Zeitschrift:	Helvetica Physica Acta
Band:	6 (1933)
Heft:	VIII
Artikel:	Zur Streuung von Röntgenstrahlung an Silber
Autor:	Rusterholz, Alexander A.
DOI:	https://doi.org/10.5169/seals-110284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 09.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zur Streuung von Röntgenstrahlen an Silber von Alexander A. Rusterholz in Zürich.

(14. X. 33.)

Zusammenfassung: Es wird eine Absolutmessung des F-Faktors der Fläche 220 von Silber für CuK α -Strahlung durchgeführt. Der gemessene Wert des Streuvermögens ist in völliger Übereinstimmung mit der Theorie. Es zeigt sich, dass die K-Elektronen des Silberatoms nichts mehr zur Streuung beitragen, weil die Frequenz der gestreuten Strahlung viel kleiner ist als diejenige der K-Absorptionskante von Silber. Deshalb ist das Streuvermögen kleiner, als man es nach Thomas-Fermi für die Elektronenzahl Z = 47 erwarten würde. Diese Differenz, die gleich dem Streuvermögen der beiden K-Elektronen ist, ist jedoch nicht gleich 2, sondern nach H. Hönl nur 1,2. Es ist dies eine Folge davon, dass wegen des Pauliverbots nicht alle Übergänge der K-Elektronen zu den zum Teil schon besetzten höheren Niveaus möglich sind.

Frühere Untersuchungen des Verfassers über das Streuvermögen des Silbers für CuK α -Strahlen¹) hatten ergeben, dass die Winkelabhängigkeit des Streufaktors F, die sogenannte Streufunktion, übereinstimmte mit der theoretisch berechneten Streufunktion, die man unter Zugrundelegung des Thomas-Fermischen Atommodells erhält. Diese Messungen lieferten nur Relativwerte; die Übereinstimmung erhielt man dadurch, dass man einen F-Wert (F der Fläche 220) dem nach Thomas-Fermi berechneten Wert F_{ThF} gleichsetzte. Dann erhielt man für F der anderen Flächen folgende Werte (F 400 ist weggelassen, weil infolge der kleinen Intensität der Interferenz 400 zu unsicher):

h k l	$\frac{\sin\vartheta}{\lambda}$	F_{ThF}	F_{exp}
111	$\begin{array}{c} 0,212\\ 0,245\\ 0,347\\ 0,407\\ 0,425\\ 0,534\\ 0,548\\ 0,601\\ 0,637\end{array}$	35,2	35,6
200		33,3	33,0
220		28,3	28,3
311		26,0	25,9
222		25,4	25,8
331		22,3	22,9
420		21,9	22,6
422		20,6	21,4
333		19,8	19,7

Tabelle 1.

Zur Vervollständigung dieser Messungen wurde nun eine Absolutmessung von F an der Fläche 220 für CuK α -Strahlung

durchgeführt. Dies schien deswegen interessant, weil Messungen an einigen Metallen (Cr, Fe, Ni, Cu, W, Au)²) ergeben hatten, dass das Streuvermögen dieser Metalle für bestimmte Wellenlängen kleiner ist, als es nach Thomas-Fermi resp. Hartree sein sollte. Es sind nämlich nach der Dispersionstheorie Abweichungen zu erwarten, falls man die Messungen im Gebiete der anomalen Dispersion ausführt, d. h. wenn die Frequenz v der gestreuten Strahlung vergleichbar ist mit der Frequenz ν_K einer Absorptionskante des streuenden Atoms, oder falls ν viel kleiner ist als ν_{K} . In diesem letzteren Falle tragen alle die Elektronen nichts zur Streuintensität bei, deren Bindungsfrequenz viel grösser ist als die Frequenz der gestreuten Strahlung. Dies ist gerade bei Silber der Fall; die Wellenlänge der K-Absorptionskante von Silber ist $\lambda_{K} = 0,485$ Å, die der gestreuten CuKa-Strahlung $\lambda = 1,537$ Å. Man hat also zu erwarten, dass die F-Werte gegenüber den nach Thomas-Fermi berechneten um das Streuvermögen der beiden K-Elektronen kleiner sein werden. Dieses Streuvermögen ist infolge der kleinen Dimensionen der K-Schale für die K-Elektronen unabhängig vom Streuwinkel³), kann also gleich der "Anzahl der Dispersionselektronen" n_K der K-Schale gesetzt werden. Nach den Berechnungen von Hönl⁴) wäre n_K für Z = 47 gleich 1,2 anzunehmen. Für die Streufunktion F erhält man also nicht $F_{\text{Th}\,\text{F}}$, sondern $F_{\text{Th} \text{F}} = 1,2$ (Tabelle 3, Kolonne 3).

