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ON THE STABILITY OF POSITIVE MOLECULAR IONS
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Abstract

Considering the nonrelativistic Schrédinger operator for homonuclear diatomic molecular
ions within the clamped nuclei approximation, we study the stability problem for increasing
ratio Z/N of nuclear charge Z to number N of electrons. In particular, we derive improved
bounds on the critical parameters that imply instability (upper bounds on the nuclear charge,
or, equivalently, lower bounds on the number of electrons), viz. parameters that lead to disso-
ciation of the molecular system into atomic fragments. The principal qualitative advantange
of our estimates is the inclusion of electronic correlation, i.e., taking into account the effect of
electron-electron repulsion on the molecular bond. Comparing our rigorous results with em-
pirical or computed data, we formulate a conjecture that should quantify the actual stability

behaviour of realistic molecular species.
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1. Introduction

Within the Born-Oppenheimer approximation, homonuclear diatomic molecular ions

with N electrons are characterized by the Hamiltonian
H(R,Z,N)=h(R,Z,N)+ Z*/R (1)

where R > 0 is the internuclear distance, Z > 0 the nuclear charge, and h is called the
7electronic” Hamiltonian. To describe h, we fall back to the usual convention that the
nuclei are lying on the z-axis (with unit vector z), and we denote the Coulomb interaction

between the nuclei and the j-th electron by
—U(Xj,R) = —’U+(Xj, R) — U_(Xj, R) = —JXj + %Ri|_1 - |Xj — %Ril_l (2)

Then, with the "noninteracting” Hamiltonian A" (i.e., k™ does not take into account the

interaction between electrons)

N N
KR, Z, N) - Zh (R, Z) Z( - Z’u(xj,R)), (3)
the electronic Hamiltonian is speciﬁed by
h(R,Z,N):=h"(R,Z,N)+ > |xi—x;7" (4)
1<i<j<N

Depending on whether bosonic or fermionic symmetry is considered, H and h are defined
as self-adjoint operators on the symmetric or antisymmetric subspace of @(W?(R3)® C?)
(W? stands for the second Sobolev space, and we are suppressing explicit spin-identity
operators in the definitions (1-4), all operators acting trivially on the spin variables). If
necessary, bosonic and fermionic quantities will be singled out by the superscript B or F,
respectively. Otherwise, if no specification is given, the relevant statements will refer to
both types of symmetry.

In this study, we will consider only the ground state and ground state energy of H or
h. Employing the notation o(71") for the spectrum of the operator T', we define

E(R,Z,N):=info(H(R,Z,N)),

e(R,Z,N) :=info(h(R, Z,N)) = E(R, Z,N) — Z*/R.
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By convention, R — E(R,Z,N) is called the ground state "potential energy curve”
("PEC”), and R — ¢e(R, Z, N) the ground state "electronic curve” for the molecular system
characterized by the Hamiltonian (1). To describe the arising stability problems, let

E(Z,N):= inf E(R,Z,N)

O0<R<x
and suppose that the molecular species in its ground state enjoys an equilibrium configu-
ration determined by the corresponding equilibrium nuclear separation R, i.e.

3 0< R, <00 such that E(R.,Z,N)= inf E(R,Z N). (6)

0<R<o0

For molecules, we have to distinguish two different kinds of stability:
Definition. The ground state of the molecular system (1) is stable against
(i)  electron detachment (”autoionization”) :<= Eq. (6) does hold and E(R.,Z,N) is

not within the essential spectrum of H,
E(R.,Z,N) < infacss(H(Rc, Z, N)) (7)

(ii)  molecular dissociation (" Coulomb explosion”) : <= Eq. (6) does hold and the ground

state PEC has a genuine minimum,
E(R.,Z,N) < liminfgr_..o E(R,Z,N). (8)

These definitions suggest corresponding critical parameters for Z or N that will bracket
the associated stability intervals. In the case of the charge parameter Z, such critical

values are introduced by

I = 58 o b F C /
Zeu( Nz 0<]é'1£oo {Z | Eq.s (6) and (7) hold for Z and N} o
Zeq(N):= sup {Z|Eqs (6)and (8) hold for Z and N}

