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Abstract. In this paper, some general results about the concepts of complete sets of commuting
observables (CSCO) and irreducible sets of observables (ISO) are obtained. It is proved the following: (i)
Any relevant observable is an essential part of some ÒSCO, (ii) Any relevant observable, which is a
CSCO, is an essential part of some ISO. (iii) Let {&a}ael be a CSCO, or an ISO, then, I is countable.

1. Introduction
The physical and mathematical structure of the concept of complete set of commuting observables

(CSCO), introduced by Dirac [1], has been firmly established in different settings of quantum mechanics

[2-10]. Also, the concept of irreducible set of observables (ISO) has been treated in the literature, for

example, through the canonical commutation relations (see, e.g. ,[9 ,11] or the formulation set in [10].

The main purpose of the present paper is to obtain rigorous results about the existence of

different kinds of CSCO and ISO. From the practical point of view, both concepts are important when the

observables are directly measurable at the laboratory (let us call them "relevant observables"). It is therefore

of great interest to study in general how to construct a CSCO or an ISO with arbitrary observables. In

particular, given a "relevant observable", it is physically necessary to have a proof which asserts that this

observable is part of a CSCO or of an ISO. This is the stronger motivation for undertaking the present work.

The results of this paper are collected in theorems II.4, II 7, III 4 and III 6 Theorems II 4, III 4 and III 6

have as consequences: (i) Any relevant observable is an essential part of some CSCO, (ii) Any relevant

observable, which is a CSCO, is an essential part of some ISO, (iii) Let {f>a}ael De a CSCO, or an ISO,

then, I is countable. Theorem II.7 concerns with the problem of comparing the Dirac's formulation of
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CSCO in infinite dimensional Hilbert spaces with Jauch's definition [2]. It is shown that Dirac's formulation is

a particular case of Jauch's formulation in infinite dimensional spaces.

All our results are independent of the physical system under study, and their physical interest is

addressed in notes and discussions. See specially, remarks 11.5, 11.8, III.5 and III.8 Only physical systems

without superselection rules are considered. The set of observables of the physical systems will be taken

as the set of all bounded self-adjoint operators in a Hilbert space. However, the above results are still valid in

other settings of quantum mechanics. For instance, if unbounded self-adjoint operators, are considered,

our theorems hold true (see, Note III.9).

We shall adopt the following conventions. By R and C we stand for the real and complex numbers

(X is the complex conjugate of XeC);R and C are cartesian products of Rand C respectively. By H

we denote a complex separable Hilbert space of dimension greater than one (dim H a 2), with scalar

product linear in the second variable. By A ¦ L(Jt we represent the set of all bounded operators in

K, with norm 11.11 The adjoint element of a e A will be denoted by a", and As stands for the set of

all self - adjoint elements of A The identity in A is denoted by e The commutator of a,b e A is

represented by[o-,b].

Mathematical results found in [12 - 22] will be used throughout the paper. The commutant of a set

B C A will be denoted by Bc. The Von Neumann algebra generated by a set D ¦ {«to}ae| C A will be

indicated by R,(D) ¦midg)). An abelian Von Neumann algebra t) C A is maximal abelian [12,13] iff

Dc D (see, proposition 13, Part. I, Cap. I, of [12]

Let us introduce the following standard definitions:

1.1. Definition. An arbitrary set of observables is called a set of compatible observables if

they commute each other.

1.2. Definition. Let {^k)k=1 be a countable set (finite or infinite) with X|<eC; fy *0, k= 1,2,...;

kfc ¦*¦ Xj if k * i. Let {p.}. 1
be a set of mutually orthogonal projection operators. Every operator b of the

type
b= I ^Pk. (1-D

k=1 K

is called a point spectrum operator (PSO).

We know (see, [14], Cap. 8, §1) that b is self-adjoint iff {fy} C R; and that b is positive iff X|<>0,
V k. Also, 6 G t(H) iff sup IXi<l < », and in this case: Il b II sup IXiA

k k

1.3. A functional calculus. From references [12-19], we can extract the following functional

calculus related to R(C), where C «{c-j cn} is a compatible set of observables.

