
The three-dimensional BF model with
cosmological term in the axial gauge

Autor(en): Brandhuber, A. / Emery, S. / Landsteiner, K.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 68 (1995)

Heft 2

Persistenter Link: https://doi.org/10.5169/seals-116732

PDF erstellt am: 23.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-116732


Helv Phys Acta 0018-0238/95/020126-13$1.50+0.20/0
Vol. 68 (1995) (c) Birkhäuser Verlag, Basel

The Three-Dimensional BF Model with Cosmological
Term in the Axial Gauge

By A. Brandhuber#1, S. Emery*2, K. Landsteiner#1 and M. Schweda*

* CERN, CH-1211 Genève 23 (Switzerland)
* Institut für Theoretische Physik, Technische Universität Wien
Wiedner Hauptstraße 8-10, A-1040 Wien (Austria)

Abstract. We quantize the three-dimensional BF-model using axial gauge conditions. Exploiting
the rich symmetry-structure of the model we show that the Green-functions correspond to tree

graphs and can be obtained as the unique solution of the Ward-Identities. Furthermore, we will
show that the theory can be uniquely determined by symmetry consideration without the need of

an action principle.

1 Introduction

Topological field models [1] of the Schwarz-type [2] have been the subject of continous
investigations over the recent years. These theories are characterized by an invariant action
which does not depend on the metric structure of the manifold. Therefore, they are devoid
of any local observables. Nevertheless, the metric appears in the gauge-fixing term which is

itself a BRST-variation. The variation of the gauge-fixing term with respect to the metric
is a BRST-exact quantity implying the existence of a linear vector-like supersymmetry [4]

vß in an elegant manner. Together with the BRST-symmetry, the symmetry vp forms an
algebra of the form

{W=ön (1-1)
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stating that translations are no physical operations and thus reflecting the topological nature
of the theory. Thus one might say that this relation lies at the heart of their topological
properties.

The most prominent example of these theories is of course the three-dimensional Chern-
Simons theory which has led to the powerful connection between link-invariants and the
vacuum expectation value of Wilson lines [3]. The Chern-Simons theory has also been studied
extensively from a purely field theoretical point of view. It turns out to be a completely
ultraviolet finite theory and that this finiteness is a direct consequence of the topological
supersymmetry (1.1). Originally, this supersymmetry has been found using the Landau-

gauge [4]. In a serie of papers it has been generalized to other gauge-conditions as well
[5, 6, 7]. Of particular interest was the case of the axial gauge where it turned out that
the topological supersymmetry is not only responsible for the finiteness of the theory, but
also allows to compute the Green functions without the use of an action principle [8]. Let
us also mention that it has been shown that the topological supersymmetry exists also in
string theories [9] and in two-dimensional chiral W^-gravity [10] and that it turned out to
be an extremely useful tool for solving the descent equations associated with the integrated
BRST-cohomology [11].

Another class of Schwarz-type Topological theories [2] are the BF models. Despite of
their simple form they reveal a surprisingly rich symmetry structure. Indeed, they allow for
reducible invariances [12], In the particular case of three dimensions [13], another interesting
feature is that the S-field is a 1-form and therefore allows the addition of a cubic term in
B into the action. This term is usually referred to as a cosmological constant term since
then the model is related to three-dimensional Einstein-Hilbert gravity with such a term.
A detailed investigation of the symmetry stucture and finiteness properties of this model in
the Landau-gauge has been given in [14].

In the case of the Chern-Simons model in the axial gauge, we found that the supersymmetry

has two main consequences. Indeed, it turned out to be strong enough for fixing all
the Green functions of the theory (in this sense, one can say that it can be substituted to
the action principle) and it also imposes the principal value prescription for the propagators.
Therefore, it would be desirable to know wether this remains valid for the BF system in the
axial gauge [13]. This is precisely the question we will address in this paper and we will
show that the answer is positive.

