Zeitschrift: Helvetica Physica Acta

Band: 72 (1999)

Heft: 5-6

Artikel: The Faddeev formula in the inverse scattering for Dirac operators
Autor: Hachem, Ghias

DOl: https://doi.org/10.5169/seals-117182

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-117182
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv. Phys. Acta 72 (1999) 301 - 315
0018-0238/99/050301-15 § 1.50+0.20/0

© Birkhauser Verlag, Basel, 1999 I Helvetica Physica Acta

The Faddeev formula in the inverse scattering
for Dirac operators

Ghias Hachem
LAGA, UMR 7539 , Département de Mathématiques
Institut Galilée,Université de Paris-Nord
Av.J. B.Clément
93430 Villetaneuse-France.

ABSTRACT . We study the high encrgy limit of the Faddeev Scattering Amplitude for the Dirac operator
associated with a potential Q . We prove that the Fourier transform of the potential and the limit of
the scattering amplitude arc related by an integral equation . Finally we apply these results to reconstruct

the potential modulo a gauge transformation.

RESUME. On étudie le comportement a4 haute énergie de I’Amplitude de Diffusion de Faddeev pour
I’opérateur de Dirac associée a un potentiel Q . Nous montrons que la transformée de Fourier du
potentiel et la limite de l'amplitude de diffusion sont liées par une équation intégrale. Enfin nous

appliquons ces résultats pour reconstruire le potentiel modulo une transformation de jauge.

0-Introduction.

The free Dirac operator .4 in IR® (see [T]), acts on 4-spinor fields according to :
- ou
Au=—z’Zaj7+a4u. (0-1)

where (Ozj)"%=1 are the Dirac matrices, they are 4x4 Hermitian matrices which satisfy the
following relations :
ajar + apa; = 20;5. (0-—2)

Let @ be the multiplication operator by a 4x4 matrix valued function @(.) , the operator
H=A+Q. (0-13)

is thought as a perturbed operator of A . The scattering theory for the pair (A, H) is
well studied, see [G,S], [E], [Y], [B,H]. In an unpublished work [H1], we investigated the
scattering eigenfunctions for the Dirac operator # and the analytic properties of the
scattering operator . In this paper we consider the high energy behavior of the scattering
amplitude. While the Faddeev formula for Schrodinger operator shows that the Fourier
transform of the potential is obtained as a limit of the scattering amplitude , we show that
for Dirac operator the Fourier transform of the potential and the limit of the scattering
amplitude are related by an integral equation. This different high energy behavior was first
observed in the case of scattering by a spherically symetric potential by Parzen who showed

heuritically that klim &1 (k) = — V(r)dr where &;(k) is the phase shift at energy %2
— 00 0



302 Hachem

for the [ partial wave, while Llim 51(k) = 0 in the case of Schrodinger operator. Recently
v —>» 00

[B,G,W] established this result by studying the high energy asymptotics for the solutions
of the radial Dirac equation. For non radial potentials and in the framework of the 0
approach,see [H2] we obtained a related result for an analytic extension of the scattering
amplitude. Related works on the inverse problem for Dirac operator is [Is].In the papers
(J], [1t] the high energy asymptotics of the scattering operator are considered, while [J)
uses a time dependant method , [It] focuses on the high energy behavior of the resolvent.
The results we present are equivalent to those obtained by these authors, however our
method is based on the properties of the eigenfunctions and on the use of a Green function
introduced in inverse scattering by Faddeev.

I wish to thank the referee for calling my attention to the paper [It] and for his usefull
remarks.

In the standard representation we have :

g = OO'j_a_I 0
T7\eo; 0) 77 \0 -T

Where the (orj)j.z1 are the Pauli matrices and I the identity matrix. We set 8 = a4 .

We denote by S the spinors space which we identify with @©* with the Hermitian scalar
product and by M the algebra of 4x4 matrices over € . If A, B € M then A* is
Hermitian adjoint of A and

{A,B} = AB + BA.

A matrix A € M is formed with 2 X 2 matrices as blocks, denote by A the matirx
obtained from A upon replacing the off diagonal blocks by 0 .We have {A, 3} = 2844 .

