). (6.26)

A
If the operator U exists, the fields cf> and cp are equivalent representations of the commutator
(5.21), in the Hilbert spaces TL,n and Ttout respectively, and the incoming and outgoing
vacuums are related by

<Ü0 Uû0. (6.27)

It has been proved that the operator U is unitarily implementable if and only if Nl0ot is

finite [17].

The definition (6.19) of the mean number of spontaneously created particles is generalized
to an ïj-particle normalized test function /'"' by the equation

No{f{n)] (n0,AU/W]n0), (6.28)

where

AW/(n)l hf{n)Y hf(n)\- (6-29)

Assuming that the one-particle test functions /, are orthonormalized

{fi, fi) ét], (6.30)

eq. (6.28) gives

/Vou([/(n)] Nout[fi)N<mt[f2]...Nout[fn], (6.31)

3Note that the kernel in the double integral (6.25) is not symmetric as in the case of the Dirac field [16].
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where the set of operators Nout[f,] satisfies

[ Nout[fi], Nout [/,-]] 0, i,i=l,2,...,n, (6.32)

and where /'"' is defined by eqs (5.53) and (5.56). Under the assumption (6.30) it is possible
to give a compact formula for the mean number N0[pn>] using the definitions

f/'"' X /(">*)s (I/I,- •,!&„) 75^ E /l(yr(l))-/n(yr(„))/l(yT(n+l))*.../„(yr(2n))* (6.33)
{in). reJ,2n

and Gn G x G x x G, where G is defined by eq. (5.12). This formula is displayed in
the following theorem, proved in appendix A.8.

Theorem 2 // {/j/JL, C L2(^-,\R+) is an orthonormal set of functions such that f, exists

and is integrable (i 1,2,...,n), then

A0[fln)] C2f^G"[(/<">x/<"r)s], (6.34)

where /'"' is defined by eqs (5.53) and (5.56). Equation (6.34) contains at most j^A; distinct
terms.

7 Scalar field theory in a thermal bath

In this section the one-dimensional massless scalar field is considered in a thermal bath of

temperature ß~l for null chemical potential. I will restrict the scalar field to the finite interval
[— L,L] and impose periodic boundary conditions before taking the "thermodynamic" limit
L —> oo. This procedure is necessary to define thermal mean values correctly. The space-time
and energy-momentum variables will be denoted here by r and u>.

The real scalar field <pL(r) in the interval [-L, L] is given by

where r G [—L, L], u>„ nw/L, a„ G IR and an G C if n G IN. It is quantized by imposing the
field operator commutators

[an, <4] 2wncVm, [an, am] 0, (7.2)

where n,m > 1. These act on a Hilbert space TLL whose vacuum will be denoted by $0.
Equations (7.1) and (7.2) show that the field commutator is given by14

WLir),<PL(r')] jsgn(r'-r) (l-ll^llV (7.3)

14Using the formula /3n=l n s'n(an) sgn(a) —4— (lal < 2x), with a ir(r' - r)/L [18].
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where r, r' G \—L, L\.

The correspondence between field theories for finite and infinite intervals is given by

(7.4)

In the thermodynamic limit the null momentum mode a0 disappears in eq. (7.1) and the
commutator (7.3) is then formally equal to eq. (3.24).

The thermal mean value of a given observable A is defined by the limit

Ä:, Wj, ^L < » Reo, Tt, tp,

lo„, n G IN <—? to g ir;,
J-1 t>n,m < n 6(lo — to'),

yftan < > y/La(u)).

TrL e-™L A
(Afßh lim L\ X (7.5)

where TrL is the trace on the Hilbert space TLL and HL is the free Hamiltonian given by

oo

Hi. J2^alan. (7.6)
n=l

The partition function ZL TrL e~0Hi- is IR divergent in the thermodynamic limit. Note

that the thermal mean value (7.5) is generally well defined although this limit will not
necessarily converge to a finite value for any observable A.