0<Z<o0o

and therefore Z € (Ze(N), Zca(N)) will imply a stable ground state of the N-electron

molecular ion.
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The electron detachment stability problem will not be considered further in this note,
so below we will always assume Z, N such that Z > Z..(N) (for bounds on Z cf. Ref. [1]).
QOur goal here is to study the function Z.4, i.e. to address the physical question ” how

many electrons are necessary to bind a molecule?”. Obviously, the ratio
Z = Z/N (10)

is decisive for the stability behaviour. If Z — 0, the system will lose stability due to
violation of (i), whereas for Z — oo the stability property (ii) will fail. In our analysis,
attention will also be paid to the limit Z.4(N)/N for N — oo. Moreover, from the
beginning it should be clear that stability properties depend on the involved statistics,
and that one may expect a higher stability for bosonic than for fermionic species, i.e.,
ZE(N) > ZE,(V).

Previous rigorous results on molecular type (ii) stability were first published by Ruskai
[2] (without assuming the Born-Oppenheimer approximation). Explicit bounds on Z.4(N)
have been given by Duclos and Hogreve [3] and by Solovej [4]; the bound Z.4(N) < 4N
was obtained in Ref. [3] as a particular consequence of monotonicity of PECs, whereas the
estimate Zeq(N) < (1 + 4/11/3)N in Ref. [4] was derived by a different method (cf also
below). Afterwards, Alarcén and Benguria [5], employing an improved lower bound on the
equilibrium distance R, sharpened slightly the result by Solovej to Z.q(N) < (1 +V3)N.
On the other hand, numerical studies of these stability questions and computed critical

charge values for specific molecular systems and various N between N = 1 and N = 18

can be found in Refs. [6-9].
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2. Stability estimates

If R — oo, the molecular system will break up into two atomic ions, and the ground

state PEC and electronic curve will obey
Ii}{ninfE(R, ZyN) = lilxzninfe(R, Z,N)=min E,(Z, N). (11)
— 00 —0C a

In Eq. (11), the minimum min, is taken over all decompositions a = (a1, az) of the set of
electrons {1,2,..., N} into two clusters a;, az, and E, = E,, + E,, stand for the corre-
sponding lowest energies, i.e., the infima of the respective spectra. By definition, stability
of type (ii) requires existence of an equilibrium distance R, and of an eigenfunction ¢,
such that H(Re, Z, N)¢. = E(Re, Z, N)p.. Moreover, due to condition (8), the molecular

energy E(Re, Z, N) must be below the separated atoms energy
(pes H(Rey, Z,N)¢pe) — min E,(Z, N) < 0. (12)
a

For a given cluster decomposition a, we denote the associated intercluster potential by

If(R.Z):=-2 v_(x, R)=Z ) vi(x;,R)

1€a; JjEa2

+ Z Ix; —x;|7' + Z*/R.

1€a JEay

(13)

Adopting the strategy of Ref. [4], by choosing (sufficiently smooth) functions x; -
R3 — Rg, i = 1,2, with ¥ + x3 = 1, a partition of unity on R?® associated with the

decomposition a is defined by
Ja(xl,...,xN) = H xl(xi) H XQ(XJ'). (14)

i€ay JEaz
Then, the expectation value of H can be estimated in the following way (for details see
Ref. [4])
(¢e H(Re, Z,N)pe) 2> {Ealde, Jobe) + (e, Jola(Rer Z, N)pe)
(¢4

1 (15)
- (¢e: §(V*Ja)2¢c>}
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where the last term in {...} embodies the so-called "localization error”. Combining in-
equalities (12) and (15), we arrive at a condition necessary for type (ii) stability:

S b [2TalRer Z,N) = (V)] ) <. (16)