The work is organized as follows. In section 2 we introduce the action and fix the
notation and conventions. Section 3 presents the symmetries and all the functional identities.
We investigate their consequences for the equations of motion in section 4.1 and for the
calculation of the propagators in section 4.2. At the end, we propose some conclusion.
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2 The 3D BF model with cosmological term in the
axial gauge

The complete action of the 3D BF model containing a cosmological term with an axial gauge
fixing is given by

O — Oinv + Sgf

with

Sinv — — 21 r I d x

Sgf Trjd3x [bn"Aß + dmßBß + cn^(Dpc + a[Bp,4\) + 4mß(Dp4 + [Bß, c])]

e^"(FpvBp + ^BPBVBP)

(2.1)

(2-2)

and D,, dp + g[Aß,...] denoting the gauge covariant derivative. Fpv is the field
strength of the gauge field Ap. Further b, d are the Langrange multipliers imposing the

gauge-conditions nßAp 0 and mßBp 0 where nß and mß are it a priori two independent

gauge fixing directions, c, c and 4-, 4 are the anti-ghost and ghost fields corresponding to
the two gauge symmetries of S{nv

81AP -Dpe, S1BP -{BP,6]

62Aß -a{Bp,\], 62BP -DPX.
(2.3)

We choose the gauge group to be simple, all fields belong to the adjoint representation and

are written as Lie algebra matrices tp(x) tpa(x)ta, with

Kh] fcabtc Tr{tath) 6,'ab- (2.4)

Finally a is some numerical constant. We summarize the canonical dimensions and the ghost
numbers of the various fields in Table 1.

A B b d c c 4 4
Dimension 1 1 2 2 0 2 0 2

Ghost number 0 0 0 0 1 -1 i -1

Table 1: Dimensions and ghost numbers.
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3 Symmetries of the action and Ward identities

The action (2.1) is invariant under the BRST transformation s :

sAp -Dßc-a{Bß,4], sBp -DP4- {Bß,c\,

sc c2 + a42, s4 {4, c}i

sc b, s4 d,

sb 0, sd 0.

Since we are dealing with a topological field theory of Schwarz type, the only metric
dependence arises from the gauge fixing part of the action. Therefore, the energy momentum
tensor is BRST exact:

Taß sAaß (3.2)

with

Aq/3 Tr(riaßcnpAp - cnaA0 - cnßAa + naß4npBp - 4naBß - 4nßBa). (3.3)

Using the equations of motion, one gets for the divergence of (3.3) the following expression

nr, ,„ JS SS
_

8S „ -8S „ SS
cTKp= Tr(dßc--Aß--n"c*pßaJ§- + dß4^-Bß--

en V*3 /

-ma4e(lßa—— + nac£pßampd - na4epßamPb) + tot. der.
8Ap

Integrating (3.4) allows to derive the usual form for the topological supersymmetry only for
the case where1 nß m" which we will assume for the rest of the paper. Thus we have the
following form for the vector supersymmetry transformations va :

vaAß -eaßßnß4, vaBß -eaßßnßc,

vac - Aa, va4 Ba,
(3.5)

vac 0, va4 0,

vab — dac, vad —da4-

The transformations s and the supersymmetry transformations vß form an algebra which
closes on-shell:

s2 {vß,vv} 0, {s, vß] dß + Eq. of motion. (3.6)

1Actually one could also insist in keeping different gauge vectors since the breaking term is BRST exact.
This breaking could be controlled by coupling it to an additional source and adding it to the action [7]
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In addition there exist two discrete symmetries 2 which leave the action (2.1) invariant:

c < > ac 4 *—* 4 (3-7)

and

c<—y 4 c<—> 4 (3.8)

At the level of the generating functional of the connected Green functions Zc, all these

symmetries leads to a set of WI. The one which correspond to the vector supersymmetry
takes the form

VaZc TrJd3x [ JbdJ^ + e^n"I-^S. + JeM£+
aS.L

SZ, SZc
+Jdda-r— + Ec^n^JK.-—- + J,

8J, 8Jä

SJ-c

SZc
h8J%

¦6J%

0.

(3.9)

In this formalism, the axial gauge is imposed by the two gauge conditions

Jb + n^ 0,
8J'A

Jd + ri
,SZC

srB

(3.10)
0.

As in any linear gauge there exist antighost equations which in the case of the axial gauge
are local [5], In our case we have two of them and they take the following form:

J,

Ja,

T
SZC

Jh'TZ

Ji„
SZc
8Jé

+ a Jd,

Jd,

SZc
SJò

SZc
SJc

0,

0.