From def. (7.5), thermal mean values of field operators are given by

(a\tA)a(J)%k -^—h(to-J), (7.7)
e — i

(a(w)oV)Ç* Y^z^-^'), (7.8)

(a(u)a(u/)fth (a\u)a*(u/)fßk 0. (7.9)

where lo,lo' > 0. Equation (7.7) is proved in appendix A.9. We also have

(ot(«w)...ot(wI)o(wi)...aK)Ç*

Ja 2un y c. _ i y U,.,.-,J. A (7-10)
t^zzztx ' ' ' ^rt i E *(wi - ^(d) •¦• *K - w;(n)),

where lo,,lo[ > 0, i l,2,...,n (see appendix A.10). More generally, the Wick theorem is

satisfied for thermal mean values of field operators.

The thermal two-point function is defined by

Wjh(r,r') (4>(r)cp(r'yfeh, (7.11)
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and satisfies the properties

Wjh(r,r') Wjh(r,r' + mß), Vn G 2,

ReWjk(r,r') £ Re W*h(r + mß,r'),
n= —oo

Vt,t' e IR (see appendix A.ll). Using the formula [18, (89.10.4)

~ (r'-r + m/?)2(r'-r-m/?)2(r-r)n ^ —5. sinh
it1

we obtain from eqs (3.17) and (7.13)

ReWP(r,r') -i-log
47T

-smh[-|r-r

Jfr'-r,

+ C,

(7.12)

(7.13)

(7.14)

(7.15)

where C is an infinite constant, hence the thermal mean value (7.11) is infinite

The thermal two-point function Wlh(r,r') will thus be redefined as the kernel of a

distribution on 50(IR) x 50(IR) by

wpifix/;} M/,M/2r>™.

From eqs (7.1) and (7.7) to (7.9) we obtain

wp IflXfSl I+°° dw /2(w)7i(«)
%> l-e-0" '

(7.16)

(7.17)

where fi,f2 G 50(IR). The following theorem, proved in appendix A.12, gives the correct
expression for the kernel Wlh (r. A).

Theorem 3 Between kernels of distributions on <S0(IR) x iSo(IR),

W'h(T,r')
1

1 ¦ y,log < — smn
47T in fl [r'-r + Ì0+) (7.18)

The periodicity property (7.12) is satisfied by (7.18) up to an irrelevant constant.

The thermal energy-momentum tensor Tjh(r) is defined by the limit

Tjh(r) Um[<0,(r))™-($o,0e(r)$o)],

where the observable Q€(r) is given by

QAt) - [dT<p(ry dTf(r +e) + dr<p(TA e)1 dMr)]

(7.19)

(7.20)
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Using eq. (7.18) we obtain

<e'W -#rfT^) -^ + T^ + ^2). (7.21)

from which we deduce that Tjh(r) depends only on ß:

Tjh(r) Tjk ^, VrGlR. (7.22)

The thermal current jjh(r) associated with the complex scalar field is defined by

Jjh(r) lm[(T,(T)Çk-(*e,T.(T)*0)], (7.23)

where the observable T£(r) is given by

T,(t) ?[v3(r + e)toT^(r)-ÖT^(r)t.V>(r + £)]. (7.24)

The limit (7.23) is well defined and is given by

Jj\r) 0, (7.25)

so there is no net local current.

In the real scalar fields, the thermal mean value of the number of particles for a normalized
particle test function / G <S(IR+ is defined by

Njh[f] <<*[/]+a[/]Ç\ (7-26)

and from eq. (7.7) we obtain

NPlf] rpJMl. (7.27)0 u J Jo 2lo eß" -\ V ;

This result is extended to any wave function / G L2(^,!R+) if f(r) exists a.e. and is

integrable.

We define furthermore the distribution GT0h on L2(^,IR+) x L2(^,IR+) by

w rz^gêp- e-»
The following theorem gives an expression for the thermal mean value of the number of
particles for an n-particle normalized test function /'"':

Njh[fln)] (hf{n)\'hfin)\)Z,- (7-29)

It is easily proved using eq. (7.10).
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Theorem 4 If {f,}"=l C L2(j^,IR+) is an orthonormal set of functions such that f, exists
and is integrable (i 1,2, ...,n), then

NT0h[f(n)] C2 £ G™(/, x /;(1)) Gf(f2 x /;(2)) Gf(fn x /;(n)), (7.30)

where /'"' is defined as in eqs (5.53) and (5.56).

