Anregungsfunktionen und Wirkungsquerschnitte der (p,n)-Reaktion. II

Autor(en): Blaser, J.P. / Boehm, F. / Marmier, P.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 24 (1951)

Heft V

PDF erstellt am: 19.09.2024

Persistenter Link: https://doi.org/10.5169/seals-112226

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Anregungsfunktionen und Wirkungsquerschnitte der (p, n)-Reaktion (II) *)

von J. P. Blaser, F. Boehm, P. Marmier und P. Scherrer Physikalisches Institut der ETH., Zürich.

(5. VII. 1951.)

Summary. Absolute cross-sections and excitation functions for the (p, n)-reaction have been investigated for 60 nuclei and isomers of the elements Ni, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd and Gd. Cross-sections for an incident proton energy of 6,7 MeV are plotted as function of Z and compared with WEISSKOPF's new theoretical values. r_0 is shown to be independent of Z and to have a mean value of $1,5 \cdot 10^{-13}$ cm. The method of stacked foils is used for excitation functions.

The nuclei Ni^{60} , Zr^{90} and Sn^{116} give extremely low cross-sections. These low values may be due to the filling up of both proton and neutron shells, if one considers 32, 40 and 66 to be "semi-magic" numbers indicating the filling up of a subshell.

Nb⁹³ also shows low (p, n)-cross section. Its excitation function has been measured and possible causes for this anomaly are discussed.

Einleitung.

Einige in neuerer Zeit publizierte Arbeiten haben das systematische Studium des Wirkungsquerschnittes von Kernreaktionen über einen grossen Bereich der Atomnummer Z zum Gegenstand. Messungen dieser Art sind von COHEN²) für die (n, 2 n)- und die (n, p)-Reaktion, von HUGHES und SHERMAN³) für die (n, γ) -Reaktion und von HARVEY⁴) für die (d, p)-Reaktion unternommen worden. Die (p, n)-Reaktion ist in dieser Hinsicht nie systematisch untersucht worden. Es soll das Ziel dieser Arbeit sein, die Wirkungsquerschnitte für die (p, n)-Reaktion über einen grossen Bereich von Z zu studieren.

Die vorliegenden Messungen erstrecken sich über 60 Kerne und Isomere unter den Elementen Ni, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Cd, In, Sn, Sb, Te, I, Cs, Ba, La, Ce, Pr, Nd und Gd. Für 20 Kerne sind neben den Wirkungsquerschnitten auch die Anregungskurven, d. h. die Energieabhängigkeit des Wirkungsquerschnittes, gemessen worden.

^{*)} Die erste Arbeit¹) dieser Reihe ist im folgenden mit (I) referiert.

Die experimentellen Befunde sollen in zweierlei Hinsicht diskutiert werden.

1. Die zitierten Arbeiten ²⁻⁴) lehren, dass solche Untersuchungen ganz besonders im Hinblick auf das *Schalenmodell* von Interesse sind. In der (n, γ) -Reaktion beispielsweise melden sich die magischen Zahlen durch abnorm tiefe Wirkungsquerschnitte an³). Es wird sich zeigen, dass auch die (p, n)-Reaktion magischen Effekten unterliegt. Diese treten jedoch viel seltener in Erscheinung. Im Gegensatz zur (n, γ) -Reaktion scheint sich ein solcher Effekt beim (p, n)-Querschnitt nur bei *doppelmagischen* Kernen zu äussern.

2. In einer früher publizierten Arbeit¹) wurden einige Anregungskurven von mittelschweren Kernen analysiert und mit den Ergebnissen der statistischen Kerntheorie verglichen. Im Rahmen des damals vorgesetzten Programms sollen auch die in dieser Arbeit gemessenen Anregungskurven und Wirkungsquerschnitte mit den Aussagen der statistischen Theorie verglichen werden. Es wird sich dabei herausstellen, dass der als Parameter in diese Theorie eingehende Kernradius r_0 über den untersuchten Bereich von Z konstant ist und — mit Ausnahme der erwähnten doppelmagischen Kerne — im Mittel den Wert $1,5 \cdot 10^{-13}$ cm annimmt.

In der statistischen Theorie pflegt man den (p, n)-Reaktionsquerschnitt in drei Faktoren aufzuspalten:

$$\sigma_{pn} = \sigma_p \cdot \xi \cdot \eta_n.$$

Dabei bedeutet σ_p der Wirkungsquerschnitt für die Bildung des Zwischenkerns, ξ die sog. "sticking probability", d. h. die Wahrscheinlichkeit, dass ein Proton, welches die Kernoberfläche erreicht, von diesem unter Bildung eines Zwischenkerns eingefangen wird und η_n die Wahrscheinlichkeit für den Zerfall des Zwischenkerns durch Emission eines Neutrons.

 σ_p kann explizite berechnet werden als

$$\sigma_p (Z, E_p, R),$$

wobei E_p die kinetische Energie des einfallenden Protons und $R = r_0 A^{1/3}$ den Kernradius bezeichnet. Für die Methode der expliziten Berechnung von σ_{pn} verweisen wir auf die Arbeit (I).

Der vorliegenden Arbeit haben wir für σ_p neue Werte von WEISSKOPF*) zugrunde gelegt. Diese Werte sind für 2 Parameter $r_0 = 1,3 \cdot 10^{-13}$ cm und $r_0 = 1,5 \cdot 10^{-13}$ cm in Fig. 1 graphisch dargestellt. Für $r_0 = 1,7 \cdot 10^{-13}$ cm haben wir nach der in (I) beschriebenen Methode einige zusätzliche σ_p -Werte ausgerechnet (Fig. 2).

^{*)} Herr Prof. WEISSKOPF hat uns freundlicherweise seine unpublizierten Resultate zur Verfügung gestellt.

Die neuen WEISSKOPFschen Werte weichen von unseren alten in (I) verwendeten Werten in der Gegend unserer Maximalenergie um 10 bis 15% nach oben ab. Dieser Unterschied zwischen den alten und den neuen Kurven wird weitgehend kompensiert, weil die neue Formulierung von WEISSKOPF von der Einführung einer "sticking probability" ξ absieht. Die r_0 -Werte bleiben also gegenüber der Arbeit (I) ungeändert. Bei kleineren Energien ist die Abweichung von unseren alten Werten grösser und kann bis 25% ausmachen.

Wirkungsquerschnitt σ_p für Protonen in Abhängigkeit von Z nach neuen Rechnungen von WEISSKOPF. $Y = E_p/B$, B = Barriere.

Ausgezogene Kurve: $r_0 = 1,3 \cdot 10^{-13}$ cm Gestrichelte Kurve: $r_0 = 1,5 \cdot 10^{-13}$ cm

Messmethode.

Der Wirkungsquerschnitt der (p,n)-Reaktion wurde aus der Radioaktivität des Endkerns bestimmt. Über die Vorteile dieser Methode wurde in der Arbeit (I) berichtet. Mit Hilfe von geeichten Geiger-Zählrohren haben wir die Zahl der in der dünnen Target der Atomnummer Z induzierten radioaktiven Produktkerne der Nummer Z + 1 gemessen.

