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Abstract. We show how Mandelstam's soliton operator can be written in regularized form, and
can be used to obtain regularized bosonization formulas. The fermion field properties which we obtain
include the anticommutation relations, which we find are not canonical except for free massive
fermions. We are also able to perform an explicit nonperturbative mass renormalisation of the
massive Thirring model, by direct derivation of the field equations. We find that these field equations,
and some of the fermion anticommutator relations, are valid only in a weak sense. We indicate how
the soliton operator can be used to demonstrate the equivalence of a more general class of boson and
fermion models. The regularized formulas are also used to investigate the N 2 case of non-Abelian
bosonization, including the groups generated by the fermion bilinears, and the corresponding
currents.

1. Introduction

Bosonization is the means by which a fermion theory can be rewritten in
terms of boson fields, and provides a powerful tool for understanding some
aspects of fermion models, particularly the nonperturbative features. Examples of
bosonization are the equivalence between the sine-Gordon and massive Thirring
models described by Coleman [1], and the non-Abelian bosonization of Witten
[2]. For the sine-Gordon case Mandelstam [3] exhibited an explicit map from the
boson to the fermion fields, and was able to obtain the bosonization formulas in a

very direct way. This included the identification of the fermion and boson
currents, the equivalence of the mass and potential terms, and also of the field
equations for each model.

Because Mandelstam's soliton operator ip provides a direct link between the
boson and fermion models, it not only determines the bosonization formulas
correctly but also provides a direct method of obtaining properly regularized
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expressions; this can be done by using a regularized form of the soliton operator.
If one employs ip literally, various ambiguities and infinities are encountered,
which of course merely reflect the renormalisation required in the fermion theory
when two fermion operators are multiplied at the same point. Mandelstam [3]
explains how to regularize some of the infinities in the standard way, by point
splitting (following the well known procedure outlined for example by Klaiber
[4]). Additional infinities appear, however, which can be related to mass
renormalisation and which are not fully explained in Ref. [3]. An example is in
the derivation of the massive Thirring model field equations, where the mass term
arises from the commutator

/ [:cos/80(S):,V(*)]<*ê (1-1)

(see equations (4.6), (4.8) in [3]). The integrand of (1.1) is zero everywhere,
except at % x, where it is undefined. Suitable regularization of the soliton
operator leads to a regularized form of (1.1), and thence to mass renormalisation.
Similarly, we find that the fermion anticommutation relations, when nonzero,
must be evaluated with the regularized soliton operator, and then hold only in a

weak sense. Only for a special value of the boson coupling constant (ß2 4jt,
corresponding to free massive fermions), are the anticommutation relations
canonical. Whilst this fact is implicit in earlier work (see e.g. Johnson [5]),
Mandelstam's soliton operator demonstrates this directly, and indicates in
regularized form the appropriate distribution required.

The purpose of this paper is to show how the Mandelstam soliton operator
can be regularized, and be used to obtain regularized fermion equations. In
Section 2 we outline the steps by which the soliton operator ip is determined from
the current-fermion commutation relations, and how ip is regularized (we repeat
here some calculations of Mandelstam briefly for completeness, and to indicate
where regularization is necessary). In Section 3 we consider the fermion anti-
commutation relations and other boson-fermion equivalences; again, the derivations

given by Mandelstam, where satisfactory, are mentioned only briefly, and
we describe in detail the cases for which further regularization is necessary. To
this point no dynamics are imposed on the fields, but in Section 4 we consider first
the sine-Gordon model, and then more general boson models, and derive fermion
field equations, together with the appropriate renormalisation. For the general
case fermion renormalisation is much more complicated, but can in principle be
carried out using the regularized soliton operator. We discuss models of this
generality in order to demonstrate that the Mandelstam soliton operator has

properties which are not model dependent, but has a wide range of applications.
In Section 5 we consider regularization in the context of the N 2 case of

non-Abelian bosonization. Witten [2] has generalized the bosonization formulas
to the case in which the symmetry group is non-Abelian, 0(N) x 0(N). The
Mandelstam soliton operator, although not known for general N, can be used to
check the N 2 case of the bosonization formulas. In Ref. [6] it was shown that a

formula of Witten's [2] relating fermion bilinears to elements of the symmetry
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group was not entirely correct, but that a certain linear combination of the
bilinears was required. Orthogonality properties of the fermion bilinears are
investigated using the regularization determined in Section 3, and the associated
currents are investigated using the field equations found in Section 4. We find
that, for the massless fermion case, the currents generated by both sets of fermion
bilinears are the same. This explains why some checks by Witten did not reveal a

discrepancy. We hope that the methods used here will be of use in the general N
case of non-Abelian bosonization, where corresponding soliton operators are not
yet known.

