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Quantum Monte Carlo Simulations: Algorithms, Limitations and
Applications

H. De Raedt
University of Groningen

NL 9700 AV Groningen, The Netherlands

Abstract. A survey is given of Quantum Monte Carlo methods currently used to simulate quantum
lattice models. The formalisms employed to construct the simulation algorithms are sketched. The

origin of fundamental (minus sign) problems which limit the applicability of the Quantum Monte
Carlo approach is shown to be a generic feature of the formalisms used to devise the simulation
algorithms. A brief overview of recent new developments is given.

Introduction
The discovery of high Tc materials has increased the interest in applying Monte Carlo methods to
quantum many-body lattice problems. For an extensive review see [1]. The two most prominent
models are the two-dimensional (2D) Hubbard model and S=l/2 Heisenberg model. In the strong-
coupling limit and for a half-filled band, the former reduces to latter [2]. Away from half-filling
but in the strong-coupling limit, the Hubbard model can be approximated by the t — J model
[3]. Within the context of high temperature superconductivity it is more appropiate to study an
extension of the Hubbard model namely the Emery model [4]. For a review of recent developments
on the (extended) Hubbard models see [5,6].

The fact that the 2D (and 3D) Hubbard model has defied accurate determination of various
physical quantities suggests that computer simulation might be an alternative approach to gain
insight into the behavior of one of the simplest models for describing strongly correlated electrons.
However it turns out that the construction of such simulation algorithms pose great challenges as

a number of conceptual and technical problems appear which apparently are difficult to overcome.
Also in this respect the single-band Hubbard model can be considered as the simplest model

offering the full spectrum of computational difficulties. With this in mind I will, in what follows,
discuss various aspects of Quantum Monte Carlo techniques for lattice systems by using the single-
band Hubbard model as the example. Generalizations to other fermionic systems such as extended
Hubbard models [7-13] or the Anderson impurity model [14-18] are usually straightforward although
the practical realizations are not.

Algorithms
Numerical investigations of models of interacting fermions employ either standard diagonalization
techniques or combine the Trotter-Suzuki (path integral) formula and the Metropolis Monte Carlo

(MMC) or Molecular Dynamics (MD) technique to simulate the system. The former approach
yields numericaUy exact results for the ground state and, in those cases where all eigenvalues can
be obtained, the thermodynamic properties. The applicability of the diagonalization technique is

limited by the fact that it requires storage for at least two wave functions. These wavefunctions are

represented as linear combinations of basis states, the number of which grows very fast with the

system size. For instance the number of states of a half-filled 4x4 lattice system is approximately
16 X 107, disregarding reductions due to the use of symmetry. On the other hand it is extremely
valuable as it is the only method capable of generating numerically exact results which other, less

accurate, techniques need to reproduce before they can be applied to larger systems with some
confidence.
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In the simulation approach the quantum statistical problem involving very large matrices is
replaced by a multi-dimensional sum. Techniques based on these ideas include Variational Quantum

Monte Carlo (VQCM) [19], Green Function Monte Carlo (GFMC) [1,20], finite temperature
Quantum Monte Carlo (FTQMC) [1,21], Projector Quantum Monte Carlo (PQMC) [1,21]. If the
integrand is positive, estimators of physical quantities can be obtained by standard importance
sampHng techniques for classical statistical-mechanical problems, such as the MMC method [22]. If
the integrand can become negative severe fundamental difficulties, commonly referred to as "minus
sign" problems, may reduce the usefulness of such importance sampling methods considerably. In
the next section I discuss this important aspect in more detail.

The VQMC method is certainly the most transparent application of importance sampling
concepts to quantum problems. The starting point for any VQMC calculation is a suitable trial wave
function which, in general, depends on a set of variational parameters. Many of the recent VQMC
calculations have been performed for the 2D S=l/2 Heisenberg antiferromagnet, using different
trial wave functions [23-36]. The equivalence between the Heisenberg model and the hard-core
boson problem suggest that a Jastrow type of trial state may be appropriate. Indeed, calculations
show that it leads to the best overall VQMC results. To get insight into the nature of the ground
state, one typically computes spin correlation functions and looks for (off-diagonal) long range order
(OD)LRO by calculating the staggered magnetization. The results, a summary of which can be

found in [1], reveal that the VQMC suffers from a severe drawback: A trial wave function can have

a fairly low energy but nonetheless the correlation functions may differ considerably from those
obtained from the exact ground state.