Unsere Methode setzt die Kenntnis des Zerfallsmechanismus jedes befragten Isotops voraus. In welchem Masse der Zerfallsmodus des Produktkerns hier eine Rolle spielt, erhellt aus folgendem Beispiel: ein durch K-Einfang zerfallender Kern wird im Fensterzählrohr mit einer etwa 100mal kleineren Nachweiswahrscheinlichkeit registriert als ein Zerfall durch Positronenemission. Aus diesem Grunde scheint uns ein kritischer Kommentar über Unsicherheiten in unserem Wissen über die Zerfallschemata gerechtfertigt.

Die Target stellt meistens ein Gemisch von Isotopen des Targetelements dar. In vielen der hier untersuchten Fällen ist das Targetelement zudem in einer chemischen Verbindung bestrahlt worden. Da bei Absolutmessungen von der Art, wie sie bei der Bestimmung des Wirkungsquerschnittes notwendig sind, eine chemische Abtrennung des Produktelements ausser Frage steht, sieht man sich vor das Problem gestellt, die Strahlung eines Isotops in Anwesenheit einer Reihe von anderen radioaktiven Kernen zu messen. Diese Schwierigkeit macht sich speziell bei den Anregungskurven bemerkbar, wo man die Aktivität gerne über einen Faktor 10⁴ oder mehr verfolgen möchte.

Die Anregungskurven wurden nach der Methode der "stacked foils" gemessen. Die Energieskala haben wir unter Verwendung der in (I) gemessenen stopping power Werten in mg/cm² Aluminium-Äquivalent ausgedrückt. Der Umrechnung von mg/cm² Al-Äquivalent in MeV wurden die von SMITH⁵) errechneten Werte für dE/dxals Funktion der Protonenenergie zugrunde gelegt.

Target. Die verwendeten Targets waren 1—5 mg/cm² dick. Mit Ausnahme derjenigen Fälle, in denen die Targetsubstanz in Form von dünnen Folien zur Verfügung stand, wie für die Elemente Ni, Mo und In, mussten die dünnen Präparate durch spezielle Methoden hergestellt werden. Se und Te Target wurden durch Aufdampfen im Vakuum des elementaren Se und Te auf 10 μ starke Aluminium-Auffänger erzeugt. Die Elemente As, Nb, Ru, Rh, Pd, und Sb wurden in Form von feinem Pulver bestrahlt. Dieses durch Ausschlämmen gewonnene feine Pulver wurde in organischem Lösungsmittel suspendiert und auf eine 10 μ starke Al-Folie deponiert. Dem Lösungsmittel wurde in kleinen Mengen (0,1 mg/cm²) Zaponlack als Bindemittel beigegeben. Nach Abdampfen des Lösungsmittels bleibt eine homogene und mechanisch feste Schicht zurück. Andere Elemente sind in einer chemischen Verbindung bestrahlt worden. So Ga, Sr, Y, Zr, Ba, La, Ce, Nd und Gd als Oxyd, Rb als Nitrat, Cs als Carbonat und Pr als Fluorid.*) Die Herstellung dieser Target erfolgte ebenfalls in der oben beschriebenen Weise.

Bestrahlung. Die Anordnung für die Bestrahlung und die hiefür erforderlichen Hilfsmittel waren dieselben wie in der Arbeit (I). Der monochromatische Protonenstrahl des Cyclotrons hatte eine Energie von 6,80 MeV und eine Energiebreite von ca. 20 keV. Der Protonenstrom, der die Target durchsetzt hat, wird mit Hilfe eines Verstärkers und eines selbstschreibenden Registrierinstrumentes aufgezeichnet.

Messung. Die Anregungskurven sind mit Hilfe der in (I) beschriebenen automatischen Apparatur gewonnen worden. Korrekturen für Targetdicke und "straggling" wurden angebracht. Zur Absolutmessung von Teilchen gelangten geeichte Fensterzählrohre zur Anwendung. Zählrohre mit Bi-Kathode dienten zum Zählen von Gammaquanten. Zählrohre und Geometrie der Messanordnung wurden mit einem RaD + E bzw. einem Co⁶⁰-Standard des National Bureau of Standards geeicht und ständig kontrolliert. In der Regel haben wir die Absolutmessungen durch Zählen der Teilchen vorgenommen; die hiebei mögliche Genauigkeit ist grösser als die bei der Bestimmung der Zerfallszahl aus den Gammaquanten. Nach Möglichkeit sind beide Messverfahren angewandt worden; die Doppelbestimmung erlaubt zudem noch eine Kontrolle über das Zerfallschema.

Fehler und Unsicherheit. Dort, wo das Targetelement in einer chemischen Verbindung bestrahlt worden ist, beobachten wir die Aktivität der Verbindungspartner wie O, N und C. Die in N und C induzierte Radioaktivität ist kurzlebig gegen die aus dem O¹⁸ erzeugte F¹⁸ Aktivität. Da jedoch O¹⁸ nur 0,2% Isotopenhäufigkeit besitzt, macht sich diese 112 min Aktivität bloss im unteren Teil der Anregungskurve störend bemerkbar. Gegebenenfalls haben wir auf die Messung der kurzlebigen Produktkerne verzichten müssen.

Die Inhomogenität der Target-Folien und die Ungenauigkeit in der Registrierung des Protonenstroms geben bei der Bestimmung

^{*)} Herrn Dr. JACOBI sind wir für viele chemische Operationen zu Dank verpflichtet.

von σ zu Fehlern von weniger als 10% Anlass. In dieser Grössenordnung liegen auch die Fehler, die bei der Zählrohrmessung zustande kommen, wie Unsicherheit im Raumwinkel und in der Sensibilität. Effekte wie Rückstreuung und Selbstabsorption im Präparat sowie Absorption in Luft und Zählrohrfenster sind soweit wie möglich berücksichtigt worden.

Die gewichtigsten Fehler, die man bei der Bestimmung von σ begeht, sind durch die oft mangelhafte Kenntnis des Zerfalls des Produktkerns bedingt. Insbesondere führt im Falle von Positronenzerfällen die ungenügende Kenntnis der Maximalenergie und des damit gekoppelten f^{K}/f^{+} -Verhältnisses zu erheblichen Unsicherheiten.

Ergebnisse.

Die Messergebnisse sind in der Tabelle I und in der Figur 2 zusammengefasst. Die erste und die zweite Kolonne von Tabelle I enthalten die Reaktion und die charakteristische Halbwertszeit des Produktkerns. Die dritte Kolonne gibt den Wirkungsquerschnitt der Reaktion für eine einheitliche Energie von 6,70 MeV zusammen

Experimentelle Werte für $\sigma_{6,7 \text{ MeV}}$. Vergleichsweise sind die zu drei r_0 -Werten gehörenden theoretischen Kurven eingezeichnet. In der Abszisse steht das Z des Targetkerns.

