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Abstract

The article is concerned with the vector form factors of the weak current
of semileptonic decays of hyperons. Our main interest is in the asymmetry of
the form factor F1(0); for a precise determination of the Kobayashi-Maskawa
matrix element V,,; the asymmetry has to be taken into account. In addition
we look at the form factor F3(0), which is related to the baryon magnetic mo-
ments. Using chiral perturbation theory we analyse the leading singularities
of these form factors.
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Introduction

The information concerning the matrix element V,, of the Kobayashi-Maskawa
matrix derives from semileptonic decays of K-mesons and of hyperons. The main
problem in the determination of V,, from the experimental information on these
decays stems from the fact that the transition amplitude involves a matrix element
of the weak current between hadronic states, which cannot be calculated ab initio
with presently known techniques.

In the case of the decays K — wlv, the axial current does not contribute. The
meson matrix element of the vector current involves two form factors f;(¢?), f-(¢*).
The contribution generated by f_ is proportional to the lepton mass. In the elec-
tronic decay channel this contribution is therefore negligibly small. Furthermore,
the ¢*-dependence of the form factor f, can be determined experimentally on the
basis of the Dalitz plot distribution. With this information, the data on the decays
K* — m%%ty, and K; — n~e*v, allow one to very accurately determine the quan-
tities |V, - ff+”°(0)| and |V, - f£2™ (0)]. To extract the value of |V,,| from these
quantities, theoretical information concerning the size of the meson form factors
at zero momentum transfer is indispensable.

In the theoretical limit in which the quark masses m,,my4, m, are set equal,
the vector charge is conserved and the form factor f,(0) reduces to a Clebsch-
Gordan coefficient. The Ademollo-Gatto theorem [1] asserts that the asymmetries
in f,(0) generated by the quark mass differences are small, of order (m, — )%
m denotes the mean mass of the up and down quark. As pointed out by Li and
Pagels [24], the coefficient of (m, — 7)? is however singular in the chiral limit
(my,mg,ms; — 0). Since the physical quark masses are small, the occurrence of
a singularity at m, = 0 may imply that the form factor f.(0) contains sizeable
asymmetries. The problem is analysed in detail in [25].

The main subject of the present article is the extension of this analysis to the
baryon matrix elements of the weak current. These matrix elements play a crucial
role in the extraction of V,,, from the decays

YT o ner, = = Ae7 7,
2" = X%, A — peT v, .
In these decays, both the vector and axialvector current

_ AP
Vup = q’YI-"?
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contribute to the transition amplitude. Denoting the one-particle states by |[BF;p >
where P is an octet label, we have

P Q@ PQR FPQR( 2)
, p 7o S _ -2 /s
<BPVEOIBH > = alp) (FION e + i o,
T SR P
MP+M
P PQR,; 2 PQR( 2) 5
<BRAROIE%Y > = 1) (GIONnr + i o

G3* (¢ s

i i
+M M, ’YQ)U(P)

Z’ v
g=F=p o¥= 5[7“,7 ].

The form factors F3(g®) and Gs(¢®) generate negligibly small contributions pro-
portional to the electron mass. To a very high degree of accuracy the semileptonic
hyperon decays are therefore described by the four functions Fy(¢?), F3(¢?), G1(¢%),
G1(q?), rather than by a single function f,(¢?) as in the mesonic case. Accordingly
the analysis of the data is considerably more complex.

Since the theoretical information about the axialvector form factors G, G, is
rather crude, it is doubtful whether it makes sense to use this information in the
analysis, aimed at a measurement of V,, at the 1% — 2% level of accuracy. Both
the relative magnitude of the form factors and their dependence on ¢? manifest
themselves in the angular distribution of the decay. Omne can therefore exploit
the experimental information on this distribution to fix the decay rate in terms
of a single constant, which may be identified with the value of the form factor
Fi(¢*) at ¢* = 0. The data on the various baryon decays therefore allow one
to measure the quantities |V, - F{'P(0)|, |Vis - FZ ™(0)| etc. without invoking
questionable theoretical models. The essential theoretical information which is
needed to determine |V,,| is thus the form factor Fy(0). As it is the case with
f+(0), the Ademollo-Gatto theorem suppresses the asymmetries in F;(0). The
singularities which occur in the chiral limit may however enhance the asymmetry
substantially. In the following, we analyse the structure of these singularities
in detail. We will present our conclusions concerning the numerical size of the
asymmetries at the end of this work. The method allows us at the same time to
analyse the asymmetries in the form factor F3(0), related to the baryon magnetic
moments.

Our analysis is based on chiral perturbation theory, i. e. on an expan-
sion of the current matrix elements in powers of the momenta and of the quark
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masses m,,my,M,. In the chiral limit, the strong interaction is invariant under
SU(3) x SU(3) flavour (chiral) transformations. V, and A, are the conserved
currents of this symmetry. The symmetry is implemented on the particle states
in a Nambu-Goldstone realization. The charges of the vector current leave the
vacuum invariant; the charges of the axialvector current spontaneously break the
symmetry of the vacuum. The corresponding Goldstone bosons are identified with
the lightest hadrons — the pseudoscalar mesons. In the real world the masses of
the light quarks do not vanish, but are small. The currents are not conserved,;
instead one finds e.g.
Ou(uy"s) = i(m, — m,)us

A, (v ~*d) = i(m, + my)uy’d.

One is thus dealing with an approximate symmetry of the strong interaction with
the quark masses as the symmetry breaking parameters.

The first ideas how to deal with an approximate symmetry date back to Gell-
Mann [18]. Later Fubini et al. [13] introduced the current algebra, which assumes
that at equal times the currents form elements of the Lie algebra of the symmetry
group. Together with PCAC (partially conserved axialvector current) it was used
to calculate current matrix elements. A different approach has been developed
by Glashow and Weinberg [19], who derived exact Ward identities for the Green’s
functions and then used pole dominance to obtain quantitative results. In both
methods it is difficult to control the approximations. Dashen and Weinstein [11,12]
pointed out that these two approaches are equivalent to a perturbative expansion
in the small symmetry breaking parameter - the quark mass (chiral perturbation
theory). Since the theory contains massless Goldstone bosons in the symmetric
limit, the expansion in the quark mass involves nonanalytic pieces as was shown by
Li and Pagels [24]. A consistent framework for chiral perturbation theory was given
by Langacker and Pagels [22]. As a reference for further details we recommend
the excellent review article of Pagels [28].

Weinberg [34] recognized that chiral perturbation theory is equivalent to the
perturbation expansion of an effective chiral Lagrangian theory. Using the effective
Lagangian approach, Gasser and Leutwyler [15,16,17] coupled the quark currents
to external fields. This framework is the most convenient one to calculate Green’s
functions and S-matrix elements. It has been successfully applied to various meson
matrix elements and recently also to m — N scattering. Here we use this technique
to investigate the leading corrections of the symmetric limit for the form factors
F, and F, associated with the baryon matrix elements of the vector current. The
calculation has been worked out up to one loop in an effective baryon meson theory.

The organization of this article is as follows. In the first chapter we relate the
decay rate and the magnetic moment to the form factors. A description of the
framework and a construction of the effective baryon meson Lagrangian is given
in the following two chapters. We are concerned with the analytic expressions of
the one loop diagrams in chapter 4 using the effective Lagrangian to lowest order.
The next chapter is devoted to the wave function and mass renormalization of the
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baryons. In chapter 6 we investigate the combinatorics of the contributions to a
given physical process. In the last chapter we use approximations of the analytic
expressions of the one loop diagrams in a numerical analysis. We finish the work
with the conlusions. Appendix A is devoted to the conventions and notations
used in this work. The last two appendices contain the list of counterterms of the
effective Lagrangian and the analytic expressions of the one loop diagrams.
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Chapter 1

Decay Rates and Magnetic
Moments

1.1 Decay rates of semileptonic processes
We consider semileptonic processes of the form
BB +e+r,,

where B, B’ denote baryons, e the electron and 7, the electron-antineutrino. The

specific decays we are interested in are listed in the introduction. With the nor-

malization condition of fermion states of appendix A, the decay rate I' for such a
process is given by [3,27]

i — 1 du(p)d d 2m)i6? ! i

= w(p') du(pe) dp(p,)(27)*6%(p — p' — pe — pu)3

2FEg 2

> I,

spins
where 7
p
d =
HP) = ryes,)

Since the momentum transfer ¢ in these processes is small compared to My, the
weak interaction part of the Standard model reduces to the Fermi theory [10,26].
The radiative corrections due to the electromagnetic interaction can be treated

perturbatively [31,30]. In the absence of radiative corrections the S-matrix element
T factorizes into a leptonic and a hadronic matrix element

Gr ,
d = ﬁ < BlHulB > - < llL“IV] >
with
L, =&y (l—7")ve

H, =V,uy,(1- 75)d + Vasty,.(1 — T*)s.
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Here G is the Fermi constant and V4, V,, denote the elements of the Kobayashi-
Maskawa matrix. The leptonic matrix element is known explicitly

<Ly >= te(pe)yu(1 — 75)”:/(1’»') .

The hadronic matrix element is parametrized by the form factors F; and G; intro-
duced in the introduction.

1.2 Magnetic moments

The magnetic moment u measures the response of a particle to an applied magnetic
field. In order to derive a relation between the magnetic moment and the form
factors, we look at the baryon matrix elements of the electromagnetic current j,.
They are parametrized in analogy to the weak current matrix elements

P -p Q. 7 — PQ/ 2\ _pu . F2PQ(q2) py
< B%pls*(0)|B™;p" > = a(p) | Fy (¢ +i—

MP+MQU e
F;Q(qz) N /
-3 M/ 1.1
+MP+MQq up) ( )
with 3 g
C o= av. —()\3 --—H/\S 5 1.2
Iu = Dhuz (A +\/g )q (1.2)

A comparison of the nonrelativistic limit of the right hand side with the Pauli
equation leads to the desired formula [20]. With the conventions used in equation
(1.1) to define the form factors we find

o - B - FEO)

1.3

The form factors have a direct physical interpretation, e.g. Fy(0) is the electric
charge, F{(0) determines the charge radius of the particle and F5(0) is the anoma-
lous magnetic moment of the baryon.

The electromagnetic current as well as the weak vector and axial vector current
are expressed in terms of quark fields. The baryons are bound states of quarks.
Until now there exists no prescription of the bound states in terms of quarks within
QCD. There is thus no simple way to compute baryon matrix elements. Moreover
we are interested in processes with small momentum transfer. Since QCD is an
asymptotically free theory, the coupling of the quarks and gluons is strong in the
low energy region. A perturbative approach, as it is used e.g. in deep inelastic
scattering of nucleons, is therefore not possible.

There exist two fundamentally different approaches to examine the form fac-
tors. The first one uses a phenomenological description of the baryons based on
the naive quark model [14]. It introduces wave functions for the baryon states
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in analogy to a description of the hydrogen atom. The free parameters which
specify the wave functions have to be fixed by experiment. Having expressed the
baryons in term of quarks an evaluation of the baryon matrix elements becomes
possible. With this approach one can obtain only rough estimates of the asym-
metry of the form factors. It does not have the accuracy needed to determine the
Kobayashi-Maskawa matrix element V.

The other approach exploits only the symmetry properties of the strong in-
teraction. It is mot based on a phenomenological description and on additional
asumptions. As discussed in the introduction an expansion in the quark mass
can be set up (chiral perturbation theory). Using this approach we are able to
determine the asymmetry of the form factor F;(0) to a high accuracy. In the next
chapter we discuss how one can obtain a low energy representation of the form
factors.
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Chapter 2

Exploiting Chiral Symmetry

2.1 Vacuum transition amplitude

Before investigating the baryon-baryon transition amplitude, we first look at the
vacuum-vacuum transition amplitude in the presence of external fields

e:’Z[b,a,s,p] =< Ooutioin >u,a,s,p 3 (21)
which is based on the Lagrangian

L= Egcp+§(x)'r“vu(w)q(-’v)+q‘(x)757“au(w)q(fc)—q‘(w)S(w)q(w)+iq‘(w)75p($)<2((2$)2)-

£90p = -;?trc(c:w(w)GW(m)) + §(@)ir*(0, — iGu(z))a(z) ,

where G, is the gluon field and G,, is the corresponding fieldstrength tensor;
tr. denotes the trace over the SU(3) colour group. In the following we restrict
ourselves to the SU(3) flavour group. The external fields v,(z), a.(z), s(z), p(z)
are coupled to the vector, axialvector, scalar, and pseudoscalar current of the
quarks respectively. They are 3 x 3 hermitean, colour neutral matrices in flavour
space. We are only interested in the octet part of the external fields v,,a,,p and
therefore put tr(v,) = tr(v,) = tr(p) = 0. The quark mass matrix M

My
M = my
m

is included in the scalar field s(x). Thus Lf¢p is the QCD Lagrangian with three
massless quark flavours.