(3.11)

Finally, it is well known that in the axial gauge, due to the decoupling of the ghosts, the
Slavnov identity which express the invariance of the theory under the BRST-transformations
(3.1) takes the form of a dralocal WI. Therefore, one get the two following local gauge WFs

« SZc
A' SJ^ - Jß

SZC

Jb'8J£_ - \ SZc
J*"TT8Jh

_

-
'

6ZC
J(l' TTOJd

_

°ßJA

-vJm-u,m-um-um+(^z°SJc 8Jr S JA, SJä

(3.12)

6Jh

and

dßJ% - a p, SZc
A' 8J£

8Zc
I'1Jb' 6J1

SZc
8Jd

Jd,
SZc
8Jh

'a{J^}AJc^)AJ^}~a{J^}+{n 9)
SZc
SJd

(3.13)

2In fact, (3.7) and (3.8) imply the existence of additional anti-BRST-like symmetries and anti-vector-like
supersymmetries as in [4, 5].
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4 Consequences of the Symmetries

4.1 Equations of motion

Let us now investigate in some detail the meaning of the relations of the last section, starting
with the projection of the WI for the supersymmetry(3.9), along the gauge fixed direction.
Without loss of generality we can choose the gauge vector nß to be (0,0,1). We will denote
this gauge fixed direction by u and the transverse coordinates by xtr (x*),i 1,2. Then,

Taking into accout the gauge conditions (3.10), the latter can be written as

Trfd3x (jbX + Jdy) 0.

where X and y are the most general forms compatible with (4.1)

(4.1)

X dJ£+\l
SJc

a SZC
y du—— + ç1

8 Ja,
Jd,

SZç
SJ-c

SZc
SJ,

+ A2

+ 6

Jd,
SZc

SJä

Jd,
SJz

+ A3

+ 6

J",
SZc
SJ-c

J\ SZc
SJ,

+ A4

+ €i

' 6 J-,

'SJ,

-Jc 0

-Je 0

At this level, one can use the consistency condition between the two equations we just found
and the ghost equation (4.2) in order to fix the arbitrary parameters. Then, the result is

Jc-n^ +

J4, - n^dfi—y- +

Jb,
SZc

SJ-c.

Jb
SZC

SJ$.

+
'

SZc
Jd'TTS JA,

0,

+ a Jd,
SZc
SJ-c

(4.2)

0.

which are nothing else than the ghost equations. Thus, the equations of motion for the ghost
sector are a consequence of the gauge-fixed component of the supersymmetry WI, the gauge
condition and the Slavnov identity.

For the gauge sector, let us consider the transverse component of (3.9)

r a 6Zc
i ijSZc j SZC\

+Jddl— +e^A— + J,Wb j=0.
(4.3)

together with the antighost equations (3.11) written as functional operators acting on Zc

8_

vsjc
6

SJé

j s'
— a j s

Jd'Jj
i>.

j s

SJa, - I
Ôl

}

Zc Je,

Zc J$-

(4.4)
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Their consistency gives rise to the following identities

usja

u8Jh

Jd,

Jd,

8J\

SJl

Jb,
SJl

Jb,
SJ]A}

> Zc EjiJB — diJd,

Zc — Eji J A — diJb.

(4.5)

which correspond to the equations of motion for the gauge fields. This concludes the analysis
of the consequences of the supersymmetry for the equations of motion.

4.2 Calculation of the Propagators

Gauge conditions

We begin by looking at the gauge conditions (3.10) which imply the vanishing of the
connected Green functions involving the components A3 or B3

with two exceptions

(A$(x)Tlt<Pi(xi)) 0

(s3a(z)rLv>(^)> o
v^

(Aa3(x)bb(y)) -8*6&>(x - y),

(B%(x)db(y)) -SabS^(x - y).