446

Tabelle 1.

Wirkungsquerschnitte und Schwellenwerte einiger (p,n)-Reaktionen. Die mit (I) bezeichneten Reaktionen sind der Arbeit (I) entnommen und nach Massgabe der berechneten Anregungskurven auf die einheitliche Energie von 6,7 MeV extra-

Reaktion	T.	$\sigma_{6,7{ m MeV}}$	Fehler	Reaktionssc	hwelle MeV	r_0
Treaction	<i>1</i> 1/2	$10^{-26} \mathrm{cm}^2$	%	beob.	ber.	10 ⁻¹³ cm
Ni ⁶⁰ (p,n)Cu ⁶⁰	24,6m	$< 0,\! 1$		_	5,1	-
Ni ⁶¹ (p,n)Cu ⁶¹	3,3h	24	20	_	3,0	1,3
Ni ⁶² (p,n)Cu ⁶²	9,9m	43	10	4,7 \pm 0,1	4,65	1,52
Ni ⁶⁴ (p,n)Cu ⁶⁴	12,8h	40	10	$2,5\pm0,2$	(2, 45)	1,49
Cu ⁶³ (p,n)Zn ⁶³	38,5m	33	(I)	$4,2\pm0,1$	4,16	$1,\!43$
Cu ⁶⁵ (p,n)Zn ⁶⁵	250d	57	(I)	< 2,7	2,12	1,64
Zn ⁶⁶ (p,n)Ga ⁶⁶	9,2h	40	(I)	$6,05\pm0,05$	6,1	1,52
Zn ⁶⁷ (p,n)Ga ⁶⁷	3,3d	38	(I)	< 2,2		1,44
Zn ⁶⁸ (p,n)Ga ⁶⁸	68 m	60	(\mathbf{I})	$3,4\pm0,3$	3,7	$1,\!67$
Ga ⁶⁹ (p,n)Ge ⁶⁹	39,6h	47	10	2		$1,\!6$
As ⁷⁵ (p,n)Se ⁷⁵	127d	27	100	_	_	$1,\!42$
Se ⁷⁸ (p,n)Br ⁷⁸	6 ,4 m	30	20	$4,5\pm0,2$	4,35	1,49
Se ⁸⁰ (p,n)Br ⁸⁰	18,5m	33	20	$2,6 \pm 0,2$	2,53	
Se ⁸⁰ (p,n)Br ⁸⁰ *	4,5h	11,5	20	$2,8\pm0,2$	2,62	}1,01
Se ⁸² (p,n)Br ⁸²	1,63d	45	20	< 2,0	_	1,62
Br ⁷⁹ (p,n)Se ⁷⁹ *	55s	13,5	20	_		(1,2)
Rb ⁸⁵ (p,n)Sr ⁸⁵	65d	31	10	_		1,55
Rb ⁸⁷ (p,n)Sr ⁸⁷ *	2,75h	19	20	< 2,5		(1,38)
Sr ⁸⁷ (p,n)Y ⁸⁷	80h	23	10	$2,5\pm0,2$	(2,9)] 1 50
Sr ⁸⁷ (p,n)Y ⁸⁷ *	14h	9,5	30		(3,3)	1,38
Sr ⁸⁸ (p,n)Y ^{88*}	105d	16	10	$4,7\pm0,2$	4,5	(1,36)
Y ⁸⁹ (p,n)Zr ⁸⁹	79,3h	29	10	$3,5\pm0,2$	3,6	
Y ⁸⁹ (p,n)Zr ⁸⁹ *	4,4m	12	10		4,3	}1,07
Zr ⁹⁰ (p,n)Nb ⁹⁰	15h	< 0,015	· _	×	-	
Zr ⁹¹ (p,n)Nb ^{91*}	64d	5	20	< 3,0		(1,0)
Zr ⁹² (p,n)Nb ⁹²	9,8d	18	10	$2,5\pm0,2$	-	1,43
Zr ⁹⁶ (p,n)Nb ⁹⁶	23,3h	32	10	$2,6\pm0,2$		1,62
Nb ⁹³ (p,n)Mo ⁹³	6,75h	0,18	30	$3,7\pm0,2$	_	-
Mo ⁹⁴ (p,n)Tc ⁹⁴	53m	15	20	5,1 \pm 0,1	5,08	.1,44
Mo ⁹⁵ (p,n)Tc ⁹⁵	20h	11	20	$3,6\pm0,3$	_] 1 49
Mo ⁹⁵ (p,n)Tc ^{95*}	62d	6	20		_	1,43
Mo ⁹⁶ (p,n)Tc ⁹⁶	4.3 d	23	20	$3,8\pm0,3$		1,56
Ru ¹⁰⁰ (p,n)Rh ¹⁰⁰	20h	15	10	$4,1\pm0,2$	(4,8)	1,48
Ru ¹⁰¹ (p,n)Rh ¹⁰¹	4,3 d	10	30	$2,6\pm0,3$	_	1,54
Ru ¹⁰² (p,n)Rh ¹⁰²	215d	16	20			1,51

poliert.

