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Approximate Rydberg States of the Hydrogen Atom
that are Concentrated near Kepler Orbits

George A. Hagedorn*
Department of Mathematics and
Center for Statistical Mechanics and Mathematical Physics
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0123

Sam L. Robinson
Department of Mathematics and Computer Science
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Augusta, Georgia 30904-2200, U. S. A.

Abstract

We study the semiclassical limit for bound states of the Hydrogen atom Hamiltonian

h? 1
Hh) = ---A - —.
®B=5hoy
For each Kepler orbit of the corresponding classical system, we construct a lowest
order quasimode ¥(h,z) for H(h) when the appropriate Bohr-Sommerfeld conditions
are satisfied. This means that ¥(fi, z) is an approximate solution of the Schrodinger
equation in the sense that

I [H(R) = E(R)] (k) || < CH/Z || T (R,

The probability density |¥(h, x)|? is concentrated near the Kepler ellipse in position
space, and its Fourier transform has probability density |¥(k, &)|? concentrated near
the Kepler circle in momentum space. Although the existence of such states has been
demonstrated previously, the ideas that underlie our time-dependent construction are
intuitive and elementary.

*Partially Supported by National Science Foundation Grant DMS-9703751.
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1 Introduction

In this paper we construct approximate bound state wave functions W(h. r) for the hydrogen
atom that are concentrated near Kepler orbits. Our construction can be carried' out for
any orbit whose classical energy E. period 7(E), and action integral S(t) satisfy the Bohr-
Sommerfeld condition

I(E) = ET(E) + S(7(E)) = 27hn. (1.1)
for some positive integer n. The wave function W(h.z) is an approximate eigenstate of the
Hamiltonian

h? 1
Hh) = —-—A - —
(7 2 [
in the semiclassical limit A — 0. in the sense that it is a “quasimode” of quantum mechanical
energy
2rh

E(R) = E + =738

This means that it satisfies
2R )il = 1 + O(RY?),

and that there exists a constant C. such that
I{H(R) — E(R)] W(h.-) || < CRY? (R

The projection of the Kepler orbit from phase space to position space is an ellipse.
while the projection to momentum space is a circle. The probability density |¥(A.z)]? is
concentrated near the ellipse in position space, and its Fourier transform has probability
density |¥(k, £)|* concentrated near the circle in momentum space.

Our main results are described precisely in Theorem 3.1, but the underlying idea of our
approach is the following: We construct our quasimodes by the basic formula

T(E)
V(h. z) = C(wh)*““‘/ gHEM/R SR L (A(E), B(t), k. alt). n(t). x) dt. (1.2)
0

The quantities a(t). n(t). and S(¢) are the classical position. momentum. and action integral
of the Kepler orbit. respectively. The quantities A(¢) and B(t) are periodic with period 7(E)
and are obtained by solving a system of differential equations that arise from the semiclassical
2
_r

; . ‘ . : 1
mechanics for a new Hamiltonian that is a function of H(p. ) = e I—i The wave packet
2 i

e WRL0(A(L). B(t). h.a(t). p(t). x) (1.3)

is a normalized complex Gaussian wave packet that is an approximate solution to a time-
dependent Schrodinger equation that we define below. It is localized near position a(t). and

its Fourier transform is localized near momentum 7(t¢). The integrand in (1.2) is periodic
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with period 7(E) for any bound orbit. except possibly for its phase. The Bohr-Sommerfeld
quantization conditions coincide with the requirement that the phase also have period 7(E).

In an earlier paper [1], we used the same basic idea to construct quasimnodes for one-
dimensional Schrodinger operators. Khaut-Duy also developed this technique in his unpub-
lished doctoral thesis [2]. In general. the technique fails for systems with more than one
degree of freedom. However. if a system only has periodic orbits in some energy range, and
if the periods of those orbits depend only on the energy, then the technique can be applied.
These conditions are satisfied for the Coulomb potential (3].

There is a vast literature concerning the hydrogen atom. and other authors have con-
structed wave functions that are concentrated near classical orbits. These wave functions
are superpositions of highly excited bound states of the hydrogen atom, and are frequently
called “Rydberg states” in the literature. We do not attempt to review the literature here,
but simply cite some closely related papers. Thomas and Villegas-Blas [4] present a careful
mathematical analysis of the Rydberg states and prove numerous properties from a beau-
tiful geometric point of view. The geometry arises from the well-known SO(4) symmetry
of the hydrogen atom [5]. Gay, Delande. and Bommier [6] also have a construction based
on this symmetry. Nauenberg (7] uses a construction that minimizes uncertainty products
of various physical quantities. Klauder (8] discusses a “coherent state expansion” for the
projection onto all the hydrogenic bound states, that is based on the Rydberg states.

The advantage of our time integration technique is that it relates the approximate bound
state directly to the classical dynamics along the orbit. The Bohr-Sommerfeld conditions
arise naturally as a matching of phases as the particle goes around the orbit. We regard
this as much more physically intuitive than the mathematical group theoretic constructions
cited above.

The paper is organized as follows. In Section 2 we construct Gaussian wave packets
and semiclassical mechanics for a certain operator fg(H(h)). In Section 3 we construct
quasimodes for this operator using our basic formula (1.2) and show that the construction
also yields quasimodes for the hydrogen Hamiltonian H (k). Some arguments in the proofs
in Section 3 are presented with relatively few details because the underlying ideas are very
similar to those in our previous paper [1].