The algebra R(C) is isometricly "-isomorphic to L°°(Q,v), where Q»Sp(c-|)x x Sp(cn) C Rn,

Sp(c) standing for the spectrum of c. This '-isomorphism is the unique extension of Gelfand *-



Vol. 65, 1992 Lozada, De Sarrazin and Torres 889

isomorphism, and v is the unique (up to equivalence) positive, finite regular, Borei measure with support
Q. Every xeR(C) is of the form x f(c-| cn) with fe L°°(G;v). Moreover,

llxll 11 f(c-) 1^)11 ess. sup If^ X„)l « Il f II«,,

{ X1,...,Xn)eQ

Sp(x) {f^ X,,) / {X! X^ e Q}. (1.2)

This paper is organized as follows. In Sec. 2, results about CSCO are obtained. In Sec. 3 the

results about ISO are concentrated. The notes and discussions contain some concluding remarks and

trivial corollaries from the obtained results. Also, for the sake of completeness, they include results which

are mostly behind the existing theory. The notes are supposed to be more technical than the discussions.

2. Complete sets
11.1. Definition. A set C - {c } C As is termed a complete set of commuting

observables (CSCO) if R,(C) is maximal abelian in A, and no proper subset of C generates R(C)

[minimality of the set C].

H.2. Note. Definition 11.1 says that C is a CSCO iff

R(C)C R(C), (21)

and C is a minimal set. Moreover, since C is a self-adjoint set, we have that C is a CSCO iff

Cc R<C), (22)

and C is a minimal set.

Definition 11.1 is essentially the one given in [2]. The minimality assumed in 11.1 for the set C is

physically important. In the different settings found in the literature (see, e.g. [1,2,5-9] for the concept of

CSCO, this minimality is not explicitly stated but should be taken as understood.

Also, from (2.2) it follows that for a minimal set C ¦ {c-|,...,cn} we have that C is a CSCO iff for all x e Cc

there exists fe L°°(Q,v) suchthat x=f(c^ cn) [ L°°(Q,v)] comes from the functional calculus of R(C),

already referred in Sec. 1]. Here, the minimality condition represents a notion of independent variables in

the functional calculus.

A CSCO is a compatible set of observables since it generates an abelian algebra. If c belongs to any

CSCO, then c * y e; y e R, since A * {o}, A * R(e), and the stated minimality.

We have that a compatible set of observables, C, is a CSCO iff there exists a cyclic vector for ft.(C)

and C is minimal, cf., [ 2,5, 6, 23]; or iff there exists a cyclic vector for the minimal set C, of., [5,6,23].

Finally, we have that {c)CA? is a CSCO iff c has a simple spectrum (see, e.g., [ 2,4,5,14,20] );

or iff c can be represented by a Jacobi matrix (see, [20], Theorems 7.13 and 7.14).
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11.3. Discussion. The existence of a CSCO in A is obvious since for x e A? (x * ye), if H.(x) is

not maximal abelian, it is contained in a maximal abelian Von Neumann Algebra [12], which, by a theorem

due to Von Neumann [24], is generated by a single element of As (see, also, [22] Additionally, through

this theorem, if C »{c } is a CSCO, there exists an element e e As such that R(c) Ä(C).

The last statement should be contrasted with the usual examples of CSCO (see, e.g., [1,5,7,9] in

which the number of used observables in order to form a CSCO is generally greater than one (in fact, the

number of observables is usually taken equal to the number of degrees of freedom). For instance, in

nonrelativistic quantum mechanics, for a spinless particle in three dimensions; the set of the three
components of the position operator {q ,<\ ,q } is a CSCO in the usual scheme [1,5,7,9] (these

observables are unbounded; but this is irrelevant for the present discussion). However, a single density

matrix, with simple spectrum, is also a CSCO. Moreover, Von Neumann's theorem [22] establishes that
there exists a single observable c such that the spectral families of a ,q and q are functions of c A

similar discussion can be addressed for systems with an arbitrary number of degrees of freedom.

Even though there is not a priory connection between degrees of freedom and the number of

observables in a CSCO, it is more natural to choose the number of observables in a CSCO to be equal to

the number of degrees of freedom, since in that way the physical interpretation can be made clearer.

Although Von Neumann's theorem is a remarkable resuit, it is not physically very useful. In general,

we have to start from an arbitrary physical observable and construct a CSCO with it.

11.4. Theorem. Let c-j SAS with c-j * y e If c-| is not a CSCO, there exists a PSO, c2 e »3s,

such that the set {c-|, c^ is a CSCO.

Proof. If c-| is a PSO, the proof is trivial. Then, let us suppose that c<| is not a PSO.