A state $ G Ti is said to be a thermal state of temperature /?_1 if it satisfies the equation

[10]

(1>,Ar B«) ($,BAT+i/?$), (7.31)

where A and B are two operators and where we have defined

AT e'T" Ae~'T", (7.32)

where H is the free Hamiltonian. Equation (7.31) is known as the KMS condition. It can
also be written in the equivalent form [12]

] f+OO /-+00 gi^T
(t>,ABt>) — / dw dr ¦

($,[AT,B}$). (7.33)
lit J-oo J-oo 1 — e H

In the particular case where A <p(r) and B tp(r'), we obtain

1 r+,x dw eiw(T'~T)
(••rtrMr')») ^L^Z-Z^ (7-34)

from the commutator (7.3). The integral in the r.h.s. is IR divergent and is formally equal
to the kernel of Wßh[f\ x f2\ (see eq. (7.17)). The KMS condition is thus restated as an
equality between kernels of distributions on iSo(IR) x >So(R) in the form

(«.rtrMr')*) Wjh(r,r'), (7.35)

where Wjh(r, r') is given by eq. (7.18). If this last equation is satisfied on a interval I for a

given state $, Vr,r' G I, we shall say that $ is a thermal state on this interval.

8 Spontaneous creation of particles

So far the massless scalar field has been studied in 2D curved space-times. In this section
the results obtained previously are applied to the relativistic black hole model, for which the
transformation of coordinates x x(y) is given by (2.14)

x(y) A-e~My, VyGlR. (8.1)
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The kernel U(k.p), defined by eq. (5.8), can be explicitly computed for this model and
is given by (see appendix A. 13)

U(k,p)
;-i*Ae-in(£)ei£log|*|

y/2i~M~
6(k) 6(-k)

.\Jp(l-e-2^) Jp^o-l)
Vfc.p / 0, where fi(p) Arg[f(ip)]. Note that this kernel satisfies the property

\U(k,p)\ sgn(k)irp U(-k,p)\ A)

The Bogoliubov transformation (5.40) is obtained from eq. (8.2) and is given by

a0ut(p)
IMp -,kA ,„(£) dk

e ""- e -\ u) \ -

2it Jo k
c'ft'-s* a,n(k)

A
«!„(*)

\J\ - e_Mp \feMf - 1

(8.4)

where p > 0. The kernel (8.2) and the Bogoliubov transformation (8.4) are not invertible
(see discussion following eq. (5.39)).

Equations (6.23) and (8.2) show that the mean number of spontaneously created particles
for the mode /p (5.48) is IR and UV divergent in the incoming momentum fc:

*W » A^lf dA

2k
.5)

if p > 0. This result is also true for p 0 in which case /0 is given by def. (5.49). The total
mean number of spontaneously created particles is moreover IR divergent in the outgoing
momentum p (see eq. (6.24))

NT oo, (8.6)

and the operator U is therefore not implementable (see discussion after eq. (6.27)).

In the following, the mean values of outgoing observables in the incoming vacuum are
compared with their corresponding thermal mean values in the Hilbert space Tlout, given by
(see eq. (7.5))

(Af"
Tr \e-ßHL.„,A]

Tr -0HL.<
A)

This enables us to establish the thermal properties of the radiation emitted, and in particular
to determine its temperature.

The outgoing two-point function (6.1) is given for the transformation (8.1) by

W0(y,y') ¦—\og{e-M»-e-Mn' + iO+
Ait v
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Writing the thermal two-point function (7.18) in the form

In It, \
(8.9)WT0hout(y,y') -7^(// + ?/')-^log 2-

we deduce that the two-point functions (8.8) and (8.9) are equivalent everywhere as kernels
of distributions on <S0(IR) x <Sq(R), if and only if ß tt:

W0(y,y') Wlh.(y,y'), Vy.y'eR. (8.10)

We conclude from this last equation that the incoming vacuum Q0 is a thermal state of

temperature -^ in the outgoing coordinates on IR.