(4.6)

(4.7)

Antighost equations

The antighost equations (4.2) give the following differential equations for the connected
Green functions involving one pair of ghost fields:

and

dxs(cf(x)ch(y)) 8°bSW(x-y),

dx3(4a(x)4b(y)) SabS^(x-y)

(4.8)

(4.9)

dx3{d*(z1)..d^(zr)b»i(y1)..bb<(yr)cb(y)ca(x))

£rV (d^(z1)..d^(zr)b^(y1)..b^(yj)..bb^yr)cb(y)ë:(yj)) S(x - Vj) + (410)
i-i
J2nc (d»(z1)..d-(zl)..dc'(zr)bb^(y1)..bb^yr)cb(y)4c(z1)) 6(x - z,\
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and

dAdcl(zi)..d^(zr)b^(y1)..bb^(yT)cb(y)4a(x))

E/""'0 {dci(zi)-dc*(zr)bbi(y1)..bbi(yj)..b»r(yr)cb(y)4c(yj)) 8(x - Vj) +
3=1

(4.11)

aJ2faCiC (d^(z1)..d-'(Zi)..d^(Zr)bb^y1)..b^(yr)cb(y)cf(zi)) S(x - z{).

The solutions of the equations (4.8) and (4.9) are

{c?(x)c»(y)) 8ab{6(x3 - y3) + ß1]8^(xtr - y»), (4.12)

(4"(x)4b(y)) 8ab{6(x3 - y3) + ß2]8W(xtr - y») (4.13)

The form of the terms proportional to ßi, ß2 is dictated by transverse two dimensional
Poincaré invariance and scale invariance. Indeed, the latter forbids solutions of the type
l/(xtr — ytr)2 because this term is not a well defined distribution. To give it a meaning would
need the introduction of UV subtraction point, i.e., of a dimensionful parameter which would
break scale invariance. The integration constant can be fixed with the help of the discrete

symmetry of the action (3.7) to be ßi ß2 — |.
Integration of the equations (4.10) and (4.11) yields the following recursion relations for the
Green functions with one pair of ghosts:

(d^(z1)..dc-(zr)bb^(y1)..bh'(ys)cb(y)ca(x))

Èr6jC M*3 - y3) + ß(r,s)]£(2V - vf )x
3=1 _x(d^(z1)..d^(zr)b^(y1)..bb1(y])..b^(ys)cb(y)c%y])) + (4.14)

+E/ac*c [^ - 4) + ß(r, s)]S^(xtr - zf)x
x\d»(z1)..^(zl)..d^(zr)b^(y1)..bb-(ys)cb(y)4c(zl))

(d^(z1)..d^(zr)b^(y1)..bb'(ys)cb(y)4a(x))
and

: Y^r^ {0(x3 - y}) + ß(r, s)]S^(xtr - yf)x
3=1

x(rf»(Zl)..d* (zr)b^(y1)..b^(y])..bb'(ys)cb(y)4c(y3)) + (4-15)

+aJ2r-c {0(x3 - z3) + ß(r, s)}8(2\x* - zf )x

x(d*(z1)..&(zx)..dcr(zr)bbi(y1)..bb°(ys)cb(y)cc(zl))

Using the discrete symmetry one could produce two additonal recursion relations which
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are not written explicitly since they are not needed for our calculations. The integration
constants are all fixed to ß(r,s) — | by the discrete symmetry (3.7) and Bose symmetry
of the Lagrange multipliers 6 and d.

Now we will discuss the recursion relations for some special values of r and s.

The case r 0

For this discussion we will use a more symbolic notion i.e. we will drop indices and variables
because we only want to find the vanishing Green functions whereas the non vanishing Green
functions can always be obtained from the explicit recursion relations (4.14) and (4.15). From
(4.14) we get ((b)scc) 2((&)s_1cc) which ends up after s steps with the (cc) propagator
defined in (4.8). On the contrary {(b)s4c) 0 since the recursion relation stops with the
vanishing Green function (4c). Using again the discrete symmetry we obtain ((b)s4c) 0

a,nd {(by44) =J2((b)s-144)-

The case s 0

In this case we have have to use (4.14) and (4.15) iteratively e.g. ((d)rcc) J2((d)r~1c4)
((d)r~2cc) The final result depends on wether the recursion relation ends up with
(cc) which gives a non vanishing result or with (c</>) which gives zero. Here we only want to
compile the zero results:

{(d)rcc) 0 and ((d)T44) 0 if r is an odd integer.
{(d)r4c) 0 and ((d)rc4) 0 if r is an even integer.