(a3

This condition was first derived by Solovej, and also employed by Alarcén and Benguria
in the same context. To exploit condition (16) for our purposes, we first note that (16) is
certainly satisfied if the functions in [...] are negative. Hence, after a scaling x; — R.x;
(since the x; aren’t yet specified explicitly, we continue to write x; for the localization
functions in the scaled variables, too), suflicient for (16) is the pointwise inequality
N N
—ZY V(x)+ Y Wixix;)+ 27— (2R)™ D E(x) < 0. (17)
i=1 1<i<j<N i=1
In (17), we employed the notation
V(x) :=x3(x)v_(x,1) + x3(x)vy(x,1)
W (xi, %) =03 (%:)x3 (%) + xz2(xa)x3(x5)) /1%i — %5 (18)
E(x) :=Vx1(x)? + V2 (x)?
where the gradients Vy; reduce to the partial derivatives along the internuclear axis if the
v; vary only along that direction.
Alternatively, if for some Z and all R > 0 the left hand side (LHS) of inequality (17)
is pointwise nonnegative, this would entail failure of type (ii) stability for the N-electron
molecule. A reformulation of (16) in that sense and more compact that (16) is obtained by

applying the permutational (bosonic or fermionic) symmetry in the variables x1,...,xn.

Doing so, and with Z defined as in Eq. (10) and R := 2N R, the condition
—Z° 4+ V(x1)Z = (2N)"HN = )W (x1,%2) + R7'E(x1) <0 (19)

for all x;,x, € R® and all R > 0 implies violation of (16) and consequently instability
for such Z/N-ratios. Furthermore, since W(x1,x2) > 0, omission of W provides an upper

bound on the LHS of (19). Therefore, the simpler condition

—Z2 V) Z+REK) <0 (20)



392 Alarcén et al.

will determine (less sharp, of course) Z-values that lead to instability. A straightforward
application of conditions (19) or (20) is hampered by the fact that for R — 0 the last
term R~'& becomes the dominant one, so that with £(x) > 0 this won’t allow extraction
of meaningful information on Z from these conditions. However, for (19) or (20) clearly
it is not necessary to take into account those R-ranges that cannot contain the possible
Re values. Thus, if R%B < R, is a lower bound on the equilibrium separation R., and
RLB .= 2NRLB, the R-range for (19) or (20) can be restricted to RLB < R < oo. For

instance, a simple lower bound of the form
Re > RgB =2 (21)

for all Z > 0, N > 1 will be established in the appendix (cf. part (i) of lemma 4).

Before we can apply conditions (19) or (20), we have to choose the localization func-
tions x;. Here, we don’t employ the x; proposed by Solovej [4,5], rather we fall back on
functions that already have proven efficient for demonstrating the monotonicity of PECs

in Ref. [3], and define

1, if 2<-1/2;
x1(x) =4 V(14 2)/2(1-2z2), if-1/2<z<1/2;
0, if1/2 < z, (22)

X2(x) =x1(—x)
Evidently, these functions localize only with respect to variations along the internuclear
axis 2z and don’t affect the orthogonal directions. Inserting the definitions (22) into Eq. (18),

simple estimates yield

2(1 — 2z2) if 2] < 1/2
osve < {1 (28)
and
- 22 if |2
R e

Furthermore, the LHS of (20) can be bounded by

—Z2HV(X)ZH+RTIEX) < —Z24|[VZ4+R 7€ |loo € =224Vl Z + R Y|€||oo- (25)
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Computing ||V||s = 2 and ||€||s = 3, the last inequality of (25) leads to the condition
—Z2+2Z 43R <0, (26)

and, restricting 2 < R < oo in accordance with (21), the condition (26) is satisfied if
Z > 1(2+V10) ~ 2.5811. (27)

Alternatively, invoking the sharper first inequality in (24) together with the estimate

V2R = 5y it S 374 )
the resulting condition
—Z?2 4+ max{Z +3/R,2Z+9/(4R)} <0 (29)
for 2 < R < oo entails type (ii) instability if
Z>1(4+ V34) = 2.4577. (30)
To derive Eq. (28), just consider the function
- [SEETEE o

The function m provides an upper bound on VZ + R™1E. If RZ < 3/4, then ||m]|o =
lim| 7172 m(2), whereas, if RZ > 3/4, the maximum of m is attained at z =
We summarize the preceding results into
Theorem 1: The relation (30) implies the upper bounds on the ”stability function”
Zey(N)
Zea(N) € 1(4+ V34)N. (32)