(i) First let us show that there exists a set of mutually orthogonal projectors {pn}n=i, such that

2) pn e, and for each pn there exists Çn e H such that pn is the projection corresponding to the
n=1

closed subspace pR.(c-|) S|n].
Infact, if D ¦ R(c-|); let us form the closed subspace [D ^]- M1 where |1 eH.and 11^11 1.

Since [D §.,] * Jt, we have that there exists |2 e K, ll%2ll 1, suchthat [D §2l ¦ ^2 is orthogonal

to M.|. Let us continue this procedure up to obtain H as a direct sum of subspaces Ma of this kind.

These subspaces will be at most numerable since H is separable. Then, M © Mn. Let pn the projector

corresponding to the closed subspace Mn. The set {pn}n=1 is the searched set of projectors,

(ii) Let us denote the set of all pn, n 1,2,...; by P.

Since Mn reduces D, we have that P C Dc.
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Let us see that R(c, ,P) is maximal abelian. In fact, let % =£ 2'n %n e K. We have that {D^n

(Dpn|}C{tyc.pP)|},Vn, which implies that (for the closure): [D ln ] C [ ft(c., ,P) | ], Vn Since K
© M_, we see that § is a cyclic vector and hence %(ca,T) is maximal abelian (see, e.g., [17], Corollary

n=1 " '

2.9.4).

(iii) Finally, let c2 e As be defined by

2"n pn. (23)

Then, we have that R(c2) R.(P).

Since c1 is not a PSO, and Jl(c1,c2) is maximal abelian, such c2 (being a PSO) cannot bea

CSCO. Therefore, {c,,c2}is a CSCO.

II.5. Discussion. Theorem II.4 is a well known result [1,7] for the case in which c^ is a PSO.

If c-) is not a PSO, Theorem II.4 is a non trivial result, and does not depend on the minimality

assumed in definition 11.1. In fact, independently of the minimality, we have that (the PSO) c2 cannot be a

CSCO, since in this case c1 would be an element of R(c2), and hence a PSO.

Even though our proof is not constructive, it does not mean that this result is practically useless.

Indeed, theorem II.4 is important in practice since it asserts that to any observable c-g which is not a CSCO,

and that is physically relevant, we can adjoint an observable c2, such that they form a CSCO. Furthermore,

it is intuitively clear that a constructive proof of theorem II.4 will depend on the physical system, and perhaps

on the concrete observable, and therefore such a proof is outside the scope of a general framework.

Although we cannot expect in a general setting to extract the physical meaning of c2, the fact that

c2 can be supposed a PSO is of physical interest since the physical interpretation of a PSO could be

easier than the one of an arbitrary observable. For instance, it could be related to a discrete symmetry or a

set of discrete measurements.

Among all the possible sets which are a CSCO, the ones in which the Hamiltonian (or some

bijective bounded function of it) is an element of the set are particularly notable. In fact, in this case all the

elements of the set are constants of motion. For this reason, it could be desirable to start from the

Hamiltonian (or some bijective bounded function of it) and to build with it a CSCO (such construction is

guaranteed by this theorem).

Of course, given an observable cj, we cannot expect the construction of a CSCO with it to be

unique. For instance, the observable q can be completed with a PSO or with {q q }. The non

uniqueness is not a physical disadvantage and is widely used in the applications of elementary quantum

mechanics.
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11.6. Definition. Let C *{c;};e| be a compatible set of observables, for which exists an

orthonormal basis of simultaneous eigenfunctions. Let us associate to each eigenfunction of the basis the

set formed by the eigenvalues of all the elements of C corresponding to the eigenfunction. If this

association is one to one and if such bijection does not hold for any proper subset of C, we shall say that C

is a CSCO in Dirac sense (CSCOD).

Except for the explicit minimality required for C and the fact that the elements of C are bounded,

this is the definition of CSCO introduced by Dirac (see, e.g., [1,7,9]

Let us observe that each element of any CSCOD is a PSO and that the existence of a CSCOD in A
is trivial.

