
Zeitschrift: Helvetica Physica Acta

Band: 72 (1999)

Heft: 5-6

Artikel: Feynman path integral and Toeplitz quantization

Autor: Charles, Laurent

DOI: https://doi.org/10.5169/seals-117184

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-117184
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


leiv. Phys. Acta 72 (1999) 341-355
XM8-0238/99/050341-15 S 1.50+0.20/0
D Birkhäuser Verlag, Basel, 1999 | Helvetica Physica Acta

Feynman Path Integral and Toeplitz Quantization
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ABSTRACT. - We present a Feynman path integral in the setting of geometric quantization
)f symplectic manifolds with Kahler polarization, where the Hamiltonian operator is given by
Toeplitz quantization. We compute the quantum propagator as a limit of path integrals, involving
3rownian motion in the phase space and geometricaly meaningful stochastic processes.

RESUME. - Nous présentons un formalisme pour l'intégrale de Feynman, dans le cadre de

a quantification géométrique des variétés symplectiques munies d'une polarisation kählerienne, où
'hamiltonien est donné par une quantification de Toeplitz. Nous calculons le propagateur quantique
omme une limite d'intégrales stochastiques, en introduisant un mouvement brownien sur l'espace
les phases et d'autres processus liés à la structure géométrique.

1 Introduction

jet us describe formally what is Feynman's path integral. We consider a particle of mass m moving
n a potential V : K3 —> R. The quantum state space is L2(R3). The time evolution of a state ^o
s given by the Schrödinger equation

AfLyt H%
i dt

vhere H -^(gj? + -§js f gjvr) + V is the Hamiltonian operator.

Feynman's idea is to express <bt as a sum over paths

*t(x)=/ eiti^'M^VoiciOfidc (1)
./fi».,
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L(x,x) -m|£| — V(x)

where £lx.t is the set of paths c : [0, f] —> R3 such that c(f) x, dc is a measure on iix.t, and L
denotes the Lagrangian of the system defined by

1

2'

With formula (1), Feynman developed many concepts of quantum mechanics (see [1]). Path integral
methods were used by mathematicians to derive solutions of heat equations. They have also played
a major role in quantum field theory. In non-relativistic quantum mechanics, the framework of
this article, physicists have exploited Feynman's integral formula to study semi-classical properties.
Mathematical works on the subject are reviewed in ([2]).

In this article, we propose a Feynman path integral formula in the setting of Toeplitz
quantization of compact Kahler manifolds, with an explicit dependence on h. The results we obtain
generalise works of I.Daubechies, J.R.Klauder and T.Paul ([3],[4],[5]), treating of Hamiltonians
defined on the euclidean space, the Lobachevsky half-plane, and the sphere. We compute the quantum
propagator by well-defined path-integrals involving Wiener measure on phase-space in the limit of
diverging diffusion constant. Not only does this formulation give a rigorous computation of the
solution of the Shrödinger equation, but it also allows a natural geometrical formulation of the
problem in terms of the symplectic form, prequantum bundle, and Kahler metric.

In the first section, using the equivalence between the Lagrangian and the Hamiltonian
formalisms on the tangent and cotangent bundle of a configuration space, we explain how the phase
of the integral of the lagrangian along a path 7 is defined on a symplectic manifold (M,u)
endowed with a prequantization (P,a). Recall that P —? M is a principal (TH/2irhZ) bundle, and

a a connection one-form, with curvature u. Let H 6 C°°(M, R) be a Hamiltonian function. In
this setting, exp(|/0 L(c(s),c'(s))ds) is replaced by the product of two terms, the first being the
parallel transport along 7, the second the phase of the integral of the hamiltonian along 7. In the
second section, we introduce the prequantum hilbert space L2(M,L), where L is the Hermitian
line bundle associated with P. Using the covariant derivative induced by a. wo define the prcquan-
tum dynamics, and we give a description of its propagator in proposition 3.1. where the geometric
objects introduced above appear.

The third section is devoted to the quantum setting. M is endowed with a Kahler metric
g, with fundamental two-form u. L has a natural holomorphic structure compatible with the
covariant derivative. The quantum space H is the set of holomorphic sections of L. Let n :

L2(M.L) —> L2(M.L) be the orthogonal projector onto H. The Hamiltonian operator is YlLuli,
where I// denotes multiplication by H. The fundamental estimate is proved in the fourth section.
We show that the propagator e\p( — i jflLufi) of the schrödinger equation is approximated by the
heat semi-group of the generalised Laplacian uAiloi + jfn, as u tends to 00, where A/10; is the
Hodge Laplacian of L. Using a Weitzenböck formula and a generalised Feynman-Kac formula we

express in the last section these heat kernels as path integrals, leading to a Feynman path integral.

