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Abstract

We study the semiclassical limit for bound states of the Hydrogen atom Hamiltonian

h2 1

m] - 2
A \f

For each Kepler orbit of the corresponding classical system, we construct a lowest
order quasimode $>(h,x) for H(hZ) when the appropriate Bohr-Sommerfeld conditions
are satisfied. This means that 'i(Ax) is an approximate solution of the Schrödinger
equation in the sense that

\\{H(h)-E(h)}*(h,-)\\ <Cfi3/2||v&(M||.

The probability density |\I/(fi, x)\2 is concentrated near the Kepler ellipse in position
space, and its Fourier transform has probability density |$(ß, £)|2 concentrated near
the Kepler circle in momentum space. Although the existence of such states has been
demonstrated previously, the ideas that underlie our time-dependent construction are
intuitive and elementary.

'Partially Supported by National Science Foundation Grant DMS-9703751.
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1 Introduction

In this paper we construct approximate bound state wave functions ty(k. x) for the hydrogen
atom that are concentrated near Kepler orbits. Our construction can be carried' out for

any orbit whose classical energy E. period r(E). and action integral S(t) satisfy the Bohr-
Sommerfeld condition

1(E) Et(E) + S(r(E)) 2nhn, (1.1)

for some positive integer n. The wave function xV(h. x) is an approximate eigenstate of the
Hamiltonian

in the semiclassical limit h —» 0. in the sense that it is a "quasimode" of quantum mechanical

energy

E(h) E +
2™

r(E)

This means that it satisfies

||*(V)II i + 0(hf2).

and that there exists a constant C. such that

\\[H(h)-E(h))V(h.-)\\ < Cf'2\\V(h.-)\\.

The projection of the Kepler orbit from phase space to position space is an ellipse,
while the projection to momentum space is a circle. The probability density [^(h. x)\2 is

concentrated near the ellipse in position space, and its Fourier transform has probability
density ^(ft.^)!2 concentrated near the circle in momentum space.

Our main results are described precisely in Theorem 3.1. but the underlying idea of our
approach is the following: We construct our quasimodes by the basic formula

ME)
<&(h,x) Cfhf1/A / euBW/!'e'Sit)/\'o(A(t).B(t).h.a(t).n(t).x)dt. (1.2)

Jo

The quantities a(t). ft), and S(t) are the classical position, momentum, and action integral
of the Kepler orbit, respectively. The quantities .4(f) and B(t) are periodic with period t(E)
and are obtained by solving a system of differential equations that arise from the semiclassical

»
P2 1

mechanics for a new Hamiltonian that is a function of H(p. x) — -—-. The wave packet
2 [xl

e>sw/htp0(A(t).B(t).h.a(t).n(t).x) (1.3)

is a normalized complex Gaussian wave packet that is an approximate solution to a time-
dependent Schrödinger equation that we define below. It is localized near position a(t). and

its Fourier transform is localized near momentum ft). The integrand in (1.2) is periodic
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with period t(E) for any bound orbit, except possibly for its phase. The Bohr-Sommeifeld
quantization conditions coincide with the requirement that the phase also have period t(E).

In an earlier paper [1]. we used the same basic idea to construct quasimodes for one-
dimensional Schrödinger operators. Khaut-Duy also developed this technique in his unpublished

doctoral thesis [2]. In general, the technique fails for systems with more than one
degree of freedom. However, if a system only has periodic orbits in some energy range, and
if the periods of those orbits depend only on the energy, then the technique can be applied.
These conditions are satisfied for the Coulomb potential [3].

There is a vast literature concerning the hydrogen atom, and other authors have
constructed wave functions that are concentrated near classical orbits. These wave functions
are superpositions of highly excited bound states of the hydrogen atom, and are frequently
called "Rydberg states" in the literature. We do not attempt to review the literature here,
but simply cite some closely related papers. Thomas and Villegas-Blas [4] present a careful
mathematical analysis of the Rydberg states and prove numerous properties from a beautiful

geometric point of view. The geometry arises from the well-known 50(4) symmetry
of the hydrogen atom [5]. Gay, Delande, and Bommier [6] also have a construction based

on this symmetry. Nauenberg [7] uses a construction that minimizes uncertainty products
of various physical quantities. Klauder [8j discusses a "coherent state expansion" for the
projection onto all the hydrogenic bound states, that is based on the Rydberg states.

The advantage of our time integration technique is that it relates the approximate bound
state directly to the classical dynamics along the orbit. The Bohr-Sommerfeld conditions
arise naturally as a matching of phases as the particle goes around the orbit. We regard
this as much more physically intuitive than the mathematical group theoretic constructions
cited above.

The paper is organized as follows. In Section 2 we construct Gaussian wave packets
and semiclassical mechanics for a certain operator ffH(h)). In Section 3 we construct
quasimodes for this operator using our basic formula (1.2) and show that the construction
also yields quasimodes for the hydrogen Hamiltonian H(h). Some arguments in the proofs
in Section 3 are presented with relatively few details because the underlying ideas are very
similar to those in our previous paper [lj.

We conclude this section with some graphs that were generated by numerical integration
of (1.2). We note that even after a particular Kepler orbit has been chosen, one has the
freedom to choose A(0) and 5(0) arbitrarily. Different choices produce somewhat different
results, and the errors appear to be very sensitive to the choices. We also note that we
have ignored the direction perpendicular to the plane of the orbit in our plots. With our
techniques and choices of .4(0) and B(0). the wave function is trivial in that direction.