Reaktion	Τ.,.	$\sigma_{6,7{ m MeV}}$	Fehler	Reaktionss	chwelle MeV	r ₀
LIGURTION	- 1/2	10 ⁻²⁶ cm ²	%	beob.	ber.	10 ⁻¹³ cm
$D_{12} = 104(m - m) D_{12} = 104$	14~	10	90			
$Ru^{104}(p,n)Rn^{104}$	448	13	20	-		1,54
$Ru^{102}(p,n)Rn^{1024}$	4,3m	6	20	-	—)
$Rn^{105}(p,n)Pa^{105}$	17d	23	20	< 3,0	-	1,61
$Pd^{100}(p,n)Ag^{100}$	24,5m	19	20	—	3,85	1.72
Pd ¹⁰⁶ (p,n)Ab ¹⁰⁶ *	8,6d	11	50		—	1 -,
$Pd^{110}(p,n)Ag^{110}$	24,5s	10,6	20		-	1 1 58
Pd ¹¹⁰ (p,n)Ag ¹¹⁰ *	270d	9,1	30	_		J .1,90
$Ag^{107}(p,n)Cd^{107}$	6,7h	14	(I)	< 3,3	2,21	1,52
Ag ¹⁰⁹ (p,n)Cd ¹⁰⁹	330d	12	(I)	< 4,0	_	1,48
Cd ¹¹⁰ (p,n)In ¹¹⁰	$66 \mathrm{m}$	16	(I)	$4,5\pm0,2$	(3,8)	1,57
Cd ¹¹¹ (p,n)In ¹¹¹	2, 8d	27	(I)	< 2,5	$2,35 \pm 0,28$	1,62
Cd ¹¹² (p,n)In ¹¹²	9m	4,5	-		3,5] 1 50
Cd ¹¹² (p,n)In ^{112*}	23m	6,7	(I)	$3,2\pm0,3$	3,66	
Cd ¹¹⁴ (p,n)In ¹¹⁴	72s	8,6	20	—	$2,86 \pm 0,28$	1 50
Cd ¹¹⁴ (p,n)In ^{114*}	4 8d	6,6	(I)	< 3,5	$3,05 \pm 0,28)$	1,50
Cd ¹¹⁶ (p,n)In ¹¹⁶	13s	4,5	30	-	—	- Í
In ¹¹³ (p,n)Sn ¹¹³	105d	20	50	-	-	1,60
${\rm Sn^{116}(p,n)Sb^{116}}$	60m	< 0,3	_	-	—	
Sn ¹¹⁷ (p,n)Sb ¹¹⁷	2,8h	9	(I)	< 3,5		1,47
Sn ¹¹⁸ (p,n)Sb ¹¹⁸	3,3m	7,5	20	_	(4,9)	1,43
${\rm Sn^{120}(p,n)Sb^{120}}$	$15\mathrm{m}$	17	(I)	$3,5\pm0,3$	3,49)	1,63
${\rm Sn^{122}(p,n)Sb^{122}}$	2,63d	19,5	(I)	< 3,5	-	1,67
${\rm Sb^{121}}(p,n){\rm Te^{121}}$	17d	7	30	—) 1 05
${\rm Sb^{121}}(p,n){\rm Te^{121}}*$	143d	10	30	-	-	} 1,05
${ m Te^{124}(p,n)I^{124}}$	4d	15	20		4,6	1,63
Te ¹²⁶ (p,n)I ¹²⁶	13d	7	20		-	1,46
Te ¹²⁸ (p,n)I ¹²⁸	25m	9	10	3,2 + 0,3	_	1,51
${ m Te^{130}(p,n)I^{130}}$	12,5h	9,5	10	$3,3\pm0,3$		1,53
I ¹²⁷ (p,n)Xe ¹²⁷	34 d	4,4	20	_	_)
I ¹²⁷ (p,n)Xe ¹²⁷ *	75s	5,3	30			$\left\{ 1,54\right\}$
Cs ¹³³ (p,n)Ba ¹³³ *	39h	4,3	20			(1,41)
Ba ¹³⁶ (p,n)La ¹³⁶	9,5m	10	50		4,1	1.61
La ¹³⁹ (p,n)Ve ¹³⁹	140d	2,4	100		-	1.33
Ce ¹⁴⁰ (p,n)Pr ¹⁴⁰	3.6m	5.4	20		_	1.51
$Ce^{142}(p,n)Pr^{142}$	18.9h	5.7	20			1.53
Pr ¹⁴¹ (p,n)Nd ¹⁴¹	2.42h	1.6	20	_		1.30
Nd ¹⁴⁸ (p,n)Pm ¹⁴⁸	5.3d	3.6	20	_	_	1.49
Gd ¹⁵⁶ (p,n)Tb ¹⁵⁶	5h	3.6	20	_	_	1.57
Gd ¹⁵⁷ (p.n)Tb ¹⁵⁷	4.7h	6	<u> </u>	-	_	1.69
	_,.,.	5	50			1,00

Tabelle 1 (Fortsetzung).

mit der Grössenordnung für den möglichen Fehler in Kolonne 4. Falls eine Anregungskurve gemessen worden ist, gibt Kolonne 5 die gefundene Reaktionsschwelle. In gewissen Fällen ist es möglich, die Schwelle der Reaktion aus der Positronenenergie anzugeben; Kolonne 6 enthält solche Werte. Den dem Reaktionsquerschnitt angemessenen Kernradius $r_0 = R A^{-1/3}$ gibt Kolonne 7 wieder. Bei isomeren Kernen bezieht sich r_0 auf die Summe der Partialquerschnitte. Ist nur ein Partialquerschnitt gemessen worden, so ist das hiefür Verantwortliche r_0 in Klammern gesetzt.

Im folgenden soll jede Wirkungsquerschnittbestimmung kurz diskutiert werden. Es soll u. a. gesagt werden, auf Grund von welchen Zerfallscharakteristika der Wirkungsquerschnitt gemessen worden ist und welche zusätzlichen Annahmen benützt worden sind. Bei Positronenübergängen findet stets zu einem gewissen Prozentsatz K-Einfang statt. Da das Verhältnis f^{K}/f^{+} experimentell nur in ganz wenigen Fällen bestimmt worden ist, haben wir für alle Positronenstrahler, bei denen keine Messungen über f^{K}/f^{+} vorliegen,

29

das Resultat der Fermitheorie verwendet. Dieses Vorgehen scheint uns angesichts der guten Übereinstimmung von Theorie und Erfahrung beim Verhältnis f^{K}/f^{+} , soweit es sich um erlaubte Übergänge handelt, zulässig. Die theoretischen Werte sind den Kurven von FEENBERG und TRIGG⁶) entnommen worden.

Hinsichtlich der Zerfallschemata berufen wir uns auf den Isotopenbericht des National Bureau of Standards (Sept. 1950) und des ersten Supplement (April 1951)⁷). Literaturreferenzen auf

Originalarbeiten geben wir nur dann, wenn es eine ausführliche Diskussion verlangt, oder wenn die Arbeit neueren Datums ist.

Anregungskurven sind für Isotopen von 10 Elementen gemessen worden. Wir geben diese Resultate in Form von Kurven wieder unter Beifügung zweier berechneter σ_p -Kurven für zwei verschiedene Werte von r_0 (Fig. 3 bis Fig. 12).

Wegen der mit abnehmender Protonenenergie zunehmenden Verbreiterung des Energiespektrums ist die Bestimmung tief liegender Schwellenwerte ungenau. In solchen Fällen begnügen wir uns mit der Angabe einer oberen Grenze der Schwelle.

Ni⁶⁰(p,n)Cu⁶⁰

Reaktionsschwelle experimentell 5,1 MeV¹⁵) im Einklang mit Positronenenergie. Obere Grenze für den Wirkungsquerschnitt durch Abschätzen einer oberen Grenze für das Auftreten einer 25 min Positronen-Periode.

Ni⁶¹(p,n)Cu⁶¹

Produktkern: komplexer Positronenstrahler, 66% der Zerfälle Positronenzerfall und 34% K-Einfang. Isotopenhäufigkeit von Ni⁶¹ zu 1,25% angenommen. σ durch Absolutmessung der Positronen. Schwelle der Anregungskurve durch die vom 20mal häufigeren Ni⁶⁰ ausgehende (p, γ)-Reaktion maskiert.

 $Ni^{62}(p,n)Cu^{62}$ $Cu^{62}: 9,9 m$ Positronenstrahler. Anteil des K-Einfangs nach Fermitheorie 2%. σ durch Absolutmessung der Positronen und der Vernichtungsstrahlung. Beobachteter Schwellenwert im Einklang mit Positronenenergie.