Let xf be the Brownian motion on the Riemannian manifold (M,ug), starting at ,ru e A/.
The phase of the integral action of the sample path is a semi-martingale V", defined as the parallel
transport V" : LT* —? Lx» along x^,0 < .s < /. The main result we obtain is stated as follows

Theorem 1.1. For every * 6 C°°(M. L), let >PJ' G C°°(AI,L) be defined by the path integral

#J-(,-0) =e'?s E [eS-''°"<I'><faT>;/.tf(xn]

then
W —> e_i5nL"n* in Ti as v
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2 The phase of the action integral

In this section, we explain how the integrand of the Feynman path integral is defined on a symplectic
manifold. Let us review the Lagrangian formulation of classical mechanics on a tangent bundle TQ
of a configuration manifold Q (see [6], 3.5,3.6,3.8). Let L : TQ —? R be a smooth function called
the Lagrangian. The fiber derivative FL of L is a fiber preserving map from TQ to T'Q, sometimes
called the Legendre transformation. Let us denote by ß the canonical one-form of T'Q defined by
< ß,v >=< 7T.QV, (~Q),v >, Vv e T(TQ) where nQ : T'Q —> Q and nT-Q '¦ T(T'Q) —> T'Q
denote the canonical projections. The Lagrange one-form fii and the Lagrange two-form ljl are
defined by

ßi =FL'ß lül =FL'dß
We assume that FL is a local diffeomorphism, hence (TQ,U[f) is a symplectic manifold.

We define the action A : TQ —> R by A(v) =< FL(v),v > and the energy by E - A - L.
The Lagrangian vector field of L is the unique vector field XE on TQ such that ixe^l + dE 0.

XE is a second order equation (i.e. (tcq), oA'ê Id) and its integral curves 7(f) satisfy Lagrange's
equation. Using coordinates (q',q') on TQ we recover the classical Euler-Lagrange equations

d (dL A dL,
it Wy{t)) =wh{t})

Let Q.(qi,q2,T) be the set of C°° curves {c : [0,T] —> Q/c(0) gi,c(T) q2). The
Lagrangian integral is a functional defined on ii(qi,q2,T) by

C(c) [ L(c(t),c(t))dt
Jo

The variational principle of Hamilton says that the solutions 7(f) (c(t).c(f)) of Lagrange equation
with c € Q(cj\,q2,T) are the extremals of the functional £. To prepare the Hamiltonian point of
view, we introduce the action integral A(c) j0 A((c(t),c(t))dt and prove the following

Lemma 2.1. Let 7 : [0,T] —? TQ be the curve, defined by 7(f) (c(f),c(f)), we have

A(c)=fßL

Proof. It suffices to prove that A(7(f)) =< ßi,j,dt >. We have

< ßL, 7.9, >= < 0. FL.-).dt > since 0L FL'0,
< FL(~j(t)),(TTQ),FL,~i,di > by definition of 0

< FL(y(t)),ft) >

since FL is fiber preserving which implies (ttq), 0 FL, (ttq),, and (7tq)»7,3( c,dt y(t),

=A(j(t))
O
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In the Hamiltonian formalism, the data are a symplectic manifold (M,to) and a hamiltonian
function H € C°°(Af. R). instead of the Lagrangian on the tangent space of a configuration space.
The classical dynamic is the How of the Hamiltonian vector field Xn, defined by ix„<^>f dH 0.

Let (p„q') be canonical coordinates on A/, an integral curve t. —> {Pi(t), q'(t)) of Xn satisfies
Hamilton's equation

i dH dH
q=ff, P' ~W

Recall that A/ is the cotangent space T'Q with ui d0, and assume that the Legendre transform
FL is a diffeomorphism. The relationship between Hamiltonian and Lagrangian formulations is

given by H E o FL~X. The integral curves of XE are mapped by FL onto integral curves of
Xi/. If 7 : [0,T] —> T'Q is a path on T'Q, a natural definition of its Lagrangian integral is

£(7) £ L(FL-1(ft)))dt. It follows from lemma (2.1) that

/7 Jofl)=J 0- J H(l(t))dt

The first term of the sum, which we denote Af) and call action integral, is not defined on a general
symplectic manifold (A/, 10), because to is not necessarily exact. If 7 is a contractiblc loop on A/,
we can set .4(7) /s^, where S is a surface of deformation of 7. This depend on S unless the
integral of to over any two-sphere in M is zero. Since the action integral appears in the Feynman
path integral as the argument of the function x —? exp(^x), we just need to define the phase
of the action integral Vf) exp(l;A(7)). Observe that 7 —? exp(^ fsf is well-defined, if we

assume that the integrals of to over the two-sphere in Af are multiples of 2nh.