The energy-momentum tensor is computed from eq. (6.8) and is given by

t(y) ^, VyGlR; (8.11)

hence we deduce from eq. (7.22) that it is thermal

fo(y) Tl\ut, Vi/GIR, (8.12)

and that the associated temperature is also given by r^ for all y G R.

We consider now the mean number of spontaneously created particles for a given normalized

particle function /. If / is a Schwartz function, eq. (6.22) shows that N0[f] is always
finite for the transformation (8.1):

N0[f] < oo, V/G5(IR+). (8.13)

The mean number of particles N0[f] may be explicitly computed from eq. (6.21) and (8.2)
and is given by (see appendix A.14)

m=rdi^-- (8.14)
Jo lp e~Mp — 1

This result shows that N0[f) may also be infinite. For example, defining the test functions
fa€ L2(|,IR+)by

faip) CQe(p)pae-"\ a>0, (8.15)

where C0 is a normalization constant, we have the equivalence

N.[fa] oo "^ a<l/2. (8.16)

If ol < 1/2, N0[fa] is IR divergent in the outgoing momentum p.

Comparing eq. (8.14) with the thermal expression (7.27), we deduce that the mean number

of spontaneously created particles is thermal

No[f] Nik[f\, (8.17)
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+ yz

t _ ..+x- y
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Figure 2: The relativistic black hole and its thermal radiation.

and that the associated temperature is also given by ¥-. This last result is also true for a
normalized n-particle test function /'"'. This can easily be proved (see appendix A.15) in
the special case for which the functions /, are orthonormalized, as stated in the following
theorem.

^2p'Theorem 5 //{/,}['=i C L2(t^,IR+) is a set of normalized test functions such that f, exists

(8.18)

and is integrable (i 1, 2,..., n), then

#,[/<»>] Af,ouJ/<">],

where pn> is defined by eqs (5.53) and (5.56).

9 Conclusions

This new space-time model, based on the "R T" relativistic theory, describes the formation
of a black hole whose semi-classical approach is straightforward. This black hole emits an
infinity of massless particles in each outgoing momentum mode. The emission is thermal
in the sense that mean values in the incoming vacuum of observables constructed in the
outgoing coordinates are equal to their thermal averages:

(ft., aü0) (K (9.1)
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Immediately after the formation of the black hole this result is valid everywhere, and not only
near the horizon (see figure 2). Equation (9.1) shows that the temperature of the radiation
is given by

M
J radiation 7, \A'lit

and it is proportional to the relative amplitude of the localized curvature (2.8). The
radiation emitted by the black hole is thus described by an outgoing density matrix which is

thermal.
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A Appendices

A
If / is an integrable function, the primitives F(y) and F(x) are defined as

F(y) f dy'f(y'), F(x) f dx'f(x'). (A.l)
J—oo Jx(—oo)

They are related by

F(x(y)) F(y), Vy G IR, (A.2)

and satisfy

P(p) \pf~(p), F(k) ikf(k), (A.3)

F(-oo) F(+oo) F(x(-oo)) F(x(+oo)) 0, (A.4)

if/~(0) 0.

A.l Proof of eq. (5.14)

Definitions (A.l) show that

A

(Bf2.Bh) -i fdkh-k-yhi-k) it //*A(*)7zd*V-s + M+'(A^

where I { x(y) \ y G IR }. Integrating by parts we obtain

A

1 [dx' ; Fl{X'\n+ -^ r°° dy' h(y')\og\x(y')-x(y)\--Fl(x). (A.6)
47T Ji X - X + l0+ 47T J-oo 4
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The transformations (5.6) and (A.2) imply

; r A A ; I-+00 /.oo Ar,

-\ \dxh(x)'Fi{x) -\ j^dyfAyYFAy) -\ jf 7~h(p)'h(p), (A.7)

and from eqs (A.5) to (A.7)

r+oo /*+oo

Bf2,Bf) -^ [ °°dy[ C°dy'fi(y')\og\x(y')-x(y)\f2(yy
J—oo J—oo

AfrAM-fM.2)>

Restricting eq. (A.8) to the identity transformation x(y) y, we obtain

dp r,_sn r,__^
1 f+co !'+¦¦¦

2p~-

and hence the result (5.14) from eq. (A.8).

