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Feynman Path Integral and Toeplitz Quantization
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75775 Paris cedex 16, France
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ABSTRACT. - We present a Feynman path integral in the setting of geometric quantization
f symplectic manifolds with Kahler polarization, where the Hamiltonian operator is given by
[oeplitz quantization. We compute the quantum propagator as a limit of path integrals, involving
3rownian motion in the phase space and geometricaly meaningful stochastic processes.

RESUME. - Nous présentons un formalisme pour l'intégrale de Feynman, dans le cadre de
a quantification géométrique des variétés symplectiques munies d'une polarisation kahlerienne, ou
"hamiltonien est donné par une quantification de Toeplitz. Nous calculons le propagateur quantique
:omme une limite d’intégrales stochastiques, en introduisant un mouvement brownien sur I’espace
les phases et d’autres processus liés a la structure géométrique.

1 Introduction

et us describe formally what is Feynman’s path integral. We consider a particle of mass m moving
n a potential V : R® — R. The quantum state space is L2(R®). The time evolution of a state ¥
s given by the Schrodinger equation

hd
e S =
idt‘l" f

fzz(r')2

2 2 % . .
vhere H = —g— (75— + 3%'5 + %7) + V' is the Hamiltonian operator.

Feynman’s idea is to express ¥; as a sum over paths

Ty(z) = f e Jo L)< (D ds g c(0))de (1)
Qx.l
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where Q. is the set of paths ¢ : [0,t] — R3 such that ¢(t) = z, dc is a measure on €, and L
denotes the Lagrangian of the system defined by

L(z, &) = %ml:ﬂg - V(z)

With formula (1), Feynman developed many concepts of quantum mechanics (see [1]). Path integral
methods were used by mathematicians to derive solutions of heat equations. They have also played
a major role in quantum field theory. In non-relativistic quantum mechanics, the framework of
this article, physicists have exploited Feynman’s integral formula to study semi-classical properties.
Mathematical works on the subject are reviewed in ([2]).

In this article, we propose a Feynman path integral formula in the setting of Toeplitz quan-
tization of compact Kahler manifolds, with an explicit dependence on h. The results we obtain
generalise works of I.Daubechies, J.R.Klauder and T.Paul ([3],[4],[5]), treating of Hamiltonians de-
fined on the euclidean space, the Lobachevsky half-plane, and the sphere. We compute the quantum
propagator by well-defined path-integrals involving Wiener measure on phase-space in the limit of
diverging diffusion constant. Not only does this formulation give a rigorous computation of the
solution of the Shrodinger equation, but it also allows a natural geometrical formulation of the
problem in terms of the symplectic form, prequantum bundle, and Kahler metric.

In the first section, using the equivalence between the Lagrangian and the Hamiltonian for-
malisms on the tangent and cotangent bundle of a configuration space, we explain how the phase
of the integral of the lagrangian along a path 7 is defined on a symplectic manifold (M,w) en-
dowed with a prequantization (P,«). Recall that P — M is a principal (R/27hZ) bundle, and
« a connection one-form, with curvature w. Let H € C*°(M,R) be a Hamiltonian function. In
this setting, exp(% for’ L(c(s),c'(s))ds) is replaced by the product of two terms, the first being the
parallel transport along «, the second the phase of the integral of the hamiltonian along . In the
second section, we introduce the prequantum hilbert space L?(M, L), where L is the Hermitian
line bundle associated with P. Using the covariant derivative induced by a, we define the prequan-
tum dynamics, and we give a description of its propagator in proposition 3.1, where the geometric
objects introduced above appear.

The third section is devoted to the quantum setting. A is endowed with a Kahler metric
g, with fundamental two-form w. L has a natural holomorphic structure compatible with the
covariant derivative. The quantum space H is the set of holomorphic sections of L. Let II :
L*(M,L) — L*(M, L) be the orthogonal projector onto H. The Hamiltonian operator is IT1L 11,
where Ly denotes multiplication by H. The fundamental estimate is proved in the fourth section.
We show that the propagator exp(-i,%l'l[.-;;ﬂ) of the schrodinger equation is approximated by the
heat semi-group of the generalised Laplacian vAj, + %LH, as v tends to oo, where Ay, is the
Hodge Laplacian of L. Using a Weitzenbock formula and a generalised Feynman-Kac formula we
express in the last section these heat kernels as path integrals, leading to a Feynman path integral.