2. The Mandelstam soliton operator

Without being restricted to any particular fermion model, let us assume that
the fermion currents;'^*) satisfy the equal-time commutation relations

[/oto, /oÖ')] [/ito, /ito] 0,

\jo(x),jx(y)] iô'(x-y),
where we have included the Schwinger term. As explained by Dell'Antonio et al
[7], it is preferable to introduce the currents via these commutation relations,
rather than as fermion bilinears, to avoid problems arising from the multiplication
of fermion fields at the same point. Because the current is conserved, we can
introduce a boson field cp(x) according to the formulas [8]

}o(x) cp'(x), jx(x) cp(x) jr(x). (2.2)

The canonical commutation relations for cp and n then imply that the boson
currents (2.2) satisfy the commutation relations (2.1). The identification of the
boson and fermion currents in this way is the basis for the correspondence
between boson and fermion theories.

Next, we introduce the fermion field operators ip(x) by means of the equal
time commutation relations, following Johnson [5] and Dell'Antonio at al [7]:

\Jo(x),V(y)] -jô(x-y)y(y) (2.3)

[/ito, V(y)] -^à(x-y)y5ip(y), (2.4)

where tp is a two-component field and ß is a real constant. (Our convention for
the y-matrices follows Coleman [1] and Mandelstam [3]). The particular constants
on the right hand side of equations (2.3), (2.4) are chosen for later convenience in
order to identify the fermion operator with a soliton field. If an integral multiple
of the coefficient —2n/ß in (2.3) is chosen instead, the fermion operator will
correspond to a multisoliton field. For a chirally invariant theory, equations
(2.3), (2.4) express charge conservation for the vector and axial charges, but we
postulate these relations quite generally. We wish to regard the fields xp as
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functionals of the boson field cp, and its conjugate n, with an explicit form to be
determined from equations (2.3), (2.4). To determine this form, we first integrate
(2.3) with respect to x, to obtain

[cP(x),ip(y)] je(y-x)xp(y), (2.5)

an equation which is the starting point for Mandelstam and has a soliton
interpretation. Now, by regarding cp(x) and ji(x) as functional derivatives, we
integrate (2.5) to obtain the following expressions for ipx(x) and ip2(x), as given
by Mandelstam:

Vito N£ :exp iAx(x):

ip2(x) —iN€ :exp iA2(x):,

where

Ax(x) -^ f 0(x - §)*(£) d% -1 Hx),
ß : (2-7)

A2(x) -j |
_

6(x - |)ff(|) dl +1 tf> to-

The ordering of the non-commuting operators in (2.7) is determined by the usual
normal ordering prescription, in which we choose the Fock space representation
for a boson field of some mass p. Such normal ordering implies a choice, although
somewhat arbitrary, of a representation of the operators as free fields, and to this
extent is not perturbation independent. The two-point function in this
representation is given by

A+(* -y) [tfAto, cp-(y)] !-HP(ip(x2- t2)), (2.8)

where x2 — t2 > 0, with the asymptotic expansion

A+to~-y- log c2p2x2 + 0(x2). (2.9)

The ^-integration in the expressions (2.7) is understood to be regularized by
inserting the factor exp (e§) in the integrand, and the normalisation N£ in
equation (2.6) is chosen to be

as determined by the normalisation required below for rpx and \p2 (equation
(3.13)). '

In manipulating the operators Alt A2 in (2.7) further regularization is

necessary. Firstly, in multiplying two fermion operators we use the point-splitting
procedure and VitoV2to, f°r example, will appear in the form e°tyx(x)\p2(x + e),
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where the index o is calculated so as to produce a finite result for £—»0. In doing
this, we regularize the singularity in A+(x), for x ~ 0, by introducing an
imaginary time splitting:

A+(jc, e) ~ - -î- log c2p2(x2 + £2) + 0(jc2). (2.11)
Aji

In addition, we must also consider the meaning of 6(x). We can always
assume

d(x) + 6(-x) 1, (2.12)

but when further regularization is necessary, we replace 6{x) by 6e(x), defined as

follows: let 6x(x) be any smooth function interpolating between 0 and 1, and
define

ee(x) 6x(^j. (2.13)

For small e, 6e(x) approximates 0(x), and we take the limit e—*0 when possible.
A useful representation of 9€(x) is

e£(x) - arctan (-) + \. (2.14)

If required, further regularization of equation (2.7) is also possible; for example,
we could replace

cp(x)-^\ e£(x)(x -Ç)cp'(Ç) dl (2.15)
J — OO

as occurs in Section 4 (equation (4.19)).