Figures 1 and 2 plot [^(h. x)\2 and \$(h. £)|2 using our quasunode that corresponds to

the circular orbit with initial conditions n(0) 0 I and //(0) =11. Formulas
V o / V o J

(2.22) and (2.23) specify our choice of .4(0) and /3(0). The value of n in (1.1) is 16. and the
corresponding value of fi is 0.09375.

Figures 3 and 4 plot the same quantities for an elliptical orbit. The initial data are

the same as for figures 1 and 2. except that the initial momentum has been changed to
0

/;(0) | 0.9 | The value of n in (1.1) is again 16. and the corresponding value of h is

0.10364.
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Figure 1: Probability density in position space of a quasimode for a circular orbit.
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Figure 2: Probability density in momentum space for the same quasimode as Figure 1.
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Figure 3: Probability density in position space of a quasimode for an elliptical orbi
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Figure 4: Probability density in momentum space for the same quasimode as Figure 3.



Hagedom and Robinson 321

2 Semiclassical mechanics for /e{H(h))
To construct our quasimodes. we first construct approximate solutions of the form (1.3) to
the Schrödinger equation

ih--(x.t) fE(H(h))fx.t) (2.1)
ut

where

fE(H(h)) H(h) + a(H(h)-E)2

with

H(h) H0(h) + V(x) -|a-|Ì.
The main result of this section is that we can construct an approximate solution of (2.1)

that is periodic modulo a phase and completely determined by classical mechanics. Without
the replacement of H(h) by }e(H(K)). we would not be able to obtain the desired periodicity
because of spreading of the wave packet in the direction of propagation.

The construction relies on the following definition.

Definition 2.1 Given a. n 6 R3. h > 0. and 3x3 complex matrices A and B that satisfy

A1 B - Bl A 0. (2.2)

A' B + B'A 21. (2.3)

we define

çfA.B.h.a.n.x) (-fi)-i/4 [det A]"1''2

x exp j-1 ((.r - a). BA^f - a)) +
%- f. (x - «))}

(2.4)

Remark 2.2 Whenever we write yo(A. B. h. a. n, x) we assume conditions (2.2)-(2.3)are
satisfied. The choice of the branch of the square root o/[det.4]-1 depends on the context
and will be specified. The wave packet ^(A.B.Ii.a.n.x) is normalized, concentrated, near
position a. and its Fourier transform

ÇfA.B.h.a.riA) (2-fi)-;,/- / <pu(.AB.h.a.ri..r)c-'(!-:c)/''dx

e-'("";"Vo(£-.4-M-«-s")

is concentrated near momentum n (see [9]).

The following proposition states the main result of this section.
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Proposition 2.3 Suppose, an. % € R'1 satisfy \aQ x r/u| ^ 0 and 1 |r/0|" + V(a0) £0 < 0.

Let Aq and B0 be two complex 3x3 matrices that, satisfy (2.2)-(2.3). and let a(t), q(t). .4(f).
and B(t) denote the solution of the system of ordinary differential equations

ft) r,(t).

ft) -VV(a(f)),

.4(f) iB(t) + 2cxn(t)((VV(a(t))\A(t)+i(rl(t)\B(t)),

B(t) iHess[V(a(t))\ A(t) +2aiVV(a(t))((VV(a(t))[A(t)+i(V(t)\B(t))

(2.5)

(2.6)

(2.7)

(2.8)

with initial conditions a(0) a0. r/(0) % ^(0) -^o- -S(O) ßo- £ef 5(f) denote the

classical action

5(f) \n(tf - V(a(t)) dt

that satisfiesWe choose a particular e > 0 and a cutoff function R, € C°

*<"-{!: Sii-
We then define

$(h,x.t) eiSW/hRs(x) <p0(A(t), B(t),h,a(t).r](t),x):

with yo defined by (2.4) and the branch of the square root determined by continuity in t.
This wave function satisfies

ihd-- fEo(H(h)) $(h.-.t) 0(f/:

and

e-i/E0("(Ä))»/»$(ft...o) - $(fi.-.f) jl o(hU2).

(2.9)

.10)

uniformly for t in any compact interval. Moreover, a(-) and rj(-) are periodic with period
t'I F \

r t(Eq) that depends only on E0. and if we choose a then
2t(E0)

$(h,z.t + r) e'5(T,/A$(fi.x.f). [2.111

Remark 2.4 We insert the cutoff function R_. to avoid the singularity in V at the origin.
We choose the parameter z to he less than the radius of closest approach ofa(t) to the origin
(i.e.. s < miiio<«T |a(f)|/ By examining the proof of the proposition, we see that R.: is

ignorable in the sense that

\\eiSW/hip0(A(t).B(t).h.a(t).n(t).-) - <I>(fi.,f)|j 0(f)
for arbitrarily larqe k.
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Remark 2.5 It is easy to sec that the complex vector quantity

9 .4(f)'W(a(f)) - iB(t)'n(t)

is conserved by the motion determined by (2.5)-(2.S). Thus, equations (2.7) and (2.S) can
be rewritten in the simpler fonti

A(t) iB(t) + 2ar)(t)6',

B(t) iHess[V(a(i))] .4(f) + 2aiVV(a(t))9\

One can also show that A(t)'B(t) - B(t)1 A(t) and .4(f)* B(t) + B(t)'.4(f) are conserved.
Thus. (2.2)-(2.3) hold for t > 0.

