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On Preparata's Theory of a Superradiant Phase
Transition

By Charles P. Enz

Département de Physique Théorique, Université de Genève
CH-1211 Geneva 4, Switzerland

(24.VI.1996)

Abstract Expressing the non-relativistic matter-radiation coupling in eigenmodes within dipole
approximation the resulting equations of motion are analyzed. Specific stationary oscillating
solutions at resonance in two-level approximation are found for which conditions are given leading
to a minimum of the total energy that is lower than the energy of the non-interacting ground-
state. The main result describing superradiance without population inversion is compared with
Preparata's formulation.

1 Introduction

In a recent fascinating little book Giuliano Preparata has reviewed his work on a new
theory of matter in which the vacuum fluctuations of the electromagnetic field couple to an
internal resonance of the matter system such that this coupling gives rise, in certain cases,
to a non-perturbative, "superradiant", groundstate. This program is quite ambitious
since Preparata hopes to explain in this way the known collective phenomena of condensed
matter such as the Mössbauer effect, superconductivity, superfluidity, ferromagnetism, the
particularities of water and more. Proceeding by analogy, replacing the electromagnetic
by the pion field he also offers an explanation of the shell model of nuclei and other strong-
coupling effects.

Since if true, Preparata's claims have far-reaching consequences for the understanding
of the physics of condensed matter, it is of importance to subject this theory to an independent

examination. This is the purpose of the present paper in which Preparata's elegant
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field-theoretic and path-integral methods are replaced by more conventional means. I will
follow Preparata's exposition described in Chapters 1 to 3 of his book as well as in earlier
lecture notes in its essential steps while using an independent formulation and notation.

"Superradiance", the phase transition of the radiation field coupled to a matter
system, has a long and controversial history going back to the seminal paper by Dicke of 1954
where this term was coined and where the "Dicke Hamiltonian" was introduced which
consists in a two-level system coupled to the single electromagnetic mode resonating with
the system. The mathematical problems related with this model have been investigated
in depth by Günter Scharf and by Klaus Hepp and Elliott Lieb. The last two authors
have determined in particular the groundstate of the Dicke Hamiltonian which is also the
problem addressed in the present paper.

But before being able to enter the subject we must clear away a serious roadblock
which has the form of a "no-go theorem". In Ref. 6 the well-known fact is derived that
it is always possible to locally gauge away the vector potential A. This follows from the
identity (see, e.g. Eq. (31.3) of Ref 7)

eie*(r.O/ftc[p+ £A(rjt)]e-«*(r,o/ftc _ p + l(A(r,t) - Vf>(r,t)) (1.1)

valid for any gauge field cp, by choosing, for any path through r, <p(r,t) f A(r t) ¦ dr

For the matter system the dipole approximation then implies that one may have

A 0 at a given atom but certainly not in a whole "coherence domain" (Ref. 1, Sec. 3.1)
of the size of the wavelength A of the resonant radiation which is supposed to contain a
large number N of atoms. For the physics of the radiation, however, enforcing A 0 in
one space-time point is of no relevance since the radiation energy density i(E + B is

non-zero even at this point, as follows from the relations

E=--À;B VxA (1.2)
c

and from the fact that the resonant radiation has a non-zero frequency Çl ^p. Here and
in what follows the Coulomb gauge

V-A 0, (1.3)

valid in the absence of sources, is used.

2 The coupled matter-radiation system

We define the matter system by the non-relativistic one-particle Hamiltonian

ff=~(p+^A(r))2 + W(r) (2.1)
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where the radiation-field operator A is written in Schrödinger representation and the field-
free part H0 determines orthonormal states \cpn) through the Schrödinger equation

H0f>n(r) e») ¦ (2.2)

Here r may also stand for other degrees of freedom and n may be a composite index. In
what follows we assume the matter system to consist of one-electron atoms defined by the
potential W which in a crystal may have the periodicity of the lattice.

