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Stability of the Movement of a Planar Interphase Boundary

Between Normal and Superconducting Domains

by C. Lièvre and F. Rothen
Institut de Physique Expérimentale, de l'Université de Lausanne, 3, Place du Château, CH-1005

Lausanne, Switzerland.

(10. XI. 72)

Abstract. A study has been made of the stability and motion of an interphase boundary
between normal and superconducting domains during the destruction of superconductivity by a

greater than critical magnetic field, uniform, constant and parallel to the surface of a half-space.
When the boundary shape or position is perturbed, we have shown that it is stable and in these two
cases the motion is asymptotically given by the solution of Pippard and Lifshitz. A more general
description of the boundary motion is also derived.

I. Introduction
The following problem has been studied by Pippard [1] and Liftshitz [2] (in the

following we shall call it the P-L problem). Let us consider the half-space x > 0 occupied
by a type I superconductor. Let us suppose that at time t 0 we suddenly apply a

greater than critical external magnetic field, He HJ1 + p) uniform and parallel to

vacuum
H. „ surface y z

777T777777T777777"
N

////////// 1 //////interface I(t)
5

Figure 1

The Pippard-Lifshitz problem : the destruction of superconductivity in the half-space x > 0 by an
external uniform magnetic field He.N normal domain, S superconducting domain, x0 thickness

of the normal domain, satisfying x0/t1/2 const.

the surface x 0. The superconductivity is destroyed progressively. An interface
2 (f), supposed to be planar, is formed between two phases; the domain N becomes
normal, and the domain S remains a superconductor (see Fig. 1). Pippard and Lifshitz
have shown that the depth x0 of the boundary satisfies the equation

2bp
so™*, (1)
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with
47TCT

where a is the electrical conductivity of the normal metal,
c the speed of light in vacuo,
b a constant, function of p, whose behaviour is indicated in [1] and satisfies the

relation

b \exp[Abp(\-y2)]dy=l.

The following assumptions are necessary to obtain (1).

1) The penetration depth S( £ 10_6cm) is very much smaller than x0-
2) The transition is isothermic, which implies either T < Tc, or, a sufficiently good con¬

tact with a thermal reservoir so that heat diffuses much more rapidly than the field
in the metal. Thus

c2 K
Ana C

where C is specific heat per unit volume and K the thermal conductivity. The
Wiedemann-Frantz law

TT2k2
K rf-Ta

3e2

allows us to write this inequality in the form

3e2c2C
a2> —

Arr3k2B T

which is easily realized for a pure metal.
3) The displacement current can be neglected. This is always the case, since the

displacement velocities of the boundary involved here are of the order of cms-1.
4) The Hall effect is not considered.

Under these conditions, the magnetic field rt= HjHc satisfies the equation

dK
AK=DTt- (2)

Following Pippard, we shall designate by/the greater than critical fraction of field h
in N and put h 1 +/with

(3)

/=¦ p for x 0

/=0 ioxx Xo

9/ dx0

dx
—D

dt
x=x0
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The following question presents itself : is the P-L solution stable? The answer is obtained
by studying the boundary conditions at the interface N-S. We shall restrict our study
to the case bp < 1 (which corresponds, see figure given in [1], top < 1.5). Furthermore
the existence of a surface tension between the two phases is not considered. Therefore,
we are interested in the stability only from the point of view of electrodynamics.

The method of solving the problem studied here is more interesting than the result.
In fact, if situations exist in which the boundary is actually unstable (see below) it is
not the case here. But the problem considered has the merit of presenting the simplest
geometry and as far as this is concerned the method is exemplary. Because of the special
boundary conditions characterizing the problem, this study of stability differs
considerably from the analogous studies made in hydrodynamics [3]. In any case, this
study leads to a positive result which apparently can be generalized to systems
presenting a different geometry : this is because the interphase boundary is deformed
more easily in the direction normal to the magnetic field than parallel to it. Now, in

Figure 2

The intermediate kernel in a cylinder carrying an over-critical current: a) London's picture with
static domains, b) Gorter's picture with domains moving towards the centre, if radius of the
cylinder, r0 radius of the intermediate kernel, n normal domains, s superconducting domains.