The remainder of this section is devoted to the proof of Proposition 2.3. Our strategy-
is first to show (2.9) by brute force calculation. The presence of the cutoff function FL

complicates the calculation. Once (2.9) is established, we easily obtain estimate (2.10) by
invoking a known result (Lemma 3.3 of [10]) that we restate as Lemma 2.8. We obtain (2.11)
by studying the underlying classical mechanics in some detail.

2.1 The proof of Proposition 2.3

Under the hypotheses of the proposition, the existence and uniqueness of the solution of
(2.5)-(2.8) follow by standard ODE arguments. As is well-known (see. e.g.. [11] and [3]). the
trajectories a(t) and n(t) are periodic with period

r T(E0)
sT2 i£0r

and there exists 7-nl„, > 0 such that |a(f)| > rmm for all f > 0. We arbitrarily choose

£ G (0. rmm/2) and introduce a C^ cutoff function R.:(x) that satisfies

R(x) °' if M - 2-Uj \ 1. if |x| > e

The first step in the proof of (2.9) is to estimate the error we make if wc replace V(x) by
its second order Taylor expansion about x a(t). We define

Va(x) V(a) + (W(a). (i-a)) + \ ((x - a). Hess[V(a)] (x - a)).

and let H„(K) //„(fi) + V„. Then.

|| [hfHf)) - f,fH„(h))\ <fh. -A) || < |1 - 2«£0| \\(V - Va) <I>(fi. .,0||

+ \a[\\(V + Va)(V-Va)^(h.;t)[[

+ \a\ \\(V-Va)Hl)(h)$(h.;t)\\

+ |o| \\Hn(h) [(V-V„)<S>(h.:t.)\\\. (2.12)
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We now show that each of the four terms on the right side of this inequality is of order
0(h3/2). The intuition is that $ is concentrated in a ball around .r a where we can bound
V - Va and its derivatives by polynomials in (x — a). Away from x a. <I> decays rapidly, and
the cutoff function R, effectively removes the singularity. This allows us to bound' V — \'„
and its derivatives by polynomials. We estimate some of the resulting norms by using the

following fact, that is easily established by explicit calculation or a scaling argument:

Lemma 2.6 If F(h.x) satisfies \F(h.x)\ < Chk(.r - a)*1, for some constants C, k. and
multi-index p. then

\\F(h.-)Y-Q(A-B.h.a.n.-)\\ 0(hk^2).

This estim.ate is uniform whenever a. r/, A. and B are restricted to compact, sets on which

(2.2)-(2.3) are satisfied.

We also encounter norms that arc of order 0(hk) for arbitrarily large k. We use the
notation 0(hx) to denote this behavior. We say that a quantity is uniformly 0(hx) as some
parameters are varied in some set. if for each fc, there exists Ck- such that the quantity is

bounded by Ck hk as the parameters are varied.

Lemma 2.7 Suppose F(h.x) satisfies [F(h,x)[ < Chk (x for some constants
C. k. M. and multi-index p. Let z > 0 be given and let x denote the characteristic function
of {x:\x-a\>f. Then

\F(h,-)xtp0(A,B,h.a,ri, Of
This estimate is uniform whenever a. rj. A. and B arc restricted to compact sets on which

(2.2)-(2.3) are satisfied.

Proof. Conditions (2.2)-(2.3) imply that Re (B.4-1) (.4.4*)-'. Hence

Re ((j- - a). BA~l(x - a)) |.4_1 (x - a)\2 >
1

and

F(h,-)x<fo(A,B,h.a,r), F(h. ¦) x exp -Th ™ i-a
exp 11 !U|r2 \x - a\2 J v~0(.4. B. h. a. r,.-)

For sufficiently small h. the first factor falls off faster than any power of h. The second factor
is bounded by a constant, independent of h. The lemma follows. I

We note that we may freely replace /?.- y>0 by r-n when estimating some of these norms.
For j 1.2. 3. and in 0. 1 and a f- 0. we have

A"
[(l-/l-)y„(.4. /J. fi. «.,,.-)]
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EC)lfe('-«]|=w«"«
£ E 0.rF(l-/L)

'lll<« dx"fk
[tp0(A. B. h. a. r/. x) Ol

o(h? (2-13)

Hence.

Xa(- + \Va\)tpo(A.B.h,a,r),

since d"'mt [9o(^- B. h. a. n. x)] is just a product of y>o(A B. h. a. g. x) and a polynomial in
dx}

the components of (x - a) with coefficients involving finite powers of h.

We now consider each of the four terms on the right side of (2.12) separately and in order.
Let Xa(x) denote the characteristic function of [x : \x - a\ < e) and Xaf) 1 - Xa(f- On
(x : \x — a\ < 5}. we have

\V(x)-Va(x)\ < Cl|x-a|3.

for some constant C\, and on (x : |x - a\ > s}. we have

\V(x)-Va(x)\Rc(x) < -A\Va(x)\.

e.

[\(V-Va)<b(h,;t)\[ < [\Xa(V-Va)$(h,;t)\[ + \[Xa(V~Va)$(h,;t)[\

< a |||x-a|30>(fi.-.f)||

0(hil2) + 0(hx)

0(h3'2).

A similar argument handles the second term. Since |V + Va\ is bounded by some constant
C-2 on {x : |x - a\ < c}.