We conclude this section with some graphs that were generated by numerical integration
of (1.2). We note that even after a particular Kepler orbit has been chosen, one has the
freedom to choose A(0) and B(0) arbitrarily. Different choices produce somewhat different
results. and the errors appear to be verv sensitive to the choices. We also note that we
have ignored the direction perpendicular to the plane of the orbit in our plots. With our
techniques and choices of 4(0) and B(0). the wave function is trivial in that direction.

Figures 1 and 2 plot |¥(h. z)|* and i\fl\f(f'z.{’)|'2 using our quasimode that corresponds to

1 0
the circular orbit with initial conditions a(0) = 0 | and p(0) = 1 Formulas
0 0

(2.22) and (2.23) specify our choice of A(0) and B(0). The value of n in (1.1
corresponding value of A is 0.09375.
Figures 3 and 4 plot the same quantities for an elliptical orbit. The initial data are

~—

1s 16. and the

the same as for figures 1 and 2. except that the initial momentum has been changed to
0
n(0) = 0.9 |. The value of n in (1.1) is again 16. and the corresponding value of A is

0
0.10364 .. ..
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Figure 1: Probability density in position space of a quasimode for a circular orbit.

Figure 2: Probability density in momentum space for the same quasimode as Figure 1.
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Figure 3: Probability density in position space of a quasimode for an elliptical orbit.
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2 Semiclassical mechanics for fg(H(h))

To construct our quasimodes, we first construct approximate solutions of the form (1.3) to
the Schrodinger equation

v

Yo

(z.t) = fe(H(R)) ¥(a.1) (2.1)

where

with

h? 1

H(R) = Ho(h) + V(z) = - 5 =t

The main result of this section is that we can construct an approximate solution of (2.1)
that is periodic modulo a phase and completely determined by classical mechanics. Without
the replacement of H(h) by fe(H(R)). we would not be able to obtain the desired periodicity
because of spreading of the wave packet in the direction of propagation.

The construction relies on the following definition.

Definition 2.1 Givena, n € R3. A > 0. and 3 x 3 complex matrices A and B that satisfy

A'B - B'A = 0. (2.2)
A'B+ B"A = 2], (2.3)
we define

(r’—‘o(fl.B,h,a,n,:r) = (ﬂ.h)-:zm [detA]"”?

Remark 2.2 Whenever we write oo(A. B, h.a.n.x) we assume conditions (2.2)-(2.8)are
satisfied. The choice of the branch of the square root of [det A]™! depends on the context
and will be specified. The wave packet 2o(A. B.h.a.n.x) s normealized, concentrated near
position a. and its Fourer transform

Zo(A.B.h.a.n.§) = (2mh)™"? / @o(A. B hoa.n.x)e” &0 dy
6—1{1;-:1)/!1 ;O(B A h. 1) —Os é)

is concentrated near momentum 1 (see [9]).

The following proposition states the main result of this section,
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Proposition 2.3 Suppose ag. no € R® satisfy |ag x ol # 0 and § Inol® + V(ag) = Ey < 0.
Let Ay and By be two complex 3 x 3 matrices that satisfy (2.2)-(2.3). and let a(t). n(t). A(t).
and B(t) denote the solution of the system of ordinary differential equations

alt) = n(b). (2.5)
nt) = =VVi(a(t)). (2.6)
At) = iB(t) + 2an(t) (VV(a()| Alt) +i (n(t)| B(2)). (2.7)
B(t) = iHess[V(a(t)] A(t) + 2ai VV(a(t)) ((VV (a(t)]| A(t) +i (n(8)] BE®)).
(2.8)

with wnitial conditions a(0) = ag, n(0) = 19, A(0) = Ay, B(0) = By. Let S(t) denote the
classical action

st) = [ (5 m0f - Vi)

We choose a particular ¢ > 0 and a cutoff function R. € C*®(R?) that satisfies
<
Rie) = { 0 13

Lzl 2

M 12Im

We then define
®(h.z.t) = O R () go(A(t). B(t). k. a(t). n(t), ).

with o defined by (2.4) and the branch of the square root determined by continuity in t.
This wave function satisfies

\ [ml feo(H (R ))} B(h. .1 H = O (2.9)
and
e HMUR G (R . 0) = B(h.-.t)|| = O(RY?), (2.10)
uniformly for t i any compact interval. Moreover, a(-) and n(-) are pertodic with period
7 = 7(Ey) that depends only on Ey. and if we choose a = ;((léz)) then
Phrt+7) = VhOh 1. 1), (2.11)

Remark 2.4 We insert the cutoff function R. to avoud the singularity in ‘.' nf the origin.
We chouw the parameter = to be less than the radius of closest approach of a(t) to the r)nqm

(i.e.. & < ming<<;la(t)]). By examuning the proof of the proposition. we see that R.
wgnorable in the sense that

|| O™ oo(A(t). Bit). h.alt).n(t).:) = (h.-.t) || = O(R*)

for arbitrarily large k.
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Remark 2.5 [t is easy to see that the compler vector quantity
0 = A(t)" VV(a(t)) — i B(t)" n(t)

is conserved by the motion determined by (2.5)-(2.8). Thus. equations (2.7) and (2.8) can
be rewritten in the simpler form

A(t) = iB(t) + 2an(t) 6.
B(t) = iHess[V(a(t))] A(t) + 2aiVV(a(t)) 6"

One can also show that A(t)' B(t) — B(t)* A(t) and A(t)" B(t) + B(t)" A(t) are conserved.
Thus, (2.2)-(2.3) hold for t > 0.