The Green functions with additional ghosts, gauge fields or Lagrange multipliers vanish
in general as a consequence of the antighost equations (4.2):

(Xcc) (Xc4) (Xc4) (Xc4) 0 unless X (b)m(d)n (4.16)

Transverse supersymmetry

From equation (4.3) we get further relations along the same lines. For reasons of simplification

we use the sloppy notation from the discussion above whenever possible.
The results for the two-point functions are:

(AUx)Bb(y)) EijS^x3 - y3) - ^(x* - y») (4.17)

(ba(x)Ab(y)) -8°»{9(x3 - y3) - \}dx,6^(xtr - ytr) (4.18)
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(da(x)Bb(y)) -8*b{e(x3 - y3) - ì]cW2Vr - ytr) (4.19)

and (AA) (BB) (66) (dd) (dA) (bB) (c4) (c4) 0. Furthermore we
observe that all two-point functions with one ghost and one bosonic field vanish.
For the higher Green functions we obtain the recursion relations

(^(t»i)..^K)d^(zi)..d*W<(wi)--^(»*)fi!îi(*i)-.fiS:W{ A?,! j)
Bb(y)

*DJ cb(y)
^dwi(bd^(w1)..¥>.(wk)..b^(wr)(dr(A)t(Brl JW j^(wk)) +

+±dz,k((bYd^(z1)..dï(zk)..d*°(zs)(A)t(By { pfy } ^(*fc)> + (4.20)

+E^((6r(d)s<'(y1)..<fe(»)--^(î/t)(B)u{ ^ }^*(»fc)) +

+E^((fc)r(rf)s(A)'ß^(x1)..ß^(3:fc)..ß-(3:„.) $?> }^(»)>.
fc=i /(y)

In the following we want to specify these recursion relations for special values of r, s, t and

u to demonstrate that all Green functions can be obtained from our recursion relations. All
Green functions with one pair of ghosts have been obtained in the previous subsection. Now
we want to calculate the remaining Green functions with only bosonic fields and at least one
A or B field.

The case t u 0

We obtain from (4.20):

((b)r(d)'A) Eô((&r1(d)scc)+Yld((by(dy'1c4)

so the calculations breaks down to summing over already known Green functions. The same
holds for ((b)r(d)sB)

The case r s 0

We obtain
((A)'(BYA) E((Ay(By-1cc)+s((A)t-\Byc4)

Using (4.16) we find ((A)"(B)b) 0 unless a 1 and 6=1 which yields the two-point
function (^45)
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The case s u 0

In this case the relation (4.20) takes the form:

<ww AB )> Efl((rlw J e>+£««*m)t-1 J «

For £ 0 we get the results:
((6)M> Eö((6)r~1cc) and {(b)rB) 0

For i 1:

((b)rAB) Y,E((b)T44) and ((6)rA4) 0.

The case r u 0

In this case the relation (4.20) takes the form:

((dy(Ay 5 )> £3<(dTW ° $ + £e«<QW1 (J #

For £ 0 we get the results:

((d)M) 0 for s odd and ((d)sB) 0 for s even.
For t 1:

((rf)MA) 0 for s even and ((d)MB) 0 for s odd.

The case r t 0

In this case the relation (4.20) takes the form:

((dy(By £ )> EWW J j # -r-E^w1 J e)

For t 0 we get the results:

<(d)M) 0 for s odd and ((d)sß) 0 for s even.
For t 1:

((d)sB^) 0 for s odd and {(d)sBB) 0 for s even.

Gauge invariance

The two gauge symmetries (3.12) and (3.13) do not give a lot of new information besides

consistency checks and the fact that all correlators consisting only of the Lagrange multipliers
vanish:

(6ni(^i)-fcam(^)d61(yi)..d6"(yn)> =0 V m, n

This is the unique solution obeying dimensional and scaling arguments.
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5 Concluding Remarks

The main result of our study is that the Green functions of the model are the unique solutions
of the Ward-identities defining the theory. Furthermore it turned out that the topological
vector supersymmetry imposed a rather unexpected restriction on the a priori independent
gauge vectors. It is also worth noticing that the Green functions correspond to tree graphs
only. Note also that in principle there are loop graphs with external 6 and d fields only,
however, as in Chern-Simons theory [15], the gauge-field and the ghost field contributions
to these graphs cancel exactly due to the topological supersymmetry. Having investigated
here the three-dimensional BF model it is now natural to apply the axial gauge also to
higher dimensional BF models. It would be highly interesting to know wether the methods
developped here and in [8] are also applicable to these cases.
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