The Fourier transformation is denoted by F and is extended to S and M valued
functions in the usual way. We also denote by f the transform of f.If H,K are
Hilbert spaces, L(H,K) is the space of bounded operators from H to K .We denote
by * the convolution.

I-The scattering theory for the pair (A, H) .
The operator A acts in K = L2(R® S) with H!(IR?S) as domain and
o(A) =] — oo, —1] U [1, +o0].

The symbol of A is:
A(§) =&a+ b, (1-1)
and we can find a unitary matrix Up(£) such that V¢ e R3

Us (§)A(€)Uo(§) = w(&)B (1-2)
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where the function w(€) = (| € |2 +1)2 is the energy. The M valued function Up(.) is
C® . A canonical choice is

el v

Let Ugu(.),l =1,...4, be the columns of Upy(.) . For f € CS°(]R3,S) we set

(®0f)(€) = Ug (E)(F£)(E). (1-3)
Then the map $; extends to K as a unitary operator and
Do ADY = wp, (1-—4)

where w is the multiplication operator by the function w(.) . Thus A is diagonalized
by @ .For k€@ Imk>0,let g(.,k) be the kernel of (—A — k?)~!

9(z, k) = exp (ik|z|).

1
47 ||
For k>0, g(.,£k) are the outgoing (+) and incoming (—) fundamental solutions of
(=A —k2) . If z2¢ o(A),and k(z) = (z22—1)7 with Imk(z) > 0, then the kernel of
(A—2)"1 is:

Gal2) = (A+ 2)g(, K(). (1-5-a)
The limits
Ga(, A£i0) = (A+ Ng(., k(A £10)) if |Al>1 (1-5-10)

are well defined as distributions. Note that k(\+1i0) = £sgn(A\)(A2—1)7 ,where sgn is
the sign function.

DEFINITION 1-1. — Let p(z) = (1+|z|)2 , s€ R and k >0 . If X is a finite
dimensional vector space, the weighted Sobolev spaces K¢(X) and WE(X) are defined by

K,(X)={f| o*feL}B%X) },
WEX) = {f] (I-A)feK,X) },

where (—A) is the Laplacian. These spaces are endowed with their natural norms, denoted
by s, [|-ll,s respectively; we omit s when s =0 . As usual we denote by S the
space of rapidly decreasing functions in C®(R®, @) and for m,r € IN we set

S™ = {f|f € C™(R? Q); p"0' f € L™; |t| < m},

endowed with the natural norm, then S = Np,enSy" , with the projective limnit topol-
ogy.The dual S' is the space of tempered distributions. We will use also the spaces
57 = NpewS," and S = NrenS," . Function spaces of vector or matriz valued func-
tions are denoted similarly whenever theiwr components belong to the above spaces.

Let R(z,.A) be theresolvent of A .Then A satisfies the Limiting Absorption Principle,
i.e., the limits

lim R(A % i€, A) = R(A 10, 4) (1-6)
exist in L(K(S),K_s(S)) for s> 3 , uniformly for [A[>6,6>1.
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HYPOTHESIS 1-2.. — Suppose the potential Q isin S and of the form Q = a.«a + .1
where the vector function a(.) and ¢(.) are respectively the magnetic and clectric
potential. Denote by |Q|n, the norm of Q@ in S .

ProrositioN 1-3. — The operator H = A+ @ has a unique self adjoint extension in
K(S) with domain W2(S) . We have

Uess(%) :] - 00, —‘1] U [1 +OO[
The operator H has a pure point spectrum in the interval ] —1,1[ and

lill’(l)R(/\:tié,H) = R(Ax1i0,H) (1-17)

exists in L(K (S),K_4(S)) s>

is absolutely continuous .

uniformly for A, |A| >4 ,0 > 1 . In particular H

Lo

The spectral properties of H are well known, see [E],[H 1],[Y],[G-S],[B-H ],[It],[T].