11.7. Theorem. C {c\,~.f>^ is a CSCOD iff C is a CSCO whose elements are PSO.

Proof, (i) If C is a CSCOD, each element of C is a PSO, therefore cr= J X]r'p[r', r=i n.
j=1

Then, to each set (Xj ,...,Xj ,...,x!n'), i j,...,k 0,1,2 ; (taking Xq 0 if this is an eigenvalue of

cr) corresponds a unique (up to a phase) eigenfunction <|>(i,...,j,...,k) with corresponding projector

p(i j,...,k). We have that Y p(i j,...,k) e and that the projectors p(i j k) belong to R(C),
{U.t.k}

hence:
V 1 2"n (|»n (24)

n

where {<|>n} is a reordering of (<|>(i,...,j k)}, is a cyclic vector for R(C).Then, R(C) is maximal abelian (see,

e.g., [17], Corollary 2.9.4.).

(ii) Let C be a CSCO, each element of C being a PSO. Then, the set C has obviously an

orthonormal and complete set of simultaneous eigenfunctions.

Let us suppose that for some set of simultaneous eigenvalues (xf ' X^ ' ¦ X

corresponds several eigenfunctions <|>'s', s 1,2,...; of the orthonormal set. Let us call YI the closed

vector subspace generated by { <|>'s'} (dim M > 1 M reduces C and hence it reduces R.(C). If

b e R(C), then b =f (c-| cn), see, the functional calculus referred in Sec. 1, and

b<t> f(X) «t>; V<t.ett;V6eR(C). (25)

Let \)> bea cyclic vector of R(C)and t|)1 its orthogonal projection on H, and let <|>^ e TI, $¦) *0,
suchthat (<t>.| Tj)^ 0 (such ^ exists since dim M >1).
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Then by (2.5), (ij>, b^) f(X) (\|>,<t>i) f(X) (\|)1, ^) 0, that is (b* ip, ^) 0 V 6 e R(C) and hence

<|)1 0 (since y is cyclic). We see, that we arrive at a contradiction if we suppose that for some X

corresponds several orthonormal eigenfunctions.

(iii) It remains to consider the minimality condition.

If C is a CSCOD, any proper subset of C will have for some set of simultaneous eigenvalues X ¦
(Xj .....X^ several eigenfunctions, which is incompatible with the existence of a cyclic vector [see, (ii)].

Hence no proper subset of C will generate R(C).
If C is a CSCO whose elements are PSO, any proper subset of C is not a CSCO, and hence, it

will not have a cyclic vector. This implies that to some set of simultaneous eigenvalues X, of any proper

subset of C, it corresponds several eigenfunctions of the orthonormal set [since if this is not the case we

can construct a cyclic vector such as (2.4)].

II.8. Note. This theorem has been proved by Jauch [2], for the finite dimensional case. It shows

that definition 11.1 is a natural generalization of the concept of CSCO introduced by Dirac [1]. As a matter of

fact, if C is a compatible set of observables, each one being a PSO, a characteristic of R(C) is that all its

elements are PSO. However, in general (if dim Jt °°), for an arbitrary compatible set of observables, C,

ftp) has elements which are not PSO. Then, if dim K », the set of all CSCOD is a proper subset of the

set of all CSCO.

3. Irreducible sets
111.1. Definition. A set M ¦ {a } _. c As is called an irreducible set of observables

a ael
(ISO), if R(N) A, and no proper subset of N generates A (minimality of the set N

111.2. Note. If a belongs to any ISO, then a *ye; y e R, since A *{o), »**R(e), and the

stated minimality.

Every ISO has at least two elements. Moreover, in every ISO there exist at least two

noncommuting elements. The above comes from the fact that A is not abelian.

Let M C As. Then N is an ISO iff N° R(e), and N minimal (this is, essentially, Schur's

lemma). Also, ifc-j and c2 are two CSCO, then {c-|,c2} is an ISO iff Pipì DR(c2) =R(e).

There exist o-),02 SAS suchthat N ¦ {a-| ,02) is an ISO. This is the content of theorem 2.2. of

[22].

111.3. Note. Let N - {c-|,c2} C »3s, with dimH=2. Then, it is trivial to show that N is an ISO iff

[c1,c2] * o, and that automatically (g-)} and {c2} are CSCO.

Let c-) and c2 be two CSCO's, with [c-j.c^] * o. Then, if dim Jt & 3, {c-|,c2} is not necessarily an

ISO. Let us give a counterexample for A L (C^:
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c1

1 0 0

0 2 0

0 0 3

C2

r o o 1

0 2 0

1 0 0

(3.1)

Let M ¦ {0-1,02} be3" ISO. Then, if dim H a 3, each element of M is not necessarily a CSCO.