Due to the nonnegativity of £ (cf. Eq. (24)), the term R 1€ representing the localiza-
tion error is always monotonically increasing for decreasing R, thus affecting the quality

of the bounds (27) and (30) most strongly for R = RLB. Consequently, boosting the lower
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bound RLE will also improve the stability estimates above. As discussed in the appendix,

sharper lower bounds RLB (in comparison to Eq. (21)) are implicitly determined by

4/R +eg(RZ/4) >0 (33)
and
REB = sup {R | R obeys inequality (33)} (34)
R>0

where eg(A) < e(A,1,1) is the ground state N = 1 electronic curve or a lower bound on
it. The Z-range for instability then follows from the system of two coupled inequalities,
viz. either (26) or (29) in combination with (33). More precisely, setting A := ZR /4 and
7 := 4R, those Z-parameters with

sup {AT} < Z (35)
(A, T)€D0

entrain type (ii) instability. The domain Dy in (35) is given by
Do={(\,T)eERT xR |7< —¢p(A) and 7<a_ 1271 +a_oA7?} (36)

where a_1,a_o are calculated from the coefficients of Z and R~! in (26) or (29). Since
(A, 7) = A7 is a harmonic function, the supremum in (35) is attained at the boundary of
Dy. In fact, if (Ao, 79) denotes the crossing point of the two curves defining the boundary
of Dy, it can be shown that sup, .cp,{A7} = Ao7o. In this way, using (29) and for eg the
lower bound function (A6) from the appendix, numerical computations yield Z > 2.3552.
If for ey the exact (numerical) electronic curve from Ref. [6] is employed, we end up with

Z > 2.2673 as instability implying condition.
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3. Stability estimates including electronic correlation

In the previous section, all stability results were deduced by using the trivial upper
bound —W(x1,x2) < 0 on the electron-electron repulsion term. Here now we will obtain
sharper estimates on W in order to improve the stability bounds for Z. Since W (x;,x2) —
0 for |x; — x2| — oo, it is clear that this goal can only be achieved if we succeed in
constructing a partition of R® x R? that allows to compensate opposite effects in the
estimate of the x-dependent terms in condition (19).

We start by observing that the rotational symmetry around the internuclear axis z

suggests a change to cylindrical coordinates (p, ¢, z). Then, obviously, for all x;,x, € R?

%1 — Xa| < /(21 — 22)2 + (p1 + p2)? (37)

and thus

W (x1,X2) > Wo(21, 22, p1, p2) := X2 (21, 22)/V/ (21 — 22)% + (p1 + p2)? (38)

where x; stands for the numerator in (18) with the choice (22) and expressed in 21, 22
variables

2120 + 6(2320 + 2123) — 82323, (39)

b | =
(] [{e]

X?(zl: 22) -
Employing permutational symmetry to rewrite (19) and applying the estimate (38), the
function

Fi(21, 20, p1,p2) = — 22 + Vi(21, 29, p1, p2) Z — eNnWa(z1, 22, p1, p2) + R7'E1 (21, 22) (40)

with
Vi(z1, 22, p1, p2) :=(V(x1) + V(x2)) /2

81(21,52) ::(5(21)-{‘8(22))/2 (41)

(N =1)/(2N)

&y

provides an upper bound on the LHS of (19). Therefore, we have the following condition
for type (ii) instability
Fl(zlxz'z:Pl:P?)SO (42)
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(we don’t indicate the dependence on the parameters Z, N and R in F). To analyze (42),
weset [ :=[-1/2,1/2), I? =1 x1I,I?:=R>\I? P, :=R{ xR{ :=[0,0) x [0, ), and

we decompose the domain of F as
RZx P, =I"xP, U I”xP,. (43)

First, we estimate I} on the "outer” region I? x P, (i.e. at least one electron being not
between the nuclear centres). Since on I2 x P, we have |21 > 1/2 or |22| > 1/2, an analysis
analogous to the one employed in the derivation of Eq. (28) produces the following upper
bound on F}

Fi(21,22,p1,p2) < =22 +32/2+9/(8R), (44)

where we assumed (as we will do for the rest of this section) that RZ > 3/4.