Il(v + va)(v - va)$(h.,on < c2 \\xa(v - va)*(h, ,011 + ||\a(v2 - v2)$(h.-,o||

< Clc, I |i-o|3 *(»... o||

\,.(^ + |v;i2)y-o(.4./?.fi.a.^.-)

0(fi!'-) + Off
0(hil2).

For the third term we use (2.13) to replace Rc-Pn hy -co- We then use the explicit
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calculation

H0(h)tpo(A,B,h,a.r,,x) [ \ \v\2 - J tr(BA"-) + i(g. BA'l[x - o))

- - (K(x-a),(BA-l)-(x-a)))ç0(A.B.h.a,n.x)

P(x)tp0(A,B,h,a,-n,x).

to obtain

\\(v-va)H0(h)tP(h.-.t II V - V.) H0(h) tp0(A, B. h. a. n. ¦) || 4- Off
\\(V-Va)PtPo(A,B,k,a,r1,-)\\ + 0(hx)

\\(V-Va)P$(H,;t)\\ +0(hf.
We complete the estimate by showing

\\(v-va)p<s>(h.-.t)\\ 0(f12).

using the same ideas as in the case of the first two terms.
For the last term in (2.12) we expand

ffo(A) [(V-V.)*] -C(*A(V-V„) + 2(V(V-\;). V*)4-(V-l-a)A*)

and replace R, <p0 by y?o to compute the derivatives of $. We then re-insert the factor of R.:

and proceed as above, using the bounds

\V(V(x)-Va(x))[ < c3 |x-a[
and

\A(V(x)-Va(x))[ < cA \x-a\
on (x : |x - a\ < c}. This shows that

ll#o(A)[(V-V0)*(A.-,01ll 0(ff.
and we then conclude the desired bound

II [fEo(H(h)) - /£o(//n(fi))] <i>(fi. .,0II o(ff
This completes the first step of the proof.

The next step is to show that

dt.
/E0(H„(h)) b(h.-.t) Of0'2)

.14)

(2.15)

To prove this, we explicitly calculate the quantity inside the norm. Because of equations
(2.5)-(2.8). several terms cancel. We estimate the remaining terms by using Lemma 2.6 (the
singularity in V no longer affects the calculations).

The estimate (2.9) follows immediately from equations (2.14) and (2.15). Equation (2.10)
follows by applying the following lemma, which is Lenitila 3.3 of [10]
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Lemma 2.8 Let //(fi) be a family of self-adjoint operators for h > 0. Suppose üi(h.x,t) is

continuously differentiable in t and belongs to the domain of H(k) for h > 0. Suppose further
that dj(h.x.t) satisfies

i h —-
dt

H(h) fh.-.t) 0(f)

fort e [0. T\. Then

-UH(h)/h fk.-.O) - v(h.-.t) II 0(f'1).
forte [0. T].

To complete the proof of Proposition 2.3. we need only establish (2.11). It suffices to

show that, if a
r'(E0)
¦2r(E0)

prove the periodicity of .4 and B we first note that

•4(f) ^A0 + i^-B0,
da0 or/o

B(t) ^-Bo-ip-Ao
og0 da0

then .4(f). B(t). and det[.4(f)] l/2 are periodic with period r. To

(2-16)

(2.17)

(see. e.g

dg

da0

¦ r da da dg
and then argue that the matrices ol partial derivatives -—. -—. -—. and

da0 dq0 aq0

have period r.
To achieve this goal, we first consider the dynamics arising from the (classical) Hamilto-

fE(H(a,r,)) H (a. ri) + a (H(a. rj) - E)2,

where

H(a.g) -M2 + V(a).

1 E are arbitrary cons

(1 +2a(H(a.g)-E))q.

and Q and E are arbitrary constants. The corresponding Hamiltonian system

da
~dt

'dg

Tt
conserves the quantity H(a.q) H(a0.q0). Thus, differentiating (2.18)-(2.19) with respect
to the initial conditions «0 and r/(). we obtain

(1 -r 2a(H(a.g) - E))VV(a)

(2.1S)

(2.19)

d
dn On

Oa0 din

dt \ Ai Zh.
Ooq ch)o

(l+2a(H-E))
0 /

Hess[\»] 0

da tin
öao üiia

äao aim

+ 2 a
|r/)(VV(a„)| \q)(qu\

|VV(«))(VV(a„)| -\VV(a))(r,a\
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where we have introduced a Dirac bra-ket notation in an effort to reduce confusion
If we no longer allow E to be arbitrary, but instead impose the value E — Eq H(an. g0).

we obtain the nonhomogeneous system

d/ da da \ / t\ r \ / da dn
¦BZ äZ. \ / 0 '

_
daa d^ia 1 / j | itao dim

dt{t0 Et) " l-Hess[r(a)] o)\% &

1

-|W(a))(W(«0)| -|VV(a))(r,0|
'

|r,)(W(a0)| M(Vo\
U(t) + 2at\ ',,,,„ - (2.21)

This has a solution

3a_ da_ \
dao d-qo \

ë IW V -|W(o))(W(oo)l |W(a)}(,,(,!

where c/(f) is the solution of the homogeneous system

5^-(-H»V(a)] o)m
with

[/(0) /.