Let us try to define the phase of the action integral of any loop of a symplectic manifold
(M,ui). Let x G M. We introduce C\(M,x) (resp. C2(M,x)) the free abelian group generated by
the set of differentiable singular one-simplices (resp. two-simplices) which have all their vertices
mapped into the basepoint x. Observe that the generators of C\ (A/, x) are the loops based at x. Let
3 : C2(M,x) —> C\(M,x) be the boundary operator, Z2(M,x) Ker9 the group of two-cycles,
Bi(M,x) Imo the group of one-boundaries. Assume that A/ is connected. The first homology
group Hi(M) with integer coefficient is C\{M, x)/Bl(M,x). Let Tn be the quotient group M./2nhZ
and I : C2(M,x) —> Tr, the morphism of group defined by I(S) fsto mod 2rthZ. We formulate
the problem of the definition of the phase of the integral action of the loops based at x in the
following manne! r: find a group homomorphism V : C\(AI,x) —»• Tn, such that

c2^—c,

Th (2)

commutes. This problem has a solution if and only if Z2(M, x) C Kerf, that is the periods of
to are multiples of 2<rfi. If this is the case, then the set of solutions is a principal homogeneous
space for the morphisms group \lor(Hi(M),Tn) — Hl(M,Tn). We can also solve this problem in
a geometric manner with Souriau-Kostant prequantization.

Definition 2.1. Let (M, to) be a symplectic manifold. A prequantization of (M, to) is a principal
TV, bundle it : P —> Af, together with a connection form a 6 Q'(P, R) such that -'to —da

Remark 2.1. The connection is R valued, because we identify the Lie algebra of T/, with R by
means of the canonical projection p : R —> T/,
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A symplectic manifold (Af, u;) admits a prequantization if and only if tofirh defines an

integral cohomology class, and if this condition is verified, the set of prequantizations is a principal
homogeneous space for ff ' (Af, Tn) (see [7]). In this context the phase of the action, integral is

defined as follows

Definition 2.2. Let (Af, A) be a symplectic manifold with prequantization (P, or). The phase of
the action integral of a loop 7 is the holonomy Vf) € Tn of 7. If 7 is a path of M joining x\ to

x2, the phase of its action integral is the parallel transport along 7: it is a TVisomorphism from
PXi onto PI2.

Remark 2.2. The introduction of parallel transport, surprising at the first view, is appropriate for
the following sections, see remark 3.1.

Remark 2.3. If Af is a cotangent bundle T'Q, the trivial bundle T'Q x T/j with the connection
form a is —ir'0 + d9 is a prequantization. The parallel transport along a curve 7 is multiplication
hyp(fß)-
Remark 2.4- Considering the different prequantizations of (Af, to), we obtain all the group
homomorphisms such that diagram 2 commutes.

To complete the parallel between Lagrangian and Hamiltonian formalism, we mention that
Weinstein stated variational principles which relate the extremals of the multivalued functional
7 —> LogP(7) — f H f(t))dt to the integral curves of the Hamiltonian vector field A'// (see [8]).

3 Prequantization

Let (Af, a;) be a symplectic compact manifold with prequantization [P,a). Let p denote the
representation of Tft on C whose character is [9] —> exp(^ö), and let L P xpC be the associated
Hermitian line bundle. The connection a induces a covariant derivation V : C°°(M,L) —> Q}(M,L)
which is compatible with the Hermitian structure h € C°°(M, L' ® L*) The scalar product of two
sections tf and tf' in C°°{M,L) is defined by

< tf,tf'> / fi(tf,tf') |ujA"|
Jm

The Hilbert space Kp L2(M, L) of prequantisation is the completion of (C°°(M, L),<,>). Each
classical observable H in C°°(Af, R) acts on Hp as an unbounded operator Opreq(H), with domain
Cœ(M.L) according to

OprfH)<H (Ln - ihVxfV, Vtf e CX(M,L)

where L// is multiplication by H, and A'// is the Hamiltonian vector field of H. The linear mapping
which sends H into the formally selfadjoint differential operator Oprcq(H) satifies the commutation
rules of P.A.M. Dirac. That is,

<W1) =Id (3)

Oprf{F,G}) =l-[OpTfF),Opreq{G)} (4)

where {F, G} u>(Xf,Xc) denotes the Poisson bracket of F and G. These properties are
generally presented as a motivation for introducing the prequantum bundles. The next step of the
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quantization procedure is the definition of the Hilbert quantum space as a subspace of Rp using
polarization. Nevertheless, until the end of this section, we continue without adding any structure,
because it allows us to introduce some important ideas for following sections.