To treat F on the inner nuclear region I? x P, , we introduce a subdecomposition
I?xP,=D.xP, UDExP, (45)

where .
D, :={(21,22) € R? | 2§ + 25 < r?}
(46)
D¢ :=I?\ D;

and 0 < r < 1/2 is an adjustable (technical) parameter. Since V(x) = 2 — 42? for
x = (0,0, 2) and |z| < 1/2, on the complement D¢ x P, to the inner disk the potential

and localization error terms are bounded by
Vi(z1, 22, p1, p2) <Vi(21,22,0,0) = (2 — 423 + 2 — 423)/2

Va(21, 22,01, p2) 2 + R71E1(21, 22) <Vi(21,22,0,0) 2 + R™1E (21, 22) = f(21,22; ZR)/R
(47)

where we have set

o

flz1,220) :=2(1 = 2 = 23)a+ 9((1 - 1) 7' + (1 - z5)7') /8. (48)

The function f can easily be shown to have no critical points within D¢ if r > 0 and a > 1;

hence, its suprema on D¢ have to occur on the boundary, viz on the circle z? + 22 = r?
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or on the line segments {(z1,u) | |z1] £ 1/2} or {(u,z2) | |22] £ 1/2} for u = *1/2.
On the circle, the maximum of f is given by 2a(1 —r?) + 9(2 — r?)/(8(1 — r?)), and, for
0 <r <1/2, a>1, they are always greater than the maxima 3a/2 + 21/8 on the line

segments. Therefore, assuming RZ > 1, we have obtained as upper bound on F}

2

9 2—7r
Fi(z1,22,p1,02) < =224+2(1 - r))Z + — .
1(21, 22, p1, p2) < +2(1 -7%) +8RX 1 _ 2

. . . 9 2
It remains to examine Fy on Dy, x Pi. Here, since ((z1 — 22)2 + (p1 + /)2)")1/ < ((z21 —

29)% + 2p% + 2p§)1/2, we start with the bound

Fi(z1,22,p1,p2) < F2(21, 22, p1, p2) (50)
where
Fy(z1,22,p1,p2) = -z? +
1 1 en,zXE (21, 22) -1
+ — - Z ‘+" R 6 (Z 122)
{\/1+(2p1)2 VI+ (2p2)? \/2(21—23)2+(2p1)2+(2p2)2} e
(51)
and
L N-i
N,Z T \/{ZNZ‘

The bound (50) is a consequence of the following inequality
X3 (xi) L X3(x:) <2
V=172 +p7 (@ +1/22+p7 ~ /1+40]
for x; = (0,0, 2;) and i = 1,2, which in turn follows from the concavity of the mapping u —
u/+v/u+4p?, u>0,and the fact that 1 = (1/2)(1+2;)(22;—1)%+(1/2)(1—2)(2z;+1)?; let

us point out that this simple derivation of (50) depends crucially on particular properties

unique to the choice (22) of the localization functions yx;.

For an efficient treatment of F5, we construct a (further) finer subdecomposition

D,xP,=| TP x P, (52)
j=1
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by introducing a partition of [0, 27]
[0,27) = | J[6;-1,6;] (53)
j=1
0o =0, 60, =2m, n>1, and setting
TY) = {(21,22) € D, | 0;_; < arctan(z2/21) < 6} (54)

Actually, due to the invariance of F, under the mappings (21, 22) — (22, z1) and (21, 22) —
(—=z1, —22), it is sufficient to consider only a subpartition (covering a cone along the +2o-

axis) with

T=0y<0j-1<0;<0,=3 (55)
Jj=1,...,n. Then
Fy(21, 22, p1,p2) < max { sup Fz(j)(ﬂl’ﬁ’?)} (56)
155<n " (p),p2)€P,

where .
FP(p1,p2) := —Z% + V2((201)%, (202)%; 05, b;) Z + R ¢;