The remainder of this section is devoted to the proof of Proposition 2.3. Our strategy
is first to show (2.9) by brute force calculation. The presence of the cutoff function R,
complicates the calculation. Once (2.9) is established, we easily obtain estimate (2.10) by
invoking a known result (Lemma 3.3 of [10]) that we restate as Lemma 2.8. We obtain (2.11)
by studying the underlying classical mechanics in some detail.

2.1 The proof of Proposition 2.3

Under the hypotheses of the proposition, the existence and uniqueness of the solution of
(2.5)-(2.8) follow by standard ODE arguments. As is well-known (see. e.g.. [11] and [3]). the
trajectories a(t) and 7(t) are periodic with period

T = 7(E) =

o
V2 B[

and there exists r;, > 0 such that |a(t)] > 7n, for all £ > 0. We arbitrarily choose

£ € (0. Tmin/2) and introduce a C> cutoff function R.(z) that satisfies

5 _ )0 if faf <
RE(I)_{I. if |z|>¢

The first step in the proof of (2.9) is to estimate the error we make if we replace V' (z) by
its second order Taylor expansion about x = a(t). We define

(e I

Vu(z) = V(a) + (VV(a). (x —a)) + = ((x — a). Hess[V(a)] (z - a)) .

D] =

and let H,(R) = Hq(h) + V,. Then.
I [fea(H(R) = fe,(Ha(R)] R(A . t) || £ |1 = 20| [[(V = Vi) ®(h.-.t)]|
+ la] [|(V + Vo) (V = V,) <I>(fi- ]|
+ laf |[(V = Vo) Hy(R) P(A. . 1)
+ o] |Ho(h) [(V = V) ®(h.-. ]| (2.12)
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We now show that each of the four terms on the right side of this inequality is of order
O(h*?). The intuition is that ® is concentrated in a ball around x = @ where we can bound
V' =V, and its derivatives by polynomials in (x —a). Away from x = a. ¢ decays rapidly. and
the cutoff function R. effectively removes the singularity. This allows us to bound 'V — V),
and its derivatives by polvnomials. We estimate some of the resulting norms by using the
following fact. that is easily established by explicit calculation or a scaling argument:

Lemma 2.6 If F(h.x) satisfies |F(h.x)] < CR*(x — a)*. for some constants C, k, and
multi-index p. then

I F(h.-) 2o(A. B, A.a.n.-) || = O(RM/Z),

This estimate is uniform whenever a. n, A, and B are restricted to compact sets on which
(2.2)-(2.3) are satisfied.

We also encounter norms that are of order O(R*) for arbitrarily large k. We use the
notation O(A>) to denote this behavior. We say that a quantity is uniformly O(h°) as some
parameters are varied in some set. if for each k, there exists Cj, such that the quantity is
bounded by Cy h* as the parameters are varied.

Lemma 2.7 Suppose F(h.z) satisfies | F(h.z)| < Ch* (z — a)* e‘m’”z, for some constants
C. k. M, and multi-indez u. Let z > 0 be given and let X denote the characteristic function
of {z:|z—a|>¢c}. Then

| F(A.-) X eo(A. B, h.a,n.-)|| = O(h).

This estimate is uniform whenever a. . A, and B are restricted to compact sets on which

(2.2)-(2.8) are satisfied.

Proof.  Conditions (2.2)-(2.3) imply that Re (BA~') = (AA")~!. Hence

1
2 12
| Al

~

Re ((I —a). BA ™ (z - a)) = [.»l" (r—a)

lz — af?.

and

- _ 1 _0 9
| F(. ) RolA. B.han. )| < H Flb, )7 &5 {—E 14172 e al-}

oC

X

1 _ 2
exp {E A7 |r = a|'} colA. B hoa.n. )H :

For sufficiently small A, the first factor falls off faster than any power of h. The second factor
is bounded by a constant. independent of A. The lemma follows. B

We note that we may freely replace R. 29 by o when estimating some of these norms.

Fory=1.2.3. and m=0.1.... _and a # 0. we have

“ am

el
0.17)

[(1=R.)geo(A. B han. )]
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m m ak am_k
— (1-R.) | ——= [vo(4.B.h.a,n.-
kZ:Q (k») (31‘;‘ ( ')) ax;u-—k [990( : a,mn )] 'l

9 1/2
=~ /m) || & gm—k P
= Z (k) _a—;[(l - R;) ,/;.:5 97k [(,00(4 B.h. (IT]I)] dr
k=0 ) lzl< ;
= 907 (2.13)

since gz—,,—k?; [po(A, B, k.a,n, )] is just a product of ¢o(A, B.k,a,7n.z) and a polynomial in
J

the components of (x — a) with coefficients involving finite powers of h.

We now consider each of the four terms on the right side of (2.12) separately and in order.
Let x.(z) denote the characteristic function of {z : [z — a|] < ¢} and X,(z) = 1 — xa(z). On
{z |z —a] < <}, we have

3
V(z) = Va@)] < cle—af.
for some constant ¢, and on {z : |z — a| > ¢}, we have

V(z) - Va(z)| Rulz) < §+ Va(z)].