The matrix £/(£) can be realized explicitly as

/ do da

u(t) -11\ 0t)o dao

where (ä.g) (ä(aa. q0. t). q(a0.q0.t)) is the solution of the unperturbed (o 0) Hamiltonian

system

dà

I - --'<«
We note that for E £0. (â(a0. n0. t). q(au.q0.t)) (ci(nn.i]n.t). q{a0. rjo.t)). although th«

unperturbed and the original flows differ in the behavior of the derivatives with respect tt
the initial conditions. Differentiating both sides of

(ä(a0, qo. f + t). q(a0. q0. t + r)) (ä(a0- qo- 0- h(ao- 'lo- '))

with respect to the initial conditions gives

- \q(t))(VV(a0)[ -\v(t))(no
U(t + r(E0)) U(t) + r'(£0)

' ' 'W(a(f)))(W(a„)| |VV'(a(0))fa>|
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Thus, using (2.21). we obtain

&(* + ') ÌrJt + ^\ (BD &(0
Bt + r) &(t + r)) \%{t) &(0

-|r,(f))(W(a0)| -\q(t))(vo
r'(E0) - 2ar(E0)) ' |W(a(0))<Vl>o)! iVV(a(/)))(r/n|

n -r T'(Eo) da da dg dg ,„bo. it we choose a ——. then -—. -—. -—. and -— are periodic with period t(E0).
2t(E0) da0 dgQ dg0 da0

y 0J

The periodicity of A and B follows from (2.20). (2.7). (2.8). (2.16). (2.17). and uniqueness.
A F

The final stroke is to prove the periodicity of det[.4(f)]1/'2 if a —7777- Since A is
2t(£0)

periodic, it suffices to show that the trajectory {det(j4(f)J. 0 < f < r} in C has winding
number equal to 2.

To prove this, we note that solutions to differential equations with smooth coefficients
depend smoothly on initial conditions and parameters in the equations [12]. It follows that
the winding number is a continuous integer-valued function of the initial conditions. Thus,
it must be constant. For the special case a0 (1.0. 0). g0 — (0.1,0).

A0 2i -1 0 I (2.22)

and

Bo I 1 1 0 I (2.23)

\ 0 0 l/
we can explicitly solve (2.5)-(2.S). We obtain r 2~. a 3/2. and det[.4(f)] 5<f". For
this special choice (and hence, all) initial conditions, the winding number is equal to 2. I

3 Quasimodes for f£(H(h)) and H(h)
In this section we first construct a lowest order quasimode for the Hamiltonian fE(H(h))
and then show that the result is a quasimode for the Hamiltonian H(h).

r'(En)
Theorem 3.1 Let the hypotheses of Proposition 2.3 be satisfied, and choose a

1 -2i 0

2i -1 0

0 0 1

-1 —1 0

i 1 0

0 0 1

2r^)
Suppose h and Eq satisfy the Bohr-Sommerfeld condition

Eo r Eo) + S(t(E0)) 2nhn. for some n G IA. (3.1)

Let

9 .4" VV'(oo) - iBòqo-
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and define

V(h.x) fh)-
r
2t(E0)

I-t(Eo)
/ e^E°-Af,Vh e'S«)/fi R^x) y-0(.4(f). /3(f). fi. a(f). r,(f). x) df.

/o

Then.

*(A.-)II 1 + CKfi1 (3.2)

ana

//(fi) - £„ +
2?rfi

KËÔ)
<H(h. 0(fi3/2 (3.3)

We prove this theorem below. The proof is analogous to the corresponding one. presented
in [1]. for one-dimensional quantum systems, but the details are more complicated.

3.1 The proof of Theorem 3.1

To establish (3.2) we first note that we can remove the cutoff function Rt from the integrand,
because if

^(Ax) (7rfi)-1/4
lr(Eo) J0

¦{Eo)
e't{Eo+^i/r,e'sw/rfo(A(t). B(t). A a(t).q(t.. x) dt

then

%(h.-)-<i>(h.-)\\ < fhy
\Ô\

2r(E0)

¦ /
°

\[(R!-l)tPo(A(t),B(t),h,a(t),g(t).-)\\dt

0(hx).

After removing the cutoff, we simply mimic Section 2.3 of [1] to prove estimate (3.2).
The argument is based on two crucial lemmas. The first. Lemma 3.2. is Proposition 4 of [1].
so we simply state it here without proof. The second. Lemma 3.3. is a multi-dimensional
analog of Proposition 3 of [1].

Lemma 3.2 Suppose f(t. s) is a complex C~ function, and g(t. s) is a complex C function,
for t e [0. T\ and s 6 [-T/2. T/2]. Suppose there exists 6 > 0. such that Re(g(t,s)) > S.A.
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for t e [0. T] and s € [-T/2.T/2]. Assume further that g(t.O) 0: fft.O) 0; and

fi (t. 0) q(0 is real and positive. Then for any non-negative integer n. we have

f dt f '
dsf(t.s)s2ne-*L'),'h 1 -3---|2n— 1[ v^ fi"+1/2

IO J-T/2

x / /(f.0)o:(f)-"-1/2df + 0(h'l+l).
Jo

Lemma 3.3 Suppose a-,. t]\. a2. q2 € Kn. fi > 0. and that A1: B\ and A2, B2 are two pairs
of n x n complex matrices with each pair satisfying conditions (2.2)-(2.3). Then

(tp0(Ai,Bi,H,ai,r)i, ¦). tp0(A2.B2.h.a2.g2. ¦))

2n/2 (det(Ä,))-1/2 (det(.42))-1/2 (detÇFiTf1 + B2 Af)f^2

x exp { - ((ai - a^.WiT^1 (B[Äl"1 + B2Affl B2Af(ai - a2)) /2h

jTh-m), (BiAi +B2A;')-l(g1-q2))/2h

-i ((»7i - 72). (BiTf1 + B2Af)-l(B[Tfl - B2Af)(cu - af) 2h

-1 ((m + 12)- (a2-af/2h

Proof. We prove this lemma by explicit calculation. We write the inner product as an
integral and complete the square in the exponent of the integrand. We simplify the resulting

expression by using some matrix identities and then compute the integral by changing
variables.