The functional Z generates the Green’s functions of the quark currents. Their
low energy structure has been studied extensively by Gasser and Leutwyler [16,17].
The path integral representation of Z is given by

giZann] _ f DG, DD e /4 £@aCuivmsn) (2.3)

11
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The Lagrangian £ is invariant with respect to local SU(3) x SU(3) flavour
transformations (chiral transformations), if the quark fields and the external fields
transform as follows:

gr(z) = Vr(z)gr(z)

q1(z) Vi(z) qi(z)
v (2) +aj(z) = Va(z)(vi(z)+ au(2)) Vi(z) + iVa(z)8,Vi(=)
vi(z) —ay(z) = Vi(e)(vu(z) — au(2)) Vi(z) + iVi(2)d.V{(2)
s'(z)+ip'(z) = Va(s(z)+ip(z) V), (2.4)

where Vg, Vi, € SU(3) and where gr = (1 + ¥5)¢, 4L = 7(1 — 75)q denotes the
right- and left-handed component of the quark field respectively. However the
generating functional Z(v,a,s,p) is not invariant under the full group of chiral
transformations; the quantization leads to chiral anomalies. The general structure
of the anomalies has been given by Bardeen and by Wess and Zumino [2,35]. The
generating functional can be split into two pieces

Z[v,a,$,p] = Zanom[v, @, $, 0] + Zinu[v, a,8,P] ,

where the anomalous part Z,,.m is known explicitly. What has to be done 1s to
find a representation of the invariant part Z,,.

Since the momenta occuring in the physical processes are small, we need to
know the Green’s functions or the corresponding generating functional only for
small momenta compared to the scale of the theory, which is of the order of 1 Gev.
Expanding the Green’s function in powers of the external momenta amounts to
expanding the generating functional Z in powers of the derivatives of the external
fields. One might therefore expect Z to be a polynomial in the external fields and
derivatives thereof. The low energy expansion of the Green’s functions is, however,
not a Taylor expansion; chiral symmmetry is spontoneously broken by the vacuum
of QCD, the Goldstone bosons being identified with the mesons. The Goldstone
bosons generate poles at ¢ = 0 in the chiral limit or at ¢ = M3, .. = O(M), if
the quark masses are not exactly zero. This leads to nonlocal terms in Z.

The low energy expansion involves two small parameters: the momentum ¢
and the quark masses M. In order to find the low energy behaviour of the Green’s
functions one has to expand them both in powers of ¢ and M for fixed ratio M /¢
Effective Lagrangians form a convenient method to carry out the expansion for the
generating functional coherently [11,12]. One can show that Z has the following
low energy representation

ez‘Z[u,a,.‘s,p] s ]DUeifdix Lpres([Usv,a,8,p) , (25)

where Lpr., is an effective meson theory. The low energy expansion is then ob-
tainable from a perturbative expansion of the effective meson field theory.
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In the effective theory the mesons are collected in a unitary 3 x 3 matrix U
UlU=1 detU =1, | (2.6)
which transforms linearly under chiral transformations
U'=VRUV] Vg,V € SU®3). (2.7)
In what follows we parametrize U as follows
U=¢e?, (2.8)

where ® is a traceless, hermitean 3 x 3 matrix in flavour space(see appendix A).
The choice of a linear representation is not the only possible one, however, most
convenient.

2.2 Baryon transition amplitude

In order to analyze the low energy structure of the baryon form factors, we extent
the effective Lagrangrian to

£=£Mes +£HM(B,B,U;’U,(I,S,}J) : (29)

Lages 1s the effective meson Lagrangian; it has already been constructed by Gasser
and Leutwyler [16,17]. Lgas describes the effective baryon-meson interaction. We
collect the baryons in a 3 x 3 traceless hermitean matrix B, transforming nonlin-
early under chiral transformations (see appendix A) [9,33,4]

B' = RBR'. (2.10)
R(VL,Vg,U) is a nonlinear function of the meson field U and Vy, Vg, defined by
u' = VauR! = RuV} , (2.11)

where
U=u? U'=u?=VUV/.

The baryon field can be expanded in terms of the Gell-Mann matrices A*
1 1
V2 V2

Since we are only interested in transitions involving at most two baryons, we
restrict ourselves to terms in Ly, which are bilinear in the baryon field B. The
Lagrangian Ly can now be brought to a convenient form by extracting the baryon
fields explicitly '

B=-—=B)* B=-—=B\. (2.12)

Ly = B*D*B® . (2.13)

13



14

Krause H.P.A.

D*(U;v,a,s,p) is a differential operator containing only the meson field U and
the external fields; an outline is given in the next chapter.
Adding external Grassmann sources for the baryon fields to £

C=£M63+£HM+ﬁuBa+Ba 3 )
we consider the vacuum transition amplitude [15]

< Ooutloin >u,a’3,pm’,—] = eiz(v,a.s,p;n'ﬁ)
= /DU DB DB ¢ [ ' £(B.B.U;v,a,5.0m,7)
/'DUeifd“x Lies —ifd4zfd4y ﬁa(w)gab(w‘y)nb(y)det(p) '
(2.14)

Here S$°(z,y|U;v,a,s,p) is the baryon propagator in the presence of the meson
fields and external fields; it is the inverse of the differential operator D

Dacscb = 64(.’1? . y)é‘a,b )

The generating functional Z coincides with the generating functional Z introduced
earlier, when n = 7 = 0 and detD = 1. By definition, the second derivative of Z
coincides with the the baryon propagator § in the presence of external fields

6 )

WWZ ly=nzo - (2.15)

S(z,ylv,a,s,p) =

Note the difference between & and S, defined above, where S also depends on the
meson field. The Fourier transform of S,

S(p#lv,a,5,p) = [ dts [ dy 7S (a,ylv, a5, p) (2.16)

has poles at p* = M3, p” = Mj. Mp and Mg denotes the mass of the incoming and
outgoing baryon respectively. The residue is proportional to the baryon-baryon
transition amplitude F(p, p'|v, a, s, p) in the presence of external fields [15]

f(pa p'Iv,a,s,p) = pOUt Ip:n >v,a,s,p - (217)

In the introduction and the first chapter we have introduced the baryon matrix el-
ements of the vector and axialvector currents. The relation between the amplitude
F and these matrix elements is given by

_ Al ; )
<pla(=)r" a2l > = Z.&)u(m)}‘lmo
"
_ AP ; 6
<P|‘I(33)‘75’Y”“2*Q(33)|P > = mfh:o : (2.18)
m



Vol.

63, 1990 Krause

The knowledge of the low energy behaviour of Z or § can thus be used to obtain
an expression for the amplitude F and the form factors for small momenta. The
path integral representation of Z in terms of an effective Lagrangian allows one to
determine the low energy structure of Z.

When one is dealing exclusively with mesons, the low energy expansion of Z
reduces to the loop expansion of the effective meson theory. In this case n—loop
contributions are suppressed by a factor of O(¢*"). For a proof of this statement
see Weinberg [32]. In the presence of baryons the situation is somewhat different.
The mass of the baryons is of O(1) and goes to a constant Mp in the chiral limit, as
we will see later. Contributions from chiral loops therefore contain a piece, which
is not suppressed. However loops containing only fermions as well as higher order
loops will not contribute to the leading singularities. For a more detailed discussion
we refer to the thesis [21]. Since we are interested in the leading singularities,
we restrict ourselves to one loop diagrams, omitting closed baryon loops. This
amounts to the approximation detD = 1 in the path integral representation of Z
(no integration over B, B).

2.3 Baryon propagator

In the last section we have given the path integral representation of Z. This also

induces a path integral representation for the baryon propagator S. In this section

we give another representation of § in terms of quantized fields, which will be used

in our calculations. We decompose the effective Lagrangian into three pieces
E=L. +Lh  * L

Hyp

where LY., is the Lagrangian of a free scalar field, LY, is the Lagrangian of a
free Dirac spinor field and L;,; describes the interaction between the scalar field
(mesons) and the spinor field (baryons). L, is a function of B, B, U and the
external fields; B, B and U have been introduced in the last two sections. We
quantize the theory in the standard manner: the baryon field B and the meson
field U are quantized according to the standard rules for spin 1/2 and spin 0
particles respectively acting on the Hilbert space of states, which is generated by
a Lorentz invariant vacuum state |0>. A representation of § is now given by the
Gell-Mann-Low formula [5]

S = <0|TB*(z)By)|0 >
= OtanB:tn(m)Bfn(y)etfd4$ f.int(Bianin-Uin;vaa’svp)|01.n >cannected .
(2.19)

This representation of S will be used later to obtain a low energy representation
of the baryon-baryon transition amplitude F and the form factors. In order to be
able to use this representation we first have to construct the effective baryon-meson
Lagrangian Lgpr. This will be done in the next chapter.

15
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Chapter 3

Construction of the Effective
Chiral Lagrangian

3.1 Field content

In the last chapter we have shown how an effective Lagrangian can be used to
derive the low energy behaviour of the baryon-baryon transition amplitude. There
we introduced a meson field U, a baryon field B and a set of external fields. Now
we examine these fields in more detail. In the effective meson theory the meson -
field U is described by a unitary 3 x 3 matrix in flavour space

UlU=1 detU=1, (3.1)

transforming linearly under chiral transformations
U'=VeUV} Vg, Vi € SU(3). (3.2)
The covariant derivative of U in the linear representation, V,, is given by [16,17]

V.U = 8,U—iFfU +iUFE

. ol 33
V“Uf = auUf-}—iUfFf—iFfo, 5]
where .
F*r = 9, 4+a
p p T e (3.4)
F‘f = vu-a#.

The baryon field transforms however nonlinearly under chiral transformations (see
equation 2.10). When constructing the effective Lagrangian, it turns out to be
more convenient to work with fields, that have the same transformation law; we
will use only nonlinearly transforming fields. In order to achieve this, we have to
introduce meson and external fields transforming like B. The mesons are collectsd
in the field A, [16,17]

A, = ul(V 0!

= —%u(VuU*)u , (3.5)
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where U = u?. One can indeed show that
Al = RA“RT i (3.6)
We first define a set of fields related to the external fields v, a.

Fﬁz = auﬁf“auﬁf“z[-?fs?f] (37)
FL — gL _ g Fb —iFb B '

F’ﬂ'L denotes the field strength tensor corresponding to the fields ﬁf’L introduced
above. We further define

R __ t R
P = wBuu (3.8)
FW = uFm,u ,

where FL denotes now the nonlinearly transforming field strength tensor; the
parity even and odd combinations are

Ff, = FER+4+F]

The scalar field s is replaced by
1
o= §(u;ﬁu + utyut), (3.10)

where x = 2By(s + tp) with By being a constant occurring in the meson field
theory, whereas

1
0= 5(uxtu - ulxu) (3.11)

replaces the pseudoscalar field p. All the fields B, A,, F}f,, F,, 0, o have the same
transformation law under chiral transformations

X'=RXR!. (3.12)

In this representation the covariant derivative is given by

[Dy, X] = 8,X + [Ty, X] , (3.13)
with 1 ]
2
T, = 5{uf,a,ﬂ,c] = §(Ff + FL) (3.14)
as the connection; the fields Ff’L are defined similar to F ﬁ,’L
FR = ytFRy
H LB )
Fi’ — uF’fu* ) (3.15)

In equation (3.13) we have introduced an operator form of the covariant derivative.
A few remarks about the operator D, are useful:

17
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e D, should be viewed as a differential operator as well as a matrix in flavour
space

e D, acts on everything on its right
e D, can formally be written as

D,=08,+T,

e D, can be treated like any other field

e the use of an operator D, is convenient in deriving relations among covariant
derivatives of the fields.

The covariant derivative of a field in the nonlinear representation can be expressed
in terms of the covariant derivative in the linear representation. As an example
we state this relation for [D,, A,]. After some algebra one obtains

[Dm Au] = ((%A,,) + F#Av - Avru

= LV, VUt — (V. V. UNu. (3.16)

Similar results can be obtained for the covariant derivative of the other fields.
In addition we find two identities between covariant derivatives and fields in the
nonlinear representation, which will prove very useful for the construction of the
effective Lagrangian

[DusAV]"'[DvaAu] = _%F;:L

‘ 3.17
[Du’Du] = _[AM’AV] - EF;; , ( )

We now examine the properties of the fields under Lorentz- and parity trans-
formations:

_B'B" = BB (scalar)
B'ysB' = detA Bv;B (pseudoscalar)
_B'y,B" = A B'y,,B_ (vector)
B'ysv,B' = detA A Bysy,B (pseudovector)
B'o,,B' = ASAFP BoysB (tensor)
o = o (scalar) (3.18)
¢ = detAp (pseudoscalar)
D, = AYD, (vector)
A, = detAA) A, (pseudovector)
Fl = APAPFY (tensor)
F;) = detAASAP Fy; (pseudotensor)

The relations involving B are well known. In order to verify the properties for the
other fields, we look at the meson field in the linear representation U, parametrized
by

U=¢?.
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Since the mesons are pseudoscalar particles, they change sign under parity trans-
formations ® = —®. This implies

U'=Ut w =ul.

The properties of the fields in the nonlinear representation, (3.18), can now be de-
rived using the definition of the covariant derivative V, in the linear representation
(3.3) and the properties of the external fields.