the case of a superconducting cylinder, in which a greater than critical current is

suddenly set up, we know that the interphase boundary which penetrates into the
cylinder at first keeps its cylindrical shape, until the appearance of the instability and
then deforms to give finally an intermediate kernel [4]. The remark made above tends
then to prove that London's structure [5] will be favoured at the expense of Gorter's
[6] (see Fig. 2).^

Summary

In Section II we establish, in vectorial form, the boundary conditions at the
interface between two phases. We consider in Section III the particular case of a
planar boundary during the destruction of superconductivity in a half-space. In
Section IV we study the stability of this boundary relatively to an infinitesimal periodical

deformation. In Section V, finally, we give a more general solution to this problem,
and show that the P-L solution is the asymptotic one.

*) W. Bestgen had suggested the use of this particular method in order to determine the spatial
period of the alternating domains in the intermediate kernel [7].
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II. Establishment of Boundary Conditions at the Interface in Vectorial Form

A point in the normal domain will be designated by the vector x, while a point at
the boundary will be located by f r0 + rx where r0(f) corresponds to the unperturbed
boundary of the P-L problem and rx is the perturbation, which is assumed to be small
(Fig. 3). The relation between r and r0 is unequivocal as shown by equation (6).

For any function defined at r0 we must determine its value at the perturbed
boundary, at r. Similarly, every vectorial field c will be the sum of two fields c c0 + cx

where cx is the perturbed component, with \cx\ < \c0\

Figure 3

The perturbed interface Z(t) between the normal domain TV and the superconducting domain S

during the destruction of superconductivity in an arbitrary geometry of the specimen. 5? arbitrary
point in the normal domain, r arbitrary point of the interface Z(t).

In the following we develop a linear approximation, retaining only the first degree
terms in the perturbations. This has the consequence that all the perturbations have to
be calculated on the unperturbed boundary. Otherwise, it seems natural to require that
on r0 the primitive equations of the P-L problem are also satisfied.

Let us consider the normal to the boundary. At the instant t, Ü0 is evidently
defined only on the interphase boundary 2 (f) '¦ n0 n0(r0(t)). If we vary t, the family
2 if) constitutes a three-dimensional domain®. It will be convenient to consider n0(r0)
as a vectorial field on Qs without specification of the variable t. Under these conditions
we have

»<>(>o(0) »Ov*)'l-_-,(,)•

At the perturbed boundary, the normal is written

iî(r) £ n0(r0) + nx(r0) with \nx\ < |»0| 1.

Since n must be unitary, and n0 is unitary by definition, we have nx J_w0-
The velocity v of the boundary is defined on the normal :v vn from which we have

dr
v nv 7t—=v0 + vx (4)

dt

with

- dr0
v° n°-77- (5)

at
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Boundary conditions

The perturbation rx can be written generally as

rx A(r0, t)n0(r0) (6)

with A(r0,f) small. Using (4) and (5) it is easy to verify that

dA (r f) ->-

«i
°' +4«! + (v0 V)A (r0, t) |*j>0 (7)

where the operator V symbolizes the derivative with respect to r
1) The continuity of the normal component of the magnetic field requires

(*-%> 0 (8)

which leads (see Appendix A) to the condition

(nonx + %Ao)(;o) 0. (9)

2) The local equilibrium of the boundary introduces the condition

\H(r)\2 l. (10)

A calculation given in detail in Appendix B leads to

—• /A0
E0-Ux + An0-grad — 0. (11)

(r"0)

3) The continuity of the tangential component of the electrical field £ in a reference
system moving with the boundary at the velocity v requires

We obtain immediately the two relations

(E-H)(T) 0 (12)

»42[«'(«A% (13)

which give respectively (see Appendix C and D)

(«o-rot -> ÏÏX + ÏÏX-rolJtr,)^) 0 (14)

*>i j; n0 ¦ [rot /T0 A Jtx + rôt Kx /\ÏÏ0 + A grad {n0 • (rot ïïQ a A*0)}](-o) (15)