Let us give a counterexample for A= L(C ):

»1

1 0 0

0 2 0

0 0 1

°2

0 1 1

1 1 0
1 0 0

(3.2)

an ISO.

III.4. Theorem Let {c-| } bea CSCO. Then, there exists a CSCO, {c2),such that (c-),^} is

1.

Proof. Let us represet c^ by a Jacobi matrix [20]

HI Xi 0

X-) (i2 x2

0 X2 H3

[

(3.3)

where, nn is real and Xn *0, n 1,2,3..

Let us define the matrix a by

1

r~ 1

2 M 0

0
V-2

2 X2

0 0
(^3

2

r- 1

2
0 0

*1
v-z

2
0

0 x2
1^3

2

(3.4)

It is direct to verify, from (3.4), that the commutant of a and a' is R(c). Then, R(a.,o.*) A.
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Wehavethat ci =o + a', and we can define c2«i(a* -a). Then, R(g-|,c2) »3., i.e., {c-(,c2} is

an ISO.

Finally, since c2 is represented by a Jacobi matrix, we have that {c2} is a CSCO (see, [20],

Theorem 7.14).

111.5. Discussion. A well known example that "evokes" theorem III.4, in the standard formulation

of quantum mechanics [10], is the set N {p q } where p and q are the momentum and position

operators for a spinless particle in one dimension (see, the solution of the canonical commutation relations

given in matrix form in [25]). Also, because of the way composite quantum physical systems are

formulated, it follows, from theorem III.4, that we can construct other ISO's by considering tensor products

of Hilbert spaces.
From theorem III.4 it follows that there exists an ISO, N « {c^,c2}, where each element of Nisa

CSCO. Furthermore each element of N can be chosen positive and of trace class (for example, a density

operator). In fact, taking nn=0,n=1,2 and J IX.nl <: °°, we get the result. Let us observe that there exist
n

many sets IN of this type.
The generation of A, wich contains many operators that are not PSO (if dim H °°), by two PSO

(even density operators), should be contrasted with the fact that the abelian algebra generated by a CSCO

which is not a CSCOD, cannot be generated only in terms of PSO.

111.6. Theorem. Let D - («tcJael be a set °* observables. Then, there exists a countable

subset of D which generates R(D).

Proof. If

da / Xdp(ct) (X), a e I, - oo< X<°o, (a5)

is the spectral representation of da, we have that R(D) R({p*a' (X)}).

Let fi {a e R(D) I Hall s 1} be the unit ball of R(D). We have that p(a) (X) e î»; V a e I,

- oo < x < oo. Since H is separable, the strong operator topology on fi is separably metrizable (see, e.g.,

[22]); and hence, the set £ *{p'a'(X)l a e I, -oo<x<°°} is also separably metrizable. Then, there

exists a countable subset of £ which is dense in £ (endowed with the strong operator topology). Let us

denote this countable subset by {p(n)(i)>. Since £ C{p(n) (i)}" and R(£)=R(D), wehavethat
{p(n)(i))cc =RCD).

Since each projector of the countable set (p*n' (i)} is a spectral projection of some observable t£a

eD, we can extract a countable subset of D which generates R(D).

111.7. Corollary.
(i) Let {Cq)^ be a CSCO. Then, the set I is at most countable,

(ii) Let {a-oJael be an ISO. Then the set I is at most countable.
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Proof. The numerability of the set I follows from theorem III.6 and the minimality stated in the

definitions of CSCO and ISO.

III.8. Discussion. From corollary III.7, we see that the extension of Jauch and Misra [4] results to

the case of an uncountable set I, performed by Dormale and Gautrin [6], although interesting from the

mathematical point of view, is unnecessary for the concept of CSCO (since a minimality assumption is

physically important).

¦11.9. Note. In the present paper, the concepts of CSCO and ISO, and the obtained results,

have been formulated in terms of bounded operators acting on a Hilbert space. However, it is

straightforward that all definitions and results can be formulated in an abstract C* algebraic setting (cf. [11]

)•

Also, theorems II.4, II.7, III.4 and III.6 can be reobtained if the set of all self-adjoint operators

(bounded and unbounded) is used as the set of all observables; as it is direct from our proofs and all the

available literature [4-6,9,14,23 ]. The main technical point being that R(o) is well - defined even for a self -

adjoint unbounded operator a.
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