Hence.

[V =Va)@h Ol < lxa (V= Va) (A Ol + lIxa (V = Va) @(A, - )]

< ol -al o0 +

1
%o(> +1Vao(A. B.ha.n, )H

= 0K + O(h™)
= O(K?).

A similar argument handles the second term. Since |V + V| is bounded by some constant
c;on {r:|r—al<e},

IV + V)V = Vo) 8(h 1)l £ ellxalV = Va)B(R . t)]| + [|Ka(V? = V)D(R. . 1)

IA

cres |||z —al’ ®(h-.t) |

~ 1 L0
+ H Xa (5 +|Val?) wo(A. B. h.a. . )H

= O(R*?) + O(F™)
— O(ﬁli/‘.’).

For the third term we use (2.13) to replace R. 0 by 0. We then use the explicit
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calculation

» R
Ho(h) po(A.B,h.a.n.x) = (% Inl~ — 5 tr(BA™Y) + i (q. BA Yz - a))

[V ]

<(1- —a), (BA™) (z - a)>> co(A. B.h.a.1. z)

P(x) oo(A.B.h.a,n. ).

Il

to obtain
(V= Vo) Ho(h) ®(h. .. )l = [I[(V = Va) Ho(h) ¢o(A. B, h.a.n.-) || + O(h%)
= IV = Va) Poo(A. B.hoa.n. ) || + O(R®)
= |[(V-Va) PO(h,-,t) || + O(F%).
We complete the estimate by showing
(V= Vo) P(h, . t) || = O(RY?),

using the same ideas as in the case of the first two terms.
For the last term in (2.12) we expand

hz
]

~

Ho(R) [(V = V,) @] = (DAY = Vo) +2(V(V = V,), V) + (V - V,) Ad)

and replace R. ¢y by ¢ to compute the derivatives of ®. We then re-insert the factor of R..
and proceed as above, using the bounds

[V(V(z) = Va(x))| < 5 |z —af’
and
|A(V(z) = Va(x))] < e |z —q
on {z : |z -- a| < z}. This shows that
I Ho(R) [(V = Vo) @(h. . t)] || = O(R*?).
and we then conclude the desired bound
1 feo(H(R)) = feo(Ha(R)] B(A.- 1) || = O(K?). (2.14)

This completes the first step of the proof.
The next step is to show that

[mg—f - fEU(H,,(h))} cb(h.-.z)H = O(R¥?). (2.13)

To prove this. we explicitly calculate the quantity inside the norm. Because of equations
(2.5)-(2.8). several terms cancel. We estimate the remaining terins by using Lemma 2.6 (the
singularity in V no longer affects the calculations).

The estimate (2.9) follows immediately from equations (2.14) and (2.15). Equation (2.10)
follows by applying the following lemma. which is Lemma 3.3 of [10].
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Lemma 2.8 Let H(R) be a family of self-adjoint operators for b > 0. Suppose w(h.x.t) is
continuously differentiable in t and belongs to the domain of H(h) for h > 0. Suppose further
that w(h.x.t) satisfies

;) |
H[m_a? B H(ﬁ)} o(h. . t) ” = O(AY).

fort €[0. T). Then
| e WM (b 0) - w(h.-.t)] = OB,
fort €[0. T).

To complete the proof of Proposition 2.3, we need only establish (2.11). It suffices to

show that, if @ = — (Eo) . then A(t). B(t). and det[A(t)]~"/* are periodic with period 7. To

27(Ey)
prove the periodicity of A and B we first note that
da da
Alt) = — Ay + i — By. 2.16
(1) F. 0T zaﬂo 0 ( )
an . On
B(t) = — By —i—A4 2.17
) = gpe B0~ igg, o (2.17)
da 0
(see. e.g.. [9]), and then argue that the matrices of partial derivatives _a _a_ —ai and
dag dny g

kay have period 7.

3&0

To achieve this goal. we first consider the dynamics arising from the (classical) Hamilto-
nian

fe(H(a.n)) = H(a.n) + a(H(a.n) - E)*,

where

Hl{g.n) = % In]> + V(a).

and a and E are arbitrary constants. The corresponding Hamiltonian system

9,
= = (1+2a(H@n) - E)n. (2.18)
% = —(1+2a(H(a.n) - E))VV(a) (2.19)

conserves the quantity H(a.n) = H(ag.no). Thus, differentiating (2.18)-(2.19) with respect
to the initial conditions ag and ry. we obtain

0 { 5 b 0 I\ (& i
7 )k)r:] ?)i:) = (1+2a(H - E)) . (f;? (()J:;)
ot o — Hess[V(a)] 0 T B

+ 2 ) (VV (ay)| |T]><"70l
T\ S IVV(@NVV )| =YV (@) (] )
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where we have introduced a Dirac bra-ket notation in an effort to reduce confusior.
If we no longer allow E to be arbitrary. but instead impose the value E = Ey = H(ag. ).
we obtain the nonhomogeneous systemn

da 9 Hda da
?_ 5&% BT’:) _ 0 I ) ( dag I )
/ on dn - <1/ an Iy
ot P O = HEbb[l ((L)] 0 Beg O

( In)(VV (ao)] n){mol )
+2a Y

= [VV(a)(VV(ao)| —|VV(a)){nol
This has a solution

o fa In)(VV (ao)| [n) (ol
dag Ino _ I & \
( o ) = g % it ( =[VV(a)}(VV(a)| —|VV(a)){mol ) ! e

dag  Ono

where U(t) is the solution of the homogeneous system

o 0 I

a /M= ( Hess[V(a)] 0 ) ut).
with

U(0) = I.