III. Application to the Half-Space
Let us regard the superconducting half-space of Figure 1 and suppose the boundary

slightly distorted. Let us consider a particular perturbation, periodic in y and z,
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which does not restrict the generality because every perturbation can be unequivocally
decomposed into a sum of such perturbations. Then we shall take2)

A(f0, f) a(x0) «'*'» a(x0) g«M+*z»)

replacing _the time t by the variable x0(f) which is more convenient. The magnetic
field H= HjHc ft0 + lfx will have the same periodicity

fT0= (0,0,1+f(x,Xo))

ïïi (et(x, x0),ß(x, x0),y(x, x0))-eUk^+k'z)

with
ct(0,xo) /3(0, x0) y(0, x0) 0 V*0. (16)

A point at the interface will be" located by
x x0(f) + a(x0) e'<*>*+***>.

Then the normal n n0 + nx will be given by

«o (1,0,0)

nx (0, -iky, -ikz) eakry+k'z\

Using successively the relations (9) and (11) our boundary conditions become:

et(x0, Xo) e'<*»»+***> ikza(x0) e^+^ (17)

y(x0, x0) eiikry+k'z) + a(x0) e'<M+***> J-
dx

0. (18)

From (5) and (13) it is easy to obtain two expressions for v0. Using the relation (1) and
the definition of K0 we have respectively

dx0 1 bp

dt D xQ

c

m
- - i9/noJEo/\H0)=-- —

D dx
X Xn

By comparison, we find again the relation (3) of the P-L problem.
Using (7) and the particular form of A(r0,t) the relation (15) leads to

D d-^-^ *«V+M> e«M+M> f_ y(Xo, xo) *!
dx0 dt dx

+ ikz et(x0, X0)
dy
dx

(19)

d2f
-<^) — - a(x0)

It is clear that in the following only the real part of the equations must be taken into
consideration.
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The first and the last term on the right-hand side vanish by (18). Otherwise we have
(cf. [1])

dx2
X Xn

b2p2

Whence, still using (17) and (19), we have

bpda(x0) lb2p2 \ dy
7 + ——A-kl \a(x0)+ —

x0 dx0 \ xl j dx
0. (20)

x x0

IV. Study of the Stability

Here we study the behaviour of a(x0) as a function of the depth x0 as we seek the
solution of equation (20) with the knowledge that y(x, x0) satisfies the relation (2)

d2y dy
~2--(k2y + kl)y D
dx dt

and the two boundary conditions (16) and (18).
We shall proceed in two steps. In the first step we will consider the particular case

when ky kz 0. In this case the boundary is planar, but displaced with respect to
x0(f). The phenomenon will be stable relative to an infinitesimal perturbation if this
displacement approaches 0 as t goes to infinity. In the second step it will be necessary
to show that the stability is improved if ky and kz differ from 0.

Our problem, then, is the following: calling d(x0) and y(x,x0) the new unknown
functions we must seek the function S(x0) which satisfies

bpdd(x0) b2p2 dy
1 + ~T aix°> + TXq CIXq Xq ox

0 (21)

when y(x,x0) is a solution of the heat equation

92y 3y
—t=D—dx2 dt

and satisfies the two boundary conditions

y(0, x0) 0 V xQ

a(x0)
y(x0,x0)=bp

(22)

(23)

(24)

The relations (21) and (24) depend on time, which complicates the search for the
solution of the equation (22). Let us put

a(x0) x
y(x, x0) g(u) with u — (25)
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The equations (21) and (22) are then written

S(x0) xa dà(x0)
bPïA-r^ + b'P'+g'il)

a(x0) dx0
0

d(x0)

x%

x0 da(x0)
g"(u) + bpug'(u) + bpg(u) - bp——— g(u)

a(x0) dx0
¦ 0.