In a second-quantized form, defined by the matter-field operator

iP(r) *£cn<Pn(r) (2.3)
n

where the cn satisfy anti-commutation relations, the matter system is described by the
Hamiltonians

n0 (WoW !>»<£<*,
n

Kl W27r7c{P ' A + A ' PM
c £/ d3rA(r) ' j""'(r)c"C«' ' (2.4)

nn'

U2 W^ÙA2W Ì E^n|A2|^)c^Cn,

Here V is taken as the coherence volume, rM rrr is the classical electron radius and
1 e mr

kn>(*) ^(fcVcpnl - 4>n,V<t>*n) (2.5)
27TII

the matrix element of the current density.

To Eq. (2.4) must be added the radiation Hamiltonian

- / d3r(E2+B2) (2.6)

where quantization is defined by the development of the vector-potential into eigenmodes
of the volume V,

Here u>k c|k| and

Qk ^k+a-k)=Qtk (2-8)

where ak and ak are the creation and annihilation operators, respectively, and k is a

composite index defined by ±k (±k, ±A) where A ± is the polarization index defined
such that the polarization vectors efc e*k satisfy

eA: e_k ; k • ek 0 ; ekA • ekv <5AA, (2.9)
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Inserting Eq. (2.7) into (2.6) and making use of (1.2), (2.9) one finds

Hr ÌY,{77QkQ-k + "*QkQ-k) (2-10)

where the first and second terms come from E and B respectively.

The Hamiltonian TL2 in Eq. (2.4) deserves special examination because it may be
understood as a renormalization of TtT (Ref. 1, Sec. 3.4). Making use of Eq. (2.7),

(K\A2\<Pn.) ^E^=^^^nlel(k+k')r|^) ¦ (2.11)

Here the matrix element of the matter system may be treated in dipole approximation
which means that we may set k + k' ~ 0. Inserting (2.11) in TL2 one then finds with
Yn cn cn ^i which is the number of electrons in the volume V,

Tt Mc2re7E-QkQ-k- (2.12)2 ~ evr^
Hence

where

K + n2 ~ \ Y. -{QkQ-k A c2[k2 + K2)QkQ_k) (2.13)
2 *-*i uk

47rre^ (2.14)

is the analogue of the reciprocal London penetration depth in the theory of superconductivity

(see. e.g. Eq. (25.21) of Ref. 7). k or, equivalently the mass —, implies that Eq.
(2.13) gives rise to an equation of motion having the form of the Klein-Gordon equation
(see Eq. (3.2) below for A10 0).

Taking for the average distance between the electrons (atoms) d (V/N) 1/3

10 cm and for the wavelength A 2tt/|k| ~ 10 cm so that in a coherence volume V
there are N ~ 10 atoms one finds ft/|k| ~ 1. Note that for free but extended particles
with no internal degrees of freedom ("one-level atoms") it. is Til which may be renormalized

away by a Bloch-Nordsieck transformation leading to a photon-pair theory. These
different treatments of the radiation field are possible because in dipole approximation
there is no gauge invariance.

The dynamics is described by equations of motion

0=l-lHo + Ui+H2+Hr,0}. (2.15)

for "observables" O. In the case of the radiation field it is necessary first to define canonical
momenta. One easily verifies that the relations

Pk ^-Q-k-A[Pk,Qkr] Skkl (2.16)
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are compatible with Eq.(2.15) for O Q_k-

In Eq. (2.15) we also need Ttx which may be deduced from Eqs. (2.4) by inserting
(2.5), (2.7). One finds

*l -*'*££^m'(*)«-k£<W (2.17)
nn' k

where the coupling function

4<7T

^W ™J—efc-vnn,(k), (2.18)

is introduced. Here the dimensionless matrix element

vnn,(k) - f d\inn,(r)e-^ ~ vnn,(0) (2.19)
c Jv

does not depend on k in dipole approximation.