Next we consider the charge conjugation properties of the fields. The baryon
field B is a Dirac spinor; the charge conjugate field B® is given by

B¢ = CBT, (3.19)

where C is the usual charge conjugation matrix. For any element of the Clifford
algebra I we have (see appendix A)

Cre! = (-1)17. (3.20)

cr can be interpreted as the charge conjugation of the element I'. For bilinear
forms in the Clifford algebra this implies

(BTB)° = BTB® = (—1)(BTB),
where we have used
BTITBT = —(BTB).
Demanding charge conjugation invariance for the QCD Lagrangian given in (2.2),

we find the following properties of the external fields

=3 P =p"

For instance
(@7*vu9)° = (§7"vuq)
implies v; = -—fug'. The meson field ¢ behaves like the pseudoscalar external field
p:
& = o7 .
this yields U¢ = UT,u® = u?. Thus we obtain the following properties for the
fields in the nonlinear representation

A = AT
D; = -DI
F:Lc . -—F:;T
F;,c = FM_VT
ot JT

o° = o, (3:21)
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Finally we examine the hermiticity properties of the fields. We have
(BTB)' = B'T''y°B = B(y°T'y")B . (3.22)

For any element of the Clifford algebra the following relation holds (see appendix
A)

A°Tty0 = (=1)PrT | (3.23)
implying
(BIB)' = (-1)"(BTB) . (3.24)
For the fields in the nonlinear representation one thus obtains
Al = —A,
Dt -D,
F}
F! B
ol = o
o —0. (3.25)

3.2 Chiral power counting

In this section we introduce the concept of chiral power counting. It is very useful
in classifying the terms in the effective Lagrangian and therefore also in obtaining
a coherent low energy representation of the generating functional introduced in
chapter 2. First we look at the mesons. In the chiral limit the mass of the mesons
is zero. If the spatial momentum of the mesons is small, then this will also be the
case for the four-momentum; in this case we have a genuine small four-momentum
q, which can be used for power counting.

If we count the meson field U as a quantity of O(1), then the derivative 0,U
is of O(¢q). Since the external fields v,a occur linearly in the covariant derivative
V..U, it is convenient to count them as O(g). As we pointed out in the last chapter
the low energy expansion of the generating functional is a double expansion in the
momentum and in the quark mass matrix M, with fixed ratio M/¢?. Thus M
counts as O(g?). Since the quark mass matrix is contained in the external field
s, we have to count the scalar field s as a quantity of O(g?) as well. The field p
occurs in the combination s + ip in the transformation law with respect to chiral
transformations; it is conveniently booked as O(g?). To summarize we count the
fields as follows :

Uu=0(1) a,v,=0() sp=0(c).
For the external fields in the nonlinear representation this then yields

A,=0(q) FL=0(¢*) Fg =0(g%;

c=0(g) ¢=0(g). (3.26)
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D, is counted as O(q), when it acts on any of these fields, because the connection
and the derivative 3, both are of this order. However it is not a prior: clear how
to count the baryon field B and the covariant derivative thereof. Since the mass
of the baryon does not vanish in the chiral limit it is not straightforward to extend
these power counting rules to the field B. It does not make sense to treat the four-
momentum of the baryons as a small quantity, because the mass of these particles
is not small compared to the scale of the theory.

In order to examine this problem we look at the nonrelativistic limit of the
baryons. Since the connection I', is anyhow of O(q), we only have to look at the
case D, = 0,. Moreover we can switch off all the other fields, since they are at
least of O(q); that is we can deal with free baryons. The baryon field B is a four
component Dirac spinor. We write [20]

(%)

thereby introducing large and small components in the nonrelativistic limit. The
Dirac equation then reads

ig = (owbr) x + Mo ¢
.0 .
Za—;( = (O’kpk) ¢ — Mo x, (3-27)

where o) denotes the Pauli matrices and p;, is the three momentum operator. The
mass Mp is the driving term in these equations. By introducing slowly varying
functions of time

¢ - e—-ngt$
¥ = e_"M"t)Z, (3.28)

one can solve these equations approximately, yielding

. OkPr 7
X = 2Mo¢
B (owpr)® -

We now conclude: for small three-momentum of the baryons X is suppressed rel-
ative to ¢ and this is also true for y relative to ¢. The action of (:Dy — M) =
(i% — My) on ¢ and y is given by

(1Do — Mo)¢ = owpr X (3.30)
(:Do— Mo)x = owpr ¢ —2Mpx .

The operator (iDy — My) therefore is booked as O(q), whereas D, itself has to be
counted as O(1).
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The elements of the Clifford algebra I' in general mix the small and large
components of the Dirac spinor B. It is therefore convenient to introduce the
following counting rules for the I':

Lo, vsVk, 0. = O(1) 75,7k, V570, 0k0 = O(q) . (3.31)

For instance BysB contains at least one small component in the nonrelativistic
limit.
According to the discussion above we are thus lead to count the relativistic

fields and the elements of the Clifford algebra as follows:
B,B=0(1) [D.Bl=0(1), D, Bl-MB=0(a), (332
Is’Yu"YS’Yuso'uu = 0(1) Ts = O(q) - (333)

The order associated with these operators is the minimal one; some of them, like
[D,, B], contain in addition a piece of higher order.

3.3 Construction of the effective baryon-meson
Lagrangian

In this section we describe a scheme to construct the baryon-meson Lagrangian
Lygrv. We require Ly to be a real, flavour neutral, scalar and invariant with
respect to chiral transformations,proper Lorentz transformations as well as C,P,T.
For the construction we use fields transforming nonlinearly; all of them are 3 x 3
matrices in flavour space. Lyps is a polynomial in these fields and derivatives
thereof. According to a theorem of Weyl all invariant polynomials can be written
as traces over the flavour group. In addition one has to form bilinear forms in the
Clifford algebra to obtain a scalar in Dirac space. Thus a general term, containing
only one trace has the form

tr(A, BT A, BA3) . (3.34)

Ay, Ay, As denotes any combination of the fields o, 0, A, Ff,, F;, and the covariant
derivative D,; I' is an element of the Clifford algebra. For the moment we restrict
ourselves to this case; the generalization to more than one trace will be done later.
Using the cyclic property of the trace, one can always bring the field B to the very

left, leaving

tr( BT A, BA,) (3.35)

as a general term for Lyp. Next to ensure invariance with respect to proper
Lorentz transformations and parity, the tensor indices have to be properly con-
tracted with g,, or €,,q5.

We still have to check, if a term constructed with this recipe is real and charge
conjugation invariant. For this purpose we write the general term in a somewhat
different way

tr(BT (A1, (A2, (An, B)--+)) ), (3.36)
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where (A;, A;) denotes either the commutator [4;, A;] or the anticommutator
{A;, Ay} of the fields A, and A;. The Ay,...,A, can be any field except B, B
or a combination of (anti-) commutators thereof. This form turns out to be more
suitable; it is of course equivalent to equation (3.35). Now we derive some useful
formulae.

We first investigate the charge conjugation invariance.

tr(BL(41, (A2, (A, B) ) ) = tr(BT(AS, (45, (45, BY)--)))
(_1)Cl+“‘+cn+cl"+1

tr(( A1, (A2, (An, B)--))'TTBT)
— (_1)C1+"‘+CH+CI‘

tr(BT(An, -+, (A2, (41,B))--4) ),

(3.37)

where we have used (see appendix A)
CTC! = (-1)T7T, (3.38)
AS = (—1)* A7 . (3.39)

The last formula is valid, because A} is either a field or a combination of (anti-)
commutators thereof; whereas for the product of two fields A4,, A; one obtains

(A1~ Ag)° = (A7~ 43) = i(A{ ) Ag) # (A 'A2)T ¥

This is the reason why we will use equation (3.36) for a general term of Lxps.
Next we look at the hermiticity property of such a term.

te(BT(Ay, (A2, (An, B)--)) ) = te( (- (B, AL)- - A}l M70B )
(__1)h'1+“'+h'n.+hl"

4r(BT(An, -+, (A2,(41,B)) ) ),

(3.40)

where we have used (see appendix A)
Yo'ty = (=1)*T, (3.41)
Al = (-1)™4, . (3.42)

The trace occurring in the last line of the equations (3.37,3.40) can be brought
to a form, in which the A, are ordered differently, using the cyclic property of the
trace and the following important identities:

[4,[C, B]]
[4,{C, B}]
{4,{C,B}}

[C,[4, B]] +[[4, C], B]
{C,[4, B]} +{[4,C], B} (3.43)
{C,{4,B}} +[[4,C], B] ;

i

fl
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the first one is the well known Jacobi identity. We then obtain

tr(BF(Am e ,(A% (ADB)) o ) ) = tr(?r(‘%h (42 e 7(47“ B) o )) ) +
tr(BT(Ay, (A2, (Am, B)---)) ),
(3.44)

where A,,...,A,, are (anti-) commutators of the A; and where m < n. As an
example we state

tr(BT[As, {Ay, BY] ) = tr(BT[Ay, {A2, B}] ) + tr(BT{[As, A1), B} ) .

In this case A, = [A2, A;]. To make sure that a general term X of Lyps is real and
charge conjugation even, we take the combinations (X + X*) and (X + X°).
From the equations (3.37,3.40,3.43) we see, that X will not drop out in these
combinations only if

(_1)C1+---+Cn+6r =1, (3_45)

(_1)h1+~--+hn+hr =1 . (3.46)

If these conditions are fulfilled, 2(X 4 X°) is an allowed term in L.

We now discuss the extension to more than one trace in flavour space. The
recipe described so far can still be used, however with a few changes. A general
term has now either of the following forms:

tr(BT(As,(Az- -+, (An, B) -+ ) ) - tr(Ch) (3.47)

tr(BA)Ttr(A;B) - tr(C) . (3.48)

If the fields B and B are not embraced by one trace, the equations (3.37) and
(3.40) have to be replaced by

[tr(BA;)Ttr(A:B)° = (—1)ateter . tr(BA,)Ttr( A, B) (3.49)

[tr(BA;)Ttr(A4;B)])* = (=1)M+hethr . tr(BA,'tr(A;B) . (3.50)

A term of the form %(X + X°¢) can now always be accepted even if the condition
(3.45) is not fulfilled, since X will never drop out. The formal use of the covariant
derivative D, must now be handled with care. As an example we give

tr([D,, B]T'B) - tr(A;) = —tr(BT[D,, B]) - tr(A;) — tr(BTB) - tr([D,, A4]) ;

note the presence of the last term. tr(C)), the last trace in (3.47,3.48), can be
any term of the effective meson Lagrangian Ly.,. The general form of £, up to
O(q*) has been worked out by Leutwyler and Gasser [16,17]. We write Lare,s as a
sum

EMES == ‘C’I2\/Ies + £‘14\4es +e ? (351)
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where the upper index denotes the chiral order. At lowest order we find
1 1
ﬁlzv.(es = _§F02 ’ tr({A#’AM} )+ §F02 . tI‘(O’) ’ (352)

where Fj is the meson decay constant.

Using the recipe described above, we can construct all the allowed terms of
Lum. To each of them we can assign a chiral order, using the rules of chiral power
counting discussed in the last section. We write Lgyps as a sum

Lom =L+ L+ Lo+ 5 (3.53)

again the upper index denotes the chiral order. We are thus able to list all terms
in the effective Lagrangian up to a given chiral order. However not all the terms
we get this way will be independent. In order to find a minimal set of independent
terms we use the identities of equation (3.43) and relations among elements of the
Clifford algebra, given in appendix B.

Finally we derive the connection between the differential operator D, defined in
chapter 2, and the representation of terms involving traces over the flavour group,
given above. Remembering that

1

B = —=B,\* B =

B, )\*
V2

1
V2
we obtain
tr(BT(Ay, (A2, (4n, B)-++)))
_ %tr(,\a(Al,(A2~--,(A,,,A'v---)) )- B.T'B,
= B,DB,.

The differential D is therefore given by
D™ = 2T (A% (e, (dz -+, (A ) ++) )

and analogously for terms involving more than one trace. D is thus also given by
the above recipe.

3.4 Effective Lagrangian to O(q)

In this section we give an explicit construction for the lowest order term Ll;,,.
We start with contributions containing only the baryon field B and covariant
derivatives thereof. Following the recipe of the last section we find two independent
terms, leading to

Lyy = a-tr(Biy*[D,,B])+b-tr(BB), (3.54)
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where a and b are free constants. The first contribution contains the kinetic term.
Without loss of generality we can choose a = 1, since the field B can always be
rescaled. The second contribution is a mass term. If we choose b = — M, and switch
off all other fields, the Lagrangian £},;, reduces to the free Dirac Lagrangian. The
parameter My is the mass of the baryon in the chiral limit (the quark mass matrix
M is switched off ). Using the rules for chiral power counting, given in section 3.2,
the resulting Lagrangian

Lyy = tr(Biv*[D,, B]) — M, - tr(BB)) (3.55)

has to be counted as O(g). Other terms of the same order can be constructed
using the field A,. One finds

Lyym = D - tr(Biy*y*{A,, B} ) + F - tr( Biv®*y*[A,, B] ) , (3.56)

where D and F are free parameters. Obviously combinations involving B, A, as
well as other fields will give rise to higher order terms. However there might exist
a term involving A, and [D,, B] or [D,,[D,, B]] at that order. In the next section
we examine such terms. We will see, that the complete effective baryon-meson
Lagrangian to first order is given by

Ly = tr(Biv*[D,,B])— M,y -tr(BB) + .
D - tr(Biy®y*{A,, B} ) + F - tr(Biv*+*[A,, B]) . (3.57)