1 , ’ (57)
Va(sy, s25a,b) := + -
2(s1, 8230, b) VIi+s, VI+s2 V2451 +s2

and where for ail 21,25 € F,(:)

a; S(CN,ZXE(er»?z))l/S
b; >(2(z1 — 22)2)"* (58)
g 2&1(21, 22)

are lower or upper bounds in the jth sector. Such bounds are best derived by using polar

coordinates on D, and monotonicity properties of the corresponding expressions. In this

way, we get

1/3
a; :(%CN,Z(Q + (-9r? + 12r* — 3r%) sin(260,_,) + r® 5111(693'—1))) (59)

b; =V2r| sin(0;) — cos(8;)|.
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Now, a reasonable compromise between sharpness and simplicity is achieved by the choice

n =3, ; = arcsin(v/35/6), , = m — 6, leading to

3
as =(en.z (3 + BB (3r2 — 4 + 53%79)) ) (60)
__V35-1
h=57T
_ V3541
by =505
b3 =2

Similarly, applying monotonicity and the estimate z7z2 > r4sin®(#;) cos?(8;) on 'Y and

I‘,(ra) , we obtain

g 2 —r2
F1 78 = g X T 72 1 35r4/1296 (61)
9 2-—r? )
o) =§ X 1—r2

The proof of the following lemma is a simple exercise in calculus:

Lemma 2. For given 0 < a,b < 1, the function V,(sy, s2;a,b) on P, has as maximum

V2(0,0;a,b) =2 — a/b ifa<b
ax V % b — 2 ~ 2
ok, Vel e ) = et g by =14 /EE e, (62)
Moreover, the second maximum always bounds the first one
0 (1 —a2)3
e B 63
! b — 1— b2 (63)

Since we are assuming Z > 1 (guaranteeing a < 1), we are allowed to invoke lemma 2

to estimate the supremum in inequality (56), thus arriving at

(i -a)
wnmm -2 s (oS )e e ne)
Fy(z1,22,p1,p2) £ -2 +11_T<_1j1§~3 1+ -0 Z+ R ¢ (64)

Up to now, we let 0 < r < 1/2 as an open parameter. The final choice of r should

render an optimal balance between contributions from D, and from DZ. As it turns out,
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(approximately) optimal values for r depend on N. Being specific for the extreme cases
N =2 and N — oo, for N = 2 the choice r = 4/15 leads to

5 8083033
155 % 20532

ag_(l_ 13366154 \/f)c
27\2 7 332150625 V 5/ %

a zZ

(65)
a3_(1+ 13366154 \ﬁ)c
37\2 7 332150625 V 5/ %2
. .. _ 711868 1953
T T 3047668 2T 836
whereas in the situation N — oo the slightly larger » = 1/3 yields
8833
1 79916 %
5 (1 629235
% —(5 ~ 7531441 )C°°'3 (66)
2 _(l " 6292\/3_5)C
BTN T ERLAL T
.. a2 153
PT T 54010 T 64

with ooz = (V2Z)~!. Eventually, after all these preparations, we are ready to formulate
our main result.

Theorem 3. If Z > 167/74 =~ 2.2568, then for all N > 2 the molecular system described
by the Hamiltonian (1) fails to be stable against dissociation (type (ii) instability), and

the stability function Z.q is bounded by
Z.a(N) < 167N/ 74. (67)
In the limit N — oo, the same holds true for Z > 123/56 =~ 2.1964, and

limsup(Z.4(N)/N) < 123/56. (68)

N—oo
For the proof of theorem 3, we restrict the R-range to be considered in conditions

(44),(49), and (64) to [13/5,00). This restriction is allowed by the monotonic decay of the
ground state PEC for R < RLP = 13/5 and all N > 1, Z > 57/26 (cf lemma 4 in the
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appendix). For R = RLE (and thus for all R > RLB), it is easy to verify that the right
hand sides (RHS) of (44), (49), and (64) are negative for Z = 167/74, and, if N — oo,
also for Z = 123/56. The theorem then follows from the monotonic decay of (44), (49),
(64) for increasing Z. For the RHS of (44) or (49), the monotonicity in Z is obvious for

Z>3/20r Z>12>1-r12 respectively. In the case of condition (64), we set
(1-a;(2)?%)3
gi(2) =1+ . (69)

and the nonpositivity of the Z-derivative of the RHS of (64) is equivalent to

dgj -1

An immediate upper bound on g;(Z) is given by

1
1/1—b§.

whereas, for Z > 1, its derivative is estimated by

dgj o\ _ ai(2)* [1-4a;(2)? _ a;(1)?
d_Z(Z)_ Z 1-b2 - /Jl_b?' (72)

Since for our chosen parameters r and all j = 1,2,3 we have a,(1)%/,/1 — b? < 2, the

g;i(Z2) <1+

inequalities (71) and (72) determine a Z-independent upper bound on the LHS of (70).