3. Anticommutation relations

We wish to investigate the anticommutators of rp(x) and ipf(y) for all values
of x and y. The formulas we need are

-.eA-.:eB: e[AB]:eB::eA:, (3.1)

where [A, B] commutes with A, B, and

[Ax(x), Ax(y)] ~[A2(x), A2(y)] -iji(6(x -y) - 6(y-x)),
[Ax(x), A2(y)] ijz(d(x -y) + 6(y-x)) in.

With these formulas, it is straightforward following Mandelstam [3] to see that,
for different arguments, all anticommutators are zero.
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In order to investigate {Vito, Vito) for x y, we require the commutator

—in /An2 ß2\
[Aî(x), A7(y)] — (8(x -y)-6(y-x)) + (-^ + ^)A+(x -y)

jz2u An2p2 fix~yi

where e is the regulator which appears in the integrand of (2.7), and where we
have used

[n+(x), x-(y)] (^- + ju2)A+(x - y), (3.4)

as well as

/Jo
A+(§) <*! -!-. (3.5)

o ip
For x ~ y we have therefore

iit
[At(x), Ax(y)} - - (9(x -y)-d(y- x)) - (o + 1) log \cp(x - y)\

+ ^+0((x-y)2log\x-y\), (3.6)

<>=rt+Zz-1- (3-7)

where

2n £'

ß2
+

8n

From the normal ordering formula

¦.eA::eB-. e[A+B]:eA+B:, (3.8)

we find, for x ~y,

VitoVito N2e exp [At(x), AT(y)] :exp i(At(x) + Ax(y)):

2neXP [f (d(x " y) " e(y " *)}] M* ~ yT+1

x-.expi(Ax(x)+A1(y)): (3.9)

Now we consider this equation in a weak sense, i.e. we take matrix elements, and
let y-*x; since the matrix elements of the normal ordered operator
:exp i(Ax(x) + Ax(y)): are finite, and other factors are bounded, we obtain, using
CT+1>0,

Vito2=V2to2 0. (3.10)

We emphasize that these equations hold in a weak sense only, whereas

{Vito, Vito} is zero in a strong sense for all x #y.
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Next, we investigate the anticommutator {xpx(x), Vito)- Here we must
include the regularized functions de(x) and A+(x, e) in order to smooth the
singularity at x=y. Using the normal ordering formula (3.8), and the
commutator (3.3) we find, for x ~ y

VitoVito W2 exp [At(x), A7(y)] :exp - i(Ax(x) - At(y)):
eu [—in ~\

Yn exp [— (0ai(x -y)- 6ei(y - *)) J

xexp[(—2- + —JA+(x-y, e2)J :exp - i(Ax(x) - Ax(y))\

cu [—in ~\

2^ exp [— (dei(x -y)- 6ei(y - *)) J

x[c2p2((x-y)2+e2)r^^'2, (3.11)

where we have included only the leading contribution (the identity) from the

operator :exp — i(Ax(x) — Ax(y)):. A similar expression for ip\(y)ipx(x) follows by
taking the hermitean conjugate. We obtain, therefore, for x~y

{Vito, Vito)

f cos [|(0ei(* -y) - eei(y -x))][c2u2((x -y)2 + ei)]^^'2. (3.12)

One sees that at £x 0 the expression cos [(n/2)(8El(x —y) — dBi(y — x))] is zero
except possibly at ;t =3>, i.e. {Vito, Vito} is zero for x =£y as was noted already
above. Equation (3.12) indicates that it is necessary to regularize both the
functions 8(x — y) and A+(x —y) in order to evaluate the commutator at x =y.
The meaning of (3.12) depends on the way in which the limits elt £2—»0 are
taken; let us choose the regulators ex, £2 to be equal, ex e2 e, with £ small.
We can now gain a better understanding of (3.12) by substituting the specific
choice (2.14) for 6e(x). We find