Let x{ be the Brownian motion on the Riemannian manifold (M, vg), starting at zo € M.
The phase of the integral action of the sample path is a semi-martingale P/, defined as the parallel
transport Py : Ly — Lgv along x¢,0 < s < {. The main result we obtain is stated as follows

Theorem 1.1. For every W € C®(M, L), let ¥{ € C®°(M, L) be defined by the path integral
TY(z0) =e'5h B [eiff'f(xi’ )"57-’,".\11(:5"’)]
then

i%nLn I1

¥ —re” VinH as v — 00
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2 The phase of the action integral

In this section, we explain how the integrand of the Feynman path integral is defined on a symplectic
manifold. Let us review the Lagrangian formulation of classical mechanics on a tangent bundle T'Q
of a configuration manifold @ (see [6], 3.5,3.6,3.8). Let L : TQQ — R be a smooth function called
the Lagrangian. The fiber derivative F'L of L is a fiber preserving map from T'Q) to T*(, sometimes
called the Legendre transformation. Let us denote by 3 the canonical one-form of T (@ defined by
< Byv >=< mr-gu, (mQ)sv >, Yv € T(TQ) where g : T*Q — Q and 7p-g : T(T*Q) — T*Q
denote the canonical projections. The Lagrange one-form [3; and the Lagrange two-form w; are
defined by

BL =FL*p wr =FL*df

We assume that FL is a local diffeomorphism, hence (T'Q,wy,) is a symplectic manifold.

We define the action A : TQ — R by A(v) =< FL(v),v > and the energy by £ = A — L.
The Lagrangian vector field of L is the unique vector field Xg on T'Q such that ¢x,wp +dE = 0.
X is a second order equation (i.e. (mg). o Xp = Id) and its integral curves y(t) satisfy Lagrange’s
equation. Using coordinates (¢, ¢') on T'Q we recover the classical Euler-Lagrange equations

d
% (5r00) =360

Let Q(q1,q2,T) be the set of C* curves {c¢:[0,T] — Q/c(0) = q1,¢(T) = q2}. The La-
grangian integral is a functional defined on (qy, g2, T) by

T
L(c) :/0 L(c(t), é(t))dt

The variational principle of Hamilton says that the solutions y(¢) = (¢(t), é(¢)) of Lagrange equation
with ¢ € §(q1,q2,T) are the extremals of the functional £. To prepare the Hamiltonian point of
view, we introduce the action integral A(c) = jOT A((e(t), ¢(t))dt and prove the following

Lemma 2.1. Let v:[0,T] — TQ be the curve defined by ~v(t) = (c(t), é(t)), we have
@ = [ o
”

Proof. Tt suffices to prove that A(y(t)) =< Br,7.0; >. We have

< Brs 10 >= < B, FL7.0; > since 8 = FL*3,
< FL(¥(t)), (m@)s F Ly O > by definition of 3 ,
= < FL{x(t)),~(t) >

since F'L is fiber preserving which implies (7). o FL. = (7g)., and (7Q).7.0; = c.dy = (1),
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In the Hamiltonian formalism, the data are a symplectic manifold (M,w) and a hamiltonian
function H € C°°(M,R), instead of the Lagrangian on the tangent space of a configuration space.
The classical dynamic is the flow of the Hamiltonian vector field Xy, defined by ¢y, w+ dH = 0.
Let (pi,q') be canonical coordinates on M, an integral curve t — (p;(t),q'(t)) of Xy satisfies
Hamilton’s equation

i _OH ., __9H
4 _api = dq*

Recall that M is the cotangent space 7@ with w = d3, and assume that the Legendre transform
FL is a diffeomorphism. The relationship between Hamiltonian and Lagrangian formulations is
given by H = E o FL™!. The integral curves of Xg are mapped by FL onto integral curves of
Xy. I~ :[0,T] — T*Q is a path on T*(), a natural definition of its Lagrangian integral is
L(y) = [§ LIFL™'(4(t)))dt. It follows from lemma (2.1) that

.
Liy) = ] 5 - [O Hiv()dt
|

The first term of the sum, which we denote A(~) and call action integral, is not defined on a general
symplectic manifold (M,w), because w is not necessarily exact. If ~ is a contractible loop on M,
we can set A(y) = fsw, where S is a surface of deformation of . This depend on S unless the
integral of w over any two-sphere in M is zero. Since the action integral appears in the Feynman
path integral as the argument of the function z — exp(,l;z), we just need to define the phase
of the action integral P(y) = exp(£.A(y)). Observe that v — exp(f [qw) is well-defined, if we
assume that the integrals of w over the two-sphere in M are multiples of 27h.