We see that it will certainly be possible to find a solution for g(u) if

x0 da(x0)

a(x0) dx0
¦M, (26)

where M is constant. The introduction of the function g(u) is therefore compatible
with our system of equations (21) and (22). We see without difficulty that g(u) must
be the solution of

g"(u)+Xug'(u)+pg(u)=0 (27)

where, for simplification, we put
X bp p bp(l+M). (28)

Otherwise, g(u) must satisfy the three conditions

g(0)=0 (29)

g(l) bp (30)

g'(l)=bp(M-bp). (31)

Let us seek a solution in a power series for g(u)

CO

g(u) =2CrUr.
r=0

From the differential equation (27) we easily obtain the recurrence formula

Xr + p
°r+2 ~

(r + 2)(r+l)°r'

The condition (29) leads to c0 0 therefore c2k 0 V£. We have then

g(u)=2'2l+lU2l+1
/-0

with, for/> 1,

^i(X + p)(3X + p)...[(2l-l)X + p]

The convergence of g(u) depends on the behaviour of the general term and the ratio of
two consecutive terms. By definition u < 1, it is then sufficient to consider u=l.
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As p is positive by assumption, and b by definition, À bp is positive. Let us suppose
at first p > 0. By evident overestimation, we have :

(X + p)[3(X+'p)]...[(2l-l)(X + p)]
\C2l+l\ < Cl

(2l + l)\
from which

'A + fiY

K^^-ïr-^- (32)

Thus the general term tends to zero. The conclusion is the same if p<0, for (A/2)!

appears in the numerator of (32) and we have in all cases

\r I —? n|<-21+l|l-*oo o.

The ratio of two consecutive terms is

^1<(2/-1)(A + ^ iip>0 (33)
Cz,-! 21(21 + 1)

c2l+1 (2l-l)X< : — if u. < 0. 34)
c2l_x 21(21+1)

Thus for any value of A or À + p we are sure that beyond a certain point the terms
decrease monotonically, and this occurs after a finite number of terms. This assures
that the series converges, as otherwise the series determining g(u) is alternating.

Differentiating g(u) term by term, we see with (32) that the general term of the
new series tends to zero too. With the aid of (33) and (34) we see that the ratio of two
consecutive terms is, in this case, overestimated by

X + p' if p > 0
(35)2/

A

27 if u, < 0.

Thus this new series converges too. As the convergence is uniform, the series becomes
identical with g'(u). We can then put

21g'(u)=2(2l+l)c2l+xu

Stability of the phenomenon

By the relation (26) we see that the evolution of the amplitude a(x0) ot the perturbation

with the depth x0 depends on the sign of M. To prove that the phenomenon is
stable in the considered conditions, we shall demonstrate by reduction to the absurd
that M cannot be negative. Let us subdivise the negative real axis in three parts :

1) M < -1
With the aid of (28) and (31), we see that p < 0 and g'(l) < 0. Otherwise g(l) is
positive (30). Thus the equation (27) can be verified in u 1 only ifg"(l) > 0, which
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gives g(u) the following aspect (Fig. 4). Thus

3 u0 e ]0,1[

such as

S(«o)>0 g'(uo)=0 g"(uo)<0

but the equation (27) cannot then be verified in u0 with two negative terms. Thus M
cannot be smaller than —1.

g(u) ii

bp

Figure 4
Behaviour of the function g(u) in the case where g'(l) is assumed to be negative.

2) M -l
In this case p 0. Taking (30) into account, the equation (27) leads to

g'(u) G exp{—\ bpu2}

u

g(u)=G\exp{-Afbpt2} dt.

3)
Asg(l) > 0, wemusthaveG > 0 theng'(l) > 0 which is contrary to the assumption.
-1 < M < 0
We still have g'(l) < 0 but 0 < p < bp, then X + p< 2bp. Thus thanks to (35) we
know that the ratio of two consecutive terms of g'(l) is

(2Z+1)C2I+1

(21 - 1) C2l_.

X + p bp
< < —.

21 I

As indicated in the introduction, we shall suppose bp < 1, in order that the ratio
above is less than 1 even if / 1. In this case, we are certain that the terms ofg'(l)
decrease monotonically, and do so from the first term. We have a fortiori the same
result forg(l). In these conditions, the sum of the series is positive and not greater
than the first term. We have thus

0 < g(l) < cx from which cx > 0

but

g'(l)=cx-Q with0<C<l
thus g'(l) > 0 which is contrary to the assumption.