Ga⁶⁹(p,n)Ge⁶⁹ Ge⁶⁹: Positronenstrahler. σ durch Absolutmessung der Positronen mit $f^+/f^K = 0,5^{-6}$.

As⁷⁵(p,n)Se⁷⁵

- Se⁷⁵: K-Einfang und Emission verschiedener Gammastrahlen, über deren Anordnung im Zerfallschema keine Information existiert. σ unter der Annahme berechnet, dass pro Zerfall 2 Gammaquanten emittiert werden.
- Se⁷⁸(p,n)Br⁷⁸ Br⁷⁸: Fermitheorie liefert für diesen Positronenstrahler $f^{K}/f^{+} = 0,08. \sigma$ durch Absolutmessung der Positronen unter Absorption der von 2 weichen Gammastrahlen herrührenden Konversionselektronen. Schwelle der Anregungskurve in grober Übereinstimmung mit Zerfallschema.

Das Verhältnis der Wirkungsquerschnitte für die Anregung beider isomerer Zustände beträgt σ (18,5 m)/ σ (4,5h) = 2,87. Schwellenwert der Anregungskurve in Übereinstimmung mit Positronenenergie.

Br⁸²: Elektronenspektrum und Gammakaskade. σ durch Absolutmessung der Elektronen sowie der Gammastrahlen.

 $Se^{82}(p,n)Br^{82}$

Rb⁸⁷(p,n)Sr^{87*} Sr^{87*}: isomerer Übergang in das stabile Sr⁸⁷. Der 386 keV Gammastrahl ist zu 20% konvertiert⁷). σ durch Absolutmessung der Quanten.

80h Y⁸⁷: Zerfall durch K-Einfang in das 2,7h Sr⁸⁷ welches durch einen 18% konvertierten Gammastrahl mit dem Grundzustand verbunden ist. Mit $E_{\gamma} = 0,7$ MeV: $f^{K}/f^{+} =$ 6 berechnet. Experimentell ist f^{K}/f^{+} jedoch grösser²⁶). σ durch Zählen der Konversionselektronen des Sr^{87*}. Für das 14h Isomer σ ebenfalls durch Zählung der Konversionselektronen von Sr^{87*} sowie von Y^{87*} mit gleichem α . Für σ ist berücksichtigt, dass die 14h Periode in die 80h Periode zerfällt. Reaktionsschwelle aus Anregungskurve etwas tiefer als Schwelle aus Zerfallschema. Isomerenverhältnis: σ (80h)/ σ (14h) = 2,4. Sr⁸⁸(p,n)Y⁸⁸

Y⁸⁸: K-Einfang und Positronen; Gammakaskade. σ durch Absolutmessung der Gammastrahlen unter der Annahme, dass pro Zerfall 2 Quanten emittiert werden.

Y⁸⁹(p,n)Zr⁸⁹Zr⁸⁹ zerfällt durch 0,905 MeV Positronen in ein meta-
stabiles Niveau, das durch einen 0,928 MeV Gammastrahl
in den Y⁸⁹ Grundzustand führt¹¹). $f^K/f^+ = 3$ berechnet.
 σ durch Zählung der Positronen. Reaktionsschwelle der
Anregungskurve im Einklang mit Positronenenergie.

Zr⁹⁰(p,n)Nb⁹⁰

Diese Reaktion konnte nicht nachgewiesen werden. Eine obere Grenze für σ kann besser als aus der Halbwertszeit (Gegenwart der 23h Nb⁹⁶-Aktivität) im magnetischen Linsenspektrometer abgeschätzt werden. Es wurde die obere Grenze für das Vorhandensein eines 1,19 MeV Spektrums in Gegenwart des 0,75 MeV Nb⁹⁶-Spektrums gemessen.

Zr⁹¹(p,n)Nb^{91*}

Die 64d Aktivität des Produktkerns gehört einem 104,5 keV isomeren Übergang an, welcher in einen sehr langlebigen Grundzustand des Nb⁹¹ führt. Der isomere Übergang ist zu 98% konvertiert¹²). σ durch Zählen der Konversionselektronen. Anregungskurve in Schwellennähe durch Konkurrenz einer (p, γ)-Reaktion gehoben.

 $Zr^{92}(p,n)Nb^{92}$ Nb^{92} : Zerfallschema dieser Aktivität neuerdings von STÄ-
HELIN und PREISWERK¹³) untersucht. Ein K-Einfang führt
auf ein angeregtes Niveau von Zr⁹², welches durch 0,93 MeV
Gammastrahl mit dem Grundzustand verbunden ist. σ
durch Zählung der Gammaquanten. Die tiefe Schwelle ist
in Übereinstimmung mit der Abwesenheit von Positronen.

Zr⁹⁶(p,n)Nb⁹⁶

Nb⁹⁶: Elektronenstrahler. Zerfallschema von ¹³) untersucht. σ durch Absolutmessung der Elektronen und der Gammastrahlung.

Das Verhältnis der Wirkungsquerschnitte der Reaktion $Zr^{96}(p,n)Nb^{96}$ und $Zr^{92}(p,n)Nb^{92}$ wurde auch mit einem "thick-target"-Experiment gemessen. Da die Anregungskurven nahezu identischen Verlauf haben, findet man sofort $\sigma (Zr^{96})/\sigma (Zr^{92}) = 1.8 \pm 0.1.$

Der Zerfall des 6,7h Mo⁹³ wurde in jüngster Zeit von KUN-DU et al.¹⁴) untersucht. Unter Zugrundelegung der Er-

Nb93(p,n)Mo93

gebnisse KUNDU's finden wir gute Übereinstimmung in σ bei Zählen der Konversionselektronen und der Gammaquanten.

Die Anregungskurve hat ungewöhnlich steilen Verlauf.

Mo⁹⁴(p,n)Tc⁹⁴

Tc⁹⁴: 75% der Zerfälle durch Positronen in Mo⁹⁴. σ durch Zählen der Positronen und Gammaquanten. Reaktionsschwelle der Anregungskurve in Übereinstimmung mit Positronenenergie.

Mo ⁹⁵ (p,n)Tc ⁹⁵ , Tc ⁹⁵ *	20h Tc ⁹⁵ : σ durch Absolutmessung der Gammaquanten unter Berücksichtigung des Zerfallschemas ⁷). In gleicher Weise für die Bildung der 62d isomeren Aktivität. Das Verhältnis für die Anregung beider Isomere σ (20h)/ σ (62d) = 1,85.
Мо ⁹⁶ (р,n)Тс ⁹⁶	Der 4,3d Produktkern zerfällt durch K-Einfang. σ durch Absolutmessung der Gammaquanten ⁷).
Ru ¹⁰⁰ (p,n)Rh ¹⁰⁰	Rh ¹⁰⁰ : 30% Positronen, 70% K-Einfang. σ aus Positronen und aus Gammaquanten (2 Kerngammaquanten pro Zerfall).