Let us trv to define the phase of the action integral of any loop of a symplectic manifold
(M,w). Let z € M. We introduce C,(M, z) (resp. C2(M,z)) the free abelian group generated by
the set of differentiable singular one-simplices (resp. two-simplices) which have all their vertices
mapped into the basepoint . Observe that the generators of C, (M, z) are the loops based at z. Let
d: Co(M,z) — Ci(M,z) be the boundary operator, Z3(M,z) = Kerd the group of two-cycles,
Bi(M,z) = Imd the group of one-boundaries. Assume that M is connected. The first homology
group H, (M) with integer coeflicient is Cy (M, z)/B, (M, z). Let Ty be the quotient group R/27hZ
and I : Co(M, x) —+ Ty the morphism of group defined by I(S) = [cw mod 27xhZ. We formulate
the problem of the definition of the phase of the integral action of the loops based at z in the
following manne! ! r: find a group homomorphism P : Cy(M,z) — Ty, such that

C

C
I P

Th, (2)

commutes. This problem has a solution if and only if Zo(M,z) C KerI, that is the periods of
w are multiples of 2wh. If this is the case, then the set of solutions is a principal homogeneous
space for the morphisms group Mor(H, (M), Ty) = H' (M, Ty). We can also solve this problem in
a geometric manner with Souriau-Kostant prequantization.

Definition 2.1. Let (M,w) be a symplectic manifold. A prequantization of (M,w) is a principal
Ty bundle 7 : P — M, together with a connection form a € Q!(P,R) such that 7*w = —da

Remark 2.1. The connection is R valued, because we identify the Lie algebra of T; with R by
means of the canonical projection p: R — T},
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A symplectic manifold (M,w) admits a prequantization if and only if w/27h defines an
integral cohomology class, and if this condition is verified, the set of prequantizations is a principal
homogeneous space for H!'(M,Ty) (see [7]). In this context the phase of the action integral is
defined as follows

Definition 2.2. Let (M,w) be a symplectic manifold with prequantization (P,«). The phase of
the action integral of a loop 7y is the holonomy P(v) € Ty of v. If v is a path of M joining z; to
z9, the phase of its action integral is the parallel transport along «v: it is a Tj-isomorphism from
P,, onto Py,.

Remark 2.2. The introduction of parallel transport, surprising at the first view, is appropriate for
the following sections, see remark 3.1.

Remark 2.3. If M is a cotangent bundle T*Q, the trivial bundle T*Q x T; with the connection
form a is —7* 3 + df is a prequantization. The parallel transport along a curve < is multiplication

by ([, A).
Remark 2.4. Considering the different prequantizations of (M,w), we obtain all the group homo-
morphisms such that diagram 2 commutes.

To complete the parallel between Lagrangian and Hamiltonian formalism, we mention that
Weinstein stated variational principles which relate the extremals of the multivalued functional
v — Log P(v) — [ H((t))dt to the integral curves of the Hamiltonian vector field Xy (see [8]).

3 Prequantization

Let (M,w) be a symplectic compact manifold with prequantization (P, ). Let p denote the repre-
sentation of Ty on C whose character is [§] — exp(%ﬁ), and let L = P x,C be the associated Her-
mitian line bundle. The connection « induces a covariant derivation V : C®°(M, L) — Q}(M, L)
which is compatible with the Hermitian structure h € C®°(M, L* ® L*) . The scalar product of two
sections U and ¥’ in C*°(M, L) is defined by

<0, >:/ (T, 1) W™
M

The Hilbert space H, = L?(M, L) of prequantisation is the completion of (C*®(M, L), <, >). Each
classical observable I in C*°(M,R) acts on H,, as an unbounded operator Opeq(H), with domain
C>(M, L) according to

Opreq(H)¥ = (Ly —ihVx, )V, YV e C®(M,L)

where Ly is multiplication by H, and Xy is the Hamiltonian vector field of H. The linear mapping
which sends H into the formally selfadjoint differential operator Opreq(H) satifies the commutation
rules of P.A.M. Dirac. That is,

Oprcq(l) =Td (3)
Opreq({F.G}) =1 [Opreq(F), Opreq (G)] (4)

where {F,G} = w(XF, Xg) denotes the Poisson bracket of F and G. These properties are gen-
erally presented as a motivation for introducing the prequantum bundles. The next step of the
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quantization procedure is the definition of the Hilbert quantum space as a subspace of H,, using
polarization. Nevertheless, until the end of this section, we continue without adding any structure,
because it allows us to introduce some important ideas for following sections.