For the radiation field the relevant equation of motion (2.15) now is

-f& P_k -(lA ^WQkAiYJAnn,(k)c+cn, ¦ (2.20)
"• nn'

Here use was made of the approximate expression (2.13) and of the definition (2.18). For
the matter field the equation of motion (2.15) is just the Schrödinger equation

<=^-''EEA»n'W-A (2-21)
n' fc

where the contribution from TL2 was neglected since, according to Eq. (2.12), —[Tt2,cn} ~
Tt2cn/N which is negligible for large Af.

3 The dynamics in two-level approximation

The physically important condition is the existence of a resonance of the radiation with a
specific transition frequency f2 of the matter system,

wk Ü (3.1)

As a consequence, only two atomic levels which we label n 0,1 and only the radiation
modes satisfying (3.1) are assumed to be relevant. The energy levels defined in Eq. (2.2)

may then be chosen such that e0 0 and e1 hfl. We further assume that there are
no transport currents, jnn 0, i.e. the f>n are real. Then ij01 — ij10 and, according
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to (2.19) v v10 —v01 is a constant real vector. The equations of motion (2.20) and
(2.21) now become

1 -2

—Qk + "k(l + ^)Qk iAio(k)(c+c0 - c+Cl) (3.2)

and

c0 Aio(k)Q-kci ;<=i -i-Mei - A10(k)Q_kc0 (3.3)

In view of the fact that Yn cn cn N is a very large number it is natural to rescale the
dynamical variables which, in addition, may be considered to be classical. The resonance
condition (3.1) then implies that the dynamics separates into fast oscillations by ii and a
slow motion which happens in the long time r Cit. This separation is exhibited in the
following "interaction representation" of the variables defined in Eqs. (2.3) and (2.7):

Qk(t) /f («fe(r)e-int + alk(r)e+int) (3.4)

and
c0(t) y/N^T) ;Cl(t) v/7V71(r)e-'nt (3.5)

where now
7070 + 7Ï7i 1

• (3.6)

Separation of the slow motion is obtained by equating all the coefficients of the fast
motions e in Eqs. (3.1) and (3.2) to zero, a procedure called "rotating-wave approximation"

in the literature (Ref. 1, Sec. 3.1). In the notation àk dak/dr and jn d^n/dr
the slow equations of motion then are

t i
2äfc +àk+ 2^Qfc Afc7Ô7i (3.7)

valid for cok — Çl and

7o J2 Afca*Ti ; T'l "E AfcQfc7o • (3-8)

2 /i 2Here we have introduced the dimensionless quantities p n /k and

1 N umc2
A. -\—A,Jk)\ =i !-—-e-v (3.9)k UV 2 10V ;|"u=« V 2hCl v ;

and the summation convention

E'^E/^^i-") (3-10)

1 /Q
where AA; ~ 2irV ' is a spectral width. In view of (2.14), (3.9) it is then evident that
the rescaled variables interact strongly with an effective coupling constant ey/~N.
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For these equations of motion a first integral may be obtained in the following way:
Multiply (3.7) by Yk afc an<^ the ^TS^ Eq. (3.8) by 7q, equate the left-hand sides and add
to the resulting equation its complex conjugate. The result is the time-derivative of the
following equation:

£'{l7o|2 - KI2 - l«àk - otkàl)} K0 (3.11)
^ ii70r - Kr -

_

Similarly we obtain with the second Eq. (3.8)

E'lW2 + l«fc|2 + Ualàh - akàl)} Ki (3.12)
fc l

where K0 and Kx are real constants. These integrals are not independent, however since,
according to (3.6)

fc

but
/

K Ki-K0^J2 { W' - UI2 + 2KI2 + i(a*kàk - akà*k)} (3.14)
fc

is an independent constant of the motion.