PROPOSITION 1-4. — For every € € R?\ {0} the Lippmann-Schwinger equations
UL(,€) = Upa ()< = R(§i(w(€) +i0), A)(QUI(.,€) (1-8)

for l=1,...,4,86 =1 for |=1,2 and & = -1 for |l =3,4, have unique solutions
Ui(., &) € WE (S), k arbitrary, s > 3/2 the map & — Uy(.,€) is continuous and
bounded from the set [£| > o >0 into WY (S) .

Proof.The existence of the solution is classical, the boundedness statement results from
the relation

Ui(+€) = Uoa(€)e'< > = R(8i(w(€) +10), H)(QUo (., £)e' <)

and Proposition 1-3. &
Let U(.,§) be the matrix whose columns are {U;(.,&)|l = 1,...,4} , and set for
/e CE(R%,8)

©/()= [ U (5.9f () de (1-9)
Then & extends to a unitary operator in K(S) and

OHo P = wp.

Equations (1-8) may be written as a matrix equation for U(.,£) using (1-5-b) :

U(..€) = Un(€)e"” = g, [€]) x (AQU(., &) + w(€) QU(., €) ). (1 -10)

We designate by S? thle unit sphere in IR?® and introduce polar coordinates for
€ k=1 and w= 167" andfor z :7r=|z| and 0 =|z| 'z .
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DEFINITION 1-5. — The Faddeev Scattering Amplitude. For every € € R® set

F(n,€) = Uy (n) F(Q() U(.,€))(m). (1-11)

Since Q(.)U(.,€) isin &, themap & — F(.,§) is well defined and continuous from
R®*\ 0 to S . The relation of F to the Scattering Amplitude is illustrated by the
following.

ProproOSITION 1-6. — For k > 0 , we have as 7 — 00

ikr

U(r, kw) = Up(kw)e™* 0 — (21)3 w(k)Uy(k0)BFa (Kb, kw)er

+0(r7?) (1-12)
uniformly in w,0 € S* and k in a compact .

Proof.We have following relations :

I:L, _ yi—leiklz—yl — T—leikre—z’k(G,y) o a(x, Y, k)r-z’
Vilz - y]"le"k'”“y| = ikfr—letkre RO 4 b(z,y, k)r—?

|b(z,y,k)] < Cp(y)” uniformly 6 € S? and k in a

with |a(z,y, k)| < Cp(y)®,
= QU ( £) we have by integration over y

compact. With V( £)

(m/2)Y2V (k, kw)r~te*™ + O(r~2),

(g V)(r8) /
r8) = (1/2) Y2 A(kO)V (K6, kw)r~1e*™ + O(r~2),

(A(D)g x V)(r6)

insert these relations in (1-10) and use the relations
F(kO, kw) = Uy 1 (kO)V (., kw)(k6), Uy (k0) A(kO)Up(k6) = w(k)B
by noting that {F, 3} = 28Fa we get relation (1-12). &
So the scattering amplitude matrix is :
T(k,0,w) = —(27) 3 w(k)BFa (6, kw).

As in the scattering theory for Schrddinger operators [N],[A,J,S], we can show that
T(k,8,w) issimply related to the kernel of the S-matrix for the pair (A, H) , [H1],{It). The
scattering operator commutes with A it is then diagonal in the spectral representation of
A , this implies that the S- matrix commutes with g , hence T'(k,.,.) is block diagonal.



306 Hachem

I[I-The Faddeev Formula

Let V(&) = c(_E)U(..ﬁ)Uu'l({) , where ec is the operator of multiplication by the

Ci<;r:,§>

function e¢(x) and set

h(g) = 0(~.§).(/('? |£i) (2 - 1)

After multiplication of the Lippman-Schwinger equation (1-10) on the left by e,_¢) and
on the right by U;'(€) we sce that V(.,€) satisfy the equation

V(. =T-0(*x(AD+QV(,&+QV(,E§) A))

—
o

|
Q%]
S—

where we have used (1-2) and the relation
e(—ey(Jx)ee = (e—gey I )*; VK € §'.
Define the operator S(§) on matrix valued functions by

SEOX =h(.O*(AD+QX()+QX()A(S)),

equation (2-2) is then written as V =1 — §(&)V , the kernel (2-1) is a boundary value
of Faddeev fundamental solution of —A — 2i¢(V , ¢ € @ and we know that S(&) is
a compact operator W' s > 1/2 with noom O(|Ql;,) , 7 > 2s ,uniforinly in
{£.1€] = 6} . (See [H2] especially Remark 2-14, [W1], [N2]). Equation (2-2) is equivalent
to (1-10) and we have

PROPOSITION 2-1. — For & € IR®\ {0} equation (2-2) has a unique solutions in W',
s> 3/2 and the map £— V(.. €) 1is continuous and bounded on the set {&,|C] > I} .