The dynamics in a prequantum system is given by the Schrodinger equation

d 1
EZ(‘II) = ‘Eopreq(H)\I} (Epreq)

Proposition 3.1. Let M x R — M, (y,t) — z,(t) denote the flow of the Hamiltonian vector
field Xy, The section W : M xR — L, (x,t) — V(z) defined by

Uy(zy(t) = e fo HE O p(z 10 1) To(y) (5)

is a solution of equation (E,.e,) with initial condition ¢ in C*(M, L)

Remark 3.1. xylj0y is the integral curve of X'y joining y to z,(¢) . By definition, P(zylj,) :
Py — P, (1) is the parallel transport along ;r:y|[o,t]. Every u € P can be seen as a C—isomorphism
U Ly, — C. We consider that P(zy|(o,) is a C~isomorphism from Ly to L ) defined by
[P(2ylj0,)-u) " o u, where u € P,. This definition is of course independant of the choice of u.

Remark 3.2. Observe that the right part of (5) is the integrand of the Feynman Path integral
evaluated on the classical trajectory. This gives the prequantum dynamics as a Feynman path
integral where all the mass is concentratred on the path corresponding to the classical trajectory.

Proof. There is a natural identification between sections of L and the functions ¥ € C*°(P,C)
such that R[‘g] ¥ = ¢ #%0,Vh € R, where R, denote right multiplication in P by g € Ty. Namely
every section W € C®°(M, L) is associated to the function ¥ by

wU(u) =¥(7(u)), YueP (6)

On C*(P,C), equation (Ejq) reads as: —(X;f — 7 Hog)¥ = diz‘i’ where Xﬁ is the horizontal lift
of Xy and Jy is the vector field of P associated with the one parameter group t — Ryy. The
pull-back of ¥y by the flow of Xﬁ — 7" Hdy will be a smooth solution of this equation. Since M
is compact, Xy is complete. Let up be a point of P. Let (u;)ier denote the integral curve of
Xf; starting from wug. It is the horizontal lift of the integral curve z; of X'y through the point
xg = m(ug). We shall look for a curve g; of T}, which makes Rg,u; an integral curve of ij — Hoy.
Applying Leibniz formula leads to the differential equation %(gt) = —H(xz;). A solution g; = (6]
1s given by :

0, =—[0 H(z,)ds (7)

The solution obtained on C*°(P,C), seen on C*°(M, L), gives the result. O

Let Uy : C°(M,L) — C°(M, L) be the operator sending ¥, to ¥; defined in (5).

Corollary 3.1. U, extends to H, as a unitary operator. The unbounded operator Opreq(f) with
domain C*°(M, L) is essentially selfadjoint. The closure of %Opmq(f) is the infinitesimal generator

of (Ut)s-
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Proof. Since h(U;¥,U¥)(y) = h(V,¥)(z,(—t)) and the flow leaves w invariant, we have ||
UV |13, =¥ |l2,. So U admits a unique continuous isometric extension to H, and Uy o U_y =
U_y o Uy = Id implies that Uy is a unitary operator of Hy. (U;); is a one-parameter group. Let us
prove that it is strongly continuous. Using the denseness of C*°(M, L) in H,, we just have to show
that

U ?\Ilastﬁo, YU e C*°(M,L) (8)
P
M xR — R, (z,t) — h(U¥ — VU, U, ¥ — ¥)(z) is continuous. Using uniform continuity on the
compact M x [0,1], we see that h(U; ¥ — ¥, U ¥ — ¥)(z) converges uniformly in z to 0 and (8)
follows. In the same way, the preceeding proposition implies that
Uuw — v ?
—’7—-— =t —EO,’freq(H).\I' ast — 0 VU € C®(M, L)
So U, is a strongly continuous one-parameter unitary group, which is strongly differentiable on a
dense domain. The result follows (see Thm VIIIL.10 of [9]). O

Semi-classical mechanics deals with the limit A — 0. It permits us to make the link between
classical and quantum mechanics. When we attempt to introduce quantum mechanics in a geo-
metric formalism, it becomes a justification of the construction. In the preceeding discussion, h
was given and we assumed that the periods of w were multiples of 27h. Let us regard the inverse
approach, that is, (M,w) is given and we consider the set Q of A such that (M, w) admit a prequan-
tification (P, Ty, «). Let Per C R be the group of periods of w. We have : h € Q <= Per C 2nhZ.
If Per is a dense subgroup of R, Q is empty. If Per is reduced to zero, Q is the set of real
numbers. We are not interested in this situation, since we assume that M is compact. The last
possibility is that Per is a cyclic group. If we denote d the positive generator of Per, we have
Q = {hxlhk = 5%,k € N}.