3.5 Equation of motion for baryons

In this section we discuss how the equation of motion of the baryons can be used to
reduce the number of independent terms in the effective Lagrangian. In chapter 5
we show in an example that terms proportional to the equation of motion do not
contribute to the matrix elements of interest. The equation of motion is obtained
from the condition § Lpr = 0. If external baryon sources are present, the equations
of motion associated with the Lagrangian L};,,, given above, read

iy*[Dy, Bl — Mo B + Di®y*{A,, B} + Fiy*y*[A,, Bl +n = 0

~i[D,, Bly* - MyB + D{B, A, }ir*v* + FIB, A Jivsy* +77 = 0. (3%)
Before stating some general results we look at an example. Let
z* = tr(Bg*?(Ay,[Dg,B))) (3.59)

y* = tr(BO'O"G(Al, [Dﬁa B]) )

and suppose z is charge conjugation even; y will then be charge conjugation odd.
Using the relations (B.1) of appendix B we find

g® = —itr(By*(A1, v°[Dp, B] — MoB) ) — iMy - tr(By*(A1,B) ) +v* . (3.60)
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The second term no longer contains a covariant derivative. The first one is pro-
portional to iv#[Dg, B] — My B; since this combination counts as O(q), the order of
this term is increased relative to z. Moreover it can be eliminated, if the equation
of motion can be used (see equation 3.58). Since z is charge conjugation even, we
have £ = J(z +z°). The insertion of equation (3.60) in the right hand side of this
relation leads to the combination

ya + (yc)a = —tI‘(B’iO’a‘B([Dp, Al]’B) ) :

The covariant derivative here acts on A; and thus counts as O(g); the order of
y + y° 1s increased relative to z. To summarize we see, that z is equivalent to
a term with less derivatives acting on B and terms being of higher order, one of
which can be eliminated by the use of the equation of motion. This is a more
general feature. One can show the following results using the relations in the
Clifford algebra, given in appendix B:

1.
. to(BT*P(A;---,(An,[Ds, B))-++) ) ~0,
where I'*? = g or TP = 4558
2.
tr(BT(A;y -+, (An,[Dg, B])-++) ) ~0,
where ' =TorI' = 45
3.
tr(BiTP(A; ---,(An, [D*,B])--) ) =~
tr(Bi:[w(Al Tty (Aﬂtr [Dﬁ')B]) o ) ) )
where I'? = 4P or ['? = 45+
4,
P tr(BTa(A; -+, (An, [Dg, B])--+) ) 0
5.
e*Pt (BT oA -+, (An, [Dg, B])--+) ) =~ 0
6.

tr(BPAa(Al T 7(Am [DB,B]) o ) ) =
tr(BIM\'B(Al Tt (Am [DQ,BI) o ) ) ¥
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Here ¢ ~ ’ stands for “equivalent to terms with less derivatives acting on B and
higher order terms ”, as in the example above. Some of the fields A; could be
covariant derivatives. The above formulae can then be used to decrease the number
of derivatives acting on B step by step. In particular this can be done with
the terms we ignored in the last section. They all reduce to the set of terms of
Lk, given in equation (3.57), plus higher order terms. L}, is therefore the
most general effective baryon-meson Lagrangian of O(q). A complete list of terms
contributing to L£%,, and L3,, has been worked out; it is given in appendix B.
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Chapter 4

One Loop Feynman Diagrams

4.1 How to use the effective Lagrangian

In the last three chapters we have given the input, necessary to calculate mea-
surable quantities like decay rates and magnetic moments. In the introduction
and in chapter 1 we related these quantities to quark current matrix elements; in
chapter 2 we discussed the relation between these matrix elements and an effec-
tive Lagrangian; in chapter 3 we described a recipe to construct this Lagrangian.
Equipped with this information, we now start the calculational part. As was men-
tioned in chapter 2, the low energy expansion of the generating functional Z in
a meson theory coincides with the loop expansion of the effective theory. The
loop expansion can also be used for the baryon-meson theory, however there is
one difference: in the contribution which is analytic in the quark mass, higher
order loops are not suppressed. Tree graphs, which involve low energy constants,
also give rise to an analytic contribution. By a suitable renormalization of these
constants the analytic part of the loop diagrams can be absorbed. Keeping this
in mind, we will evaluate the baryon-meson theory to one loop, neglecting closed
fermion loops. The tree contributions will be discussed at the end of this chapter.

The effective Lagrangian consists of a series of terms forming groups of equal
chiral powers. In the one loop diagrams the vertices are taken from the baryon-
meson Lagrangian Ly of O(q) and the meson Lagrangian Lases of O(¢?). In the
free baryon Lagrangian we include a mass term of O(¢?). The standard rules of
perturbation theory can be applied; we use the Gell-Mann-Low formula (2.19) to
obtain the analytic expressions of the one loop diagrams contributing to the vector
current matrix elements.
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4.2 Gell-Mann basis versus physical basis

We first look at different bases of SU(3). As was pointed out in chapter 2 the
meson field U can be parametrized by a 3 x 3 hermitean traceless matrix

U=¢e?,
® as well as B, the baryon field, can be expanded in a basis of SU(3)
B=—1—Ba)\“ B=—1—B’a/\“ ® =P\ a=1,---,8.

V2 V2

As a basis we either use the Gell-Mann matrices A° or the matrices A¥, which we
call the physical basis. Both occur frequently in the calculations. The transfor-
mation from one basis to the other is given by [16,17]

X =Y Np P =Y Np AP . (4.1)
P P

The matrix N is a unitary 8 x 8 matrix; the non zero elements of N are given in
appendix A. In general the matrix N contains the A——X° mixing. Here we restrict
ourselves to the limit m, = mg; the mixing then disappears. The elements of N
are not real; the matrices AX are therefore not hermitean. Why do we introduce
such a basis? Contrary to the Gell-Mann basis, the components of the fields @,
B, B in the physical basis, defined by
%BﬂﬂB:%BMfP;@:@PF P=1,---,8, (4.2)
are directly related to the physical particles. For example B; corresponds to the
¥*. In the quantum theory the operators ®p, Bp, when acting on the vacuum,
generate the meson states |® > and baryon states |B > respecticely. The signs
chosen in NNV lead to phases in the physical states that are consistent with the De
Swart convention [13] (see appendix A). In appendix A one can find the relation
between the components of the fields in the two bases.

The free meson- and baryon propagator in the Gell-Mann basis are not diagonal
matrices in flavour space. On the other hand the corresponding propagators in
the physical basis

B =

<0|T®p(2)@L(y)I0 > = —5 Apglz —y;mp) (4.3)
<O|TBp(z)Bo(y)|0 > = i Spq(z —y; Mp), (4.4)

are diagonal matrices. Here mp and Mp denotes the mass of the particle corre-
sponding to the field ®p or Bp respectively. In order to show this for the baryon
propagator, we examine those terms of £%,,, that contribute to the mass. These
are the following:

tr(o) - tr(BB) , tr(B{o, B}) ,tr(B[o, B)]) . (4.5)
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In the physical basis all of them are diagonal; furthermore the term
tr(B(19*8, — Mo)B ) (4.6)

is obviously diagonal. We thus see that the baryon propagator in the physical
basis is indeed a diagonal matrix. A similar result can be obtained for the meson
propagator using the Lagrangian £2,_,, given in equation (3.52).

The f- and d-symbols of SU(3) in the Gell-Mann basis are well known. They
are defined by

1 1
fabc = Etr(Au[)‘ba Ac] ) dabc — Ztr(’\a{Aba )\c} ) ; (47)

fabe 1s real and completely antisymmetric, d,;. is real and completely symmetric.
We define the corresponding objects in the physical basis by

Fly = ztCelio 5) Do = yur(e{Ro, M) (48)
The F- and D-symbols obey the following relations:
DJI}Q = Np.NosNg, dose ng = NpoNosNp. fabe (4.9)
D, =Dfp Ffy=-Fjp (4.10)
Dy =DE, Fi,*=-Ff,. (4.11)

They are only (anti-) symmetric with respect to the indices P and @); the last
equation shows, that F' is imaginary and D is real.

The physical basis has the advantage of leading to diagonal propagators, which
are useful in the explicit calculations. On the other hand it is not so convenient
to work with the F- and D-symbols in this basis. Thus we use both bases simul-
taneously, switching from one to the other when convenient.

4.3 Feynman diagrams

In this section we are concerned with the analytic expressions for the Feynman
diagrams contributing to the full baryon propagator and the vector current matrix
elements at the one loop level. In order to derive them one usually draws all pos-
sible diagrams and then assigns an analytic expression to each diagram according
to the Feynman rules of that theory. If the theory contains only a few vertices,
this will be the most convenient way to proceed. In our case the effective theory
contains a lot of different vertices having a complicated structure. We therefore
use the Gell-Mann-Low formula together with Wick’s theorem [20,5] to obtain
the analytic expression for the relevant Green’s functions. Afterwards we are then
able to draw the corresponding Feynman diagrams.

As already mentioned in the first section of this chapter, we only use vertices
of L}pr and L3,,,. We are thus dealing with the following terms :
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1.
tr(Biv*[D,,B] ) — M, - tr(BB) (4.12)

2.
tr( Biy*y*{A,, B} ) (4.13)

3.
tr(Biv°y*[A,, B]) . (4.14)

What about the terms in L%,,, that are proportional to the quark mass matrix
M contained in the external field o ? One can take two points of view depending
on how one splits the Lagrangian into a free part £ and an interacting part ;.
Either we consider the quark mass term as part of £y, then the mass of the free
particles includes the quark mass matrix M, or we consider it as part of £L,,;, then
the mass of the free particles is given by their chiral mass My. In the following we
include these terms in the free baryon Lagrangian.

Expanding the matrix U = €'® and u = €*®/2 in powers of &, we find
, ) y 1
Dy = —iv, + g[&,[2,0,]] + 5[2,0,2] + - , (4.15)
1 \ 1
iy = 5@,@ —ta, — 5[@,0“] +oe (4.16)

For sake of completeness we also give the expansion of o
1

where By is a constant given in equation (3.52) in which the scalar field s has been
replaced by M. The expansion is given to the accuracy needed later on. It is now
easy to derive the following relations:

to({Dy, AF}) = —%tr(@u@8“¢)+2tr(8u<1>a“)—itr(aud)[q),v”]) (4.18)

tr(B(i4*[D,, B] = MoB)) = tr(i4"8, — My)B)

+1x(B¥[u,, B) — 5Byl [0l B) + 5tx(B*(15, 805, B
(4.19)
B n 5 T @ 4 BAS @
(B {8 BY) = —(Bry*{u5,B)) — stx(Brr{l55,0ul, BY)
(4.20)
a0 .5 ¢ : - PR ¢
tr(Biy'y*[Aw, Bl) = —te(By'v*[0,3, B]) —1te(By*rv*[[5, val, B]) -

(4.21)
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The first term on the right hand side of the equations(4.18,4.19) is part of the free
Lagrangian Ly; all other terms contribute to L;,, which we write in the form

Lont = L3t + L33 (4.22)
For the interacting part of Lps., and Lgps one obtains in the Gell-Mann basis
Lit, = F3 - f*-3°9,8% , (4.23)

?Ilit\/! — labc . B“'ys'y"Bb N (au¢c _ deeQd'Uz)
_ 1 1
__Z'facha,Y,uBb . (,v; _ _éfcdeq)da#q)e + §fcdgfgef¢dq)ev£) :

(4.24)
where
1°¢ = D d*¢ — i F fobe (4.25)
We first look at the two point Green’s function of the baryons:
G™(z —y) = <O|TBP(z)BO(y) e[ ¢ =linl=|0 > | (4.26)

The Green’s function in momentum space is defined by
(27)46%(p — p)GTO(p) = / ' j dYy &P eGPz —y) . (4.27)

After some calculation we obtain

= M, M 1 M,
(4.28)
where
[ d% Y E(P — F+ Mg, )7k
lo=1 (2m)t ((p— k) — M}, + z'cs)(l(j2 —mb, +ie€) (4.29)
and where
L}’i@ =D D,.‘?Q —F FgQ . (4.30)

In deriving this result all the external fields have been switched off except the quark
mass matrix M. Here and in the following the meson masses are denoted by m
and the baryon masses by M. In the calculation we have used the representation
of the free propagators in momentum space, given in appendix A.

Next we examine the three-point Green’s function of two baryons and a vector
current. It is given by the functional derivative of the baryon propagator with
respect to the external vector field v

) - [ gt
GRPz,y,2) = —m— <O|TB"()B(y) ' #1&m@0 > |,y (4.31
@09 = gmgy <OTB @B e 0> heo (431)
The expansion of the exponential gives rise to contributions to the Green’s func-

tions involving different powers of L;,;, 1. e. , different number of vertices. We
consider them separately :
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1. The Fourier transform of G*P?(z,y, z) is defined by

GRP(p,p', q) = i ] ' / dy / d% eP7e~PVEGRPQ (g y 2) . (4.32)
Extracting the overall momentum conservation, we write
GFPO(p, p',q) = i(2r)*8* (' — p — )G (p, ") - (4.33)
For the contribution containing one vertex we obtain

15+Mp B 15'+MQ

RPQ — .
G (PaP) - pz_MI%+z'€‘Y p’2_M2+i6
_ )
(ngP + 22 ngp FQ1Q2 RQy "’ I4) L (4'34)
0
where d% 1
B g j ‘. -
YT @r) R —md, +ie (43

GRFQ(p, p') has poles at p* = M2 and p? = M3. The baryon matrix element
of the vector current can be read off from GFP Q(p, ') using the replacements

p+ Mp
p? — M} +ie

— ug(p') . (4.36)

2. For the contribution with two vertices some lengthy algebra yields

G(p, p)

}6+ MP Q R
= p2 _ MZ s ie(_QFOZFQsP FQ1Q2 FQ1Q2 Iu

Q
+ F2 LQ2Q1 LQzQa FRél ’ I; F2 LPQ3 LQIQ FRQl IM)

P+ Mg
p?— M3 +ie’ (4.37)
where
d% (2F — g)k*
I = - e 4.38
g =1 (2m)* ((q — k)? — md, + ie)(k? — m}, + i¢) (4.35)
d*k p— ¥+ Mg 1

¥ = — 2 5.1 ;

5 ](2,”)47# (p—k)2—M2 +2-€)7'Y (kz—mél-}-ie)’ (4.39)
4

g [ 2T P—k+Mg, s . (4.40)

(2~;r)4'M (7 — k)2 — MZ, +ie) | " (k2 —md, +ie)
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3. After a lengthy calculation one obtains for the contribution with three ver-
tices

GFP(p, ')
P+ Mp ( 1

Q Q R 1
LQsQ: Lpst FQ2Q1 Iy

P+ Ma, | A 2 P+ Maq, ,u))
p?— M}, +ie p?— M}, +ie

TP -Mitie \ F¢

i .p Q Q
“‘F'OQ‘LQIQQ L3.q. Fr, - (I35 — "

P+ Mg
'pfz — Mé T (4.41)

where

el [ = B+ Moy — B (B4 p — 2k)

' (2m)* ((p — k)2 — md, + ie)(k? — M, + ie)((p — k)2 — md, +ie)’

(4.42)

o [ A% VHP — ¥+ Mo )v"(F — ¥+ Mo, )v°F

“ (o =R = M, + 4 — i X — B~ G, 79

and where I is defined in equation (4.29).