Therefore, the condition (70) certainly holds if

1/1—b§+1 a8)
o 73
21/1 ——b;‘f——aj(l)z

and straightforward calculations confirm that (73) is satisfied for all j = 1,2,3 if 2 >

19/10, thus demonstrating the monotonicity of the RHS of (64) for such Z and completing

the proof of theorem 3.
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4. Concluding remarks

Focusing onto the dissociation stability problem for positive diatomic ions, in this
study we derived bounds on the ratio of nuclear charge to the number of electrons decisive
for molecular binding. This goal was accomplished by refining arguments of previous
approaches and by devising and implementing certain correlation estimates that serve
as a new tool within such a context. Along the various steps, the main quantitative
improvement of about 15 % as compared to the original bound in Ref. [4] follows from
applying better adapted localization functions. Employing sharper lower bounds on the
equilibrium separation R., the result is further improved by approximately 4 %. Our
principal qualitative innovation, the pointwise estimates of electronic correlation, leads to
additional improvements between 3 % (N = 2) and 5 % (N — o0). Eventually, with all
these ingredients, in total the obtained Z/N bounds are about 22 - 24 % below the result
of Solovej [4]. Numerical experiments with condition (42) show that — if the analytical
estimates from (42) towards (68) were optimal — an improvement up to approximately
35 % would be possible. Nonetheless, for the general situation, the condition (42) is
not strong enough to yield bounds on Z.4(/N) that reach or drop below 2N. The rather
small influence of the electronic correlation on our Z.4(/N) bounds certainly falls short
of its actual significance for the stability behaviour; on the other hand, however, the {full
contribution of the electron-electron interaction probably cannot be recovered without a
detailed knowledge of the relevant wave functions.

A comparison with accurate computations on specific systems shows that the achieved
rigorous bounds are not yet really sharp. For N = 1, the (numerically exact) critical
charge Z.4(1) = 1.2367 from Ref. [6] implies the analogous result for the noninteracting
Hamiltonian H*(R,Z,N) = h™(R,Z,N) + Z?/R, viz ZM(N) = 1.2367N. On physical
grounds, since the electron-electron repulsion tends to weaken molecular bonding, one
expects that the noninteracting case Z%(N) overestimates the true stability, Z2%(N) >
Zed(N). This is confirmed by the computed value Z.4(2) = 0.86 x 2 for N = 2 (cf

Ref. [8]). For N > 2, distinction between bosonic and fermionic statistics will become
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significant. Experimentally, the existence of numerous metastable molecular ions X§+ has
been established (see, e.g., the references in [6,8,9]). Stable doubly charged homonuclear
species X§+, however, have never been observed in experiment, or predicted by theoretical

calculations, either. Thus, for realistic (i.e. fermionic) systems, one may conjecture
Z&(N) < N/2 + 1. (77)

The bound (77) would be consistent with the asymptotic neutrality ZE,(N) — N/2 for
N — oo, which was proved in Ref. [4]. For bosonic statistics, although no empirical data
are available, neither the analogue of the conjecture (77) nor the corresponding asymptotic
neutrality will remain true. Since neutral diatomic molecules are always bound by the
attractive van-der-Waals force (as rigorously demonstrated by Lieb and Thirring [10]), it
is clear that upper bounds on Z.4(/N) cannot be less that N/2.