Ru¹⁰¹(p,n)Rh¹⁰¹

Rh¹⁰¹: K-Einfang und 3 Gammastrahlen zu 350, 130 und 80 keV. 350 keV: 10% konvertiert⁷). Durch Aufnahme einer Absorptionskurve der Elektronen kann der Anteil der 350 keV Konversionselektronen abgeschätzt werden. Hieraus und mit der Annahme, dass jeder Zerfall über den 350 keV Gammastrahl führt, wurde σ bestimmt. Dasselbe σ erhält man auch, wenn man annimmt, dass pro Zerfall ein Gammaquant emittiert wird.

Ru¹⁰²(p,n)Rh¹⁰² Rh¹⁰²: Dualer Zerfall durch Elektronen. Positronen und *K*-Einfang. $f^-/f^+ = 1,2$ ⁷). Nach Fermitheorie: $f^K/f^+ = 1,7$. Somit führen 43% aller Zerfälle über *K*-Einfang. σ durch Absolutmessung der Partikel.

 $Rh^{103}(p,n)Pd^{103}$ Pd^{103} zerfällt durch K-Einfang in ein 57m Niveau von
Rh^{103}. σ durch Absolutmessung der K-Strahlung unter
Verwendung der in (I) mit Ag-K-Strahlung geeichten
K-Zählrohre.

Pd¹⁰⁶(p,n)Ag¹⁰⁶, Ag¹⁰⁶* Ag¹⁰⁶: Positronenstrahler. Berechnetes $f^K/f^+ = 0,43$. σ durch Zählen der Positronen und der Vernichtungsstrahlung. Die 8,6d isomere Aktivität zerfällt durch K-Einfang. Gammastrahlung ist vorhanden⁷). Mit 1 Gammaquant pro Zerfall erhält man eine Abschätzung für σ . Isomerenverhältnis σ (25 m)/ σ (8,6 Å) = 1,73.

Cd¹¹⁴(p,n)In¹¹⁴

 σ für die Bildung das 48d Isomers wurde in (I) untersucht. Durch Absolutmessung der Elektronen finden wir für die Anregung des Grundzustandes σ (72s)/ σ (48d) = 1,3.

In¹¹³(p,n)Sn¹¹³

Sn¹¹³: 112d K-Einfang. Zerfall in 104m Niveau von In^{113*}. σ durch Absolutmessung der K-Strahlung. Kontrolle durch Absolutmessung der Konversionselektronen mit $\alpha = 0, 4^{25}$).

Anregungsfunktionen und Wirkungsquerschnitte der (p,n)-Reaktion (II). 459

- $Sn^{116}(p,n)Sb^{116}$ Sb^{116}: Die 60m Positronenaktivität konnte nicht beobachtet werden. Eine obere Grenze für σ wird aus der zeitlichen Abfallskurve mit dem Betazählrohr abgeschätzt.
- Sb¹²¹(p,n)Te¹²¹, Te¹²¹* Te¹²¹: 17d Grundzustand zerfällt durch K-Einfang. σ durch Zählung der Gammaquanten⁷). 143d Isomer: bei der σ -Bestimmung Berücksichtigung der Gammalinie des isomeren Übergangs.

Isomerenverhältnis: $\sigma(175)/\sigma(143d) = 0.75$.

Te¹²⁴(p,n)I¹²⁴ I¹²⁴: 4-fach komplexer, verbotener Positronenübergang in den Ausgangskern. f^{K}/f^{+} ist schwierig abzuschätzen. Die Abschätzung ist jedoch kontrollierbar durch Absolutmessung der Gammaquanten des bekannten Zerfallschemas⁷).

Te¹²⁶(p,n)I¹²⁶ I¹²⁶: komplexes Elektronenspektrum. σ durch Absolutmessung der Elektronen.

Te¹²⁸(p,n)I¹²⁸ I¹²⁸: komplexer Betastrahler. σ durch Messen der Elektronen und Gammaquanten.

 $Te^{130}(p,n)I^{130}$ I^{130} : komplexer Betastrahler. σ durch Messen der Elektro-
nen und Gammaquanten. Die Anregungskurven von Te¹³⁰
und Te¹²⁸ haben fast identischen Verlauf.

Cs¹³³(p,n)Ba^{133*} Ba^{133*}: Zerfallschema nicht bekannt. Offenbar isomerer Übergang, 71% konvertiert, in langlebigen Grundzustand von Ba¹³³. σ durch Zählen der Konversionselektronen.

- Ba¹³⁶(p,n)La¹³⁶ La¹³⁶: Positronenstrahler. 33% Positronen⁷). Fermitheorie würde 53% Positronen, 47% K-Einfang geben. σ durch Zählen der Positronen unter Annahme des Wertes aus der Fermitheorie.
- La¹³⁹(p,n)Ce¹³⁹ Ce¹³⁹: K-Einfang. Angenommen: 1 Gammaquant pro Zerfall; Zählung der Quanten.

Ce¹⁴²(p,n)Pr¹⁴² Pr¹⁴²: Elektronenstrahler. σ durch Zählen der Elektronen.

 $Pr^{141}(p,n)Nd^{141}$ $Nd^{141}: 2\%$ der Zerfälle über Positronen, Rest über K-Ein-
fang⁷). Absolutmessung der Positronen.

Nd¹⁴⁸(p.n)Pm¹⁴⁸ Pm¹⁴⁸: Elektronenstrahler. σ durch Zählen der Elektronen.

Gd¹⁵⁶(p,n)Tb¹⁵⁶ Tb¹⁵⁶: pro Zerfall 20% Positronen⁷). σ durch Zählen der Positronen.

Gd¹⁵⁷(p,n)Tb¹⁵⁷ Tb¹⁵⁷: pro Zerfall 30% Konversionselektronen⁷). σ durch Zählen der Konversionselektronen.

In Tabelle 2 sind einige relative Wirkungsquerschnitte von isomeren Kernen zusammengestellt. Mit σ^*/σ soll das Verhältnis ausgedrückt werden, in dem das energetisch höhere Niveau zum energetisch tieferen Niveau angeregt wird.

Tabelle 2.

Relative Wirkungsquerschnitte von isomeren Kernen für die (p,n)-Reaktion mit 6,7 MeV Protonen.

Produktkern	σ^{*}/σ	Produktkern	σ^*/σ
Br ⁸⁰	0,35	Ag ¹¹⁰	0,85
Y ⁸⁷	0,41	In ¹¹²	$1,\!45$
Te^{95}	0,54	In^{114}	0,77
Rh ¹⁰⁴	0,45	Te^{121}	1,33
Ag^{106}	0,58	Xe ¹²⁷	1,2

Kernradius r_0 in Abhängigkeit von der Ordnungszahl Z.

Diskussion.

Wie aus Figur 2 ersichtlich ist, finden die Grosszahl der gemessenen Wirkungsquerschnitte in einem Band Platz, das von den theoretischen Kurven $\sigma_p(6,7 \text{ MeV})$ für $r_0 = 1,3$ und $r_0 = 1,7$ begrenzt ist. In Figur 13 sind die r_0 -Werte als Funktion der Ordnungszahl dargestellt. Sie liegen unabhängig von Z um eine mittleres r_0 von 1,5 10^{-13} cm.