All the integrals I; introduced in this section are related to Feynman diagrams.
The diagrams and their analytic expressions are listed in appendix C. The Feyn-
man rules in momentum space can be read off from these expressions. Since we
will not use them later on, we don’t state them here. An detailed outline of the
calculation is given in the appendices B and C of the thesis([21]). Here we only
describe the main ideas.

4.4 Feynman parametrization

The evaluation of the integrals I} is done in two steps: the momentum integration
and the Feynman parameter integration. All the integrals I; can be written as a
combination of integrals of the form

no_ [ 4% k™

YT )tk —m? t e

no_ [d% k™

) @nE (e - k)P — mE +ie) (k2 — m] + de)
4, m

m oo [ % k

(2m)* ((p2 — k)* — m3 +ie)((pr — k)? — m] + ie)(k? — m + ie) ’
(4.44)
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where k™ denotes a tensor of rank m. To perform the momentum integration, we
introduce Feynman parameter integrals as follows

N S
Ay An+1
1 n' xn_l
i 2 08 / de,, R .
fo i 0 * [AlfL'l Tt A2(1 - 371)332 <l 1 * =t An+l(1 - x,,,)]”'“
(4.45)
With the help of (4.45) we can bring all momentum integrals to the form
d* ke
F=[-2 _ 4.46
GrY (o= PP~ M+ idl (449

As is well known these integrals in general are divergent. They are only meaningful
after regularization; we use dimensional regularization.

4.5 Dimensional regularization

Since we want to use dimensional regularization, we have to extend the Clifford
algebra to higher dimensions. The formulae needed for the calculations are the
following ones:

- |
1
9" = 1
1

{7} = 2¢*
{v,7} = 0

15 = 1

g = 4, (4.47)

where d denotes the number of space time dimensions. Usually the occurence of
vs leads to problems. This is not the case here, since no traces over v matrices,
involving s, occur in our calculations.

We now investigate the integral

d'k
1=/ (2m) (k% — M2+ze)n' (4.48)

In Minkowski space the integrand has poles at

ko = £(VE? + M? — ie) .
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We perform a Wick rotation in the first component of k in such a way, that we
don’t interfere with the position of the poles. We thus substitute

k‘o = Zko
The integral I then reads
d?k 1
I = SIS :
(2m)? (—kZ — k2 — M2 + ie)
dik

- 4.49

e (1) /(211')“(k'~’+M2—ze)” (4.49)

where k is a vector in a d-dimensional euclidean space. The integral can now be
calculated quite easily (see [29]), obtaining

d
I i1yt L(n = 3) gommprig) (4.50)

(4r):  T(n)

Here I'(z) denotes the Gamma function. After a shift of variables k =1+ p in I,
we can generate the integrals G,,

ddl L2 S /22
(271')‘lf (l2 — M2 + z'e)"

G = (4.51)

by applying successive derivatives with respect to p, on I and then putting p = 0.
The G,, enable us to calculate all the momentum integrals of the last section in d
dimensions.

4.6 Performing the momentum integration

As an example we perform the momentum integration for the integral I, explicitly.

g el d*k 1
1y —i{u ) ’ / (27r)d k2 — m2 + t€

I

_ (41 )2( - ) dr(;(1)2) (——l)ln(mf—ic) . (452)

Expanding around d = 4, we find

I = an )zml[ +1+F(1)+ln( - )] (4.53)
where

=2 ——.
" 2
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I'(z) denotes the derivative of the Gamma function; terms of O(n) have been
neglected. For d # 4 a mass scale p has been introduced; the argument of the
logarithm then becomes dimensionless. The momentum integration for the other
I can similarly be evaluated, but the involved algebra is lengthy. After the mo-
mentum integration has been carried out, it remains to performm the Feynman
parameter integrations.

Even though simple in principle, the calculation of the integrals Iy is extremely
tedious, involving a lot of technical details and leading to a rather monstrous
result. In appendix C we therefore give only those results, which are used in the
numerical analysis. For details of the parameter integration the reader is referred
to appendix C of the thesis([21]).

4.7 'Tree graphs

As already mentioned at the beginnning of the chapter, tree diagrams involving
higher order vertices will also contribute to the matrix elements of the vector
current. They have to be added to the loop contributions. Some of them are
needed as counterterms for the divergent part of the loop integrals. All of them
are proportional to a different coupling constant (low energy constant). Thus each
of these contributions adds a new unknown to the low energy expansion. Although
the low energy constants are in principle fixed by QCD, they cannot be determined
using chiral symmetry alone. The general solution of the chiral Ward identities
contains these constants as free parameters. In order to fix them one has to apply
fits to experimental data or one has to use extra information, like the Zweig rule,
to obtain estimates. In appendix B we have given a complete list of terms, which
generate the effective baryon-meson Lagrangian up to O(¢?®). Looking at it we find

the following contributions to the baryon matrix element of the vector current. At
0(¢?) we have

ly-tr(Bo*{F,,,B} )+ l, - tr(Ba**[F,,, B] ). (4.54)
This leads to the contribution
< p; P|VEIP;Q >= —4- (I3 DgP + FI?P) : aP(P)iUWCquQ(P') ) (4.55)

with P, ) representing the outgoing and incoming baryon respectively and R the
vector current. It constitutes the SU(3) symmetric part of the magnetic moments
of the baryons. The two constants I3 and l4 fix them completely. They will be
renormalized by the one loop contributions.

The Lagrangian of O(g>) contains the terms

Iy - tr(By*{(D", Ful, BY ) + o - e(B*(ID*, Ful, B]) . (4.56)
The contribution to the vector current reads

< p; PIVEIP'; Q >=2- (Is D§p + ils FZp) - ap(p) (27" + (Mp — Mqg)g*) ug(p') -
(4.57)
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This term is needed as a counterterm for the one loop diagrams; otherwise it is
not relevant for our numerical evaluation.

We are interested in the leading SU(3) breaking effects of the magnetic mo-
ments. In addition to the loop contributions we find terms in the effective La-
grangian of O(g*), which lead to contributions linear in the quark mass. They will
be taken into account in the numerical analysis. Eight independent terms occur
in the effective Lagrangian. They are not listed in appendix B. As an example we
give a typical term

é— -tr(Bo**{F,,,[0,B]}) + h.c. - (4.58)

The complete contribution to the vector current coming from these terms is given
by

< p; PIVRIP'; Q@ >= (=2)N;pNsgNip - ap(p)ic™ g, uq(p')
. [Md (2k16a65cd o k2(6ac6bd + 6ud6bc) + ks(daceddbe e dadedcbe)
+k4i(dac5fdbe 4+ dcbefade) & ksi(dadebee 8 ddbeface) + k6i2(fdbeface 4 fadefcbe))
+6 MO (krd®®® + iksfet)] . (4.59)
Finally there are terms in the effective Lagrangian of O(¢®), which contribute

to the form factor F; at ¢* = 0; they are quadratic in the quark mass. We find
three independent terms

tr(By*{[o, [D,, o], B} + h.c. (4.60)

tr( By*[[e,[D,, o], B] + h.c. (4.61)

tr(B[D,,0]) " - tr(oB) + h.c. (4.62)
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Chapter 5

Baryon Self Energy

5.1 Mass and wave function renormalization

For a complete calculation of S-matrix elements one has to take into account the
renormalization of the vertices as well as the renormalization of the external legs.
We are interested in the baryon matrix elements of the vector current. Thus in our
case the external legs consist of two baryons and a quark current. The external
field, which generates this current, has no dynamics. The external leg associated
with it will therefore not be renormalized. The renormalization of the external
baryons will be discussed in this chapter. In order to achieve this we look at the
full baryon propagator. We switch off all the external fields except the scalar field
o and put it equal to the quark mass matrix M.

We take into account the contributions coming from the tree diagrams up to
O(¢*) and the one loop diagram with vertices of L};;,. In chapter 4 we have
investigated the loop contribution. The terms in the Lagrangian, that are linear
in the quark mass, have been chosen to be part of the free Lagrangian. They shift
the mass of the baryons from their chiral value M, to a mass Mp. The one loop
contribution is proportional to the integral Is. Looking at this contribution we see
that it is of the form

x 1 1
Gpo(p) = J— Myt ie Zpre(p) - P— Mg +ic’ (5.1)
where .
Zro(p) = ;05020 Lg,q, L8, - 16(Q1,@2) - (5.2)

The matrix Xpg(p) is the baryon self energy. In general it will not be a diagonal
matrix in flavour space. Only if one neglects A —X° mixing, the self energy becomes
diagonal. Summing up an infinite number of self energy insertions, we obtain

&) = 5 (50 7mars)

= (P—M—X(p)+ie)™ . (5.3)
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We are only interested in the limit m, = my; we then have no mixing and the self
energy as well as the propagator are diagonal. Decomposing the self energy in the
form

Lpo(p) = APQ(p2) -p+ Bpo(p*) - 1
w7 z L§ 0, L0, - (As(p? Q1,Q@2) - B+ Bs(p% @1, Q2) - 1)

Il

F @1,Q2
(5.4)
we obtain the following equation for the physical mass M, of the baryons
(1- A(MZ)) - My = M + B(M,) . (5.5)
Solving for M, we find
My, =M+ B(M*)+ M- AM*) +---. (5.6)

In this formula we have neglected two loop contributions and M, has been re-
placed by M in the one loop integrals. The functions Ag and Bs are given explicitly
in appendix B. The divergent part of these functions contains a polynomial term
of O(m,) as well as a term which does not vanish in the chiral limit. The chiral

mass of the baryons Mj and the low energy constants appearing in the effective

Lagrangian L%,, are therefore renormalized.
To obtain an expression for the wave function renormalization Z of the baryons,
we expand the inverse propagator around the physical mass My,

—— 7 1 I/
G (p) = f(p) = (B — Mpn) - f'(Mpn) + 5(15 M) - " (M) + - -+ . (5.7)
We thus have
G +o 5.8
0)= g3 (58)
where the dots stand for non pole terms. Using (5.4,5.7,5.3) we obtain for Z
a 8B -
3A 0B
= 1+A(M2)+2M26 2(M2)+2M5 2(M2)+--- . (5.9)

In the last step we again have neglected two loop contributions and M, has been
replaced by M in the one loop integrals. Both the nonanalytic part and the
analytic part of Z are properly suppressed; thus the baryon wave function is not
renormalized in the chiral limit.
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5.2 Contribution o'f Z to S-matrix elements

The LSZ-formalism is the appropriate tool to extract S-matrix elements from the
corresponding Green’s functions. In momentum space the Green’s functions have
simple poles associated with an incoming and an outgoing particle. The residue
of these poles is the product of the wave function renormalization of the particles
and the S-matrix element. The renormalization of the external legs shifts the
position of the pole and changes the wave function of the particle. In our case
we are interested in the baryon matrix elements of the vector current. With the
replacement

ﬁ"‘M _)Z'(ﬁ“l'Mph)

5.10
p? — M2+ ie pz—M§h+ie ( )

and the relation (see also appendix A)
Z-(p+Mp) = Z'Pupm(p;r) - ton(p;m) 2™ (5.11)

we see, that in the S-matrix element the wave function renormalization leads to a
factor Z1/2 for every external baryon leg. Especially we find for the lowest order
contribution to the vector current matrix element

< p; PIVEID; Q >= ap(p)v*ue(p) - 2y, - iFR, - Zahg - (5.12)

In order to illustrate the need to take into account the wave function renormal-
ization, we investigate a term in the effective Lagrangian, which is proportional
to the equation of motion of the baryons. Such a term should not contribute to
on-shell matrix elements. They are therefore omitted in the list of terms for Lyps
given in appendix B. As an example we choose the Lagrangian

L = %tr(B[a,(z'—y”[DM, B] - MyB)] ) + h.c.
= B%(iy*d, — M,y)B® - 2i fe® M*
_ Ba'YuBbUz . (fadEfcbe + facefdbe)Md ) (513)

The contribution to the three-point Green’s function reads

= 1 1
RPQ _ #
¢ b— My +ie P — My +ie
.N;aNQbNaczﬂ(fadefcbe o facefdbe)Md , (514_)

where the matrix N is defined in chapter 4 and is given in appendix A. If we
ignore the wave function renormalization, we would thus find a contribution to
the on-shell matrix element in disagreement with the statement above. Note that
this also contradicts the Ademollo-Gatto theorem [1,26,10]; it states, that there
is no contribution to the vector form factor F} at ¢ = 0, which is linear in the
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quark mass. Evaluating the corresponding contribution to the two-point Green’s
function, we obtain

Zpg = épg — 2iNp, Ny fo M* . (5.15)

Using equation(5.14) one can now easily show, that the contribution from Z and
the one coming from GBP? cancel each other. As a net result there is no contri-
bution from the Lagrangian L, given in equation (5.13), in agreement with the
Ademollo-Gatto theorem.
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Chapter 6

Combining the Diagrams

In chapter 4 we have loked at the contributions of the one loop diagrams. The one
loop diagrams and their complete analytic expression H} are given in appendix C.
The explicit expression contains an integral I; and a sum over flavour indices. In
this chapter we examine the sum over the flavour group. As an illustration we
look at Hs

t
H(RPQ =5 3 Finlgo L H@iQnQ).  (61)
1y¢2%3

The sums over the flavour indices cannot be done in a closed form, because the
integral I; depends on these indices via the baryon and meson masses. If one
evaluates the integral for the special case, when all the masses have their SU(3)
symmetric value, it becomes independent of the flavour indices. Using well known
relations among the F- and D-symbols, it is then possible to carry out the flavour
sums explicitly leading to terms proportional to the F- and D-symbols.