(A.8)

r°° dv ~ 1 /'+00 r+o°
/ TTMpYfi(p) -TT dV dy'My')iog\y'-y\ f2(y)', (A.9)
Jo Zp lit J-oo J-oo

A.2 Proof of eq. (5.22)

The definitions (A.l) and transformations (5.6) and (A.2) show that

/+°°
dk À À • r+oo A À ; r+oo A A

777 f2(k)'fi(k) h / dkf2(k)'Fi(k) k / dxf2(xYFi(x)
-oo £K J—oo J — oo

/+00
/*+00 rlrt

x
dyMy)'Fi(y) J_^ ^f2(p)' /,(p).

A.3 First proof of eq. (6.8)

The energy-momentum tensor is computed here from definition (6.7). From the field repre-
A

sentation (5.35) or (5.46) of the field è(y) in the Hilbert space TL,n we deduce

(no,dj(yydj(y + e)no)
x'(y)x'(y + £> r<ttfce'W*)-*(y)l, (A.10)

47T Jo

The formula

fOO 1

/ dkkeikx —r,Jo (x + i0+)2

and eq. (A.10) show that

T t 1
1

r / x'(y-t£)x'(y) 1

IJ» hm < ^ r > (A.12)i* ^°\{x(y + £)-x(y)}2 e2 j
This limit is well defined and by expanding at e 0 we obtain (6.8).

A.ll)
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A.4 Second proof of eq. (6.8)

The energy-momentum tensor is computed here from definition (6.10) and for the real scalar
field. Ordering normally the field operators and using the equations

TOO ({fc
(fl0.aout(p)aûut(p')^o) Ipp J —A(k,p)B(k,p'), (A.13)

roo dk
(Q0,amt(Pyamt(p')n0) 4pp' / — B(k,p)- B(k.p'), (A.14)

Jo Ik

deduced from the Bogoliubov transformations (5.27), and then integrating on the momentum
variables, we obtain

~ 1 r+oo r+oo i

(n,,:©^):^^) -—3/ dy' dy"—— —-——, x (A.15)
loir J-00 J-00 [x(y) — x(y) — iO*\

1 1 2

(y -y' + i0+)(y - y" + Ì0+) (y-y' - i0+)(y - y" - Ì0+) (y-y'A i0+)(y - y" - iO+)J
'

Using15

Viw ^=FÌX%), T-^TTTJ P-h±^S'(x), (A.16)

we deduce the result

Ai ^
1 /+" / ' /"+0° a » xt '\*t >a/ Ay') Ay") j 1

,A 17s

which again gives the limit (A.12).

A.5 First proof of eq. (6.17)

The outgoing current is computed from def. (6.16). From the field representation (5.46)
A

of the field <j>(y) in the Hilbert space TL,n we deduce

(Sì0J(y + e?dy$(y)Sì0) j- X'[y)
(A.18)

47T x(y + e) — x(y) — i0+

and

(Q0,re(y)ü0) (Çïo,TZe(x(y))U0) 0, (A.19)

from which eq. (6.17) follows.

d"
5 We have denned PÀn ['f1"'', lim —— log(x2 + e

1 t\m 11 E_o dx
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A.6 Second proof of eq. (6.17)

The outgoing current is computed from def. (6.18). Using analogous relations to (A. 13)
and (A.14) for the complex scalar field, and the equality

/+00
/JI.

Ti'(k.p)u(k,p'y -b(p-p'),
-oo fc p

deduced from eq. (5.22), we obtain again eq. (6.17).