We write

tfo(Ai.Bi.h, 01.171.-), tp0(A2, B2. h. a2. q>. •))

(-fi)-n/2(det(^T))-1/2(det(.4,))-1/2 / exp{-$(x)/2h}dx. (3.4)

where

*(*) ((x - a,). 7ÎTAT"1 (x - a,)) + ((.r - a2). B-, Af (x - a,))

+ 21 (¦/,!. (i-a,)) -2i (q2. (x-a-,))

x' (ff'' - B2Af)x - 2 (ff'^i + /5,.47'a, + i(q2 - r,,))' x

7- (ai. B^A'i~lal\ + (o2. B>Afa2) + 2i (q2. a2) - 2i (77,. a,) (3.5)
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To complete the square in this expression, we use the formula

x'Tx - 2iCx (x - tT-'Ç)' T (x - iT~\) + C T~f.

that holds for complex matrices T that satisfy Tl T and complex column vectors r. and £.

Specifically, we choose x to be the independent variable.

£ -iÇSlÂ^'1ai+ B2A^102) + (m-Vi), (3.6)

and T (Bi Ai + B2 Af). We can thus write (3.5) as

*(x) (x-iT-^)'r(x-tT-^) -t-^T-1?

-f (ai, 75[Ä7""'ai\ -I- (oo, ßo^j'a?) + 2i (g2. a2) - 2i (r;,. a,) (3.7)

By a gruesome calculation that we perform below, this can be rewritten as

*(i) y^^T' + B»^))»
4- /(a, -a2), 5, AT' (/J, AT' +B2i421)-l52i421(a, - a2)]

+ ((r/, - r,2), (ST^"' + ß2A2-1)-1(n1 - r,2)

+ 1 ((Vi -li), (BlTf1 +B2A21)-](B~iTf - B2Af)(ai - a2

+ l((qi + q2)-(a2-ai)). (3.8)

where y I x - f Bx A, + B2A2A ß, .4, a, 4- ßjAj'a.;, + i(r/2 - 7?,) J. Using (3.8),

we change variables from x to y in the integral in (3.4). After we extract all the ^-independent
factors, the integral is a standard Gaussian integral that can be computed using well-known
techniques (see e.g.. [13]). This proves the conclusion of the lemma.

It remains to be shown that (3.7) can be transformed into (3.8). This follows if we show

CT~f + (a,. BiAf af - (a,. B2AAa2) + 2i (q,. a,) - 2i (tj,, a-)

/(a, - 02). WiTf^WiTf1 + ß2.4_7')-,ß,A71(a1 - a2)\

+ ((rn - rn)- (BIT,'1 + BfAr^in - />,))

+ i (yh-'f- (B~iTfx + B2Af)-](B[TfX-B7A^)(ai-a-,))

+ i((ql + q2).(a2-ai)). (3.9)

To facilitate the proof of this identity, we make use of two matrix identities

T (Ti + T2fl T-, T., (T, 4- Tj)"1 T\. (3.10)
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and

(Ti+Tî)-1^ /- (T+T2flT2. (3.11)

We apply these identities with T\ Bx A\ and T2 B2A2l or their conjugates.
Using (3.6). we expand the left-hand side of (3.9) as

- (BiAi-'ai)'T-l(TiTflai) - (jff^a^T-fB.Afa,)
- (B2Afa2)tT-l(WiTflai'\ - (ßoAj'a,)'^1 (B2Afa2)

+ (m -ViYT'l(q2 - m)

-i (71, AT"'a,)'V1 (% - Vi) - * (ß2A71a2)'T-1(r?, - rn)

-2(r?2-n1)'T-1(5TÄ1"1a1) - i (g2 - qf T"1 (ß2.47'a2)

-fa', ('ß1Ai'"Iai) + a'2(B2Afa2) f 2igf2 - 2ig[ai. (3.12)

We must show that this expression equals the right-hand side of (3.9). To do so. we separately
study terms that contain no as. those that contain both a's and q's. and those that contain
no q's.