Eine Darstellung wie Figur 2 ist natürlich nur dann sinnvoll, wenn die Schwelle keinen Einfluss auf den Wirkungsquerschnitt bei 6,7 MeV mehr ausübt. Die Anregungskurven zeigen, dass diese Bedingung erfüllt ist. Wie rasch der Einfluss der Schwelle, also des Faktors η_n , abklingt, zeigt das Beispiel von Ga⁶⁶, dessen Reaktionsschwelle bei 6,05 MeV liegt¹).

In Figur 2 sind die gg-Kerne speziell bezeichnet. Die Wirkungsquerschnitte von gg-Kernen unterscheiden sich im allgemeinen nicht von denen anderer Kerne.

Gewisse Wirkungsquerschnitte fallen aus dem Band der normalen Werte. Dies sind insbesondere die Fälle von Ni⁶⁰, Zr⁹⁰, Nb⁹³ und Sn¹¹⁶, bei denen σ um Faktoren 10²—10³ kleiner ist als bei den Nachbarkernen. Mit Ausnahme dieser Kerne gehören die in Figur 2 tiefer liegenden Punkte meist Partialquerschnitten von Kernen an, die auf isomere Endkerne führen. Solche Fälle sind Se^{80*}, Br^{79*}, Sr^{87*}, Y^{89*}, Mo^{95*}, Ru^{104*} und Cd¹¹⁶. Zr⁹¹ soll nach neuesten Messungen von Axel¹²) einen langlebigen Produktkern besitzen. Der gemessene Wirkungsquerschnitt wäre also auch als Partialquerschnitt zu interpretieren.

Wir diskutieren nun die erwähnten anormalen Fälle.

Ni⁶⁰. LEITH, BRATENAHL und MOYER¹⁵) beschreiben eine 24,6 m Aktivität von Cu⁶⁰, welche sie durch Bestrahlung einer reinen Ni⁶⁰-Target mit 5,5 MeV Protonen erzeugten. Sie fanden eine Schwelle bei 5,1 \pm 0,2 MeV für die (p,n)-Rekation und konnten durch Massenbestimmung der Produktaktivität die Zuordnung zur Massenzahl 60 sicherstellen. Aus Absorptionsmessungen fanden die Autoren 2 Positronengruppen mit Energien von 1,8 und 3,3 MeV. Die Maximalenergie der härteren Positronengruppe steht in gutem Einklang mit dem bestimmten (p,n)-Schwellenwert von 5,1 MeV. Über die Wirkungsquerschnitte dieser Reaktion finden wir bei LEITH et al. keine Angaben.

Ist die von LEITH et al. bestimmte Reaktionsschwelle richtig, so ist der anomale Wirkungsquerschnitt bei Ni⁶⁰, einem Kern mit 28 Protonen und 32 Neutronen, offenbar einem magischen Effekt zuzuschreiben. Nach dem Schalenmodell von MARIA MAYER¹⁶) und HAXEL et al.¹⁷) ist 28 eine magische Zahl, die den Abschluss der 1 $f_{7/2}$ -Konfiguration anzeigt. Nach MARIA MAYER und FEEN-BERG und HAMMACK¹⁸) kennzeichnet ferner die Zahl 32 den Abschluss der 2 $p_{3/2}$ -Unterschale. So stellt Ni⁶⁰ eine doppelt magische Konfiguration und somit einen besonders stabilen Kern dar. DUCKWORTH und PRESTON¹⁹) haben bei Ni⁶⁰ einen charakteristischen Knick in der Massendefektkurve festgestellt und daraus auf die ausnahmsweise Stabilität von Ni⁶⁰ geschlossen.

Zr⁹⁰. Über die (p,n)-Schwelle dieses Kernes lässt sich an Hand der Daten den Zerfall von Nb⁹⁰ betreffend, nichts Definitives aus-

sagen. Das Positronenspektrum von 1,19 MeV²⁰) zusammen mit einem Gammastrahl von 2,03 MeV²⁰) würden im Falle einer Kaskade eine Schwelle von 5 MeV anzeigen. Messungen von Boyd²¹) sind schlecht mit den Daten Kundu's²⁰) vereinbar.

Der ungewöhnlich tiefe Reaktionsquerschnitt steht möglicherweise wiederum mit den magischen Eigenschaften von Zr^{90} im Zusammenhang. Neben der magischen Neutronenzahl 50 stellt die Protonenzahl 40 nach allen Schalenmodellen eine magische Konfiguration dar, bei der die 2 $p_{1/2}$ -Unterschale abgeschlossen ist. Die von DUCKWORTH und PRESTON¹⁹) beobachtete Unstetigkeit der Massendefektkurve bei Zr^{90} scheint mit unseren Beobachtungen im Zusammenhang zu stehen und deutet auf eine besonders grosse Stabilität des Zr^{90} -Kernes hin.

Nb⁹³. Wie die Anregungskurve zeigt, handelt es sich bei diesem anormalen Kern jedenfalls nicht um einen Schwelleneffekt. Der Zerfall von Mo⁹³ wurde in neuster Zeit von KUNDU und POOL¹⁴) sorgfältig untersucht. Die Frage der Zuordnung zur Massenzahl 93 wurde von KUNDU¹⁴) in befriedigender Weise gelöst. Neben der (p,n)-Reaktion wäre als Konkurrenzprozess ein (p, p)- oder ein (p, γ)-Prozess möglich. Ein Prozess höherer Ordnung, wie (p, 2n), ist aus energetischen Gründen untersagt. Die beiden ersten erwähnten Prozesse können auf Grund der Analyse von KUNDU ausgeschlossen werden.

Eine Reihe von Tatsachen im Zusammenhang mit der Mo⁹³-Aktivität sind jedoch befremdend und scheinen wert, hier kurz zusammengefasst zu werden.

Die 6,7 h Aktivität konnte ausser durch (p,n)-Reaktion mit Hilfe der (d,2n)-Reaktion aus Nb und mit Hilfe der (α ,n)-Reaktion aus Zr erzeugt werden¹⁴). Über die Wirkungsquerschnitte dieser Reaktionen sind keine Angaben publiziert worden. Mit schnellen Neutronen konnte die 6,7 h Aktivität aus einer Mo⁹⁴ Target erzeugt werden. Die verantwortliche (n,2n)-Reaktion besitzt einen ungewöhnlich tiefen Wirkungsquerschnitt¹⁴). Die Reaktion Mo⁹²(d,p)Mo⁹³ konnte nicht beobachtet werden. In gleicher Weise scheint die Reaktion Mo⁹⁴ (γ ,n)Mo⁹³ gänzlich zu fehlen. DUFFIELD und KNIGHT²²) geben als obere Grenze des (γ ,n)-Querschnittes relativ zum Querschnitt anderer Mo-Isotopen den Wert 5 · 10⁻⁴ an. Die Röntgenstrahlen hatten bei ihren Versuchen eine Energie von 23 MeV. Wir haben mit 32 MeV Röntgenstrahlen Kontrollversuche unternommen und nach der in einer Mo-Target induzierten 6,7h Mo⁹³ Aktivität gesucht. Wir konnten jedoch kein Anzeichen dieser Aktivität beobachten und bestätigen somit das Ergebnis DUFFIELD's. Ebenso wie die (γ, n) -Reaktion fehlt die mit langsamen Neutronen zu bewirkende (n, γ) -Reaktion²²). Nach Boyd und Larson²³) ist hiefür der relative Wirkungsquerschnitt $\sigma < 10^{-5}$.