Inserting the "interaction representation" (3.4), (3.5) into the Hamiltonians (2.4),
(2.13) and (2.17) one obtains the corresponding contributions to the total energy by
averaging over the fast motion. Thus

E0 hNQ\yl\2 (3.15)

and

ET + E2 \Nu£{\àk\2 A i(a'kàk - akà*k) + (2 + p)\ak\2} (3.16)
fc

Here an apparent simplification is to substitute the constant of the motion (3.14) for the
second and part of the third terms. However, this mixes in the matter variables in a quite
unsymmetrical fashion. But even more serious is the fact that it is practically impossible
to know the value of K with any precision as is evident from the discussion following Eq.
(4.11) below.

As for Tt1, elimination of the radiation degrees of freedom with the aid of Eqs. (3.8)
leads to

E1 -ihNQ(%rt + 7l7i WVT23(7o7o + 7i7Î) (3.17)

where in the last step (3.6) was used.

In the "perturbative groundstate" defined by 70 0, 7X 0 and ak 0 (all k), the

total energy is Ef/fm 0. On the other hand, superradiance implies the existence of a

groundstate with Emin < Ef^in. In order to decide this question the dynamics (3.7), (3.8)
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has to be analysed in more detail. Eq. (3.8) shows that the only radiation mode coupling
to the matter system is

^(t) ^E'a^A'(t) (3-18)
9 k

where g is the new coupling constant defined in Eq. (3.21) below. The projected Eq. (3.7)
is

l-ß + ß + l-pß 2g1*0~fl (3.19)

while Eqs. (3.8) become

7o=3/5*7i ;7i =-gßi0- (3.20)

Here

g2 ^ \Ylrt ' (3-21)
A-

so that g is real. Note that (3.19), (3.20) agree with Eqs. (3.9) of Ref. 1 if 70. 7j, ß, p
and g are identified with Preparata's x2> l'Xii v2A, 2p and g/y/2, respectively.

These slow modes ß, j0 an<^ 7i obey a constant of the motion in addition to the
normalization (3.6). In complete analogy to the derivation of Eqs. (3.11), (3.12) one here
finds

2\lo\2-\ß\2-l-(ß*ß-ßß*) 2A0 (3.22)

and

¦\li\2 + \ß\2 + -(ß'ß-ßß*) 2A, (3.23)

where A0 and A, are again real constants which, because of (3.6) satisfy A0 + Al 1.

The independent constant of the motion therefore is

A A, - A0 |7l|2 - |7ol2 + \ß\2 A '-(ß'ß - ßßf) - (3.24)

4 Conditions for superradiance

A useful equation which is homogeneous in ß is obtained by taking the time derivative of
(3.19) and substituting 70 and jl from (3.20),

iß + 2ß + ipß= -4g2ßcos0 (4.1)

Here we have introduced the parametrization |70| cos | and I7J sin | so that

|7o|2-|7i|2 cos0. (4.2)
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9 > 0 then measures the degree of excitation of the matter system and 0 > | signifies a

population inversion.

We first consider the short-time behavior, r fit < 1, of Eq. (4.1). Assuming as

initial state photon vacuum but allowing for the moment some atomic excitation, 9 > 0,
the initial time evolution given by Eq. (4.1) has the form ß oc e~lpT where p is determined
by the characteristic equation

f(p) p(p2 + 2p-p)= 4g2 cos 9 (4.3)

Since f(p) has extrema at f±(p) f(p±(p)) where p± are the roots of / (p) 0, Eq.
(4.3) has only real solutions provided that the right-hand side of (4.3) lies in the interval

f+(p)<4g2cos0<f_(p). (4.4)

The initial, aperiodic, evolution must therefore lie outside of the interval (4.4). Numerically,

/_(0) §f 1.185, /+(0) 0 and /_(1) 2.63, /+(1) -0.113. Thus 4p2cos6> <

/+(a<) < 0 requires a population inversion 9 > | while for 4y coso > f_(p) > §f the
system evolves even for 0 0, provided that

,2 > | - (4-5)

In these outer domains f(p) has one real and two complex conjugate solutions, p r ±is,
for which ß oc e(_*r s Hence the system possesses a run-away instability which is a

necessary condition for reaching a superradiant groundstate starting from the perturbative
groundstate 0 0.