The matrix U(t) can be realized explicitly as
23 8
da a
Uty = (ﬁg %i).
dno  dag
where (a.7) = (a(ag.no-t). N(ag.no.t)) is the solution of the unperturbed (o = 0) Hamilto-
nlan systemn
da  _
ot 7

o7
5{ = -V (a)

We note that for £ = Ey. (a(ag. no-t). 7(ag.no-t)) = (alag. no,t). n{ag. no. t)). altheugh the
unperturbed and the original flows differ in the behavior of the derivatives with respect tc
the initial conditions. Differentiating both sides of

(alag.no.t + 7). N(ag.no. t + 7)) = (@lag.no-t). Nlag.no-t))
with respect to the initial conditions gives

Ut +7(Ev)) = Ult) + 7'(E) ( B ik B 05 )

[VV () (VV (ag)| [VV(a(t))){nol
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) _ (.5’,:;“) -d%(t))
2L(t) 2x(2)
—[nONVV (@)l —In(t))(nol
[VV(a(®)))(VV (o) [VV(a(t)){no] |

Thus. using (2.21). we obtain

Ja i da —
( o (t+T) (t+T)

lé} dn !
att7) E(t+T)

dno

+ (7'(Eg) — 2a1(Ey)) (

7 (Ep) da Jda 0Jn
. then —. — . —. and
27(Ep) dag™ Ing” Ong Oag
The periodicity of A and B follows from (2.20), (2.7). (2.8), (2.16), (2.17). and uniqueness.
/2 7'(E
2T(E0
periodic, it suffices to show that the trajectory {det(A(¢)], 0 < ¢ < 7} in C has winding
number equal to 2.
To prove this, we note that solutions to differential equations with smooth coefficients
depend smoothly on initial conditions and parameters in the equations [12]. It follows that
the winding number is a continuous integer-valued function of the initial conditions. Thus.

it must be constant. For the special case ag = (1,0,0). ng = (0,1,0).

are periodic with period 7(Ejy).

So. if we choose a =

Since A is

The final stroke is to prove the periodicity of det[A(t)]'/* if a =

~—— [ —

1 =22 0
Ao = | 22 -1 0 |. (2.22)
0 0 1
and
-1 - 0
0 0 1
we can explicitly solve (2.5)-(2.8). We obtain 7 = 27, a = 3/2. and det[A(t)] = 5¢**. For

this special choice (and hence. all) initial conditions. the winding number is equal to 2. B

3 Quasimodes for fg(H(R)) and H(h)

In this section we first construct a lowest order quasimode for the Hamiltonian fz(H(R))
and then show that the result is a quasimode for the Hamiltonian H (k).

. T (E
Theorem 3.1 Let the hypotheses of Proposition 2.3 be satisfied. and choose o = = ((EO))'
FArn 0
Suppose h and Eq satisfy the Bohr-Sommerfeld condition
Ey1(Ey) + S(7(Eo)) = 2mhn. for somen € Z*. (3.1)

Let

= .’“15 V‘V‘((Lo) — I'B(; Mo -



330 Hagedorn and Robinson

and define
U(h.x) = (wh)"'* Vlf————-

7(Eo) . .
X / e B+ eGP iSO/ R.(z) ol A(t). B(t). h.a(t). n(t). ) dt.
0

Then.

¥k =1+ OKY?) (3.9)
and

!HHW—(&+£zJ]mqu=mwﬂ. (33

We prove this theorem below. The proof is analogous to the corresponding one, presented
in [1]. for one-dimensional quantum systems. but the details are more complicated.

3.1 The proof of Theorem 3.1

To establish (3.2) we first note that we can remove the cutoff function R. from the integrand.
because if

. 7(Ep) Fak
U(h, ) = (wh)~V* -Jfl-jf e UET BRGSO/ A1), B(t). B. a(t). n(t), ) dt
27(Eo) Jo

then

= O(h).

After removing the cutoff. we simply mimic Section 2.3 of [1] to prove estimate (3.2).
The argument is based on two crucial lemmas. The first. Lemma 3.2. is Proposition 4 of [1],
so we simply state it here without proof. The second. Lemma 3.3. is a multi-dimensional
analog of Proposition 3 of [1].