To each prequantization (P, Ty, ,a;) of (M,w) is associated a family of prequantizations
(Pr, Th, ). Namely, if Z; denote the subgroup of Ty, of order k, we set P, = P,/Z; and
denote py the projection from Py to Py. m : P, — M is a principal Ty, -bundle with 7y defined by
meopk = mp and the action R by py OR[IG]1 = Rf‘o]k opk. Let ax € QY(Pg, R) be defined by pRQax = Q.
With our convention (see remark 2.1), this is a connection one-form defining a prequantization of
M. If we denote by py the representation of Ty, on C whose character is (0] — exp(hlkO), the line
bundle associated to each prequantisation is Ly = P, x,, C. Observe that

L~ Py x g C ~ LE*
1

where p®* denotes the representation of Ty, on C whose character is 8] — exp(i,f—'lO). The
covariant derivations defined on the equivalent line bundles are equivalent.

Instead of introducing different prequantizations, we consider in the following the k-th tensor
product of a line bundle L associated to one prequantization (P, Tp,«a) with A = 2‘—i In this
setting we have O, (H) = Ly — i3 VA with V¥ the covariant derivation on L®*, and to express
the different result on L®* we just need to replace A by % In the same way as in the proof of
proposition 3.1, the sections of L lift to functions on P and using this identification, we have

k=00
L*(PC)= P H}

k=-—00
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with H; = L?(M, L®%) and the hermitian product on L?(P,C) defined by < T, >= Ip T p
where j1p = 55 |a Ada”™|. We consider then that L*(P,C) is the prequantum semi-classical space.
The semi-classical properties will appear in the next section, once we would introduce the quantum
spaces.

4 Toeplitz Quantization

We assume that M is provided with a Kihler structure such that the fundamental two-form is
w. Let J in C®(M,End(TM)) denote the complex structure. Since the (0,2) component of the
curvature tensor —i%w is vanishing, the C* line bundle L®* has a unique structure of a holomorphic
line bundle, whose local holomorphic sections W are characterised by

Vhoux¥ =0, ¥X € C®(M,TM)

The quantum space H* consists of the global holomorphic sections of L®*. It is the kernel of the
differential operator V(%1 . Coo(L8k) 5 O0(Af, L¥¥) defined by

VKO = (Id + iJ)VE,

Since L& and L®* & A%'T* M are Hermitian bundles, we can define (V*(%1)* as the formal adjoint
of VK1) We set
Aho[ — (vk(o,l))t ° vk(o,l)

AF o C7(M,L®%) — C~°(M,L®*) is an elliptic operator, thus its kernel consists of
smooth sections. Since M is compact, it is finite dimensional. From the definition of AF . it
follows that :

<AV T U >=0e VONg =0, v¥eC®M,L®)

Thus the quantum space H¥ is the kernel of A,w‘ As a finite dimensional subspace of H;‘j and hence
closed, it is a Hilbert space. As a first semi-classical result it follows from Riemann-Roch-Hirzebruch
formula and Kodaira’s vanishing theorem that

dim H* ~ ( mh) / W as k — oo (9)
-o’l AI

and consequently, the quantum spaces H* are not trivial.

Let us define the family of coherent states {eX} indexed by P. Since H¥ is a finite dimensional
vector space consisting of smooth functions defined on P, the map sending ¥ € HF to \i’( ) is a
continuous functional, for every u € P. By Riesz lemma, there is a unique quantum state eX € H*
such that < ¥,ef >= \Il( ). Let IT* denote the orthogonal projection onto H*, whose dOII]d]ll
of definition is ’H’; or L?(P,C) according to the context. The Schwartz kernel of I1¥, seen as an
operator acting on C*°(P,C), is called the reproducing kernel and is given by

IF(u,u') = < ek ef > up(u) @ up(u') (10)

An important class of examples is the set of integral coadjoint orbits of compact Lie groups.
By Kostant’s version of the Borel-Weil-Bott theorem, the Hilbert quantum spaces defined in this
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way are the irreducible representations. The coherent states were introduced in this context by
Perelomov in a different manner.