DEFINITION 2-2. — Let w € S? and R® = Rw@ (Rw)* the decomposition of IR* into
subspaces parallel and orthoganel to w in this decompsition define the distribution

h,oc(.r;,.?:::,:w) = %@(J;;) ® 5(55";) (8 = 3)

where © s the one dimensional Heaviside distribution and & the two dimensional Dirac
distribution .

The proof of the following two Lemma is given in the appendix.

LeMMA 2-3. — We have klim k(. kw) = hoo.,w) in (S2)° . 6 > 2 in the strong
i —+0C

dual topology uniformly in w .
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LEMMA 2-4. — Let h € (§™)*, r >3 ,then the map f+— hxf <is continuous from
W. into Wl s> r—3/2, l+1l'>m . The map h v hx is continuous from (S*)*

-8 !

; ; -
with strong topology into L(W. WZ.)

—E

LEMMA 2-5. — For k > 0 ,w € S? define the operator Soo(w) operating on matriz
valued functions by

Soc(W)X = heoo(,w) * {w.a,Q X},
Let 1 > 2 and s > 3/2 then the operator Seo(w) is bounded from W', into
WL, ,with operator norm O(|Q|,,) for r>2s and

lim S(kw) = Seo(w),

k— 400

in LWL, W) uniformly in w .

Proof. By Lemma 2-3,2-4 klim kh(,kw) = hool,w) in (83)* , 6 > 2 and
—+oc

klim E.h(., kw)*x = hoo (., w)* in L(W.L WO ) uniformly in w with 1 >2, s>3/2.
—+400

But from their definition § — S, = 71 + 72 where
Ti(k,w)X = (k.h(.,kw) — hoo(\,w)) *x {w.a Q X},

Talk,w)X = h(, ko) » (. V)Q X +{8,Q X}),
since multiplication by @ is bounded from W', into W. | we have klh}_l Ti(k,w)=0
:—r T 00

L(W.,,W°,) uniformly in w . On the other hand it is well known, [W1], that the
operator h(.,kw)* is bounded from W! into W', with norm O(k~!) uniformly in
w ,hence 75 isin L(W.,, WY ) with norm O(k~!) . from Lemma 2-4 and the fact
that multiplication by @ is bounded from W', into W! with norm O(|Q|;,) ,we
get the estimate for the operator norm of S(€) and S (w) . ¢

We will show that the operator (I + S.) is invertible W', | to this effect we solve for

—8
X the equation

X =K —hoo(,w)*{w.a, Q@X}. (2 —4)
where K is a given matrix valued function. Let
1 I —wo
P=(2) (wla I ) (2-35)

then P lwaP = B, letY = P71XP.,L = P'KPand R = P QP . By
multiplying (2-4) on the left by P~! and on the right by P we get

Y = L — hoo {8, RY}, (8—8)
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Any 4 x 4 matrix has the 2 x 2 block representation

_( My M_,
M = (M+_ M__)

and we have
_ [ 2M4y 0
{ﬁ,M}— ( 0 __2114__)

By using the relations o¢;.0; = i€;jx0r ,where ;5 is the signature of the permutation
(123) — (ijk) we have (w.o)(a.0) =w.a+ (wAa)o we compute

R=(q+I a.J_.a), (2 - 7)

a,.c q-1

with the notations ¢+ = ¢ e where ¢y = ew and a; = a—aqyw . Clearly aj is
the magnitude of the projection of @ on w and a; its component orthogonal to w .