The dynamics in a prequantum system is given by the Schrödinger equation

d ,,% i
ft (tf) --Opre,(ff)tf (EpTf)

Proposition 3.1. Let Af x R —> M,(y,t) —> xy(t) denote the flow of the Hamiltonian vector

field Xn. The section tf : Af x R —> L, (x, t) —? tf((x) defined by

*»(«,(*)) e-*tiH{xM)d"P(Xy\M)-*o(v) (5)

is a solution of equation (Epr,,q) with initial condition tfo in C°°(M,L)

Remark 3.1. xfo.t) is the integral curve of Xn joining y to xy(t) By definition, V(xy\[o,t]) '¦

Py —> Px (j) is the parallel transport along J'y|fo,tl- Every u G P can be seen as a C—isomorphism
u : ijrju) —? C. We consider that V(xy\\nf is a C—isomorphism from Ly to Lx /t) defined by
[T^XyLiAu]-1 o u, where u € Py. This definition is of course indépendant of the choice of u.

Remark 3.2. Observe that the right part of (5) is the integrand of the Feynman Path integral
evaluated on the classical trajectory. This gives the prequantum dynamics as a Feynman path
integral where all the mass is concentratred on the path corresponding to the classical trajectory.

Proof. There is a natural identification between sections of L and the functions tf 6 C°°(P. C)

such that Ärmtf e_**tf.V0 € R, where Rg denote right multiplication in P by g € T/,. Namely

every section tf € C°°{M,L) is associated to the function tf by

u.tf (u) =tf(7r(u)), VueP (G)

On C°°(P,C), equation (Epreq) reads as: -(X* - ir'Hdo)^> ^tf where X* is the horizontal lift
of Xn and dg is the vector field of P associated with the one parameter group t —> Ritu The

pull-back of tfo by the flow of Xfj — -' Hdo will be a smooth solution of this equation. Since Af
is compact, Xn is complete. Let uo be a point of P. Let (uj)(çr denote the integral curve of

XH starting from uo- It is the horizontal lift of the integral curve xj of Xn through the point
xo 7t(uq). We shall look for a curve gt of T/, which makes Rgtui an integral curve of X* — Hdo-
Applying Leibniz formula leads to the differential equation jffji) -H(xt). A solution gt [6t]

is given by :

% - f H(
Jo

!(xs)ds (7)

The solution obtained on GX(P,C), seen on C°°(Af, L), gives the result. D

Let Ut : C°°(M,L) —> C^AfL) be the operator sending tf0 to tf, defined in (5).

Corollary 3.1. Ut extends to Hp as a unitary operator. The unbounded operator OprCq(f) with
domain C°°(M, L) is essentially selfadjoint. The closure of jOprcq(f) is the infinitesimal generator
of(Ut)t-



Charles 347

Proof. Since fi((7(tf,(7(tf)(y) /i(tf, tf)(.r!/(-f)) and the flow leaves w invariant, we have ||

t/jtf ||« =|| tf||w So Ut admits a unique continuous isometric extension to hip and Ut ° U-t
U-t o Ut Id implies that {/( is a unitary operator of Hp. (Ut)t is a one-parameter group. Let us

prove that it is strongly continuous. Using the denseness of C°°(Af, L) in %p, we just have to show

that

£/,tf —> tf as t -> 0, Vtf e C°°(M, L) (8)

AI x R —)• R, (s,f) —> hftA - tf,!7(tf - tf)(x) is continuous. Using uniform continuity on the

compact M x [0,1], we see that h(Ut$ - tf,f7(tf — tf)(a;) converges uniformly in x to 0 and (8)

follows. In the same way. the proceeding proposition implies that

WjL* _> -l-Okrcq{H)A> as t -4 0 Vtf G C°°(M,L)

So (7( is a strongly continuous one-parameter unitary group, which is strongly differentiable on a
dense domain. The result follows (see Thm VIII. 10 of [9]). D

Semi-classical mechanics deals with the limit h —> 0. It permits us to make the link between
classical and quantum mechanics. When we attempt to introduce quantum mechanics in a
geometric formalism, it becomes a justification of the construction. In the preceeding discussion, h

was given and we assumed that the periods of to were multiples of 2nh. Let us regard the inverse

approach, that is, (Af, to) is given and we consider the set Q of h such that (Af, u;) admit a prequan-
tification (P,Ti,,a). Let Per C R be the group of periods of to. We have : ft G Q <=> Per C 2itfiL.
If Per is a dense subgroup of R Q is empty. If Per is reduced to zero, Q is the set of real
numbers. We are not interested in this situation, since we assume that Af is compact. The last

possibilitv is that Per is a cyclic group. If we denote d the positive generator of Per, we have

Q {hk\hk 2fk,ken}.