Lemma 3.2 Suppose f(t.s) is a complex C* function and g(t.s) is a complex C* function,
fort € (0. T] and s € [=T/2. T/2]. Suppose there exists & > 0. such that Re (g(t.s)) > 6s°.
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fort (0. T] and s € [-T/2.T/2]. Assume further that g(t.0) = 0: Qﬂ(t 0) = 0; and

()S_ =2(t.0) = «(t) is real and positive. Then for any non-negative integer n, we have
T/”
/ dt/ ne—g(L.s)/fa 5 T Guun |2n _ 1! \/2—71' hn+l/'2
T/2

T
X/ f(th)(X(t)—n—l/'_’dt ks O(h7l+l).
0

Lemma 3.3 Suppose ay. n,. ax. 1o € R*, h > 0. and that A, B, and A,, By are two pairs
of n x n complez matrices with each pair satisfying conditions (2.2)-(2.3). Then

(2o(Ar. Br b, ay,m, ), go(Aa, Ba, h,as. 7, ))

2

= 22 (det(A;)) V2 (det(A2)) V2 (det(By A, + By A1)V

X exp { - <(a1 —a:). Bi A, (BiA 4B A 2 ) B AT (e —(12)>/2fi

= (lm=m). (B A + Ba A7) (= ma)) /28

i ((m=m), (B4 + B A) MBI - Ba Ay (e - a)) /2h
—1 ((771 + T?z), (ag — CL]_)) /Qﬁ, }

Proof. We prove this lemma by explicit calculation. We write the inner product as an
integral and complete the square in the exponent of the integrand. We simplify the result-
ing expression by using some matrix identities and then compute the integral by changing

variables.
We write

( l,?()(/‘ll. Bl. h. ay.m. ) (TS‘Q(.-L_). B-_}. h. as. M. ))

= (ﬁﬁ)“”/g(det(I))"”Q(det(.—l-_)))"/'z]— exp{—®(z)/2h} dx. (3.4)

where
P(r) = <(r - ). B A4, (r — ul)> + ((r—a2). By A7 (x = a2))

20 (. (z—ay)) =208 (. (2= a))

=i

e o !
= (B A —:——Bf_.»‘-l._,'l).r——?(BlA—ll (11+B-3/‘1._>_1(L2+2I(T]2—T]1)) ®

+ <(11. B—l:l—l_lal> -+ <(1-_). B-_u"li“)-_:) + 22 (I]_) (I,'_)) - 21 /\’L')[, (11). (33)
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To complete the square in this expression. we use the formula
2Tz —2if'z = (z - z‘T‘lE)t T (x—4T7%) + & T7'¢,

that holds for complex matrices T" that satisfy T* = T and complex column vectors r and &
Specifically. we choose z to be the independent variable,

£ = —i(B A o+ Bl las) + (s —m), (3.6)

-1

and T = (B, A, + B, A;'). We can thus write (3.5) as

O(z) = (z—4T7%)' T (z—iT7%) + £T7'¢
-+ <a1. Em_lcn) + (ag. B;;A,_;lag) + 21 {1, az) — 21 (1, ay) . (3.7)

By a gruesome calculation that we perform below. this can be rewritten as

o(z) = A By ANy

1

“(B,
< a) — ao Bl 41 (—51—.71—1“1 + Bg.451)—lBgA-;l(al = Clg)>
< —m), (Bi A1 + BA7Y)H(m - 02)>

1

+i((n=m) BiA +Body) " (BIA - BoAr)a - a2))

+1 ((m +m). (a2 —ay)) . (3.8)

T ! [
where y = (r — (Bl A, : + Bg."l;]) {Bl A lal + ByAy ' as +i(my — 771)])- Using (3.8).

we change variables from z to y in the integral in (3.4). After we extract all the y-independent
factors, the integral is a standard Gaussian integral that can be computed using well-known
techniques (see e.g.. [13]). This proves the conclusion of the lemma.

It remains to be shown that (3.7) can be transformed into (3.8). This follows if we show

ftT—lf + <a1. EI_101> * (02- Bz-‘l'z—laz> + 21 (m. @2) — 2% (M. ;)

= <(al—ag) B, A4, (B A +Bg.4§1)“IBgA§1(a1—ag)>

1

+ (= m) (BUA + BaAT) (- m2))

1

+i{(m=-m). BiA "+ BAs) (B A - Bad;')(ay — a_,)>
+i{(m+m). (a2 —a)). (3.9)

To facilitate the proof of this identity. we make use of two matrix identities

Tl (T[ + Tl)_l T-_> = T-_: (Tl + T_?)_l T]. (31())
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and

(M+T) 'y =1 - (T +T) ']

-1

We apply these identities with Ty = B, 4, and T = B»_»A._,"l or their conjugates.

Using (3.6). we expand the left-hand side of (3.9) as
- (BA ) T (BE W) - (B ) T (BAT )
= (BA'a) T (B A 1) = (Bads'@)' T7 (Badi'a)
+ (m—m) T (n2—m)
~i (B ) T (=) = i (BaA3'w)' T (12 = m)
i (m = m) T (B A @) = i (= m) T (Bedf'as)

+ aj (Exulal) + a4 (B247"as) + 2im5a: — 2in;ay.
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(3.11)

(3.12)

We must show that this expression equals the right-hand side of (3.9). To do so. we separately
study terms that contain no a’s. those that contain both a’s and n’s. and those that contain

no n’s.

It is obvious that the terms that contain no a’s in the two expressions are equal.

Using (3.11), we can write the terms containing a’s and n’s on the right-hand side of (3.9)

as

=i (=), T (BA "a)) = i (2= m). T7 (B2Ai'az))

—i (e =m). (I=T7'BA7)a) = i (m=m), (I -T B A" ) az)

2i(m. a2) — 2¢(m. @)

= < m—m). T (EZT_I) (ay — 02)> —i((m—m). T~ (B245") (a2 — a1))

i{(na—m), (ay +a)) + 2i(m2. az) — 2i(n. ay)

= ~q <('r)-3 -m). T} (E:“Tl

=1

This agrees with the terms of (3.12) that contain both a’s and n's.