The GFMC method for lattice problems is yet at the very beginning. Up to now it is only
applicable to models like the Heisenberg model or the related hard-core boson model [37-39], which
have a nodeless ground state wave function. The heart of the GFMC scheme is the well-known

power method [40]. From an almost arbitrary state of the system, the ground-state component is
filtered out by repeated application of the matrix G 1 — t(H —u>) where H is the hamiltonian and
ui is a good guess for the ground state energy. The notion of Green Function stems from the fact that
G can be viewed as the series expansion of the imaginary time evolution operator exp(—t[H — w])
or likewise of the propagator 1/(1 + r[H — lj]) for small "time steps" r. The iteration scheme

converges towards the ground state if the imaginary time step obeys r < 2/(Emax — w) where Emax
is the spectral radius of H. For many-body problems the spectral radius width generally increases

proportionally to N. This implies an increasing number of iterations with increasing system size.

A further and vital element of the GFMC scheme traces back to von Neumann and Ulam [41-43]
who proposed the idea to sample the inverse of a matrix by random walks on the index-space of the
matrix. One constructs a random walk (Markov chain) on the space of configurations, using the
matrix elements of the (approximation to) the Green function to define transition probabilities. In
practice it is more economical and also more instructive to follow a whole set of walkers in parallel.
Hetherington [44] has nicely iUustrated the ideas and shortcomings of the GFMC scheme in terms of
(2x2) matrices. He showed the variance of the ground state energy increases exponentially with the
number of iterations and decreases only by the usual 1/-/M with a large number of samples. The
variance can be reduced by introducing a guiding function, essentially a trial wave function, thereby
making the effective Green function "look more like" a stochastic matrix. Additional problems with
this approach are that
1) data are strongly correlated and very careful evaluation of the statistical error is required,
otherwise the obtained error bars are much too small,
2) estimates of quantities other than the energy can be inaccurate as it depends on a trial wave
function,
3) the method as it stands is only applicable to systems with a real and nodeless ground state wave
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function. It is therefore not yet useful for fermionic problems.
Up to now the GFMC method for lattice problems has exclusively been applied to quantum spin
problems [37-39,45-47]. Finally it should be mentioned that there is a finite temperature version
of this method as well, namely the Handscomb algorithm [48]. This method is particularly geared
for the Heisenberg model in that it exploits the spin-1/2 algebra. It has no finite time-step errors.
The method has been generalized to the antiferromagnetic Heisenberg model [49-51].

The FTQMC method can be used to study a wide variety of quantum systems. For a review
of earlier applications to lattice problems see [52,53]. Recent applications to systems of interacting
fermions proceed by eliminating from the partition function, the fermionic degrees of freedom by

introducing auxiliary (bosonic) fields. For fermions in continuum space, this leads to the Siegert
representation of the grand-canonical partition function [54]. The key elements of deriving this
expression are the Feynman path-integral representation for the partition function and the identities
for Gaussian integrals to "uncomplete" the square, i.e. to perform the Hubbard Stratonovich (HS)
transformation. As the effective fermion action is now a quadratic form of the fermion operators,
the trace over the fermions can be carried out analytically. As the auxiliary fields enter Siegert's
representation as a consequence of the use a mathematical identity these fields have no proper
physical interpretation. Siegert's representation is, at least in principle, amenable to numerical
treatment as the integration of the fields can be performed by simulation (e.g. Monte Carlo)
methods. The manipulations that transformed the continuum fermion problem into a problem
in terms of real numbers can be carried over to lattice fermions without much effort. Instead of
starting from the Feynman path integral, one has to invoke the Trotter-Suzuki formula to rewrite
the partition function such that the HS transformation can be applied. For some models, notably
the Hubbard model, other types of fields may be used as well. In particular, Hirsch [55-57] has

introduced a discrete HS transformation in terms of Ising spins. The resulting Ising action has

much less phase space than the continuous Gaussian action and is more convenient to sample. A
comparative study of the discrete and continuous Hubbard-Stratonovich (HS) transformation has
been performed in ref. [58], the conclusion being that the discrete version is superior.