We next investigate the oscillating stationary states that this run-away solution may
eventually reach by writing

ß Be^-vA 7o _ cos e-e-w°T ¦ 7l sin ^et(x-"lT> (4.6)

with real positive amplitude B. This gives for the constant of the motion (3.24)

A B2(l + i>)-cos9 (4.7)

while (4.1) becomes (4.3) with p u,

f(v) 4g2cos9 (4.8)

where, however, we are interested in real values of v. Insertion of (4.6) into Eqs. (3.20)
yields the remaining equations,

9 9
v0 gB tan - ; i/j gB cot - (4-9)
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and

u + u0-ul=0;tp-x ±^ (4.10)

Combination of (4.9) and the first Eq. (4.10) gives

v 2gBcot6;v ±\v\ ;0 ±|0| (4.11)

In principle, Eqs. (4.7), (4.8) and (4.11) determine the amplitude B and the atomic
excitation 0 as functions of the coupling constant g, the "mass" ^fp, and the constant of the
motion A. Since, physically, the system starts to evolve from the perturbative groundstate
one is tempted to conclude from Eq. (3.24) that A — 1. This, however, is questionable
since the classical motion emerges from the initial quantum motion so that the initial value
of A is unsharp.

The crucial question now is, what does the solution (4.6)-(4.11) imply for the energies
(3.15)-(3.17). The result for (3.15) and (3.17) is simple since it is expressed entirely in
terms of the matter variables:

Emat E0 + Ei -Nii{l - coso - 2gBsm9} (4.12)

On the other hand, the motion of the radiation variables ak is best described by the
analogue of Eq. (3.19). Taking the time derivative of (3.7) and inserting Eqs. (3.8) one
obtains

iak + 2äk + ipak -2gAkß cos 9 (4.13)

Again we are interested in an oscillatory stationay state as in (4.6),

ak Ake-^T (4.14)

with real vk. Now, since Eq. (3.18) is supposed to be valid for all times r. ß and ak must
oscillate with the same frequency, i.e. according to (4.6), uk v (all k). Inserting (4.14)
with this restriction in (4.13) the result is

f(v)Ak 2gAkBei,ficosß (4.15)

Comparison with (4.8) then gives

Ak ^Be* (4.16)
2ff

which, inserted together with (4.14) and uk v in (3.16), yields

Erad Er + E2 jNÜ{(u + I)2 + 1 + p}B2 (4.17)

where use was made of (3.21). Since Erad > 0 the existence of a superradiant groundstate
demands that Emat < 0. Note that in Ref. 1 the constant of the motion Q ^^ is

inserted in Eq. (3.15) for the total energy.
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The convenient parameter to analyse the total energy (4.12), (4.17) turns out to be
the frequency v. This means that the atomic excitation coso has to be expressed with the
aid of (4.8) as

fjy)
4g2

while the amplitude B is obtained by substituting this relation in (4.11),

cos9(v) iA-1 ;v ±\v\ (4.18)

B(v) — tan0(i/) (4.19)
25

and the constant of the motion (4.7) becomes

2/

4g2
A \ ' tan2 0(v)- cos 0(v) (4.20)

But since the initial value of A is expected to be unsharp we are not using this equation,
leaving v as a free parameter. (Note that another possibility would be to use (4.20) in
extremal form, (5A 0.)

With (4.18), (4.19) the total energy may now be expressed as

-- 2
;(EmatAErad) [1- COS *(*)]{ 1 - ^jW [l + COS 0(^)]} (4.21)rmtmat raa/ l v/u tpi(v)

where tp(v) v + 2v — p f(v)/v and ip(v) v + 2v - 2 — Zp tp(v) - 2(1 + p.). Eq.
(4.21) shows that a necessary condition for e < 0 to hold is ip(v) > 0. This is the case for
v > f3. and for v < v3_ where u3± are the zeros of ip(v),

yn± A±y/n(l+p) (4.22)

and the zeros of tp(i>) are i/1±. The condition for a negative total energy as obtained from
Eq. (4.21) reads