There exist several perspectives how future investigations could produce sharper sta-
bility bounds. Apart from constructing superior localization functions and boosting further
the lower bound on R., probably the most efficient and promising (but, on the other hand,
difficult) route employs information on the involved ground state wave function ¢. For such
an approach, pointwise bounds on ¢ or bounds on some weighted averages of ¢ have to be
established; then, they can be combined with the estimates used in this study to arrive at

stronger stability conditions and thus at improved upper bounds on the Z/N-ratio.
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Appendix: Lower bound on molecular equilibrium separation

For small internuclear separations, R | 0, in the Hamiltonian (1) the nuclear repulsion
term Z?/R will dominate the electronic part, so that — for sufficiently small R — PECs will

decrease monotonically for increasing R. Obviously, as long as

E
gﬁ(R’ Z,N) <0, (A1)

this will exclude existence of an equilibrium configuration and separation R, (cf Eq.s (6)
and (8)) for such R. Starting from (A1), it is not difficult to derive lower bounds RLP on the
equilibrium separation R, [3,5,11]. Namely, with ¢(R, Z, N) denoting the ground state of
H(R,Z,N), and, by using the molecular virial theorem [12] to evaluate dE/JR, a scaling
argument to rewrite the resulting expression into an expectation value of h(R/2, Z, N),
and the variational principle to estimate it, the condition (A1) is certainly satisfied if we

require negativity of the the upper bound

OB R Z.N)= - (4(R, 2, N), h(R/2, Z, N)&(R, Z, N)) — 2
BR -] L] = 2R ) 3 ) 1 -y b) ] b R2 (42)
1 Z? ’
_<_ “EC(R/Q,Z,N) - ﬁ < 0

Since in (A2) the exact electronic energies are not known explicitely, rather than dealing
with (A2) we have to content ourselves with a condition in which e(R/2, Z, N) is replaced
by lower bounds on it. From the definition (4) it is clear that e™ < e, where " stands for
the ground state electronic curve of the noninteracting Hamiltonian (3). Next, employing
permutational symmetry (in xi,...,xxn) and scaling (in Z) properties, we obtain the chain

of estimates

e(R/2,Z,N) > e"(R/2,Z,N) > Ne(R/2,Z,1) = NZ?e(£Z,1,1) > NZ%eB(£Z). (A3)

LB is any lower bound function u — e“B(u) on the electronic curve u — e(u,1,1)

Here, e
of the Hf molecular ion. The lower bounds RL® used in the previous sections are conse-

quences of the following lemma.
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Lemma 4. The ground state PEC R — E(R, Z,N) for the Hamiltonian defined in (1) is
monotonically decreasing in R ‘

(i) for al R< N~! and Z > 0,

(ii) for all R < 13/(10N) and Z > (5TN)/26.

The first part of lemma 4 follows immediately by combining (A1-A3) to infer

OF N4zZ4
= < — R, Z A4
where
9(R,Z) := % + e'B(EE), (A5)
and by employing the trivial "united atom” lower bound e"B(RZ/4) = —2.

To prove part (ii), we have to resort to the more sophisticated lower bound function

LB(U) — _5 _ (% s _g_u i ug) exp(—2u). (A6)

€ 1

This lower bound results from the operator inequality A™(u,1,1) > e}fy x (1—Po(u/2)) +
2D Po(u/2) + e x (1 - Py(—u/2)) + ey Po(—u/2) and by solving the generalized 2 x 2-
»igenvalue problem associated with its RHS (here, Y denotes the nth energy level of the
rydrogen atom and Pp(u) the projection onto its ground state centered at u; for details,

see, e.g., Ref. [13]). Setting Rg = 13/5, Zy = 57/26, it is easy to verify that
9(Ro, Z0) > 0. (AT)
for Z > Zy, the inequality
9(R,2) 29(Ro,2) if 0<R<Rp (A8)
ollows from the monotonic decay
4  RZ? RZ RZ

0
a_vgz(n’z):_?—a'f+ —(1+ =) exp(—- =) <0 (A9)
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which in turn follows from the fact that 82 > 8Zy > t3 (1 + t,,)exp(—t,n) > t3(1 +

m

t) exp(—t) where t := RZ/2, and where the maximum of the function ¢ — *(1+t) exp(—t)

on t > 0 is attained at t,, = (3 + v/21)/2. On the other hand, the monotonic increase

dGLB
7 (u) = u(l + 2u) exp(—2u) (A10)
of eI implies that
9(R,2) 2 9(R,20) if 222, (A11)

Hence, the negativity of (A4) for 0 < R < Ry and Z > Zj is a consequence of (A7), (AS),
and (Al1).
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