(A.20)

A.7 Proof of eq. (6.25)

We follow here ref. [16]. Equations (6.21) and (6.22) imply

og
x(y)-x(y')

y-y
Jroo

(If. /--t-oo r+oo' —B(k,p)B(k,p')' -—s dy dy'e'oy,
0 2k tilt J-co J-oo

Integrating by parts, we deduce from eqs (6.24) and (A.21)

UM _J_ f+co /+°° i [ Ay) L_
lit2 loo ay J-oo y y-y'A Ì0+ [ x(y) - x(y') y - y'

The expression in the square brackets is well defined in the limit y' —> y:

Ay) i
n
•-+V [ x(y) - x(y') y-y'

dy log \jx\l

The double-integral (A.22) contains the imaginary contribution Ì7T b(y-y') whose rej
integral vanishes,

log \Jx'(y) 0.

" (A.21)

(A.22)

(A.23)

;ularized

(A.24)

where e > 0. Equation (A.22) then implies the result (6.25).

A.8 Proof of eq. (6.34)

By definition

au/M] (ii0,hfnY...$[f2YhfiYhh]hf2]-hfn]n0).

Defining

/,, i 1,2, ...,n,
/,

f"-n, i n + \,n + 2,...,2n,

(A.25)

(A.26)



Vendrell 631

and assuming (f,,fj) Sij, we deduce from theorem 1 and for the real scalar field:

(floM)$[fj]n,) G(fiXfj), i,j l,2,...,2n. (A.27)

Using Wick's theorem, we obtain from eqs (A.25) and (A.27) the result

N,
C

'°[f{n)] rd¥ £ G(frm*fr(A) •¦•G(/,(M'<W. (A.28)
rev-.

which is equivalent to eq. (6.34).

A.9 Proof of eq. (7.7)

I follow here ref. [10]. The physical system is restricted to the interval [—L, L\. The partition
function ZL is given by

Y exP
Tl] ,Tl2,...=0

-3^2nkwk Sr ,-0"k ' (A.29)

and is IR divergent in the limit L —> oo. We have furthermore

TrL f e~pIfL a]aj Y oxp
n, ,U2,...=0

2n,- cj,- SijßY^nktük
«.=i

-ZL (1 - e-»«) d £ c-*™ 26,, ZL -^- 6,,r
H n,=0

'

Equations (A.29) and (A.30) imply the result (7.7) in the thermodynamic limit.

(A.30)

A.10 Proof of eq. (7.10)

We assume for simplicity that n 2. Similar computations to those of appendix A.9 lead
to the result

Z-lTlL{e-ßHLatat.aka['
4uj, Wj

e0". _i)7e**j_i' (*.V *,-,* +*,-,**,•,»), (A.31)

which is also valid in the particular case i j k I. In the thermodynamic limit,
eq. (7.10) is then deduced for n 2. Note that a hypothetical supplementary term like 6ijic,l
in eq. (A.31) could not survive in the thermodynamic limit.

A.ll Proof of eqs (7.12) and (7.13)

Equation (7.12) is deduced from def. (7.5) using the cyclic property of the trace. To prove
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eq. (7.13) the physical system is restricted to the interval [—L,L\, for which the thermal
two-point function (7.11) will be denoted by Wjfl(t,t'). Equations (7.1) and (7.2) show that

1 A 1KIM ttE
pÌu/,(t-t') ìu>,(t-'-t)

ew.
+fi-H _ 1 T 1 _ e~ß-»2Lfr{ïw,

where we have used the discretized version of eqs (7.7) to (7.9). Noting that

1

1 - c"*" 5Ze-*-,

we obtain

wjil,,) ±|J- y^ eiu/, (T-T'+inß) _|_ y^ e-iu/, (t-t'- in/3)

(A.32)

(A.33)

(A.34)

from which we deduce
+00

ReWjhL(r,r') £ Re W™L (r + mß, r').
n=—oo

We obtain the result (7.13) by taking the thermodynamic limit of this last equation.