Af±<2g2-rV-tp(v);iP(v)>Q. (4.23)
ip(v) 2

Now it is not difficult to show that in the outer regions v > v3+ and v < v3_ the function

tp (v)/ip(v) is parabola-like with minima at v ^5± and that tp(v5±) 4(1 + p) and
ip(fs±) 2(1 + p.). Hence

min(^) ^=8(1+^;I/>^+--<-3-. (4-24)

We may take v vh± as representative points rather than determine the minimum
value of g2 from (4.23) or that of e from (4.21). Then, using definition (4.22), Eqs. (4.18)
and (4.23) become, respectively,

cos0K±) i^(-l ± \/5(l+M)) (4-25)
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and

g2>5(l + p)[l^)jAA} (4.26)

Here the upper value of the bound is larger than the one in Eq. (4.5) for p < 3.88. But
it is still much smaller than the lower value which corresponds to a population inversion
of the atomic system, coso < 0. This shows that population inversion is unfavorable for
superradiance, in striking difference to the laser.

A somewhat simpler but less explicit form of the total energy (4.21) is obtained by
using as parameter the atomic excitation 9. Substituting in Eq. (4.8) g cos 9 with the help
of (4.11) one arrives at an equation which is only quadratic in v,

(v + l)2 2gb^- + l+p (4.27)

where, however, B is a complicated function of 9. Four of the eight solutions v ±|i/|
of Eq. (4.27) are given in Preparata's Eq. (3.25c) where 2a is our 9 and e our sign of
9 A\9\. From Eqs. (4.12), (4.17) one now deduces the following expression for the total
energy:

£=l-cos9-gBsin9+(l+p)B2 (4.28)

This expression corresponds to Preparata's 2H given by his Eqs. (3.23), (3.30), provided
that the appropriate signs e are chosen.

Considering now B as a free parameter the minimum of e is situated at

B -^- (4.29)
2(1+ ft)

and has the value

1_cos9_4^- Ï4.30)
4(1+ /i) '"mm

Hence a necessary condition for superradiance is

2. 4(1 f ft)
> -^-^ (4.31)

1 + cos 9

which again shows that population inversion, 9 > 7t/2, is unfavorable for superradiance.

Surprisingly, if the value (4.29) is inserted into Eq. (4.27) one recovers v vb± which,
more precisely, are the four values v ±\u5±\. This means that the renormalized frequency

flren |1 + v\fl has the values \/5(l + p)+2n where n 0, ±1 and, for n -1, is smaller
than fl if p < 4/5. Note that Preparata's relation (3.33) agrees with this expression for
n 0, provided that care is taken in choosing the appropriate signs 6, and hence, obeys
f2ren > fl (uj > tjj0 in his notation).
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5 Conclusion

The results of the last section confirm Preparata's conclusion that, at least in two-level
approximation, a superradiant groundstate below the perturbative groundstate exists for
sufficiently strong coupling g oc Ne i.e. if the number N of atoms contained in the co-
herence volume V ~ A is large enough. He is also right in emphasizing that, in distinction
to the laser, superradiance does not require a population inversion of the atomic system
but occurs preferentially at low excitation.

An assertion which is more delicate to assess is Preparata's claim that superradiance
is self-contained, i.e. that there is total reflection at the boundary of the matter system.
If true this property would preclude any detection of superradiant photons outside the
system. This is the most crucial point because such a detection, I believe, would represent
the only possibility of an experimental verification.

Now, the system will radiate at a frequency Aft Nfl(e/2) + flren, provided that
Af2 > 0. Thus the condition which allows a collective phenomenon in condensed matter to
be explained in terms of superradiance is even more severe than the existence of a negative
groundstate energy, e < 0, namely Aft < 0. However, if the number A^ of resonators in the
coherence volume satisfies N ^> 1, the two conditions merge, provided that e is of order
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