To complete the quantization, we associate to each classical observable H € C*°(M,R) an

operator of H*. The operator O,’j,eq(H ) defined in the preceeding section is not suitable because it

does not preserve H¥. Following Toeplitz quantization we define O?OCP(H ) : HY — H* by

Of pep(H). ¥ =TI* Ly ¥ (11)

It is sometimes convenient to see ijaoep(H) as an operator acting on HE or L?(P,C), defined in

these cases by Oé‘loep(H ) = IFLyTIk. The following property draws an analogy between coherent
states and Dirac functions.

Proposition 4.1. The Schwartz kernel of O’f-oep(H), seen as an operator acting on C*®°(P,C), is
given by

O ep(H) (u, ') = < Liek, ek > pp(u) @ up(u)

Consequently

Tr (o*T'oc,,(H)) = fp < Lyek, ek > up(u)

The commutation rules are no larger satisfied. Nevertheless the following deformation quan-
tization result is proved in [11].

Theorem 4.1. For all F,G € C*®(M,R), we have

10T oep (F)l3¢+ = [|Flloo + O(1/k)
||O"I:"oep(F)O'.{lc"oep(G) - O%oep(FG)”'H" = O(l/k)

| k[o'}-'oep(F)iO#:'oep(G)] - O'?“oep({Fa G})”'H" = O(1/k)

Other semiclassical properties were developed in [10]. These results were proved using the
microlocal analysis of the Szego projector &IT¥ and the symbolic calculus of Hermite operators.

The propagator for the Schrodinger equation

d ki
— (V) = —i=OF g, (H) T E*
dt( ) h Toep( } ( )
is the one parameter group exp(—t %O%DEP(H)). The exponential is easily defined because H* is a
finite dimensional vector space. Let us consider the one parameter group of isomorphisms of ’H’; :
ik exp(—t 0% . (H)) on H¥
exp(—t mHkLHH") = xp(—t 5 TOEP( )) onH Inl
h 0 on (H")
Since H* is a finite dimensional vector space consisting of smooth sections, exp(—t XI1¥ L, IT¥) is
a smoothing operator for every ¢t > 0. In the following section, we approximate this semi-group by
semi-groups generated by second order differential operators.
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5 An approximation by the heat semi-group

We will need the following result about the heat kernel of a generalised Laplacian. Let E be
a fiber bundle over a Riemannian manifold (M,g). A second order differential operator A% :
C*®(M,E) — C*(M, E) is a generalised Laplacian, if its symbol

o(AF) € C®(T* M, k. ,, End(E))

satisfies o (AE)(z, ) = —|§[§Id, where | |, denote the metric of T* M associated with a Riemannian
metric g.

Theorem 5.1. Let (M,g) be a compact Riemannian manifold and E — M a fiber bundle. If AP
is a generalised Laplacian, then there ezxists a unique section k € C*°((0,00) x M x M, m; E* @7}, E)
which satisfies :

i) (O+Az)k=0
i) lime fo, k(¢ 2,y) @ s(y) |dgl(y) = s(z), Vs € CP°(M,E)

where |dg| € |2 (M) is the Riemannian density. The section k is called the heat kernel of A¥,

Remark 5.1. A generalised Laplacian A¥ needs not to be formally selfadjoint.

Let e~*2" denote the smoothing operator whose Schwartz kernel is k(t,.). From theorem 5.1,
it follows that the family (e"AE)Do form a one parameter semi-group. The following corollary is
more adapted for the proof of theorem 5.2.

Corollary 5.1. Let (M, g) be a compact Riemannian manifold and E — M a Hermitian bundle.
If AE is a generalised Laplacian, then there ezists a unique, strongly continuous family (Q(t))i>0
of smoothing operators of L*(M, E) which satisfy:

i) (Q(t)i>0 is strongly differentiable on C*°(M,E) and %[Q(t)s] + AQ(t)s = 0 on (0,00) ,
Vs € C®°(M, E).
i) lim0 Q(t)s = s in L?(M, E), for every s in C®(M, E)

‘ Of course, Q(t) = e~tAF, Observing that A, + i%LH is a generalised Laplacian associated
with the Kahler metric, we can state the main result of this section.

; & ik : : :
Theorem 5.2. For every t > 0, e {*ARatikln) tends to e=t #* Lo 45— o0 in the uniform
operator topology.

We prove this result by estimating (e't("Aﬁo:“fLu) — et %HkLan)\II with ¥ in H* and in
(H*)L. We set
Rﬁ(t,H) :e—t(uAﬁo‘+i§LH)
and
Qk(t, H) =e—£ %nkLan

We will establish the estimates implying the theorem in three lemmas.
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Lemma 5.1. The semi-group RE(t, H) is contractive, that is |RE(t, H)|| <1, Vt > 0.