To each prequantization (Pi.Tft,,cti) of (M,to) is associated a family of prequantizations
(Pk;Tf,k,ak)- Namely, if Zj_. denote the subgroup of Tft, of order k, we set Pk Pi/ïk and
denote pk the projection from P\ to Pk- itk '¦ Pk —> Af is a principal T/lt-bundle with TXk defined by

itk°Pk ""l mid the action Rk by pk °R\m R\o\ °Pk- Let a* G SÌ^P^.R) be defined by pfk «l-
With our convention (see remark 2.1), this is a connection one-form defining a prequantization of
Af. If we denote by pk the representation of Tnk on C whose character is [9] —> exp(fO), the line
bundle associated to each prequantisation is Lk Pk *Pk C. Observe that

Lk~Pi xp?,C~Lfk

where pf denotes the representation of T;,, on C whose character is [6] —> exp(i-jf0). The
covariant derivations defined on the equivalent line bundles are equivalent.

Instead of introducing different prequantizations, we consider in the following the k-th tensor
product of a line bundle L associated to one prequantization (P, Tft, a) with h — é-. In this
setting we have Oprcq{H) LH - i\V*. with V* the covariant derivation on L@k, and to express
the different result on L®*\ we just need to replace h by jr. In the same way as in the proof of
proposition 3.1. the sections of L®k lift to functions on P and using this identification, we have

l2(p,q 0 nk
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with Hp L2(M,L®k) and the hermitian product on L2(P,C) defined by < tf. tf' >= /ptftf'/xp
where tip ^f\aAdaAn\. We consider then that L2(P,C) is the prequantum semi-classical space.
The semi-classical properties will appear in the next section, once we would introduce the quantum
spaces.

4 Toeplitz Quantization

We assume that Af is provided with a Kahler structure such that the fundamental two-form is

to. Let J in C°°(M, End(TAf)) denote the complex structure. Since the (0,2) component of the
curvature tensor —irto is vanishing, the C°° line bundle L®k has a unique structure of a holomorphic
line bundle, whose local holomorphic sections tf are characterised by

V^,jX* 0, VA' e C°°(M,TM)

The quantum space Hk consists of the global holomorphic sections of L®k. It is the kernel of the
differential operator V*'01' : C°°(L®k) —? il°-l(M,L®k) defined by

yfc(O.l) _ (Id+,j)y^.
Since L®k and L®*®A0,1T*iW are Hermitian bundles, we can define (V*'0,1')* as the formal adjoint
of Vfc(0,i) yveset

A^iv^rov*'0'1'

Xkhol : C~°°(M,L®k) —> C~°°(M. L®k) is an elliptic operator, thus its kernel consists of
smooth sections. Since M is compact, it is finite dimensional. From the definition of A*o(, it
follows that :

< Aft'„,tf. tf >= 0 «• Vfc(0'"tf 0, Vtf G C^iM, L®k)

Thus the quantum space 'Hk is the kernel of A^o(. As a finite dimensional subspace of Hp and hence
closed, it is a Hilbert space. As a first semi-classical result it follows from Riemann-Roch-Hirzebruch
formula and Kodaira's vanishing theorem that

diinHk~(^7-\ j u;A" asfc^oo (9)

and consequently, the quantum spaces Hk are not trivial.

Let us define the family of coherent states {ck} indexed by P. Since Rk is a finite dimensional
vector space consisting of smooth functions defined on P, the map sending tf G Hk to tf(u) is a

continuous functional, for every u G P. By Riesz lemma, there is a unique quantum state ej; G Hk
such that < tf,e£ >= tf(u). Let lik denote the orthogonal projection onto Hk, whose domain
of definition is Rk or L2(P,C) according to the context. The Schwartz kernel of nA", seen as an
operator acting on C°°(P, C), is called the reproducing kernel and is given by

nk(u.u') <ekl,ekt,>pr(u)®fiP(u') (10)

An important class of examples is the set of integral coadjoint orbits of compact Lie groups.
By Kostant's version of the Borei-Weil-Bott theorem, the Hilbert quantum spaces defined in this
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way are the irreducible representations. The coherent states were introduced in this context by
Perelomov in a different manner.