- BQA_T]) (a) — a.-_))> — i +m). (ap —ay)).
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The terms of (3.12) that contain no n's are

- (E?E“al)tfr" (BiA o) - (EA—,"al)tT-l (B2A7'as)

- (B2Az'0) T7 (B A ') — (BiA7'as)' T7 (BaA7'ao)

+a! (E._A_l_lal) + ab (Bods'ay)

_ (F,A_l“a,)"r*l (BE ) - ('BTAT“‘aI)tT-lBgA;‘ag

= (BoAz'a) T (B ) = (BaA7'ar)' T (Bads o)

4 (”T”Tlal)t:r-l (EI“al) + (E?17“(;,)‘:r"ll_fng,_:‘aI
A7'a)'T'Bi Al ‘az + (BaA7'as) T7' B A g

- (EA_l_lal)tT“lBgA;‘(al —a) + (BA7'ar) T'B A (a2 - ).
We use (3.10) in the final term in this expression to obtain

<(G,1 = Gg), EA_I-IT_IBQAEI(CM = ag)> 5

This agrees with the terms on the right-hand side of (3.9) that contain no n’s.
This establishes (3.9), and the proof is complete. B

Following the outline of [1], we prove (3.3) by establishing the preliminary estimate

” [fEO( (Eo 2“h )] W(h.-) H = O(K*?) (3.13)

and then using the spectral mapping arguments of Lemma, 3.7.

Without doing any further work. we can easily prove weaker versions of (3.13) and (3.3)
that have the O(h*?) replaced by C(k>"). To do so, we define ®(h.z.t) as in Lemma 2.3
and then observe that

{fso( (R)) - (Eo Z_Eh))} U(h. 1)

7(Eo) :
_ —1/4 |8| f _ E _ Zﬂ‘fi h’,(Eo"TcE ;( 1
1/ (B} 0 ~(Eo) (e Dk x. t)) dt

Ch‘sﬂf at( zt(ﬁo ,.E ))/Ti 15( t)/ﬁ(b(h I t)) dt + O(h5/4)
0

= CHRYA (rE+SENM _ 1) §(h.1.0) + O(K)
= O(K (3.14)



Hagedorn and Robinson 335

if A and Ej satisfy the Bohr-Sommerfeld condition (3.1). This proves the weak version of
(3.13). The weak version of (3.3) follows by use of the spectral mapping arguments of Lemma
3.7

To improve the power of k on the right side of (3.14) from 5/4 to 3/2, we mimic the
argument used in [1]. The basic idea is to improve the time-dependent semiclassical ap-
proximation we have used by an approximation that is one order higher in A!/2. We do
this precisely as in [1]. This is a straight-forward exercise, except that we need the multi-
dimensional analog of Proposition 7 of [1].

The higher order approximation requires us to consider states other than Gaussians.
Because these states enter in a purely technical way, we present only minimal information
about them here. For a detailed discussion of them, see [14].

For n x n complex matrices A and B that satisfy (2.2)-(2.3), & > 0. and any multi-index
x, we define

]. K1 *\K2
ox(A, B h,a,n,z) = ﬁ (A1(A, B h,a,n)")™ (A2(A, B, k,a,n)* )™ ...

X (An(A.B,h,a.n)")"" wo(A, B, k,a,n, 1),
where A,(A, B, h,a.n)" denotes the j*" raising operator

A;(A.B.h.a,n)" = L')FL [{ej: B'(z —a)) —ile;, A(p—n))].

The corresponding lowering operator is

A;(A. B ha.n) = _\/}f—)_ﬁ [(ej, Bz —a)) +i(e;. Alp—m))].

Here e; denotes the j'" standard basis vector in R™ and p = —thV. We use A(A, B.A,a.n)
and A(A. B. h.a.n)" to denote the (vector) operators with components 4;(A. B, k,a.n) and
A;(A.B.h.a,n)", respectively.

The multi-dimensional analog of Proposition 7 of [1] is the following:

Lemma 3.4 Assume the hypotheses of Lernma 3.3, and let A and p be any two multi-indices.
Let

= (BAY + (B479)
and

§ = (BiATY) = (Ba A5Y).
Then.

{¥a(A1. Bi.h.ay.m. ). ¢u(ds. By hoas.mn. )
= O(A u) (wolAr Bi hoar.m. ). po(A2, Ba hoas. i, 7)) .
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where the quantity ©(\. u) is determined recursively by

O(A+e;, p) = Z{ ( ) Fé/—ll)]k@(/\—ek.u)

—1

T ty-1 _
+ 2 /i (.41 ['(A5) )J‘k O(A. u—ex)

+ \/% (I"' 1’)“ ((B2A7") (a2 — a1) +i(m2 —m)), O(N, u)}=
(3.15)

or

O\ p+e) = - : Z {\/_(A') I“é?f_')]_.k O(A, 1 — ex)

+ %(x%) ((BiAT(a2 = ) = i(m m)euu&
(3.16)
and the initial conditions
©(0,0) = 1, (3.07)
O(A+e;,0) = J%rin {¢Z(ZTW5&)*eu—qn>
1 = i