It is obvious that the terms that contain no a's in the two expressions are equal.
Using (3.11). we can write the terms containing o's and q's on the right-hand side of (3.9)

as

- i ((r/2 - m) T"1 (ßTÄT'a,)) - i {(q2 - tf T-1 (B2Afa2))

- i ((V2 -hi)- (I- T-'B2A;]) a,) - i ((% - 17,), (/ - T-'Blf'1) a2)

+ 2i(g2. a2) - 2i(q}. a,)

- i ((r/, - r?,) T-1 (ßTÄT1) (a, - a2)) - i ((q2 - ,h) .T'1 (B2Af) (a2 - a,))

-i ((V2 - m) ¦ (°i Aa2)) f 2i(g2. a2) - 2i(r)i, a,)

- i (fi -<h)-T~x (b[ATX - B2Af) (a, - a,)) - i ((rh + r,2) (a, - a2))

This agrees with the terms of (3.12) that contain both a's and q's.
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The terms of (3.12) that contain no q's are

- (sTÄT^Vr-1 (bT^T'oi) - (ßTÄr'aiVT-1 (B2Afa2)

- (B2Afa2y T~* (jtTiTf1ai) - (B2Af a2)1 T~fB2Af a2)

fa', (bTATV) + a2(B2Afa2)

- (ßiÄT^Vr-1 (T^Ar'a,) - (Tif^a,) T~lB2A2la2

- (B^f^T'1 (~B~iTflai) - (B-ffa^T^ (B2Afa2)

f (bìT^o^'t-1 (ßTÄT^oi) f (ßTIT'^ii'r-^j/ij-^,

f (BnAfaAj'T^TfTf'an f (ß2A2-1a2)'T-1ß2A2-1a,

f7ÌTAi""lai)'T-1£(2A2-1(a1 - a2) f (^Aj^'T-'/ÎTArVo - a,).

We use (3.10) in the final term in this expression to obtain

'(a, - a2), ß, Ä,-1T-1ß2A2"1(a, - a2)

This agrees with the terms on the right-hand side of (3.9) that contain no q's.
This establishes (3.9). and the proof is complete. I
Following the outline of [1], we prove (3.3) by establishing the preliminary estin.ate

- (E0 + f,. *ifi ' - Oih*2) (3.13)J,J (hin) - {E„ r-J^i*r fh.-)\\ 0(hil2)
t[Eo)J) Il

and then using the spectral mapping arguments of Lemma 3.7.

Without doing any further work, we can easily prove weaker versions of (3.13) and (3.3)
that have the 0(fi3/2) replaced by 0(fi3/1). To do so, we define $(h. x. t) as in Lemma 2.3
and then observe that

fEo(H(h)) (£of

-^ (*h)-w

cf"

2-fi
rW)

t(£o)

¦V(h.x)

^r"(/w>'-^-^))(e"""*"*w-")2r(E0) J0 \Z 7AZA

d-(em^^l\«WH(h,x,t)) dt f 0(ff

dt

r(Eo) Q

dt

-- Cf" (e*C«»+sW)/*_i) *(ft.x.O) f 0(f")
0(ff (3.14)
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if h and E0 satisfy the Bohr-Sommerfeld condition (3.1). This proves the weak version of
(3.13). The weak version of (3.3) follows by use of the spectral mapping arguments of Lemma
3.7.

To improve the power of h on the right side of (3.14) from 5/4 to 3/2. we mimic the

argument used in [1]. The basic idea is to improve the time-dependent semiclassical

approximation we have used by an approximation that is one order higher in h1^2. We do

this precisely as in [1]. This is a straight-forward exercise, except that we need the
multidimensional analog of Proposition 7 of [1].

The higher order approximation requires us to consider states other than Gaussiana.
Because these states enter in a purely technical way, we present only minimal information
about them here. For a detailed discussion of them, see [14].

For n x n complex matrices A and B that satisfy (2.2)-(2.3), fi > 0. and any multi-index
k. we define

tpK(A,B,h,a,g,x) -^= (AfAB.h.a.g)-f (A2(A, B.h.a.q)'
V/t!

x (An(A. B, h,a.g)')K" tpQ(A, B. h,a. q,x),

where Aj(A. B.h.a.q)" denotes the j raising operator

MA-B-h.a.g)' -}= [ (eh B'(x - a)) - i(e,-: A'(p - r,))].
y In

The corresponding lowering operator is

AfAB.Aa.g) --L [(eh Bl(x - a)) + i(e5, Al(p -r,))].
v lh

Here e; denotes the jth standard basis vector in Rn and p —ihV. We use A(A, B. h. a. g)
and A(A. B. h. a. g)' to denote the (vector) operators with components Aj(A, B, h. a. g) and

AA A. B.h.a.q)'. respectively.

The multi-dimensional analog of Proposition 7 of [l] is the following:

Lemma 3.4 Assume the hypotheses of Lemma 3.3. and let A and u be any two multi-indices.
Let

r [(BiA;1) f (b,a2]

and

S (ß.Ar1) - (B2Af).

Then.

(tpx(Ai,Bi,h,aUT)i,-). ?fA2,B2,h. a2.q2. ¦))

6(A. /i) (tp0(Al,Bi,h.ai,qi,-), çQ(A2. B2.h.a,. q2.-))
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where ffie quantity 0(A. u) is determined recursively by

0(\ + erf J J2 \ ^f (f'1 F6A,) e(\-ek.f
VA + 1

k=i { J'k

+ 2ffk{Al r(A2)-'j ke(\.g-ek)

f \Jl (AT"' r) ((B2A2l)(a2 - a,) f i(g2 - n,))fc 9(A. f 1.