(Vito, Vito} (Vito, V2(y)}= _ 777. ..,2 s ™ + M- (3-13)
(cpy

n [(*-302 + £2r

We recognize that for ct 0 (for which ß2 An) we obtain a representation of the
ô function, i.e., we recover the canonical anticommutation relations. In general,
however, the noncanonical nature of (3.13) can be attributed to the renormalisation

required for the interacting fields Vi, V2- Our result disagrees with that of
Ha [9], who has used a different regularization scheme and obtains the canonical
commutation relations for the massless Thirring model, even for ct^O. The
difference appears to be partly due to the failure to regularize step functions of
the type 6(x) (see for example equation (2.22) in [9]).

Next, let us turn to the fermion bilinears and derive expressions for their
boson equivalents. The fermion currents can be constructed from xpx and xp2,

with the point splitting prescription exactly as outlined by Mandelstam [3]; we
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may therefore set £j £2 0. We obtain

2n
/oto V'to lim — (cpe)atp(x)y0tp(x + e),

"° P
(3.14)

jx(x) n(x) lim y- (cpe)atp(x)yxtp(x + s) - r-^-J,

which explicitly identifies the corresponding fermion and boson currents, together
with additive and multiplicative renormalisation factors.

The remaining fermion bilinears, of the form VltoVito» can be equated
with terms of the boson potential. As is the case with the currents, point splitting
regularization is sufficient, and we obtain

n _ e -
:cos ßcp(x): lim — (epe) tp(x)tp(x + e), (3.15)

,^-OCp
and

in -:sin ßcp(x): lim (cpe)~ôtp(x)y5tp(x + e), (3.16)
E^o cp

where

2n_ff
ß2 8n'Ô=1>2-77Z- (3-17)

4. Field equations

So far we have not imposed any dynamics on the boson field or on the
corresponding fermion fields. We consider at first the sine-Gordon model and
then indicate how to generalise the results to boson models with arbitrary
periodic potentials. Included as a special case is the free boson field, shown to be
equivalent to the massless Thirring model. These correspondences have in part
been demonstrated by Mandelstam, by deriving fermion field equations from the
boson dynamics, but without proper consideration of the régularisation required.
In particular, the mass renormalisation in the massive Thirring model is best

performed by employing the regularized functions A+(x, e) and 6e(x). As is the
case with some of the fermion anticommutators ((3.10) and (3.13)), the field
equations, for the massive case, hold only in a weak sense.

The Hamiltonian for the sine-Gordon model is

H j(icp'(l)2+ ijr(^)2-j2-.cosßcp^d^^Ho + H,. (4.1)

The dynamics of the rp fields are determined from

ip i[H, tp],

ip' i[P,tp],
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where the momentum P is given by

P |J{*(§), *'(§)}<*!• (4-3)

In evaluating (4.2) we encounter the commutator [:cos ßcp(%):, Vto] which
is zero except possibly at x §. This follows from Eq. (2.5), which implies

cos /8(|)Vto Vto cos [0<K!) + 2jt0(* - f)]. (4.4)

It is necessary, therefore, to calculate a regularized form of this commutator,
which we will be able to identify with the mass term of the massive Thirring
equations, as suggested by Mandelstam. By using the normal ordering formula
(3.8) and the commutator

[cp+(ï), Ax(x)} -j 6e(x - §) -1 A+(* - g, £), (4.5)

we obtain

[:expi/3<K!):,Vito]
2iNe sin (nde(x - Ç))[c2p2((Ç-x)2 + £2)]-"2/8* :exp (iß<j>(x) + Mito): ¦

(4.6)

Again, we have chosen equal regulators £x £2 £ for the functions 0Ci(x) and
A+(x, £2). We observe that sin (nd(x - •%)) is zero except at x •%; for small £
therefore the only contribution to the right hand side of (4.6) occurs for small

|| — x| and so we have replaced A+(Ç-x, e) by its asymptotic form (2.11) and
cp(%) by cp(x). The commutator [:exp - ißcp(%):, Vito] has a form similar to
(4.6), and in this case we can let £-»0 and assert that

[:exp-W(£):,Vito] 0. (4.7)

This is clearly true for £=£* (by putting £ 0), but also for % x because the
factor || —x\ has for this case a positive exponent ß2/An, which again gives zero
for §—*x, e-»0. The commutator (4.7) is zero in a weak sense because we
assume that the normal ordered operator :exp [ißcp(x) + iAx(x)]: has finite matrix
elements.