Die Messungen wurden an einem Gemisch aus Cu- und Ag-Pulver ausgeführt, in genau der gleichen Weise wie bei früheren Messungen des Verfassers an Cu⁵). Die einzelnen Ag-teilchen waren 1—2 μ gross, das Cu-Pulver war das in der erwähnten Arbeit verwendete. Auch diesmal wurde das Gewichtsverhältnis $G_{\rm Cu}: G_{\rm Ag}$ so gewählt, dass die Linien Cu 220 und Ag 311 ungefähr gleiche Intensität hatten. Es war $G_{\rm Cu}: G_{\rm Ag} = 1000: 356$. Die Verwendung eines Gemisches aus Al und Ag ist unmöglich, weil infolge ähnlicher Gitterkonstanten (4,041 resp. 4,078 Å) die Al- und Ag-Linien einander überdecken und nicht getrennt gemessen werden können. Aus 8 Aufnahmen wurden die relativen Integralintensitäten J der Linien Ag 220, Cu 220 und Ag 311 bestimmt. Die Integralintensität J ist nun gleich

$$J = k \cdot n^2 \cdot \frac{1 + \cos^2 2 \vartheta}{\sin \vartheta \cdot \sin 2 \vartheta} \cdot p \cdot A \ (2 \ \vartheta) \cdot F^2 \cdot e^{-2 M}$$

$$k = \text{Konstante} \qquad 2 \ \vartheta = \text{Streuwinkel}$$

$$n = \text{Anzahl der Atome pro cm}^3 \qquad A \ (2 \ \vartheta) = \text{Absorptionsfaktor}$$

$$n = \text{Häufigkeitsfaktor} \qquad e^{-2M} = \text{Temperaturfaktor}^*,$$

*) Näheres über diese Faktoren und über die Ausführung und Auswertung der Messungen siehe unter ⁵).

Man bestimmt zunächst, was für ein Wert von $\frac{J}{p} = J'$ das Silber für den gleichen Wert von $\frac{\sin \vartheta}{\lambda}$ haben würde, wie er der Linie Cu 220 zukommt. Wäre dieser Wert J'_{Ag} , und ist der an Cu gemessene Wert J'_{Cu} , so gilt¹)

$$F_{Ag} = F_{Cu} \cdot \sqrt{\frac{J'_{Ag}}{J'_{Cu}}} \left(\frac{d_{Ag}}{d_{Cu}}\right)^3 \cdot \sqrt{\frac{G_{Cu} \cdot \gamma_{Ag}}{G_{Ag} \cdot \gamma_{Cu}}} \cdot \frac{e^{M_{Ag}}}{e^{M_{Cu}}}$$

$$G_{Cu}: G_{Ag} = \text{Gewichtsverhältnis des Gemisches}$$

$$\gamma = \text{Dichte}$$

$$d = \text{Gitterkonstante}$$

Für F_{Cu} ist der vom Verfasser⁵) für CuK α -Strahlung ermittelte Wert 13,23 \pm 0,09 gesetzt worden. Tabelle 2 enthält die Messergebnisse.

Tabelle 2.

Fläche	p	2 &	$\frac{\sin\vartheta}{\lambda}$	J -	e ^M Ag	$12 \cdot J'_{ m Ag}$	F _{Cu}	e ^M Cu	F _{Ag}
Ag 220 Cu 220 Ag 311	12 12 24	64° 26' 74° 4' 77° 24'	0,347 0,393 0,407	$66,3 \pm 1,6 \\ 100 \\ 90,2 \pm 2,5$	1,085 1,110 1,119	$52,7\pm1,2$	13,23 \pm 0,09	1,120	$25,0\pm0,42$

Dabei wurden der Berechnung der Reflexionswinkel und der Temperaturfaktoren folgende Grössen zugrunde gelegt:

$d_{ m Cu}=~$ 3,609 Å	$T = 290^{\circ}$ abs.
$d_{ m Ag}=~4,078~{ m \AA}$	$\varTheta_{ ext{Cu}}=315^{m{0}} ext{ abs.}$
$\gamma_{ m Cu}=~8,92~{ m g~cm^{-3}}$	$\Theta_{ m Ag}=215^{ m o}~{ m abs}.$
$\gamma_{ m Ag}=10{,}50~{ m g}~{ m cm}^{-3}$	$m_{ m Cu} = 1,05 \cdot 10^{-22} ~{ m g}$
$G_{\rm Cu}:G_{\rm Ag}=1000:356$	$m_{ m Ag} = 1,78 \cdot 10^{-22} ~{ m g}$

Nach den Werten der Kolonne 4, Tabelle 1, ist

$$\frac{F (\operatorname{Ag} 220)}{F \left(\frac{\sin \vartheta}{\lambda} = 0,393\right)} = \frac{28,3}{26,5}$$

damit wird

$$F ext{ (Ag 220)} = rac{28,3}{26,5} \cdot (25,0 \pm 0,42) = 26,7 \pm 0,45$$
 .

Der theoretisch zu erwartende Wert 27,1 stimmt innerhalb der Messfehler mit dem experimentellen Wert 26,7 \pm 0,45 überein. (Der mittlere Fehler \pm 0,45 enthält sowohl den Fehler der aus der Intensitätsmessung folgt, als auch den Fehler in der Bestimmung von F (Cu 220).)

Alexander A. Rusterholz.

In Tabelle 3 sind nun die auf diese Weise bestimmten absoluten Werte von F angegeben, zusammen mit den Werten, die man erhält, falls man von den nach Thomas-Fermi berechnetem den Betrag von 1,2 subtrahiert.

$\frac{\sin\vartheta}{\lambda}$	$F_{\rm ThF}-1,2$	$F_{ m expabs}$
0,212	34,0	33,6
0,245	32,1	31,2
0,347	27,1	26,7
0,407	24,8	24,4
0,425	24,2	24,3
0,534	21,1	21,6
0,548	20,7	21,3
0,601	19,4	20,2
0,637	18,6	18,6

Tabelle	e 3.
---------	------

Wie man auch aus der Figur ersieht, ist eine gute Übereinstimmung auch den Absolutwerten nach vorhanden.

568

Zu der älteren Messung von BRENTANO⁶), die für das Verhältnis F (Ag 200) : F (Al 200) den Wert 3,95 ergab, während Brentano theoretisch auf den Wert 4,2 kam (Differenz 6%), sei bemerkt, dass die Diskrepanz teilweise auf Verwendung nicht genauer F-Werte zurückzuführen ist. Für F (Ag 200) nahm Brentano den Wert 38,65, für F (Al 200) den Wert 9,23 an. Mit den richtigen Werten 32,1 und 8,41⁷) folgt für das Verhältnis F (Ag 200) : F (Al 200) der Wert 3,82; danach stimmt der experimentelle Befund von Brentano mit dem theoretischen bedeutend besser, bis auf 3%, überein.

Auch diesmal ist es mir eine angenehme Pflicht, Herrn Prof. Dr. P. Scherrer für sein ständiges förderndes Interesse an dieser Arbeit meinen herzlichsten Dank auszusprechen.

Literatur.

- ¹) A. A. RUSTERHOLZ, ZS. f. Phys. 65, 226, 1930; Helv. Phys. Acta 4, 68, 1931.
- ²) a) A. H. ARMSTRONG, Phys. Rev. 34, 931, 1929.
 - b) R. W. G. WYCKOFF, Phys. Rev. 35, 215, 583, 1930; Phys. Rev. 36, 1116, 1930.
 - c) R. GLOCKER und K. SCHÄFER, ZS. f. Phys. 73, 289, 1931.
 - d) R. GLOCKER und K. SCHÄFER, Naturwissensch. 21, 559, 1933.
 - e) A. J. BRADLEY und R. A. H. HOPE, Proc. Roy. Soc. London (A) 136, 272, 1932.
 - f) A. A. RUSTERHOLZ, ZS. f. Phys. 82, 538, 1933.
- ³) Siehe 2d, 2e und 2f.
- ⁴) H. Hönl, ZS. f. Phys. 84, 1, 1933.
- ⁵) Siehe 2f.
- ⁶) J. BRENTANO, Phil. Mag. 6, 178, 1928.
- ⁷) R. W. JAMES, G. W. BRINDLEY und R. G. WOOD, Proc. Roy. Soc. London (A) 125, 401, 1929.

Zürich, Physikal. Institut der E. T. H.