+
<__
>l
N

A F);.k ((B2457")(a2 = a1) +i(m = m)), O(N, U)},

(3.18)

n

OO, p+e) = — { Vik (43 F‘S:ﬁl__)j_k@(o._ L—e)

+
G

(4311, ((BIA{')(az —a) — i - m))k (0. #)}-'

(3.19)

Remark 3.5 The initial conditions (3.17)-(3.19) and either (3.15) or (3.16) completely
determine (A, u).
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Remark 3.6 [t follows immediately that ©(A. u) is a polynomial of degree |\ + p| in the
components of

RV ((ByAs) (@ — ay) +i(n2 — m))
and
B ((BIAI_I)(O"-’ —ay) =i — ’fh)) '

Furthermore, an induction on |\ + p| shows that if |\ + u| is even (odd) then this polynomial
contains only even (odd) terms.

Proof. Let
eW(x) = oa(A1, By, ha,m, ),
(rjf;)() = LPH(AQ!B'_"&!G':‘:T’Z:I)'

We prove equation (3.15) by a calculation that is facilitated by the introduction of vector
quantities (I)f_) @E\l_), and @E\ll, with

(@ff))k = (A(A2, B hasm) oP), = Vi o,
((I)E\l_))k = (A(Al Blf ﬁ, alrnl) (;E\l)>k = \/X; ‘pf\l-)ek:

() = (AdBuram)y &) = VAFTEL,.

Then,

(A, o) = = ({2 ).
and

(8, o) = (A4 Biharm) el o)
. A(Av, By hay,m) ¢f2))
<"’E\”- [Bi(z — a1) +i4i(p — m)] a;f">
[Bf <¢E\1).(r—a1)c,, >+zA‘< ) (p— )t )>]
L () ()

+ (Blay—idtm) (. o))

Il
A/\
G
>

-9~ 3l
= ot

o
=

We rewrite the term containing < A ). P \,S’)> using

Pl = —iV2R(A)T O + iByAT! (2 - a2) ¥ + .
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which is the result of solving
| 2 ' @ _ @
A(As. By, h.as.1m0) ;L) \/_ﬁ [Bo T —ay) +iA5(p - T]'))] . = .-
for p o\ with the help of B2As!' = (BaAz! )t, which follows from (2.2).
With further use of (2.2), this yields

(82 ) = =t ()8 - (4B (o). = 4i?)

- (1) (2)
+ VIR (45)7 (o), 22)
(A Bl — (497 Bl + il - ) (¢, )]

= A (B - (B (). =

+ VAR (49 (o), o)
~ (BAT ) — (BaA7")aa +ilm — m) (o1, ¢)].

In this expression. we use the formula

h —
T =a + \/; (-41«4(441:31:5-01:7]1)’ + AI'A(AI’BI-h--a]anl))

to rewrite the factor <c,,f\ ), T gpf)> = <J: ap&l), 9951 >

h
(o018 = (o) fE (R (01208) + 4 (012
From this we obtain
5 1 o —1n 9
(8. o) = ZA(BAT) - Btz ) Fr (2, o)

-

1 - 2
+5 AL(BATY) = (Baaz!) A (). o)

5 1
& - 2\
+ = AL(BAT e = ) il = ) (o o)
+ AL (AY)" <-§,¢ﬂ>.

We solve this equation for <<I>S\]+) > We then take the j'" component of the resulting

expression to obtain
(1) (2)
Piey i \/W
—-1 - (2
2 (T 1)k (2. 2,
1%

R | _ _ (1 (2
+ \/% (.-h F)J'k ((B2A7") (a2 — ar) +i(n2 — m)),, <9’LA”' P )> }
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We obtain equation (3.15) by defining

1 2
(0 42

1 2y
(s&é), @é)>

We obtain equation (3.16) easily by taking conjugates and swapping the indices, since

(1 (2 (2) (1)
<‘!9,\ ! Lf?p-i-e‘,) = <(rg,u+e)2 ‘7’7)‘ >

The initial conditions (3.17)-(3.19) follow immediately by restricting the expressions above
to the appropriate choices of multi-indices. W

O\, u) =

As noted earlier, Theorem 3.1 is proved by mimicking the arguments of (1], with the help
of our multi-dimensional results. The principal idea is to replace the approximate soultion ®
of Proposition 2.3 by the next higher order approximation in A!/2. This replacement adds a
correction to our quasimode ¥ (A, ). We prove that the correction can be dropped because
it is of higher order. This argument yields the estimates (3.3) and

| (H(R) - Eo)® ®(h,-.t) | = O(K*?),

uniformly for ¢ in any compact interval. We complete the proof of Theorem 3.1 by applying
the following spectral mapping result. which is Proposition 8 of [1]:

Lemma 3.7 Suppose H(R) is self-adjoint on a Hilbert space H, and E € R. Suppose ¢(z) =
z+a(z— E)?+8(z— E)®, where 3 is chosen sufficiently large that g(z + E) — E is invertible.
Suppose there exists a vector Y(h) € H with ||Y(Rh)|| = 1, such that

| lg(H(R) - EJ (k)| < CB for some A > 0.

Then. there exists C’, such that

| [H(h) - E]v(R)|| < C'RM
This completes the proof of Theorem 3.1. B
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