Proof.  Since C®(M, L®*) is dense in ’Hg, it is enough to prove that ||R(t, H)s| < ||s|| for every
section s in C®(M, L®*).

%IIRﬁ(t,H)sn? =< —(vAf, +ikh *Ly)RE(t, H)s, RE(t, H)s >
+ < RE(t, H)s, —(vAk, + ikh ™' Ly)RE(t, H)s >
= -2 <vAf,RE(t, H)s, RE(t, H)s >
= — || VFOD Ri(t, H)s||”
<0

Integrating the inequality gives the result. O

As an elliptic, formally selfadjoint operator on a compact manifold, the unbounded operator
Aﬁot with domain C* (M, L®¥) is essentially selfadjoint, its spectrum is discrete and each eigenspace
is finite dimensional (see [12]). Since A¥ , = (V¥OD)*oTk(01) > 0, the eigenvalues are non negative.
Let us denote Af the first positive eigenvalue.

Lemma 5.2. |[RE(t, H) o (Id — ITF)|| < e ¥t 4 2kh~! ”ffi”

k

Proof.  Using the decomposition of ’H:ﬁ into the orthogonal sum of eigenspace of A¥ | the inequal-
ity holds if H = 0. Let us introduce the semi-group of bounded operators of H;:

- [ Q*(t,H) onH*
R, (¢, H) _{ RE(£,0)  on (MK)*

Since RE(t, H) = RE(t,0) — R%(t,0) o IT* + Q*(t, H), it is a smoothing operator which is strongly
differentiable on C*°(M, L¥*). Observing that Af o IT¥ = 0 and I1* o RE(t,0) o (Id — I1¥) = 0, we
calculate the derivative

%{Rﬁ(t, H)U) = —(vALk, +ikh TTIF LTI RE (L, H)T Vs € C°(M, L®F) (12)
We also have

lim RX(t, H)U = ¥ in H* v¥ € C®°(M, L& (13)
v p

t—0
We claim that :

¢
RE(t, H)W = RX(t, H)W — z'kfrl/ RE(t —s,H) o (L — IKLyIT%) o R (s, H)Wds
0 (14)

for every section ¥ in ”H’;. Since the function we integrate is continuous, we need only use the
Riemann integral. To prove this equality, it suffices to show that the operator defined on the right
side satisfies the conditions i) and i) of corollary 5.1, which are consequences of (12) and (13).
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Using that ||RE(t, H) o [Id — TI¥]|| = |RE(t,0) o [Id — TI¥]|| € e~ MVt it follows from (14) and
lemma 5.1 that

t
|RE(t, H) o [Id - TTF]¥|| < (e-f‘i"‘ + kr1 f |Ly - H*Lunk||e""i”"du) el
0

S (e—l}‘u! EA Qkh._l ”LiH“) "“IJ”

ALY
O
Lemma 5.3. ||[QF(t, H) — RE(t, H)] o ITI¥|| < k™! fj’u (1 + 2tkh=Y || L))
Proof. Note that Q¥(t, H)II¥ = RE(t, H)II*. Thus equation (14) implies
t i
(Q*(t, H) — RE(t, H)] o TI* =ikh™! f Rt — s, H) o (Ly — IFLyTI*) o RE(s, H) o [T*ds
0
t -~
=ikh™! f RE(t — s, H) o (Id — TT*) o Ly TI* o R(s, H)ds
0
since IT¥ and R (s, H) commute.
Observing that ||TT* o R%(s, H)|| = 1, we get the estimate
t
Q5 (¢, H) — Ri(t, H)] o IT¥| Skh“‘/o IR (s, H) o (Id — TI*)||[| L[| ds
gkh‘lw(l + 2tkh~Y||Lg]))
ALV
Here we have used lemma 5.2. O

Proof of theorem 5.2.  Since Q*(t, H)—RE(t, H) = (QF(t, H)—RE(t, H))oIT* - RE(t, H)o(Id—T1¥),
lemmas 5.2 and 5.3 imply

LA

1
ALY

1Q5(¢, H) — RE(t, H)|| < et + k™! (3 + 2tkh~Y||Ly|) (15)

Remark 5.2. The dependence of the estimate (15) on k can be specified. It is proved in [14] that
there exists a constant C such that A} > C + k. It follows that there exists Cy,C2 > 0 which do
not depend on k, v and t such that

letWdhatinln) _ o=t RIELUTY | <o o=kt | %(1 + kt) (16)