To complete the quantization, we associate to each classical observable H G C°°(M, R) an

operator of Hk. The operator Opreq{H) defined in the proceeding section is not suitable because it
does not preserve 'Hk. Following Toeplitz quantization we define Oj- (H) : Hk —> Hk by

OkToep(H)A =n%,tf (11)

It is sometimes convenient to see Oj, (H) as an operator acting on Hk or L2(P,C), defined in

these cases by Okr ,{H) ïlkLnl\k. The following property draws an analogy between coherent

states and Dirac functions.

Proposition 4.1. The. Schwartz kernel of Ok- (H), seen as an operator acting on C°°(P, C), is

given by

0$-oep(H)(u,u') < Lfleku,eku, > pP(u)®pP(u)

Consequently

Tr (0kT0cp(H)) =J < LHek,ek > ßP(u)

The commutation rules are no larger satisfied. Nevertheless the following deformation
quantization result is proved in [11].

Theorem 4.1. For all F,G G C°°(Af,R), we have

\\Okep(F)\\n> \\F\\co + 0(l/k)
\\0>foep(F)OkToev(G) - OkToep{FG)\\nk 0(1/*)

\\k[OkTofF),OkToep(G)\ - OkToep({F,G})\\nk 0(l/k)

Other semiclassical properties were developed in [10]. These results were proved using the
microlocal analysis of the Szego projector ©n* and the symbolic calculus of Hermite operators.

The propagator for the Schrödinger equation

^(tf) -^o£oep(ff)tf (Ek)

is the one parameter group exp(—t ^Oj- (H)). The exponential is easily defined because Hk is a

finite dimensional vector space. Let us consider the one parameter group of isomorphisms of Hk :

Since H is a finite dimensional vector space consisting of smooth sections, exp(—t —AlkLnIik) is

a smoothing operator for every t > 0. In the following section, we approximate this semi-group by
semi-groups generated by second order differential operators.
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5 An approximation by the heat semi-group

We will need the following result about the heat kernel of a generalised Laplacian. Let E be

a fiber bundle over a Riemannian manifold (Af,g). A second order differential operator AE :

C°°(M,E) —? C°°(M,E) is a generalised Laplacian, if its symbol

o(AE) G C°°(T'M,4.MEnd(E))

satisfies o(AE)(x,tZ) — \f2Id, where | |fl denote the metric olT'M associated with a Riemannian
metric g.

Theorem 5.1. Let (M,g) be a compact Riemannian manifold and E —? Af a fiber bundle. If A
is a generalised Laplacian, then there exists a unique section k G C°°((0, oo) x M x M, tx'lE' Ç$it'RE)
which satisfies :

i) (dt + Ax)k 0

ii) limt^ofMft,x,y)®s(y)\dg\(y) s(x), Vs G C°°(Af, E)

where \dg\ G |f2|n(M) is the Riemannian density. The section k is called the heat kernel of AE.

Remark 5.1. A generalised Laplacian AE needs not to be formally selfadjoint.

Let e~(A denote the smoothing operator whose Schwartz kernel is k(t,.). From theorem 5.1,

it follows that the family (e~ )t>o form a one parameter semi-group. The following corollary is

more adapted for the proof of theorem 5.2.

Corollary 5.1. Let (M,g) be a compact Riemannian manifold and E —> M a Hermitian bundle.

If A is a generalised Laplacian, then there exists a unique, strongly continuous family (Q(t))t>o
of smoothing operators of L~(AI,E) which satisfy:

V (Q(t))t>o is strongly differentiable on C°°(M,E) and Jj[Q(f)s] f AQ(t)s 0 on (O.oo)

\/seC°°(M,E).

tt') lim^o Q(t)s s in L2(M, E), for every s in C°°(M, E)

Of course, Q(t) e tA Observing that A£o( + i\Ln is a generalised Laplacian associated
with the Kahler metric, we can state the main result of this section.

Theorem 5.2. For every f > 0, e~t<-"A>>°i+li:LH'1 tends to e~l Tn L"n as u —> oo in the uniform
operator topology.

We prove this result by estimating (e"((I/A'»'+iÂL") - e_( Vn*z'"n*)tf with tf in Hk and in
{Hk)x. We set

RkAt,H) =e-'("AL+'x^)

and

Qk(t,H)=e-t!itnkL"nk

We will establish the estimates implying the theorem in three lemmas.
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Lemma 5.1. The semi-group Rk(t.H) is contractive, that is ||f?*(f, ff)|| < 1, Vf > 0.