In general to each individual term of the flavour sum one can associate a set of
physical particles running around in the loop. For example in the decay Z° — &+
we find the contribution

2

HY(5,1,7) % =
0

Fis Ly, Ly - I3(7;4,8) . (6.2)
The particles in the loop are the K°, the A and the p. On the other hand for
fixed external legs the flavour sum gives us all allowed sets of particles in the
loop, together with an appropriate weight factor (Clebsch—Gordan coefficient).
An explicit evaluation of these sums has been done for all the relevant cases.
An investigation of the results shows that different diagrams have similar sets
of particles in the loop with similar Clebsch-Gordan coefficients. It is therefore
possible to combine these diagrams; they then form three independent groups. In
what follows we describe this in more detail.

The total contribution of the one loop diagrams and of the leading tree graph
to the baryon matrix element of the vector current is given by
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<pPIVEW;Q > = up(p)- (ZHaiFR3,28% -7
—iH{ + SHY +iH} + SH +iH} - iHé‘) -ur(p') .

(6.3)

The first term is the tree contribution including the wave function renormalization
Z, discussed in the last chapter. The remaining terms are the analytic expressions
of the one loop diagrams. The wave function renormalization Z has the form

Zrq=6rq+ Y Lg,q, L0, s(Q1;:Q2), (6.4)
Q1.Q2

where I3 is given by

0As

0Bs
9

(@i Qs) = As(M3) + 203, - SR 03) + 20 S8

(MZ%) . (6.5)

The functions A and By are defined in equation (5.4). Combining the appropriate
contributions, the vector current matrix element can eventually be written in the
form

< B PIVEIF; Q >= ap(p) - (iFfpy* — it + SKE +iK8) - ug(#) . (66)

The functions K, K;, K3 contain the same sum over flavour indices as H;, Hy, Hj
respectively; only the integrals I, are replaced by the integrals Ji, defined by

JH(Q1,Q2;Qs) = I (@1, Q2 Qs) + I7(Q1; @3|Q) + IE(Q2; Qa| P)
+5I(Q Ql@) 7 + 5 1@ QlP) -7

TH@L@) = B(Qu@:)+ pIHQ) + 31(Q2)

Jg(QIB Qz;Qs) = Iau(QﬁQmQa) - %IB(QI;Q3|Q) P — %Is(Ql;QzlP) o
(6.7)

Thus we have reduced all the one loop contributions of the vector current to the
three integrals Ji. All of them contain a piece proportional to ¥*,ic*"q, and
q”, giving a contribution to Fiy, F3, F5 respectively. We decompose the Ji in the
following way

Tt = JMNyr 4 JBigmg, 4+ JOgm (6.8)
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Chapter 7

Numerical Analysis of the Form
Factors

7.1 Analysis of F;(0)

In this chapter we derive numerical results for the weak form factors F; and F,
at ¢° = 0. We first consider F}. In the contribution to Fj, the divergencies
occurring in the one loop diagrams only cancel if the mass splitting of the baryons
is disregarded. In the analysis of F; we therefore set all baryon masses equal. We
illustrate the sensitivity of our results on the common mass value My by considering
two cases: My = 0.9 Gev and M, = 1.15 Gev. The first value is an estimate of
the mass of the baryon octet in the chiral limit, the second is the mean mass of
the octet.

If the baryon masses are set equal, the Clebsch-Gordan sums simplify con51d-
erably; the form factor Fj(0) can then be written in the form

3

FI(E_ _)20) ([1+ (2) + J(2) .

+I§[(9F2 +18FD +9D%)J{) + (9F* + 18FD + D*)7{)))
F(A-p) = —1-\/5 ([1 + §J(?) ZJ@)]
m[(9F2 +6FD + D*)J{) + (9F* + 6FD +9D) )
R(E —n) = 5\/5 ([1 + ZJK,, + ZJ(?),]
+%[(9F2 —18FD +9D*)J§) + (9F* — 18FD + D*)J) )
R(E —A) = %«/?? ([1 + gJ”’ 3J(2)]

1
+[(9F" — 6FD + D*)J{) + (9F — 6FD +9D?)J (1’])
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We have defined the abbreviations

m__ 1 ® w__L o
Jgs = m Jy(mk,my) Jpr = @nFo)? - Jy (myg,my)
J(2)=_1 -J(l)(mK m,) I3 ——1—'J(1)(mK M) -
En ™ (4xFp)2 2 ¥ Kr ™ (4rFp)z 2 e

Here J, ,El) denotes the piece in Ji, which is proportional to 4*. The explicit formulae
of the integrals J} () and J;El) are given in appendix C.

The coefficients Jg(l)(mK,m,,) and ng)(mK,mﬂ) stem from a purely mesonic
loop (no internal baryon lines). Accordingly the explicit expression for J, only
involves meson masses:

2
J(” = — (it 4 i)+ UL ln-?j:&—1 7.1

Using Fy = 0.088 Gev, we obtain
I =—0001 JZ =-0.033.

The net effect of the purely mesonic graphs is a universal reduction of the weak
form factor F1(0) by 2.6%:

Z—(J,ﬁ?,’, +72)=-0.026.
The same correction also occurs in the mesonic form factor fX7(0). In the case of
F;(0), there is an additional contribution related to the triangle diagram with two
mesonic and one baryonic internal line, described by Jy and Jx (1)

At the beginning of our numerical analysis we study, if the leading terms in
a chiral expansion of the integral J; are a good approx1mat10n of this functlon
When the baryons have a common mass Mp, the expansion of the integral J1 ),
given in appendix C, reduces to

,m? + 3mymgy + m?
57 (M1 — ma)

(1) _ o (1)
Jl - 3 J2 + 2]\4 my + mo

+ O(mguark) : (7'2)

The approximation includes contributions of O(m,Inm,,m%?). For the leading
term in the chiral expansion we have

J =372 = _0.099

Numerical values of the functions J , and Ji (1) are listed in table 7.1 . The table
shows that for the values of M, of 1nterest thlS term overestimates the size of

47



48

Krause H.P.A.

the loop integral by a factor of order three. The chiral expansion converges very
slowly.

The numerical results for the weak form factor F; are given in table 7.2. In
the first column we have given the value of the form factor in the symmetry limit
My = mg = m,. The other columns contain the results for F; normalized to F{"¢.
They include the SU(3) breaking to one loop. M, denotes the common mass of
the baryons. For the evaluation of the loop contributions we have chosen

Fy = 0.088 GeV F =0477 D =0.755 .

The result for the form factor depends on the choice of the baryon mass Mj.
We have studied various values of Mj in order to estimate the induced error. When
changing the value of M, from the mean mass 1.15 Gev to a chiral value 0.9 Gev,
the form factor differs only by 0.5%. We have taken for F,D the best values of
the SU(3) symmetric fit, which are given by Bourquin et al. [6]. A variation
of the F' and D values leads to very small corrections in the asymmetry. The
values obtained are strongly channel dependent, varying between 1.5% and 5%.
The small value for the £~ — n transition is due to a positive contribution of the
ihtegral Jl(l), which partly balances the contribution of the integral Jél).

Donoghue et al. [14] have estimated the asymmetry of the form factor Fj in
a bag model calculation. They found a universal value of 0.987 for all AS =1
transitions. In contrast, our results vary up to 3% for different transitions. Only
for the ¥~ — n transition we obtain a similar value for the asymmety.

The fact that the contributions generated by the one loop graphs are not well
represented by the leading term in their expansion in powers of the quark mass
presents us with the following problem. The motivation for considering the one
loop graphs is the fact that they generate the leading contribution in the quark
mass expansion of F1(0). The one loop graphs however also contain very substan-
tial nonleading terms and we have included these contribution in the numerical
results given in table 7.2 . Can we trust these nonleading terms or should we
expect to find comparable contributions from two loop graphs or from higher or-
der vertices in the effective Lagrangian? We cannot answer this question. It is
conceivable that the asymmetries in the physical matrix elements are smaller than
what we have found on the basis of the one loop calculation reported here. What
this calculation does show, however, is that processes in which the W interacts
with a virtual meson tend to generate surprisingly large and strongly asymmetric
contributions and we see no reason why other processes should compensate this
effect.

7.2 Analysis of F5(0)

In this section we examine the form factor F3(0). As in the analysis of the form
factor F3(0), we first neglect the mass splitting of the baryons. Later we consider
the effect of the mass splitting. In our analysis contributions from tree graphs as
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well as one loop graphs are taken into account. For the electromagnetic transitions
the tree contributions to the anomalous magnetic moments F;(0) are

F(Zh) = —8M0(l§’ + 1) — —oz((ks + 3k1) + 3k7)

Fy(z) = —SMO(% —1)— ?-oz((kg + 3ky) — 3ks)

F(Z%) = —sMO%S - §a(k8 + 3ky)
Fi(p) = ~8Mo(2 1)+ Sal(ks +3k1) + 367 — 3o — (ks + k)

Fy(E") = —8M0(l—3 _l)+ %a((kg + 3ky) — 3kr + 3ke — (ks + k1))
Fy(n) = —8M, 213 - ga((kg + 3ky) — 3ke)

R(E) = —8M, 2’3 _ ga((kg + 3ky) + 3ko)
Fy(A) = —8M0?l _ ga((ks + 3ky) + 3k2)

F(AT®) = msMof = - —\/' 3ok,
where

a = 2\/?_)tr()\3M) )

In the chiral limit, F5(0) is completely determined by the two low energy constants
l3,14. Usually the magnetic moments of the nucleons are used to fix these constants.
Then the magnetic moments of the hyperons can be expressed in terms of the
anomalous magnetic moments of the nucleons. Coleman and Glashow [8] were
the first who obtained this result. In addition we include the counterterms of
O(m,) in our analysis. From the eight constants given in equation (4.59), k7 and
ks just redefine the constants I3 and l;; the other six low energy constants only
appear in five independent combinations. Similarly we obtam the following tree
contributions to the weak transition form factors:

Fy(S'E) = —8Moy - (ifEl 1)~ Ta((ks + k1) + s — Sk — 3(ks + k1)

Fy(pA) = —SMUE\/g- (%3 f-lg) 4 -—\/:Ea((kg + 3k1) + 3kr — ke — 3(ks + k1) + 4ky)
F(nT™) = —8M0%\/§.( _213 + 14) ++2 fa((ics + 3ky) — k7 + 3ke — 3(ks + k1))
F(AS") = —8Mozv/3 (52 +1) - —\/—a((kg + 3kt — Sk + ke — 3(ks + ku) + 4k3)

Fy(pn) = —SMO%\/i (3;3 + )+ = \/—a((kg + 3ky) + k7 — 3ke — 3(ks + k1))

FQ(AE_) = "—SM(]\/?—)E = §\/§ak2 .
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The loop contribution to the form factor F3(0) can be written in the form

F(E" =% = [(9F2 + 18FD + 9D*)J{) + (9F + 18FD + D*)J{)]

214 (—6FD —2D?)J® + (6F? — 12FD + 6D*)JY)

+ (12F? — 18FD + 6D?)J®)]

F(A—p) = iﬁ[(gF? +6FD + D*)JS) + (9F? + 6FD + 9D?)J§))]

214 [(—6FD +2D*)J® + (18F? — 12FD + 2D*)J)

+ (6FD + 6D J¥]
B(E~ —n) = f 2(9F? — 18FD + 9D*)JY) + (9F? — 18FD + D*)J)
~ ﬂ[(csFD — 2D*)J® + (6F? 4+ 12FD + 6D*)JY)
+ (12F? + 18FD + 6D*)J®)
Fy(E~ = A) = 512\/??[(91?2 —6FD + D*)J{) + (9F* — 6FD + 9D*)JS)
= 2—14{(6FD +2D%)J® 4 (18F? + 12FD + 2D*)J{
+ (=6FD + 6D?)J®)

Similar formulae can be obtained for the AS = 0 transitions and for the electro-
magnetic transitions. We have defined the abbreviations

m_ _ 1 (2) W__ 1
JK'n (47I’F0)2 Jl (mK1 mn) JK1r (4 F )2 J (mK,m'n‘)
1
Je — _— — . 7 (3) _ (2) @ Dm,) .
L (4F) J3'(my) Jx (an F)2J3 (mk) Jy (4F)2J3 (mr)

Here J,S ) denotes the pieces in Jy, which is proportional to ¢#¥q,. The explicit
formulae of the integral J () i given in appendix C.