6 Feynman Path Integral

In the preceding part, we saw how the propagator for the Schrodinger equation can be approximated
by heat semi-group. Using a generalised Feynman-Ka¢ formula, we will express the solution of
Schrodinger’s equation as a limit of path integrals. This will be our Feynman'’s integral formula.
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In [13], Norris proved a Feynman-Ka¢ formula for a generalised Laplacian AE which acts on
sections of a vector bundle E. The first step consists in decomposing AF as

AE = —%Trovlm "M owE Ly

where VE : C®(M, E) — Q(M, E) is a covariant derivative, Tr: C®*(M,EQT*M @ T*M) —
C°(M, E) is the contraction with a metric g and V € C*°(M,End T M) acts linearly on each fiber.

To pursue this program, we need the following Weitzenbock formula (see [15)):

1 nk

k k

Bhot = 58" — o5

where AF = (Vk)* 0 VF = — TroVE*®T"M 5 Uk and 2n is the dimension of M. It follows that
WAk HELE) ot o—t(§ A +ikLy)

In the following we will apply Feynman-Ka¢ formula to

v k v @k T k
AR Ly =— —TyoVI™OTM o
3% TIRH = T3 R
As in section 3, all the objects we will introduce depend on k only through the representation p®*:
we will construct stochastic flows on M, P and Ty which do not depend on k, and then using p®k
deduce the heat propagation on Ik,

Given z¢ in M, let us consider the Brownian motion on M starting from z( associated to
the Riemannian metric vg. It consists of a probability space (2¥,F",P”) equipped with a right
continuous filtration (F;');>0 such that F§ contains all the P“-null sets, together with a martingale

v: ¥x[0,00) — M
(w,t) — z¥(w)

which satisfies
b(0z{,0z() = v Trob(z{)0t, Vbe C®°(M,T*M & T"M)

where b(0zY, dz}) denotes the b-quadratic variation of zj. This definition is the Lévy characteri-
sation of Brownian motion adapted to M-valued semimartingales. A construction is obtained by
solving a stochastic differential equation and using stochastic development (see [16]).

Next, given ug in FP,,, we consider the horizontal lift u” : 2 x [0,00) — P of 2. This is
the unique semimartingale u; in P over zy, that is m o uf = z{, such that

O(uf)™"s(2f)) = ((uf) ™. Vs)(0xf) Vs € C¥(M, L)

This means that, for all stopping times o, 7, such that ¢ < 7, we have
T
() s(a2) - (1) s(a2) = [ ()7 s)at
Jao

where the right part denotes the Stratonovitch integral of the T*M & C-valued semimartingale
(uy)~'.Vs against z§. The parallel transport P (w) is the Tp-morphism from Ppy(,) onto Py, such
that P/ (w).u} (w) = wug, this is the phase of the action integral of the path w. As in proposition
3.1, P/"*(w) = up o u¥(w)~! acts as a bijective linear transformation from Lze(w) t0 La,-
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Finally we define the stochastic exponential ¢} in Ty by the following stochastic equation

dey =ef H(zy)dt (17)
€p =1 (18)

This means that for all stopping times o, 7, such that ¢ < 7, we have
s(e) = ses) + [ (@us) (D H s, ¥ € C2(Tu,B)
a

Observe that equation (17) can be solved as (7) by integrating the stochastic process H(zy) and
projecting it on Tj; using p. Details of stochastic exponentials in Lie groups can be found in [17].
We interpret e} (w) as the integral of the Hamiltonian H along the path w.

We can write the generalised Feynman-Ka¢ formula
(et a* +kEm W) (0) = B [o(e)Pr*.0(at)| ,  VE € C2(M, L)
Using proposition 5.2, we can state:

Theorem 6.1. For every W in C®(M, L®*), let U¥ be the section of L®* defined by

vnk

WY (z0) = ' F B [p*(el) P 0(a)) (19)

then ek
! k . N
WY — e R LIy iy (1 < >) as v — 00

Remark 6.1. The construction of the propagator U; in proposition 3.1 is very similar to (19). In the
prequantum setting, we consider a deterministic smooth curve which is the integral curve of Xy
starting at xq instead of a brownian motion. We lift it onto P, defining in this way the phase of its
integral action, and introduce the integral of the Hamiltonian along the curve to solve a differential
equation analogue to (17). The sign difference which appears in the parallel transport Py (w) and
equation (17) comes from the fact that the sample paths of z} are not ending, but starting, at xg.
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