By eHminating the fermionic degrees of freedom in favor of Gaussian or Ising fields, the partition
function has been brought into a form suitable for numerical calculations, i.e. it has been expressed

entirely in terms of real numbers. The computation time of such algorithms increases with the cube
of the system size L and linearly with the number of time-slices m. Moreover, the HS transformation
has replaced the many-body Hamiltonian by a one particle Hamiltonian with stochastical fields.
The dimension of the involved matrices is hereby drastically reduced from (N) x (N) (N being
the number of spin up and down electrons) to merely L X L. The number of auxiliary fields

(proportional to mL) is large and statistical methods have to be invoked to obtain estimates of
the relevant quantities. The importance sampling idea is well suited for this task. Unfortunately,
a straightforward application of Monte Carlo or Molecular Dynamics methods leads to severe and

partly fundamental problems stemming from the quantum nature of the problem. A detailed
discussion of these difficulties is relegated to the next section.

The key idea of the (PQMC) method is similar to that of the GFMC algorithm, i.e to filter
out the ground state component from a proper trial function by applying an appropriate functional
of the Hamiltonian. The numerical realization of this idea, however, is completely different. The
PQMC technique employs exp(-ßH) as a filter and samples the matrix elements of this operator
whereas in the GFMC scheme it is the wave function which is being sampled. To fix the notation
we denote the eigenvalues and corresponding eigenvectors of E by Eo < Ei < E2 < ¦ ¦ ¦ and \</>o),

\4>i), ¦ ¦ respectively. Taking an arbitrary state \ip) it follows from lim^-.oo e~l3H\ìp)/\/{il>\e~fìfl\ìl>)
I<M(iAd|V,)/I(i£o|V')I tnat projection using exp(-ßH) will yield the ground state provided that i)
the initial state |^>) is not orthogonal to |^>0) and ii) we let ß —> oo. Thereby we have tactically
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assumed that the ground state is non-degenerate (i.e. Eo < Ei). If the ground-state is nearly
degenerate, the convergence of exp(-ßH)\ip) to the true ground-state as a function of ß will be
slow [59], which is likewise true for the FTQMC scheme. The PQMC scheme can be used to obtain
the lowest energy for a given symmetry and allows therefore the determination of certain excitation
energies as well [59]. This idea has actually been exploited to compute the low-lying excitation
spectrum of the ID Heisenberg model [60].

To put this projector scheme into practice, a method for computing exp(—ßH)\xj>) or more
precisely, matrix elements (<p\ exp(-ßH)\ip) has to be devised [61,62]. As in the FTQMC approach
the basic ingredients of such an algorithm are the Trotter-Suzuki formula and the elimination
of interaction terms in favor of auxiliary fields. These ideas have been applied to the Hubbard
model and generalizations of it [63-67]. As in the FTQMC approach one has to resort to Monte
Carlo like methods to sum over all configurations of auxiliary fields, thereby encountering the same
fundamental difficulties. Nevertheless it turns out that this method yields reliable results for a
restricted range of model parameters.

None of the quantum simulation methods has provided evidence that the ground state of the
2D single-band Hubbard model or the three-band (Emery) model is superconducting. To examine
the interplay of the strong on-site repulsion and a convential pairing mechanism, interaction of the
electrons with local (anharmonic) modes has been included. Not unexpectedly, off-diagonal longe

range order was found to occur for reasonable (from the point of view of the high-Tc materials)
values of the model parameters, e.g. with strong on-site repulsion. Although predictable from
handwaving theoretical arguments, the fact that simulations can distinguish between a normal and
a superconducting state is a non-trivial result. For the models studied this is mainly due to the
short (compared to the size of the lattice) coherence length of the pairs that form the condensate.

Finally some general comments on the Quantum Monte Carlo approach to lattice fermion
systems are in order. First of all one should keep in mind that in general none of the algorithms
is exact in the sense that even in principle it is not obvious that an infinitly long simulation run
will yield the correct answer. The fundamental reason is that the probability distribution used to
generate the samples is, with a few exceptions, only up to a sign equal to the integrand that appears
in the expression for the partition or projector function. Secondly, even if one has succeeded in
obtaining reHable estimates for some physical quantities the computational efforts have been such
that one is limited to rather small lattices. As shown in ref.[68] pronounced size effects are present,
making even a qualitative interpretation of simulation data very difficult.