From (4.6), therefore, we obtain the commutator

[:cos ßcp(C):, tPx(x)] -tp2(x) sin (ndE(x - £))[cV((;t - ?)2 + £2)]-^.
(4.8)

If we choose the representation (2.14) for 6e(x) we find

[:cos ß4>{&:, Vito] -tp2{x)(cpr^—
_ g)2+££y/8„+1/2. (4.9)

Only for ß2 An does the right hand side include a regularized ô function.
Now let us return to the evaluation of equations (4.2). The free Hamiltonian
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H0 can be written

H0 lj(jl+jì), (4.10)

where the boson currents j0,jt are given in (2.2). The commutation relations
((2.3), (2.4)) then imply

[Ho, Vi] =\{-ji°(x)r\/ito, Vito}- (4.11)

Similarly

[P, Vi] \{-Jh(x) -f/oto, Vito}- (4.12)

From (4.8) we obtain (putting x — £ ey and using (2.13))

[H„ tpx(x)] tp2(x)e^2/^ j2f sin (ndx(y))[c2p2(y2 + 1)]^2/8" dy

mtp2(x)e1-ß2,4n, (4.13)

where m can be identified from the right hand side of (4.13) and is finite and
independent of £. However, m does depend on the conventions chosen, namely
the normal ordering mass p, and the regulating function 6x(x). It is natural to
define the bare mass

m0 me1-ß2/*", (AAA)

and regard the factor ei-ß2/4" as a mass renormalisation, which is unity only for
ß2 An. For ß2 < An it appears that the bare mass ra0 is zero (letting £—»0) but
in this case the matrix elements of V2to» which multiplies m0 and also depends
on £, will diverge such that the product m0V2 remains finite.

We have now

i\ 2n ß
+im2\-Jh-2h'+l

«-ft
+ im0tp2

(4.15)
2a. ß.
o h ~ ~~}o, Vi i

together with similar equations for tp2. Combining these, we arrive at the field
equations

Wd» + m0)tp f r"{^, v}, (4.16)

where

4^2
8 -ß2-n- (4.17)
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If we identify /M with the fermion current as in equations (3.14) then (4.16) can be
considered as the quantum field equations for the massive Thirring model, given
by the classical Lagrangian

<e itpy^tp-^(tpyi*tp)2 + m0ti>tp. (4.18)

The anticommutator in equation (4.16) is usually expressed via a limiting
procedure (see for example Refs. [4] and [5]), in order to be well defined; we can
regularize singularities in the most natural way by including the regularized de(x)
function in the definition of Vto> including the cp(x) term, as shown in equation
(2.15). This amounts to replacing ô(x —y) on the right hand side of ((2.3), (2.4))
by a regularized function ôe(x —y). Equation (4.16) can then be written in the
smeared form

(iy^ + m0)V §Y"/ Ux- §)£{/"(§), Vto} d§. (4.19)

An alternative procedure is to regularize H0 and P in the following way:

H0 lim if [/o(|)/o(? - e) +jx(ÇMÏ ~ e)] dÇ,
«o2 J

(4.20)

P lim \ f MSMS - «0 +/i(l)MI - e)] dt
e-j-OZ J

In this case the right hand side of (4.16) becomes

lim f£ y"((/M(x + <0Vto + V(*)/„(* ~ £))> (4-21)
s-»o L in

which is the point splitting prescription described by Johnson [5].
We remark that the equivalence between the boson and fermion models as

revealed by the field equations (4.16) does not extend to an equivalence of the
corresponding actions; we can equate the actions of the fermion and boson
models only at an extremum of the action. Whereas this equivalence is model
dependant, the properties of the fermion field described in Section 3, including
relations of the form i/;t/> ~ cos ßcp, hold regardless of the fermion-boson
dynamics. One might expect, therefore, given a boson-fermion equivalence, that
a perturbation of the boson model, by adding a term of the form (cos ßcp)n for
some integer n, would correspond to a perturbation of the fermion model of the
form (VV)"-

Let us investigate such a possible equivalence, in order to demonstrate that
the bosonization formulas of Section 3 apply to a much larger range of models
than merely the sine-Gordon and massive Thirring models, and to indicate how
the Mandelstam soliton operator can be used to find the fermion model
corresponding to a given boson model. The boson models we consider are those
with potentials that can be written as a sum of terms of the form (cos ßcp)", which
will correspond to fermion interaction terms of the form (VV)"- Although such
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terms are not renormalisable in the usual sense, the Mandelstam operator shows
how to write down a renormalisable fermion model; the fermion model is

necessarily renormalisable since the boson model is renormalisable (by normal
ordering) and the Mandelstam operator shows how to rewrite the theory in terms
of fermion operators. This is remarkable because it means that although the
perturbation series for the fermion field with interaction (VV)" apparently
contains new divergences at every order of approximation, these divergences can
all be eliminated by the regrouping arising from the boson-fermion correspondence.