(3.15)

or

Q(\.u + ej) - -7L==Yj\fp-k(AfYtÎT2)]kQ(X,p-ek)
v ^> f i k=l {

- 2 v^ (aj1 r'ÂT1) te(A-e,,/z)

f y| (Af r')jJt ((ß,A-1)(a2-a1)-z(rß-m)).e(A. M)l,

(3.16)

and the initial conditions

6(0,0) 1, (3.17)

Q(\ + er0)
* V J v^ (aT'ToA,) 6(A-e,. 0)

+ y| (ÄT"1r)^((/32A2-1)(a2-a,)f i(îfe - r„))t 6(A. 0)1,

0(o.M + e;) --=L= ^ 1
y^(A2-1r'^Â;);/i.e(o,/i-e,)

f j| (A71 f')w ((B,.4r')(a2 - a,) - ifo - r,,)^ 0(0. M)

(3.18)

(3.19)

Remark 3.5 The initial conditions (3.17)-(3.19) and either (3.15) or (3.16) completely
determine 0(A. p).
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Remark 3.6 It follows immediately that 0(A. u) is a polynomial of degree |A f u\ in the

components of

and

h-l/2((B2Af)(a2-a[)+i(q2-qi))

h~i/2 ((BiAf)(a2 - a,) - i(q2 - rn

Furthermore, an induction on |Af u\ shows that i/|A-t- u\ is even (odd) then this polynomial
contains only even (odd) terms.

Proof. Let

f(\\x) tpx(Ai,Bi,h,ai.T)i,x).

Vf(x) — tpfA2.B2.h.a2.q2.x).

We prove equation (3.15) by a calculation that is facilitated by the introduction of vector

quantities <E><2.', $£?, and <I>^J. with

(*™)t (A(A2,B2.h.a2.g2)f2))k y/iZ ?<*.„,

(*tyh {A(Ai,Buh,ai,Vi)tp^)k v^^,
(*tll)k (A(Ai,Bi,h,ai,ThY'p[1))k V*k + lVl£U-

Then.

and

(ai'i.vf) (A(A,.ß1.fi.a1.,?1)Vi1). ^
(^". ^(Ai.Bi^.aLr/,)^

-7= (vi0; [£{(z - a,)+i4(p-Ui)] v£>

-1= [ß[ (v-<". (x - a,)vf>) f iA\ (*,<", (p - n,)vf')]

f (ßia.-^r;,)^. vf>)]

We rewrite the term containing f\ p tpf) using

ptpf -t^^)"1*™ +»B,^I(x-oa)v^) -'/2^'.
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which is the result of solving

A(A2. Ba, h. 02, g2) f2) -±= [B2(x - a2) f iA2(p - q2)) f;> $£>
v2fi

for p f2) with the help of B2Af (ß2A2-1)', which follows from (2.2).
With further use of (2.2), this yields

1

7!ft

+ V2h(A2f(^\ *«

- ((A',)-'ßSa, - (A'2)-'ß.(a2 + i(ih - g2)) (<p<£\ tpf

<e>. vf) 4^^i((^)-i^-(4)-i^)(^,-^!2)

J=A', [((B.VJ-^AJ1))^!1». xyf»
/2fi

- ((Bf^)ai - (B2Af)a2 + i(qi - q2)) (tp™, f2)
In this expression, we use the formula

x a, f J- (AiA(Ai,Bi,h,ai,Th)' f T1A(Al,Bi.h.auqi))

to rewTite the factor (fx.xtp)l) (xfx, tpy\ as

(x „« „<*>) a, (^l>. vf>) + /f (*(*<», 9<2») f A, (*« Vf»

From this we obtain

\$a+- V;// ^A,(V.Ü1.<M )-(^2^2 ))A, y<?A+. r„ ^

J.1 4* ((R. J-h _ fR.J-li J. /cf,'1» ,„(2)

f -^ A\ ((B2Af)(a2 - a,) f i(g2 - gf (tp™, f2))

AWA^)-1^". ^
We solve this equation for ($AT. <r~ )• We then take the ;th component of the resulting

expression to obtain

^*?) - ^Tîè{^(^"lr5-4'L(^-^
+ 2^(ÄT-1r(Ar1).t(^);Ä

f yi (Tflv)ik ((B2Af)(a2 - a,) f i(q2 - rh))k (tp™. vf') j.
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We obtain equation (3.15) by defining

(1) (2)

6(A, ß)
JD ,(2)

yo ¦ yo

We obtain equation (3.16) easily by taking conjugates and swapping the indices, since

„0> .(2) \_/ (2) (1)
VA ¦ Yti+ef ~ Kfii+e,- VA

The initial conditions (3.17)—(3.19) follow immediately by restricting the expressions above

to the appropriate choices of multi-indices. I

As noted earlier. Theorem 3.1 is proved by mimicking the arguments of [1], with the help
of our multi-dimensional results. The principal idea is to replace the approximate soultion <I>

of Proposition 2.3 by the next higher order approximation in hfl2. This replacement adds a

correction to our quasimode ^l(h, x). We prove that the correction can be dropped because

it is of higher order. This argument yields the estimates (3.3) and

(H(h)-E0y $(h. -A) II 0(h 1/21

uniformly for f in any compact interval. We complete the proof of Theorem 3.1 by applying
the following spectral mapping result, which is Proposition 8 of [1]:

Lemma 3.7 Suppose H(h) is self-adjoint on a Hilbert space Tt, and E € R. Suppose g(z)
z + a(z — E)2 + ß(z — E)3, where ß is chosen sufficiently large that g(z + E) - E is invertible.
Suppose there exists a vector ip(h) £ hi with ||^>(Ä)|| 1, such that
|| [g(H(h)) - E]ip(h) || < Chx for some A > 0.

Then, there exists C", such that

\\[H(h)-E]v(H)\\ < Cf.

This completes the proof of Theorem 3.1. I
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