We begm our analysis of F; with the study of the chiral expansion of the
functions J1 and Jé ). From the formula of appendix C we obtain

Jl(z) = —AMI+ §7rM0 my + mims + m;

3 my + m2

4 2 2
mi—m3 M;j my — Mo

For electromagnetic transitions, where m; = m,, thls reduces to

O(mquark) .

2

Jl(z) = —4M? + 47 Mym, + Smfln
Mo

+ O(mquark)
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The leading terms in the expansion of the integral Jf) are

M2
J:g?) = —4]\{[02 + 4mf In T_n_g- + O(mquark) 3
1

The approximation includes contributions of O(m,In mq,m;/ ). The leading

term in this expansion is the square root singularity in the function J1(2). It has
already been calculated by Caldi and Pagels [7], using dispersion integral tech-
niques. We can reproduce their result, if the Goldberger Treiman relation [10,26]
is taken into account. Numerical values of the functions Jg,),, J ,‘},’, and J,Ss),J 1(;? ),J,(,e‘)
are listed in table 7.3 . It turns out that the leading terms in a chiral expansion
are not a good approximation of the loop integrals. In our analysis of F3(0) we
thus do not use the approximated formulae.
The magnetic moment is related to the electromagnetic form factors F1(0) and
F5(0) by
o = F20) — F(0)
Mp + Mg '

Data on magnetic moments are usually given in units of nuclear magnetons

(1.3)

PQ_ _ 5 )
£ 2MProton

Table 7.4 contains the magnetic moments of the baryons, which are experimentally
well known.

The experimental data for the magnetic moments of the baryons are used to
fix the low energy constants l3,l; and k;. We are then able to predict the magnetic
moments for weak transitions. The way to use this information is however not
unique. Either F, is taken to be SU(3) symmetric, then physical masses have
to be used in equation (7.3), or p is symmetric, then Mp and Mg have to be
replaced by the common baryon mass M. We applied various fits to the low energy
constants in order to estimate the induced error in the prediction of the weak
magnetic moments. The results which we have obtained when loop contributions
are neglected, are listed in table 7.5.

In the first two columns only a fit of I3 and I4 has been used to predict y; the
last two columns contain a fit with all low energy constants. The results show,
that the uncertainties in the prediction of y are reduced from about 20% with a fit
of two parameters to about 10%, when all seven parameters are fitted. In the rest
of our analysis we take the loop contributions into account. For the prediction of
p we use a fit of all seven parameters. Both procedures to fit the data have been
applied. Table 7.6 contains the obtained results, when physical masses are used
in equation (7.3). The first column contains the prediction for u, when only tree
contributions are used. In the second and the third column loop contributions with
different values of the common baryon mass M, have been taken into account. In
most transitions the predicted value of u changes by about 20%.
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Finally we use physical masses in the loop to predict 4. This is possible, because
even with physical baryon masses, the loop integrals are free of ambiguities. The
analytical expressions used in the numerical evaluation are extremely cumbersome
and are therefore not given in this article. The results are listed in the last column
of table 7.6. In this case, the tree level prediction is corrected for most of the
transitions by about 10%. We are thus able to predict the weak magnetic moment
and the weak form factor F3(0) within an accuracy of 10%.
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exact result chiral approximation

My = 0.9 Gev | M, = 1.1511 Gev | My = 0.9 Gev I My = 1.1511 Gev

Jg ~0.0003 ~0.0006 +0.003 +0.002
7Y ~0.0312 ~0.0400 +0.038 +0.008

Table 7.1: Fy(0): Chiral approximation of the integral Jl(l)

F¢(0) Fy*(0)/Fi<(0)
Mo, = 0.9 Gev | My = 1.1511 Gev
(=) 1 1 - 0.050 1-0.057
(pA) 13 1 - 0.050 1-0.057
(nZ) | V2 1-0.016 1-0.013
(AZ7) | i3 1 -0.039 1-0.043

Table 7.2: Results for F;(0)

exact result chiral approximation

My = 0.9 Gev I My =1.15 Gev | My = 0.9 Gev } My = 1.1511 Gev
Jie: -0.910 -1.779 +1.128 -0.088
g ~1.229 ~2.204 ~0.429 ~1.636
I -3.142 -5.648 ~1.675 -2.875
T -3.321 -5.694 ~1.691 -2.980
JE -2.957 -4.683 —2.418 -4.072

Table 7.3: F3(0): Chiral approximation of the integrals Jlm and J3(2)

| | &9 |
) [ +2-379
=) -1.14
+2.793
~0.69
~1.913
(Z%) | -1.250
(A) | -0.613

Table 7.4: Data from experiment
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Fit of 3,1, Fit of 13,14, k;

MO | Mph,ys MO T Mphys
(A) +0.510 | +0.401 | 4+0.330 | 4-0.437
(AT} | +0.883 | +0.718 | +0.712 | +0.738
(X°=7) | +1.254 | +0.936 | +0.907 | +1.004
(pA) +1.289 | +1.155 | +1.081 | +1.054
(n=-) | -0.389 | —0.355 | —0.214 | —0.276
(A=") | +0.406 | +0.313 | +0.421 | +0.357
(pn) | +1.773 | +1.773 | +1.773 | +1.773
(AX") | +0.883 | +0.716 | +0.786 | +0.773

Table 7.5: Results for 4@ from tree contributions

tree level 1-loop 1-loop
My=0.9 | My=1.15 [ M = M,

(Z°) +0.437 | +0.437 +0.439 +0.431
(AZ?) +0.738 +0.891 +0.925 +0.810
(X2~ +1.004 +0.768 +0.770 +0.853
(pA) +1.054 +0.776 +0.759 +0.894
(nZ7) -0.276 -0.235 -0.226 -0.224
(A=7) +0.357 +0.276 +0.264 +0.393
(pn) +1.773 +1.630 +1.633 +1.827
(A7) +0.773 +0.690 +0.692 +0.745

Table 7.6: Results for uF? including one loop contributions

H.P.A.
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Summary and Conclusions

In the last years a considerable amount of data on the rates of the semileptonic
hyperon decays have been accumulated. In particular a series of high statistic
experiments has been performed at the SPS at CERN in 1982 [6]. The accuracy
of the data is at the level of 1%-2%. In order to be able to use this information
for a determination of the Kobayashi-Maskawa matrix element |V,,|, one has to
know the vector form factor F;(0) very precisely. Until now most of the data
on baryon decays have been analysed with the assumption of exact SU(3) vector
symmetry. With the precision of the new data it is necessary to take symmetry
breaking effects into account.

As the main part of this article we have analysed the asymmetry of the vector
form factor F;(0). In addition we have investigated the symmetry breaking for the
magnetic form factor F3(0). We have calculated these form factors using chiral
perturbation theory. The computation has been performed in the framework of
an effective Lagrangian. The corrections to the SU(3) values of the vector form
factors have been obtained from a one loop calculation using vertices of O(q). We
have derived the leading terms in a chiral expansion of the form factors Fy and F;
of the weak and electromagnetic current. Caldi and Pagels [7] have calculated the
leading correction to the SU(3) value of the form factor F3(0); it is of O(m}/?). We
have reproduced this result using the Goldberger-Treiman relation. In addition
we have computed the correction proportional to m,Inm,. As already observed
by Caldi and Pagels these corrections turn out to be large. Chiral perturbation
theory is perfectly well defined. However, the leading terms in a chiral expansion of
the loop integrals are not a good approximation of these integrals. The expansion
can therefore not be used in the analysis of the one loop graphs.

The asymmetry of the weak form factor Fj(0) generated by one loop graphs
turns out to be substantial, varying between 1.5% to 5%. The errrors associated
with these graphs are very small. The main uncertainty stems from higher or-
der effects, including a contribution proportional to (7 — m,)?%, which we did not
attempt to estimate. In contrast to the results of bag model calculations, the
asymmetry for AS = 1 transitions strongly depends on the channel. The determi-
nation of the Kobayashi-Maskawa matrix element V,, from semileptonic hyperon
decays is significantly affected by these asymmetries.

In the analysis of the weak form factor F5(0) the contribution of the countert-
erms proportional to m, have been incorporated. The seven low energy constants

55



56

Krause H.P.A.

have been fitted using the experimental data of the magnetic moments. It was
then possible to predict the weak form factor F3(0) within an accuracy of 10%.
Their contribution to the decay rates is kinematically suppressed. Qur results may
however be useful in an analysis of the angular distribution of semileptonic decays.
By using only vertices of O(q) in the loop contributions, the mass differences of
the baryons have not been taken into account. They only show up in the effec-
tive Lagrangian of O(¢?); at O(q) all baryons have their common chiral mass M,.
The loop contributions affect the prediction for F5(0) by about 20%. In order to
study the influence of the mass splitting, we have evaluated the loop integrals with
physical baryon masses. It turns out that the mass differences reduce the effect of
the loop contribution to about 10%. In a complete calculation one would have to
compute all 1-loop contributions involving vertices of O(¢?) and in addition the
2-loop contributions with vertices of O(q). We have analysed the part of the 1-loop
diagrams with higher order vertices, which is nonanalytic in the quark mass. The
2-loop contributions have not been investigated.
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Appendix A

Conventions and Notations

A.1 Metric, Dirac matrices and spinors

In this appendix we collect the basic conventions and notations used in the thesis.

1. Metric tensor:

9 =g = _1 (A.1)

2. Scalar product:
a-b=a,b" = g"a,b, (A.2)

3. Levi-Civita tensor:

1 if (u,v,«, B) is an even permutation of (0,1,2,3)
e**® = { —1 ifit is an odd permutation (A.3)
0 otherwise

4. <y matrices:

{7} = 2071
1.

Yo = 7o
%T = =%
T =y = e
‘/g = s
% = I

{’)’51 7“} =0 (A4)
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5. Commutator of v matrices:

-,

ot = "7
[75’ULW] =0
750‘“’ = -;-e‘“’"ﬁ Top

wh = ¢ =ty = =g
1 v v
Sl "t = PPy

1 > o vV A 7 o §
5[0“",7"] = —ig"*y” + ig"y* (A.5)

6. Hermitean conjugation:

Py =
P50 = st
PP = ()
oy = (o)t (A.6)
7. Charge conjugation:
Cv,),uc-—l — _,YuT

0750—1 _ ,)/ST
CYy Tt = ()"

Co™C1! = — (o) (A.7)
8. Dirac equation:
(# — M)u(p;r) =0 (A.8)
u(p;r)(p— M) =0 (A.9)
9. Normalization of spinors:
u(p;r)u(p; s) = 2Mé,, (A.10)
ul(p; r)u(p; ) = 2Epéy, , (A.11)

where E, = /p? + M?

10. Projection operator:

Yulpir) @ u(pr) =p+ M (A.12)

T
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11. Gordon identities:

a(p;r)v*u(p’;s) = lu(p,r)(r" i0*’q, ) u(p’; ) (A.13)

_ 1 o
w(pr)y* v ulpys) = g7 u(pi )Y (¢ —io™r ) u(p;s) , (A.14)
where r, = p/, + p, and ¢, = p# — Dy

12. Normalization of fermion states:

< p;rip'ss >=2E,(27)*8% (5 — P)brs (A.15)
13. Invariant measure: g
f _dp (A.16)
(27)32E,

14. Fourier expansion of spinor fields:
B(z) = Z f (2,”)32E (u(p; 7)b(p; 1)e ™ + v(psr)d! (psm)e™)  (A17)

Nearly all conventions are taken from the textbook of Itzykson and Zuber [20];
exceptions are the normalization of spinors, the normalization of fermion states
and related formulae. In u(p;r) the argument r denotes the polarization of the
particle; p is the three momentum of the particle. In all objects carrying a flavour
index, it has not been indicated explicitly.

A.2 Baryon fields and meson fields

BASA;B:%BAXM;@:@AXA A=1,---,8, (A.18)

where A4 are the generators of SU(3) in the physical basis. They are related to
the Gell-Mann matrices A, by

Aa=3"Nids aA=1,--,8 (A.19)
=Y N3 =S N (A.20)
A A
The non zero elements of the matrix N, Ng,, are [16,17]:
Niy = Nyy = Neg = N7z =

Ny =Ny =

SEE)
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N12 = sz = N45 = Nss = N67 ==

N77 ==
Niz = Ngg = cos(e)

N83 = == sin(e)
N3z = silz(e) )

tr )\3M

tan(2¢) = M)

where

My
M= my
ms

is the quark mass matrix. Neglecting SU(2) splitting, the mixing angle € is zero.
The matrix N is a unitary 8 x 8 matrix. We thus have

> N3,Ng, = 648

Y NNy = 6%, (A.21)
A

The components of the fields in the two bases are related by
¢, = ; Naa®a = ; Ny %%
B, = Y Nu.By
B, = f: N3,B4
W = XA: Ny Vi
A
v = Z NLVY.

In particular we find

. 1 ‘
Vs = E(Vf + VYY)
3 1 _

‘zz»u — _‘7_5(1/1“ + 21/2”) .