Proof. Since C°°(M, L®k) is dense in Hk, it is enough to prove that ||Ä*(t, H)s\\ < \\s\\ for every
section s in C^iM^®1*).

jt\\RÏf H)s\\2 < -(i/AJk f ikh-lLH)Rku(t, H)s, Rk(t, H)s >

+ <Rk.(t,H)s,-(vAkhol + ikh-lLH)Rk.(t,H)s>

hoi1- 2 < uAkMRk(t, H)s, Rkv(t, H)s >

-2t/||Vfc'0'1)fî*(f,ff)6-||2

<0

Integrating the inequality gives the result. D

As an elliptic, formally selfadjoint operator on a compact manifold, the unbounded operator
Akol with domain CX(M, L®k) is essentially selfadjoint, its spectrum is discrete and each eigenspace
is finite dimensional (see [12]). Since A£o( (V^^'^j'oV*'0'1' > 0, the eigenvalues are non negative.
Let us denote A[ the first positive eigenvalue.

Lemma 5.2. \\Rk(t,H)o(Id-Uk)\\ < e-xlvl+ 2khrx^fi^

Proof. Using the decomposition of HÌ into the orthogonal sum of eigenspace of A*o(, the inequality

holds if H 0. Let us introduce the semi-group of bounded operators of Hk:

f>k(t m_i QkfH) oiiHk

Since Rk(t,H) Rk(t,0) - Rt(t.O) oTZlk + Qk(t,H), it is a smoothing operator which is strongly
differentiable on C°°(Af, L®k). Observing that Akol o nk 0 and Ylk o Rk(t, 0) o (Id - Uk) 0, we
calculate the derivative

-LRj(f, ff )tf] -(i/Ati f ikh-lnkL„Uk)RkAt, H)V Vs G C°°(M, L®k) (12)

We also have

lim Rk(t, H)^ tf in Hk Vtf G C°°{M, L®k) (13)

We claim that :

Rku{t, H)<S> Rk(t, H)1> - ikh~l j Rk(t -s,H)o (Ln - iJkLHUk) o Rk(s, H)<bds
Jo

(14)

for every section tf in Hk. Since the function we integrate is continuous, we need only use the
Riemann integral. To prove this equality, it suffices to show that the operator defined on the right
side satisfies the conditions i) and ii) of corollary 5.1, which are consequences of (12) and (13).
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Using that \\Rk(t,H) o [Id - Uk}\\ \\Rku(t,0) ° [Id - lJk]\\ < c.-^"1, it follows from (14) and

lemma 5.1 that

[\Rkv(t,H)o[Id-Uk]n < (c.'^ + kh-1 j \\Li,-nkL,Alk\\e-xl"udu\ ||tf||

<{e-^l + 2kh-liAf
Xf J

D

Lemma 5.3. [\[Qk(t,H) - Rk(t,H)] oTlk\\ < Aft"11^(1 f 2ifcft-1||L/,||)

Proof. Note that Qk(t,H)Ylk Rk(t,H)ïlk. Thus equation (14) implies

[Qk(t, H) - Rk(t, H)} o Ylk =ik!Cl j Rk(t - s, H) o (L„ - itLnlt) o Rk(s, H) o Ukds
Jo

=ikhr] [ Rk(t -s,H)o {Id - Uk) o L[,nk o Rk(a, H)ds
Jo

since Ylk and Rk(s,H) commute.

Observing that ||n* o Rk(s, H)|| 1, we get the estimate

\\[Qk(t,H) - Rk(t,H)]o\lk\\ <kh~l f\\Rk(s,H)o{Id-Ylk)\\\\Ltl\\ds
Jo

<fcft-1J^i(l+2ffcft-1||Lw||)
Xf

Here we have used lemma 5.2. D

Proof of theorem 5.2. Since Qk(t,H)-Rk(t,H) (Qk(t,H)-Rk(t,H))oTlk-Rk(t,H)o(Id-Tlk),
lemmas 5.2 and 5.3 imply

\\Qk(t,H) - Rk(t,H)\\ < c-^l"1 + M"1 HM(3 + 2tkh~l\\L„\\f (15)
\y 1/Xf

D

Remark 5.2. The dependence of the estimate (15) on A- can be specified. It is proved in [14] that
there exists a constant C such that X\ > C + k. It follows that there exists C\,C2 > 0 which do

not depend on k, v and t such that

He-^L+^») _ e-« ¥n*i*n' y <Cie~kut + —(l + kt) (IG)