Then in all cases we obtain a contradiction, therefore M is positive. We have thus

a(x0) a- x0 M>0
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which proves that the phenomenon is stable, when the boundary is planar and
displaced.

General case, ky and kz not null

It is easy to show, all things equal, that if kz ^ 0 the stability of the boundary is

greater than for kz 0. For this purpose, let us put

a(x0) a(x0) g-<*>>< â(x0) e-Ck\i2bpixl ^
y(x, Xn) y(x, x0) e~(kzlmt

â(x0) and y(x,x0) are then solutions of

bpda(x0) b2p2 dy
—-7— + —i~«(*o) +¦£-
Xq (ZXq Xq OX

0 (37)

X-Xq

32y dy

T?-^'DY, <38>

with the boundary conditions

y(0,xo)=0 Vx0 (39)

â(x0)
y(x0,Xo)=bp^Ai. (40)

x0

(37) to (40) constitute the general equations for the perturbations in the case kz 0. The
presence of the decreasing exponential in (36) proves our affirmation,

In particular, we can find the solution ä(x0) for the case in which ky 0. We
introduce in this case, too, an auxiliary function like that defined by (25) and the
condition of compatibility (26) is replaced by

Xr, dd(xA — —
bp -A lAL +k\x% -M, M constant

a(x0) dx0

which leads immediately to

Û(X0) XX-M/bPe-(k2/2bP)xl

The sign of M is, in this case, without consequence, because the exponential is

preponderating.
Rather than studying in detail the behaviour of a periodic perturbation in the

direction of the axis Oy, we shall confine ourselves to consideration of the limiting case
where x0(t) is large enough. More precisely, we suppose x0 > bpjky. In these conditions
we verify that

dy d2y

Therefore, the equation (38) has for an approximate solution, using the boundary
conditions (39) and (40),

,à(x0) sh|Äy|^
y(x,X0)^bp-—-———.

x0 sh|Äy|^0
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Thus (37) has the following asymptotic form

dâ(x0)
— h \ky\â(x0) =0

dx0

of which the solution is clearly decreasing. In fact

àky(x0) S«oW e-k»x« â0(x0) exp
[2bp 112-1

(41)

Comparing (36) with (41) we establish that the mean times ry and tz for the
disappearance of a perturbation of the respective wave vectors, ky and kz, are given by the
ratio

rz 2bp\k,

More general solution of the P-L problem

As we saw above, it is possible to obtain an exact solution of equations (21) to (24)
which describe the evolution of the peturbations y of the field and à of the boundary
assumed to be planar (ky kz 0). In addition the ansatz

a(x0) lx
y(x,x0)= g —

x0 \xc

is very analogous to the corresponding one

x
K(x, Xo) K —

used by Pippard and Lifshitz to obtain the unperturbed solution.
This fact suggests the possibility of generalizing the process considered so far by

regarding the movement of a planar boundary which occupies at time t a position such
that the deviation A(t) =r0(t) - J2bpjD)t]112 between its real position r0(f) and its
'asymptotic' position [(2bpjD)f]112 predicted by Pippard and Lifshitz is not small.
More precisely, we introduce a relative deviation

(2bp N1/2

r°(0" ~D

2bp V'2

and we assume that it is arbitrary. This leads us to regard the P-L problem under a
more.general form : we look for a family of solutions h(x, f) of the equation

d2h dh

~dx2= It
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satisfying the boundary conditions

h(0,f) l+p V<

h(r0(f),t) l
dh

dx
-D^.

dt
x=r0't)

(25) and (42) suggest then the change of variables

X MO ine ——-l e(t),

k being still undetermined. We obtain, without much effort, the differential equation

d2h Dk2 dh dh

7rr- + —w— DK2&(e)-, (43)
dw1 2 dw de

where we have put

de
&(e)=t(e)-;

dt

&(e) being evidently unknowij.
The boundary conditions become

A(0,e) l+^> Ve (44)

h(l + e,e) l (Ab)

dh

dw
:-DK2[ê(e)+i(l + e)]. (46)

If we introduce (46) into (43), it is possible to eliminate the unknown function 71(e) ; (43)
is then subject only to the conditions (44) and (45).