Fundamental Problem

All currently used QMC schemes for simulating fermions (with the exception of some variational
methods) face the problem of having to compute the action of exp(-ßH) on an arbitrary wavefunction

\ip >, representing a state of the many-body system. Unless one is in the exceptional situation
that it is possible to solve the eigenvalue problem for the model Hamiltonian H, there does not yet
exists a direct algorithm for calculating the answer. In addition the number of basis states of the
many-particle Hilbert space usually is so large that the amount of storage required to represent a
state of the system exhausts the capacity of present-day supercomputers. Hence a practical QMC
method has to make use of matrix elements only, not of an explicit representation in terms of all
the basis states.

An important step in the construction of such a scheme is to reformulate the matrix-valued
problem as a number-valued problem, i.e. to remove the limitations due to storage requirements
at the cost of CPU time. The standard procedure to accomplish this it to invoke the Trotter-
Suzuki formula or, more generally to approximate exp(-ßH) by a product formula. Taking matrix
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elements, a necessary condition for the product to be positive is that each factor appearing in the

product is positive. The necessary and sufficient condition for (<^|e_'3H|$) to be positive for all
ß > 0 is (^>|.ff |$) < 0 for all <p ^ $ or, in other words, all nondiagonal matrix elements of H have

to be negative [69]. Although this theorem predicts when a particular factor may become negative,
it may still happen that the total number of negative factors (for a specific set of t/>;'s) is even such

that the contribution is positive. It seems difficult to specify the necessary conditions for having
negative contributions but experience learns that it is wise to adopt the point of view that if one
of the factors can become negative (according to the conditions of the above theorem), one should
expect to encounter negative contributions.

At this point, it is worthwhile to ask the question why negative contributions should bother
us at all. In fact they only create difficulties because the sum representing the partition or Green
function or projector operator involving a (very) large number of terms, can only be performed
by importance sampling methods. In these methods the product of matrix elements enters the

expression for probability determining the importance of a particular state. Clearly it is impossible
to directly use the product of matrix elements to compute this probability if the former can take

negative values. To summarize: Positive nondiagonal matrix elements ol H lead to negative matrix
elements. In most cases this results in negative values of the weight of a particular configuration
ipi. In such cases the essential feature of importance sampling, nameiy the variance-reduction, is

lost.

Novel Method
In an attempt to avoid running into the fundamental difficulties from which all current Quantum
Monte Carlo methods suffer, a new method has recently been proposed [70]. It is based on the

following considerations. As the exact ground state of a fermion system of reasonable size is a

superposition of many (say > 106) basis states, one can consider the model as being unsolvable
if all these basis states are needed to obtain a good approximation to the ground state. As in all
previous work in this field, one makes the crucial assumption that an accurate representation of
the ground state can be constructed by carefuily selecting a limited set of basis states which are
"important" [71]. For example, in QMC work one typically samples of the order of 105 states, most
of which are not linearly independent.

Instead of Markov matrices the new method employs unitary (orthogonal in practice) matrices
to perform the walk in Hilbert space. From theoretical viewpoint it is yet another procedure to
separate the ground state from the rest of the spectrum, just as for instance the (inverse) power
method or the Lanczos scheme. There is considerable similarity of between this scheme and Jacobi
method for diagonalizing a real symmetric matrix. The main difference is that one concentrates on
the smallest eigenvalue (one could as well concentrate on the largest eigenvalue but from physical
point of view this is less interesting). This has important practical implications as it allows one to
handle very large matrices without having to store them. What is required is that there exists an
economical procedure to calculate an arbitrary matrix element of the Hamiltonian. The method
has been applied to the 2D single-band Hubbard model [70]. For closed shell systems it reproduces
all know exact results for lattices up to 4 X 4 with considerable less computational effort than
required by the PQMC method [70].

Conclusion

Quantum Monte Carlo simulations have undoubtedly added to the present understanding of the
behavior of strongly interacting quantum lattice systems. However, most of the QMC results are
not numerically exact and the applicability is limited to a fairly small set of models. The fact that
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in the last few years there has been a fast growing activity in this field will hopefully increase the
usefullnes of the QMC approach to lattice problems.
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