(A.35)

A.12 Proof of eq. (7.18)

We define the primitives of/, G <S0(R) as F;(t) ft^dt' f,(t'),i 1,2. Integrating eq. (7.17)
twice by parts we obtain

| r+oo r+oo r+oo
w,

r+oo r+oo r+oo
7h[fixf2] r dr dr'Fx(r)F2(r'Y dwe^'^-

47T J-oo J-oo J-oo 1

We interpret r' as r' + iO+ to regularize this integral. Using the formulae [19]

2

-0U

r, f°° 1 r / / \ 1 w 1
2 / da) cos \w(t — r)\ —5 7—, r? — 1 „ 1

io l V n eB" - 1 (r'-r)2 V/9// sinh2 [/3 (A - r)/it ]

/+00
w roo

du; sin [cj (t' — r) ] — / dw sin [cj (t' — r)]w,
.00

l 1 — e ^" Jo

we deduce from eq. (A.36)

wp<[fi x /2] r- / °°dr / °°dr' ^(r) F*(r')* r*" e,u"T'"T) w
47T J-00 J-00 JO

/•+00 r+oo
+ — / dr / dr'Fi(T)F2(T')*9TaT-^ log(r'-T)- log sinh

47T J-oo J-00 [

Performing again a double integration by parts we obtain

1 r +oo r+ oo

Wjh[fi x /2I -T" / dT / dT> MT) f^T''' l0gsinh
47T J — oo J — oo

Jc-')

/9 (r'-r)

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

The kernel VFj^r, t') is contained in this double integral. The arbitrary constant is chosen

so as to obtain the expression (3.17) for the two-point function in the limit ß —? 00.
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A.13 Proof of eq. (8.2)

Definition (5.36) and eq. (8.1) imply that the kernel of V is given by

V(k,p) e~ikA Vjk,-
M

where we have defined
1 r°°

Vo(k,p) ^-Tdxelit Jo
kï ~-ip

Changing to the variable s \k\ x we obtain

J 1_
2Ì Ifcl1-'"UKp) 7^ 777^ [0(k) J (-P) A 6(-k) J (p)'

(A.41)

(A.42)

(A.43)

(A.44)

where we have defined

J(p) H ds e]s 5ip.
Jo

This integral is computed by deforming the contour along IR+ to the imaginary positive axis:

J(p) -p e-2" T(ïp). (A.45)

Since

p sinfi(7rp)

we obtain

jm >><'Qir)Jpjß^Ty {AA7)

where we have defined Q(p) Arg[E(ip)]. Equations (A.43) and (A.47) show that

9(k) 0(-k)p e-in(p)eipiog|*|
v°{Kp) \7Ë—flì— Jp(l-e-2"") sJp(e2*'-\)

(A.48)

from which eq. (8.2) is deduced using eqs (5.37) and (A.41).

A.14 Proof of eq. (8.14)

Equation (6.21) is rewritten in the form

roo roo roo //fc
N0[f] /o dpf~(p)jo dp'f(p'Yjo -U(-k,P)U(-k,p'y. (A.49)

Using the expression (8.2) for the kernel of U and the formula

r^e^ioSk 2itM6(p-p'), (A.50)
Jo fc

eq. (8.14) is easily obtained from eq. (A.49).
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A.15 Proof of eq. (8.18)

Using theorem 1 and eq. (8.2) we obtain

G(fiXfj) (A'f~;,Bft) 0, (A.51)

G(/,x//) (B!hBfi) rd^fWlM, (A.52)
Jo Zp e ~mv — 1

where i,j l,2,...,n. Expression (A.51) vanishes because of the presence in its kernel of
the term S(p + p'). Theorem 2 then implies that

No[f{n)] C2 Y G(h x /;,„) G(f2 x /;(2)) G(fn x /;(n)). (A.53)
aer„

Noting that G(f, x f") G'Q If, x ff) (see eq. (7.28)), eq. (8.18) is deduced from
theorem 4.
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