The P-L solution h0 is evidently a particular solution of this problem ; more
precisely, it is the solution of (43) independent of e. It corresponds to the value e 0
under the condition that k satisfies the relation

K/2

P Dk eD«2i*\ e-Dv2dv,
o

a choice that we shall make hereafter.

General remarks on the P-L problem

Equations (43) to (45) constitute the general equations of evolution of the field in
the P-L problem. Once h (w, e) is determined, the relation (46) allows us to obtain the
movement of the boundary since it constitutes a differential equation of the first
order for e(t), thus for r0(f).
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In the absence of an existence theorem for the equations (43) to (46), we can,
however, have an idea of the richness of the class of solutions for this equation system.
To do it, let us formally develop h(w,e) and {1(e) relative to e around the origin

€2

h(w, e) h0 (w) +h,(w)e + h2(w) \-

Ail

#(e) #l6 + #2L + #3i-+...,

§(e) having, evidently, no constant term. If we introduce this formal development
into the equations (43) to (46) we obtain separately for every power noie(n 0,1,2,
a differential equation for hjw) and the boundary conditions determining entirely
hjw) and §n as a function of the set of hi (w) and &j(i,j 0, 1, n— 1). As one would
expect, h0(w) coincides with the P-L solution and hjw) can be identified with the
function g(w) introduced in equation (25) of the present paper: hx(w)e constitutes in
fact the linear approximation of the more general problem considered here.

Once we have determined the §k, and assuming that the formal series converge,
we can use the definition of #(e) for calculating e(f) :

de « ek

t—=%ïïk-.
dt a_i M

We establish that if we fix at time t0 the relative deviation of the boundary in relation
to its asymptotic position [(2bpjD to]112, h(w, e) and r0(t) are determined for any time
t>t0.

For example, we consider here the case where p « 1. We see immediately that
k2 ^ 2pjD may be neglected and to the first order of p the equation (43) becomes
trivial,

d2h

dw2

from which we draw without pain, using boundary conditions

dh

dw

p de
- -2pt- p(l + e).

1+e dt

Setting | 1 + e, we have

€*€ I ï i \„ dt
dç -7Z(E-lMf+l) \tj-l $+1} * 2t

from which, finally, we have

x2o(f) L
1 — where L constant.

n2t t

Thus when t -> oo we have Xo(f) -> K2t^ 2ptjD which corresponds to Pippard's
solution, then if p -> 0 we have Jgl,
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V. Conclusion

We have studied the stability of a planar interphase boundary during the destruction

of type I superconductivity by a magnetic field applied tangentially to the surface
of a superconducting half-space. If the boundary undergoes an arbitrary infinitesimal
deformation or displacement relatively to the planar shape and the position occupied
in the P-L solution, this deformation or displacement decreases in the course of time.
The decrease is infinitely more rapid in the case where the boundary undergoes a
periodic deformation in the direction parallel to the unperturbed field than in the case
where that direction is perpendicular to it. In the case where the boundary is assumed
to be planar but displaced to a finite distance from the position predicted by the P-L
solution, it has been possible to calculate its movement. The P-L solution describes in
this case the asymptotic position of this boundary which is approached relatively
slowly.

VI. Appendix

A. The equation (8) can be written

Po + %](?„) • [ A*0 + A (n0 V) ÎT0 + KA^ 0.

Taking account of the fact that

(%-Ao)(?o) 0 (47)

let us show that the term n0(n0W))t0 is null, which will prove (9), using the following
vectorial identity

2(eV) t) Tot(r) a e) +¦ grad(e-t)) — t) div e + e div7j + rot t) a e + rot e A t). (48)

Let us recall that n0 is considered here as the value taken in x f0(f) by the field n0(x)

2n0(n0 V) Aq »0-rot(A^ a n0) + «0-röt^o A %.