Although an infinite set of subtractions appear to be called for, they are
not ultimately required. Another way of looking at this problem is to say that the
boson-fermion correspondence defines the putatively non-renormalisable theory.
Furthermore, the redefined theory is unitary.

Let us now investigate therefore, the boson Hamiltonian

H \ (|tf>'(t)2 + \n(H)2 + :V(*(§)):) df. (4.22)

where V(cp) is an even, periodic potential:

V(cp) v(cp + j). (4.23)

We may write V(cp) as a Fourier cosine series

:V(cp): =^an-cos (nßcp):. (4.24)
P n

where the coefficients {an} are finite. In order to calculate the time derivative of
tp from equation (4.2), we require the following commutator (similar to (4.6)):

[:expinßcp(C):, tp^x)]
2iNe sin (nn6e(x - Ç))[c2p2((Ç - x)2 + £2)]-"f>2/8* :exp(inßcp(x) + iA^x)):.

(4-25)

It is apparent from this expression that only integer values of n are allowed, since
otherwise the factor sin (nnd(x — •%)) will not have point support, as was required
in the previous analysis for n 1. This prevents us from considering arbitrary
potentials, expressible as a Fourier transform, instead of the Fourier series (4.24).
It follows from (4.25), in the same way as for n 1, that

[:exp (-inßcp(C)):, tp,(x)] 0, (4.26)

by putting n-*—n and letting £—»0. Hence, again as before,

rJ —ct

[:cos nßcp(C):, tp^x)] dlE, iNeMnel-nß1'4" :exp (inßcp(x) + Ax(x)):. (A.27)
30

where

Mn f [c2u2(y2 + l)]-"ßl/&" sin nndx(y) dy. (4.28)
J — 00



1034 C. A. Hurst H. P. A.

The coefficients Mn are finite for ail n > 0, and we can define the 'bare constants'

M„by
Mn Mne1-"ß2'4'1. (4.29)

Although this indicates how the fermion theory corresponding to the boson
Hamiltonian (4.22) is renormalised, we have yet to express the right hand side of
(4.27) in terms of the fermion field Vto- To do this, we need to reshuffle the
normal ordered operators, introducing more renormalisation factors. The right
hand side of (4.27) takes the form (VÎV2)"_1V2, in which the arguments of the
fermion operators differ successively by e, and is also multiplied by a power of e.

Because of the point splitting, repeated products of the form (V1V2)" are not
necessarily zero, as might be expected from tp2 0 tp\. The time derivative of
Vi then has the form

- ^/0 - |/i, Vi} + i 2 c„(VÎV2)"_1 V2, (4.30)

for some set of coefficients {c„}. The fermion Lagrangian which corresponds to
the boson model (4.24) therefore has the form

1

vi=2-

J? *Vy%V-f(Vy*V)2 + /(VV), (4.31)

where / is some function that is identified explicitly by tracing back the constant
and multiplicative factors introduced in the normal ordering process. Renormalisation

of this Lagrangian must be carried out by assigning to expressions like
/(VV) the meaning indicated precisely by the bosonization formulas. This
demonstrates, in outline, that for boson-fermion equivalent models, a perturbation

by (cos ßcp)" corresponds to a perturbation (VV)" on the fermion model.