The components of the fields in the physical basis By, 4 can be identified with
the physical particles:

Bl=2+,BQZE_,BE’.:anB4:p
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Bs=E%",Bsg=n,B; =2, Bsg=A
@]:W-’—,@z"'——*ﬂ’_,@gzﬂo,@‘;:K-’-

Ps =K ,06=K°, 0, =K%, &3 =1.

The baryon matrix B and the meson matrix ® then take the form

A+ LT -nt )

B= 5= LA-33° —n (A.22)
= —= A
T

¢ = T 75N *_;75170 -K° (A.23)
K- -K° %n .

Let bi(p;r) be the creation operator in the Fourier expansion of Bg(z) = A(z); it
generates the physical state |A >

|A; pir >= Bj(pi )0 >
with similar relations for the other states. The choice of the matrix N agrees with
the phase conventions of Condon-Shortley and De Swart [13].
A.3 Free meson and baryon propagators

The free propagators in the physical basis are

<OTE()BW0> = Az —y) 54
0
d% 1 .
e —y) = ~ik(z—) A.24
Az —y) S € ( )
<O|TBi(2)Bil(9)l0 > = iS4z —y)- 67
d% ¥+ M, k(o
Ay — = —ik(z—y) A9
Sa=) ./(271')4k2—Mj+iee r (5a28)

where Fj is the meson decay constant, m 4 is the meson mass and M} is the baryon
mass.
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Appendix B

Effective Baryon-Meson
Lagrangian

In chapter 3 we have given a recipe to construct the effective baryon-meson La-
grangian. It turned out that the most general term with two baryon fields and n
other fields has two distinct forms. Either the baryon fields are embraced by one
trace over the flavour group or they are standing under separate traces. In order
to check the charge conjugation property of a term we use (anti-) commutators of
the fields instead of products. We define a quantity ¢ by

c=c+-teator,

where ¢, denotes the charge conjugation of the field Ax. For the class of terms with
one trace only we then find the following combinanations of the fields A,,..., A,:

1. fet =1
If c is even one can build two independent terms with even charge conjugation

{AlaB} [AhB]

The first term is an abbreviation for the expression
 : < _
5@4BNAhBD+thmAhBDﬂ

If ¢ is odd there is no such term.

2. form.=12
If c is even we have the four independent terms

{Ala{AZaB}} [Ala{A%B}]

{A1,[A2, B]}  [A41,[As, B]]

If ¢ is odd we find
{[A17A2]aB} [[A11A2]’B]



Vol. 63, 1990 Krause 65

3. forn=3
For even ¢ we can build the following 12 terms

{Ala{AZs{A3!B}}} {Ala[A% {A3)B}]} [Ala{A21 {A3)B}}}
{Als{Ah[A&B]}} [A1,[A2, {A37 B}]] [Ala {AZa[AB,B]}]
{A1,[A2,[A5, Bll}  [A1,[A42,[45,Bl]]  {[A1,[As, A5]], B}
[[AIJ[A27A3]]7B] {[A27[A17A3]]7B} [[A2’[A1’A3]]’B]

If ¢ is odd the independent terms are
{[A11A2]a{A3’B}} {[AI’AZ]a[AZ‘h B]} [[AlaAZ]v {A3)B}]

[[AlvAZ]’[AS’B]] {[A15A3]3{A2aB}} {[AlaAS]v[A% B]}
[[A17A3]1{A273}] [[AlaA3]a[A2aB]] {[A27A3]a{AlaB}}
{[A27A3]s[AlvB]} [[A2$A3]${A1’B}] [[‘A27A3]7 [AlvB]]

A further reduction of terms might still be possible, using identities in the
Clifford algebra. Those which are used in chapter 3 are

10°0 = g1 — 47" = —g*’ 1+ 7"
1 (o4 2: o o, v
5lo By} = rall AP} = Pty

1 ? . a
5107 = £, L] = —i(g™ " — ¢™7%) - (B.1)

In the following list we give all allowed terms of the effective baryon-meson
Lagrangian up to O(¢®); terms proportional to the equation of motion have been
omitted.

B.1 Terms of O(q)
tr( Biv*[D,, B] — MyBB) tr(Biv*y*{A,, B})
B.2 Terms of O(¢%)

tr(B{o, B}) tr(Bo““{F;;, B})

tr(Bio* {[A,, A, BY)  te(B{A,, {A%,B}})  to(Biv*{A,, {A, [D*, B]}})
tr(BB)-tr(c)  tr(BB)-tr(A,, A*) tr(Biy*[D", B]) - tr(ALA,)

tr(BA*) - tr(A,B) tr(BA,) - t0* - tr(A,B)

tr(BA,) - iv* - tr(A,[D*,B))  tr(BA,) - tr(A,[D*,[D¥, B]))



Krause H.P.A.

B.3 Terms of O(¢°)

w(Br*{e,B))  u(By{D%A)BY)  (By{(DY,F}), BY)
t(By*y* (D%, Fal, BY)  te(Bin*{[Bn (D, A]], BY)

tr(Biy*{[A,,[D*, A, B}) _ tr(Biy*y*{A,, {0, B}})

w(Biy{A, {0, B}))  tx(Byr+{[A", EL] BY)

w(Bin, (A, {F, BY)) - % tx(By{[A, F), BY)

tr(-gi'fs’Tu{Aw {Fp B1}) - gt p tr(Bi:yS"y“{A“, {a”,{A,, B}}})
(BB Bgly {80, B1Y) - 98 tr(ByPo ([, FL), (D%, BI})
tr(Bo*{Aq, {F,,,[D* Bl}})  tx(Biv*{[Aa, [Dy, Agl], [D*,[D?, B]]})
tr(l_?i'757#{[Am {Au, {A@’ [D<,[D?, B]|}}})

w(By°B) - tx(g)  tx(Biny+{A,. BY) - tx(0)

tr(Biy,B) - tr(A, Fly) - e#of tr(Biv*y,B) - tr(A, Fyp) - eF
tr(Biy®y*{A,, B}) - tr(A,AY) tr(Biy®y#{A,, B}) - tr(AL,AY)

tr(Bv,B) - tr([Aa, Ap]A,) - €*F tr(Bo**[D*, B]) - tr(AoF,,)
tr(f_?i‘ys‘y“{Ao,, [Da’ [Dﬁa B]]}) ’ tr(AuAﬁ)

tr(Biy*y#[D?, [D?, B]) - tr(Au{Aq, Ag})

tr(BA,) - iv°y* - tr(0B)  tr(BA,)-v* - tr(eB)

tr(BA*) - 4* - tr(F,,, B) tr(BA*) - v°y” - tr(F}, B)

tr(BA,) - i7%y, - tr(F,;B) - kel tr(BA,) - iy, - tr(F 3 B) - gnval

tr(BiAu) * Yy - tr([Ag, Ag] B) - e+>P tr(BA*) - i7°y” - tr([Ay, A]B)
tr(BA#) - iy°y" - tr({A,, A}B)  tr(BA,) - iy®y* - tr({A%, A, }B)

tr(BA¥) - 4" - tr([Dy, A]B)  tr(BA,)-y* - tx([D*, A,]B)

w(BA,) i tx(oD4 B)  tr(BA,) 50" - (A, AnJ[D?, B])

tr(BA,) - iv°0® - tr([A,, AG[D#*, B])  tr(BA,) - v°0* - tr({A,, Al }[D*, B])
tr(BA,) - v°o* - tr(F} [D*, B]) tr(BA,) - v°o* - tr(F} [D*, B])

tr(BA,) - o* - tr( F [D*, B)) tr(BA,) - o¥* - tr(F,, [D*, B])

tr(BA*) - tr(F, [D", B]) tr(BA*) -4 - tr([D,,, A,][DY, B])

tr(BA,) - i - tr([D¥, AJ[D*, B])  tx(BA,) - 10" - tx([D,, A)[D, B])
tr(BA,) - v°y* - tr([Ay, Ao][D", [D*, B]])

tr(qA#) ’ i757a ) tr({Aw Aa}[Dua [Du, BH) _

w(BAL - iv°7* te({An ANDY, (D B])  (BA,) - iv’y - tx(F4IDY, [D¥, B))
tr(BA) - iv® - tr(Foa[D, D, BI)  tx(BA,)7* - tx((Dy, Adl[D", (D*, BI)
tr(BA.u) g - tr([Duv Aa][Dya [Das B”) tr(BA.u) - tr([Dw A.][D#, [D”, [D*, B]]])

In the list a term X is an abbreviation for %(tr(X) + tr(X)°); a term in the list
represents all combinations of (anti-) commutators allowed by charge conjugation,
as discussed above.
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Appendix C

Feynman Diagrams and Explicit
Formulae

C.1 Feynman diagrams

In chapter 4 we stated the analytical expressions of the one loop diagrams for
the vector current matrix elements of the baryons. In the following we list these
diagrams and the corresponding analytical expressions; the integrals I, are given
in chapter 4.

F2 LAaA] Lj?‘lz FE:A; ' I{‘ ) U(p’) (C'l)

Qa R — ,
D Ao =B =a(p) A, Lo P&, B ud) ()
| Q3 0
PP ”‘94\ q.R
\ [
=H;=“(p)'F2LAzA1 LiAa FCA; - IE - u(p) (C.3)
PQ
PP
3R CHrma(p) I LML FA I ou(p)  (CA4)
s = &r = F2 AAs YA BYCcA 4T p .
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3 L&y —i
= =B =) g PR Pl Pl Bou) ()
N ——” =£0
Fia Q,
"~ ""\QA
\ W!ooaRr _ 2
>~’A~s‘_ = H, = u(p) - WF}%A Fis, F&s - Li-u(p') (C.6)
P\Q =8
,/' \‘x _ H _ 1 L A L B I . c 7
P’E Q4 f'Q = G—Fg AyA P A4 T 46 ()

Solid lines represent baryons, dashed lines mesons and wavy lines the vector cur-
rent.

C.2 Formulae for Ag and Bsg

In chapter 5 we have parametrized the self energy of the baryons in terms of the
functions Ag and Bg. We write the results in the form

@1-k+ Q2+ Qzln (M)
Qo

2a0 + a; + (a? — 4apay)"/?
200 + a; — (a? — 40-002)1/2

< 1 1 4w p? 1 4myu?
= —+I'1)+ =1 —In|——M
8 TI+ ()+2n( Qo )+2 (ao+al+az

+ Q4(af - 40002)1/2 In (

— 2 — Af2 2 _ 2 _ 2
ap = m; ay =M —m;—p a; =p°.

We introduced the abbreviation m, for mg, and M; for Mg,. The coefficient
functions @\ are given by

1. for As
G = %(2m§+3]\412—p2)
Qr = (=M + 5MIp + Mim} — 25"+ 3P
Qs = Z;;(Mf_m;pz_zM;*m§+Mfmg+ pmd)

1
Qs = Z};(“Mf + 2M?2p* + Mim] — p* + p’m})
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i for BS

Ql = J\J2 + Tn%
Qs = 2—55(*-—7"’1'12 = M}m3 + mj)

2
_ ma

C.3 Formulae for the J;

The functions Ji have been calculated for physical masses in the loop and on the
external legs, and for arbitrary ¢*>. Even for ¢*> = 0 the obtained formulae are
extremely long, filling several pages. In our opinion it is therefore not worthwhile
to present them here. For the interested reader the general results are available.
In the following we list approximations for the formulae of Ji which are used in
the numerical analysis of the form factors.

The function J; only contributes to the form factor Fy; for ¢? = 0 it reads

2, 2 2
My, my

2(mi —m3) mi’

1
B = —o(mi 4 md)+ (C8)

A representation of the function J; at ¢* = 0 can be given in terms of rational
functions Hy of the physical masses. When all baryons have a common mass My,
it has the form

2

Ji(m3,m3; Mo) = Hyo + Hso - 111( 2)+H40 In( 2)

AL /22
—( ) 4 Hry - (~2)0/2(m3) - arctan (L2

+ Hao - (=2)0/2(m) - arctan (X -

)5
(C.9)
where
v(z) = 4Miz - 2% .

The function J; contains a piece J\") proportional to 4#, which contributes to the
form factor F1(0) and a piece Jlm proportional to ¢*’q, contributing to the form
factor F5(0). We give the coefficient functions for Jl(i) and J1(2) separately. For
Ji(l)(ml,mz, M¢) the coefficient functions Hyo are:

1
Hy = “‘(—37”%‘“3”73)

—m$ + 3mim? — 3mimIM¢
—2m2 MZ + 2m3M¢?

H40 =
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3mimi(—mj + Mg) + m3

H =
50 —2m2ME + 2m2ZME

He — m& + m(—3m2 — 2M¢E) + 10mimZM?
o —2miMZ + 2m2ME(m2 + 4MZ) — 8m2 M3

g - _mumy(3mg — 10Mg) + mi(—m3 + 2Mg)
70 —

2miIME(—m3 + 4ME) + 2miME(m3 — 4M3)
For Jl(z)(mf,m%; M) the coefficient functions Hyg are:

il
Hy = g(smf + 4(2m§ - 3M02))

4m§i - 12m‘1'Mg

H40 =

“3m2 M + 3mIM2
4mi(—m32 + 3ME)
Hy = 2 2A12
-—3m1M02 + 3m2M0

—4m$ + 4miM¢
Heo = 2172 2712
_3m1M0 + 3m2MD

o dmi(m3—13)

—3m2MZ + 3m3MZ
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