The vectorial identity

ih rot ü div(w i\w) +urotw (49)

leads to

2n0(n0 V) rt0 div[(7?0 a n0) A n0] + 2rot«0(^0 a n0) 0 q.e.d.

B. The developed equation (10) is written

\r70 + A(n0V)}To + r7x\27o) l.
Since [#0(^0) |2 1 we have

2/?0 -[r7x+A (n0 V) /r0](?o) 0. (50)

Let us apply to the second term inside the brackets the identity (48) taking (47) into
account

2ÏÏ0(n0 V) ïï0 A*0 • rot(F0 r\n0) —rf0 divn0 + A*0 • rot rt0 A n0.
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Using (49) we obtain easily

2Ä*0(«o V) it0 div[(/r0 a nQ) A A*0] - iT0 div n0 «0grad(ÄJ|).

Introducing this into (50) we obtain (11) immediately.
C. Equation (12) is equivalent to

[Ê0 + A (n0 V) Ê0 + Ê,],^ -[Îîo + A (n0 V) H0 + Hx],-o) 0.

Taking into account that (Arrajc)Eo rcy\H0 is normal to H0 we have

A (r0, t) ¦ {rot n0 • (n0 V) /T0 + (n0 V) rot Tt0 • r0}(-, + [Tt0 ¦ rot ÏÏx],7<i) + [ÏÏX rot /ro](?o) 0.

Let us use two times the relation (48) to show that the expression included within the
braces { } is null, which proves the relation (14). We have to take into account that
n0, tt0, rot A*0 are mutually perpendicular

2 rot Ttr, ¦ (n0 V) Tt0 rotrt0- [rot(7T0 a n0) + rot n0 A Tt0]

2h0 ¦ (n0 V) rot A"0 A*0 • [rot (rot Tt0 A n0) + rot rot Tt0 A n0 + rot n0 A rot Tt0]

which leads easily to

2{ } Tt0 ¦ rot (rot W0 a n0) + rot Tt0 • rot(Ä*0 a n0) — (AJ, a m0) r°t rot Tt0.

We use (49) two times to transform the first term and to group the two others

2{ } div[(rot7f0 a n0) A Tt0] + (rotTt0 A n0) rotrt0 + div[(ît0 a n0) a rot A0]

but all terms are null, and { } 0. q.e.d.
D. Equation (13) can be written

v0 + vi —(n0 + «i)(70)-[rot Aq + A(n0 V) rot^0 + rotrt,],^

i\[Tto + A(n0V)Vo + fti}(?0y

Since v0 (1 jD)n0- rot ÏÏ0 A ^o and nx _|_ rot#0 A ^o it remains

Vi —n0- [rot Jt0 *k*i + rot Ttx a #o](?0)

A -^ —¦ —
A-—n0- [rot Tt0 A (n0 V) Jt0 + (n0 V) rot Tt0 A Kr,],^.

Let us use the vectorial identity (48) to transform the second term of the right-hand
side, designated by S

S — A (r0, f) {(n~0 A rot Tt0) ¦ Tot(Jt0 a n0) — (n0 A rot JtQ)2
Z/LJ

— 2(rot7f0-7T0 a rtn) divw0 — (Jt0 a n0) rot(»0 A rot A*0)

~(n0 A A*0) (rot rot F0 a n0) }(?o).



Vol. 46, 1973 Stability of the Movement of a Planar Interphase Boundary 229

Using the relation (49) and transforming the products of four vectors we obtain

1 —S —-A (r0, f) {div[(rot % • Tt0 A n0) n0]

— 2divrc0 (rot&Vft~0 a n0) + div(rot7T0 a h*0) )<7ay

Since rötft0 a ft0 || n0 we can put

rot^*0 A Aq n0(rotrT0-Tto a n0)

from which

A(r0,f) _ —? _,S —-— n0 ¦ grad(rot Tt0 • % A n0) (-,

and finally we have equation (15).
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