6 Feynman Path Integral

In the preceding part, we saw how the propagator for the Schrödinger equation can be approximated
by heat semi-group. Using a generalised Feynman-Kac formula, we will express the solution of
Schrödinger's equation as a limit of path integrals. This will be our Feynman's integral formula.
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In [13], Norris proved a Feynman-Kac formula for a generalised Laplacian AE which acts on
sections of a vector bundle E. The first step consists in decomposing AE as

A E -i-TToVE®T'!i' oVE + V
1

where Ve : C°°(Af,.E) —> Ql(M,E) is a covariant derivative, Tr : C°°(M,E®T*M®T'M) —>
C°°(Af, E) is the contraction with a metric g and V G C°°(Af, End TAf acts linearly on each fiber.

To pursue this program, we need the following Weitzenböck formula (see [15]):

\k _
1 a* nk

Afto<-2A -Jj-
where Ak (V*)* ol"' - TroVL'®T"M o V*, and 2n is the dimension of M. It follows that

e.-l^LA^fn) =A^te-A^k^ÌLH)

In the following we will apply Feynman-Kac formula to

^k + i\LH=-^oV^^+i\LH
As in section 3, all the objects we will introduce depend on k only through the representation p®k:

we will construct stochastic flows on M, P and 17, which do not depend on k, and then using p®k

deduce the heat propagation on L

Given .to in Af, let us consider the Brownian motion on Af starting from xq associated to
the Riemannian metric ug. It consists of a probability space (ft",T", P") equipped with a right
continuous filtration (T")t>o such that ZFq contains all the P"-null sets, together with a martingale

x" : ft" x [0, oo) —> Af
(u,t) —> xtf)

which satisfies

b(dxvt,dxut) vTrobix^dt, V6 G C°°(M,T\M ®T'M)
where b(dx'(,dx'() denotes the 6-quadratic variation of xvt. This definition is the Levy characterisation

of Brownian motion adapted to M-valued semimartingales. A construction is obtained by
solving a stochastic differential equation and using stochastic development (see [16]).

Next, given u0 in PXa, we consider the horizontal lift u" : ft" x [0, oc) —t P of x"'. This is

the unique semimartingale u" in P over xvt, that is it o u\ x", such that

d((f)-\s(x\)) ((uvt)-l.Vs)(dxvt) Vs G C°°(M,L)

This means that, for all stopping times o, r, such that o < r. we have

(ff'Mx'A - Kr'fxf /T(K)-] Vs)dxl
Ja

where the right part denotes the Stratonovitch integral of the T*Af ® C-valued semimartingale
(a")_1.Vs against x". The parallel transport Vff is the Tft-morphism from fV(w) onto If such
that Vfto).v1(to) uo, this is the phase of the action integral of the path io. As in proposition
3.1, V"' (to) uo ° ^(^)-1 acts as a bijective linear transformation from LX"iu\ to Lxo.
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Finally we define the stochastic exponential ef in Tft by the following stochastic equation

dei =e"lH(xvt)dt (17)

e0=l (18)

This means that for all stopping times o, r, such that a < r, we have

S(eT) s(ev„) f f'(dos)(el)H(xtZ)dt, Vs G C°°(Tft,R)

Observe that equation (17) can be solved as (7) by integrating the stochastic process H(xut) and

projecting it on Tft using p. Details of stochastic exponentials in Lie groups can be found in [17].

We interpret e"(u>) as the integral of the Hamiltonian H along the path to.

We can write the generalised Feynman-Kac formula

L-K^+^Lh)^ (;Co) E Lkt^p^^c^)] Vtf G C°°{M,L®k)

Using proposition 5.2, we can state:

Theorem 6.1. For every tf in C°°{M,L®k), let tf)"" be. the. section of L®k defined by

*r>o) e** E [p'WVf.VW)] (19)

fften

tff -^e-'ï"'1»11'* in(nk,<.>) asu —> co

Remark 6.1. The construction of the propagator Ut in proposition 3.1 is very similar to (19). In the

prequantum setting, we consider a deterministic smooth curve which is the integral curve of Xn
starting at xq instead of a brownian motion. We lift it onto P, defining in this way the phase of its

integral action, and introduce the integral of the Hamiltonian along the curve to solve a differential
equation analogue to (17). The sign difference which appears in the parallel transport Vftu) and

equation (17) comes from the fact that the sample paths of i" are not ending, but starting, at xg.
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