5. Non-Abelian bosonization

Witten's non-Abelian bosonization [2] reduces, for TV 2, to the case studied
above. Although Witten considered only massless fermions, and the chirally
invariant case corresponding to ß2 An, we can investigate the bosonization
formulas more generally using Mandelstam's soliton operator. For convenience,
we define Majorana fermions:

V2Vi Vi+ - iv?, V2 V2 vr - ivr, (5. i)
giving

tpt y/2N€ :cos,4i:, tp2 -y/2Ne :sin At:,
Vf y/2N€ :smA2:, tp2 y/2Ne :cosA2:. (5.2)

Define also the group element

/cos ßcp sin ßcp\
8 \-sin ßcp cos ßcp)' { ' ;
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and the currents

JUx) ß(n(x)±cp'(x)). (5.4)

Previous formulas can be rewritten in terms of the Majorana fermions and
currents; for example ((3.15), (3.16)) become:

n
8u(x) i lim — (cpe)a+\eiktp7.(x)tpî(x + e) - tp7(x)ejktpt(x + e)). (5.5)

s-^OCjU

As shown in Ref. [6], the matrix g', defined by

^ -iVrV;+, (5-6)

is not equal to g, as Witten suggested. It is, however, orthogonal in an
appropriate sense, provided the normalization M is chosen correctly. To verify
this, we require the formula

V* toV/tto 2N2eexp [At(x), A7(y)} :cos (At(x) - Ax(y)):. (5.7)

Then we find, to leading order in x — y,

g'ik(x)g]k(y) M-2tp7(x)tp-(y)tpt(x + e)tpt(y + e)

M-^Nl exp [At(x + £), Ax(y + £)]VftoV,"to- (5-8)

We also have, again to leading order in x — y,

Vi~toV2_to 2NÎexp (- [AUx), A2(y)]), (5.9)

showing that (in a weak sense)

lim VFtoV2 to 0 lim tp2(x) tpx(y). (5.10)
>>-»* y-*x

However, tp7(x)tp7(y) and tp2(x)tp2(y) are nonzero and equal as y^x. (5.8)
shows therefore that glk(x)gjk(y) is nonzero only for i k, and so g' is an
orthogonal matrix, in a weak sense, provided M is suitably chosen, i.e.

g'i(x) -i lim^(cuey+1rp-(x)tp;(x + e). (5.11)
e->o cp

What are the currents generated by g"i Witten's calculation indicates that
these currents are the same left and right currents J± as generated by the group
elements g. We can investigate the form of the currents by using the equations
(4.15) satisfied by the fermion field tp. In terms of the Majorana components,
these equations can be written

1/ 4jt\
d±tpT m0eiktpZ --\l ±-jpjiJti, £,jtVfc}

1/ 4jt\
3±Vr m0eiktpt - -y-l ± -^){Jti, £ik^Pk }

(5.12)
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where d± d/dt ± d/dx. Let us ignore the fact that terms involving m0 appear in
a weak sense only, and interpret the anticommutators on the right hand side of
(5.12) to mean the limit as shown in (4.21). Then

d+(g'0) -iM~1m0(£iktpttpj- + ejktp7tpZ)

1/ 4jt\ 1/ Aa\T.
~2\ "ipy***8*~2\+ ~j?y™eikgik

-iM~lm0(eiktpttpf + e,ktp7 tpk + Jt2{£g')a (5.13)

where we have used g'e eg' for all g' e SO(2). For m0 0 therefore we find that
g' satisfies d+g' g'J+, and similarly 3_g'=/~g', i.e., the group elements g'
and g each generate the same currents /*, given by (5.4). (This was found by
Witten in a different way, see [2], equation (35), but this does not imply g g'.)

Since g is obtained by a linear transformation from g', properties of g follow
from those of g'. If we assemble the elements of g and g' into column or row
vectors of length 4, we can write

g=Tg' (5.14)

where, up to a normalisation factor,

T= n n J (5.15)
0 0

0 0

1 1

T is not invertible, so we cannot obtain g' from g. However, properties of g
follow from those of g' by applying T; for example, the fact that both g and g'
generate the same currents /* follows from

[r, e®/] 0 [r,/®4 (5.16)

This is because we can write 3_g' (7<8> e)g'J72, from which 3_g =J~g follows
using ((5.14), (5.16)).

Whilst Mandelstam's soliton operator is useful in order to establish formulas
for the N 2 case of non-Abelian bosonization, it does not appear to easily
generalize for larger values of N. It is possible to write down generalizations of
(5.5), which involve not just the SO(N) vectors tp±, but also the dual vectors as

appear in (5.5). For example, one can form the vector

vt %/3-/,,V/2V/3 • * ' V/„, (5.17)

which is not identically zero because the fermion operators V anticommute, and
then construct a generalization of (5.5), with the correct vector commutation
relations with respect to the currents JA However, the validity of such an
expression cannot be readily checked, because of the lack of a suitable soliton
operator.
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