Im Zusammenhang mit der Kleinheit des (p,n)-Querschnittes im besondern und der andern Reaktionsquerschnitte im allgemeinen steht vielleicht die von KUNDU¹⁴) vorgeschlagene und von Boyd und LARSON²³) gemessene Existenz eines langlebigen Grundzustandes von Mo⁹³. Die Zerfallsenergie des Mo⁹³ wäre sehr gering; sie kann an Hand der gemessenen (p,n)-Schwelle abgeschätzt werden zu

$$E = E_T - E_\gamma - (m_n - m_p) =$$

(3,7 ± 0,3) - 2,7 - 0,78 = (0,22 ± 0,3) MeV.

Sn¹¹⁶. Die Isotopenzuordnung des 60 m Sb¹¹⁶ ist von TEMMER²⁴) sichergestellt worden. Dieser Autor hat Positronen einer Maximalenergie von 1,45 MeV und einen 700 keV Gammastrahl gefunden. An Hand dieser Daten kann für die (p,n)-Schwelle als obere Grenze 4 MeV eingesetzt werden.

Sn¹¹⁶ ist magisch in der Protonenzahl. Nach dem Modell von MARIA MAYER ist bei 66 Neutronen die $3 s_{1/2}$ -Unterschale geschlossen. Sn¹¹⁶ ist also ein doppelt magischer Kern und besitzt besonders grosse Stabilität, was sich auch in der Massendefektkurve von DUCKWORTH und PRESTON¹⁹) äussert.

Die andern magischen Kerne mit 50 Neutronen, wie Rb⁸⁷ (Z=37), Sr⁸⁸ (Z = 38) und Y⁸⁹ (Z = 39), sowie einige Kerne mit 50 Protonen, wie Sn¹¹⁷ (N = 67), Sn¹¹⁸ (N = 68), Sn¹²⁰ (N = 70) und Sn¹²² (N = 72) zeigen keine Besonderheiten im Wirkungsquerschnitt. Dasselbe kann von den Kernen mit N = 82, wie La¹³⁹ (Z = 57), Ce¹⁴⁰ (Z = 58) und Pr¹⁴¹ (Z = 59) gesagt werden. Der Kern Ge⁷² (Z = 32, N = 40), der in der Neutronen- und Protonenzahl "halbmagisch" ist, besitzt ebenfalls einen normalen Wirkungsquerschnitt. Die Anregungskurven von Sr⁸⁸ und Y⁸⁹ unterscheiden sich jedoch von den andern Anregungskurven durch die Tatsache, dass der Faktor $\eta_n = \sigma_{pn}/\sigma_p$ langsamer gegen 1 ansteigt. Dieser Effekt kann durch die geringe Niveaudichte der magischen Kerne bei kleinen Energien verstanden werden. Bei Rb⁸⁷ liegt die Schwelle so tief, dass kein derartiger Effekt zu beobachten ist.

Zusammenfassend kann gesagt werden, dass neben den wohlbekannten magischen Zahlen, wie 28, 50 und 82, auch die Zahlen 32, 40 und 66 magischen Charakter zu besitzen scheinen. Massive J. P. Blaser, F. Boehm, P. Marmier und P. Scherrer.

Effekte äussern sich in den (p,n)-Wirkungsquerschnitten jedoch nur bei doppelt magischen Konfigurationen. Die gefundenen Anomalien entsprechen genau den von DUCKWORTH und PRESTON gefundenen Unstetigkeiten in der Massendefektkurve.

Wir möchten an dieser Stelle Herrn Prof. V. WEISSKOPF, der diese Arbeit durch dauerndes Interesse und durch viele wertvolle Anregungen kräftig gefördert hat, unseren Dank aussprechen. Herrn Prof. P. PREISWERK sind wir für zahlreiche Diskussionen zu Dank verpflichtet.

Literatur.

- ¹) BLASER, BOEHM, MARMIER und PEASLEE, Helv. Phys. Acta 24, 3 (1951).
- ²) COHEN, P. R. 81, 184 (1951).
- ³) HUGHES und SHERMAN, P. R. 78, 632 (1950).
- ⁴) HARVEY, P. R. 81, 353 (1951).
- ⁵) SMITH, P. R. 71, 32 (1947).
- ⁶) FEENBERG und TRIGG, R. mod. Phys. 22, 399 (1950).
- ⁷) WAY et al., Nuclear Data, Nat. Bureau of Standards Circular **499**, Hauptwerk und 1. Supplement (1950/51).
- ⁸) McGinnis, P. R. 81, 734 (1951).
- 9) BLASER, BOEHM und MARMIER, Helv. Phys. Acta 23, 623 (1950).
- ¹⁰) TER POGOSSIAN und PORTER, P. R. 81, 1057 (1951).
- ¹¹) SHURE und DEUTSCH, P. R. 82, 122 (1951).
- ¹²) AXEL, Bulletin der Am. Phys. Soc. 26, 45 (1951).
- 13) STÄHELIN und PREISWERK, Helv. Pays. Acta, erscheint demnächst.
- ¹⁴) KUNDU und POOL, P. R. 77, 71 (1950).
- ¹⁵) LEITH, BRATENAHL und MOYER, P. R. 72, 732 (1947).
- ¹⁶) MARIA MAYER, P. R. 75, 1969 (1949) und P. R. 78, 12 (1950).
- ¹⁷) HAXEL, JENSEN und SUESS, P. R. 75, 1766 (1949).
- ¹⁸) FEENBERG und HAMMACK, P. R. 75, 1877 (1949).
- ¹⁹) DUCKWOTH und PRESTON, P. R. 82, 468 (1951).
- ²⁰) KUNDU und POOL, P. R. 76, 183 (1949).
- ²¹) BOYD, ORNL **229**, 31 (1949).
- ²²) DUFFIELD und KNIGHT, P. R. 76, 573 (1949).
- ²³) BOYD und LARSON, ORNL 286 und ORNL 499.
- ²⁴) TEMMER, P. R. 75, 1464 und 76, 424 (1949).
- ²⁵) THOMAS, HAYNES, BROYLES und THOMAS, P. R. 82, 961 (1951).
- ²⁶) HYDE und KELLEY, P. R. 82, 944 (1951).