We have
[RY)4+4+ = q+ Y4y +ar.0Y,_, [BY ] =Y = 4 0 0¥ 4

By expliciting the block structure of equation ( 2-6) weget Y,_ =L, ,Y_, =L_, ,
the equations decouple

Y+.+. = L++ _— 2h'oo * (Q+Y++ + a_,_.aY_,._), Y _=L__+ 2hoo * (Q_Y__ _1y CL_]_.O'Y_+).

These two equation are similar, so it suffices to consider the first. Recall now that
hoo(z', 2", w) = 5O(z') ® 6(z") ,( we omit the reference to w ) to see that the integral

equation is equivalent to

O (Yiy — Lyy) = —igy (2).(Yo4 — Lyy) + My
where My = —iqy Ly —a,.0L,_ with the initial conditions at —oo

im (Yiq = Lyy)(2',2") =0

' —00

So we get

xl

Yip(z',2") = Lig(z',2") + ([ (BTN (¢, 2")dt) e (==, (2-8)

=00

where ¢y (z',z") = f_x;o g+(t,z") We can check that if L € W' then the solution
Y € WL, and that the map L +— Y is bounded.

—S
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PrRoOPOSITION 2-6. — The limit khT V(. kw) = Vol.,w) ezist in W2, , s > 3/2,
c—+00

uniformly in w € S? and is the unique solution of the equation

Voo (yw) =T = heo (1, w) % {w., QVo (-, w) }- (2-9).

Proof. Let § > 0 as in Prop.2-1, and w fixed. For k > 4 we have
V(s kw) = Vao(os) = [T + Soo (@)] ™ (S0 (@) = S(kw)) V (., kw),

by Lemma 2-5,
lim S(kw) = Seo(w),

k—+o0
in L(W.,_, W% ) uniformly in w .Since [I+Sw(w)]™! is bounded in L(W?, , W2 )

and {V(.,kw),k > 6} is bounded in W' _ we have limg_ioo(V(kw) = Voo(,w) . <

THEOREM 2-7. — The Faddeev Formula.The limit limg_oo F (7 + kw,kw) = Fy(n,w)
exist in S§° ,uniformly in w € S* | Fy(.,w) € S and the following equation holds

Foolyw) = R('aw) - R('aw) *(ilw('aw)-{ﬂv Foo(yw)}), (2 -10)

where R(.,w) s giwen by (2-7). The limit Fo, ts given by relations (2-11),(2-12).

Proof.The proof results easily from the Proposition 2-5, by noting that

F(n+£,6)=U(n+ &) (FQLV(,.))(n).Us(€).

For the Schrodinger operator we have
Q(n) = —4r lim A(n + kw, kw)
k—o0

where A(&,n) is the scattering amplitude and the limit is taken with fixed momentum
transfer 7 . This is the Born approximation to the scattering amplitude , see [N1]pg 282,
[N2] pg 25, this relation is known as the Faddeev formula . In the case of the Dirac operator
the high energy limit of F at fixed momentum transfer is linked to the potential Fourier
transform by equation (2-10).

Equation (2-10) leads to the solution for the inverse problem, in order to see this we analyse
the equation to find the structure of F,, , which we denote simply by F omitting the
reference to w . Decopmpose the equation into blocks after performing the inverse Fourier
transform

Fiiy=Ryi(1-2he(,w)*xFyy) ,  Foi=R_, (14 2ho(,w)*xF__)
Fo =Ry (1-2heo(w)xFry) , F_=R__(1+2he(,w)xF__)
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Note that Ry4 = ¢4 ,R__ = g and R,_ = R_, = a, .0 . Observe that for
w € S the scalar equation w = w(l £ 2h,(.,w) xu) has a unique solution in uw € §
so we must have F.,. = f,I and F__ = f_I, fi, f- beeing numerical function in

S ,since TrR._ = TrR_,. =0 we conclude that TrF,_ = TrF_,. = 0 . Denote by
g+,9— the functions g1 = (1 F 2ho(.,w) * f+) , from Definition 2-2, we see that

pele\a) =170 [ falt.o")at (2-11)
< —00

so equation (2-10) is recast into

Far = fal o Foo=fal (2-12-74)
Fo_=gra,0 . F_o=g_.a,.0 (2 —12 —1i)
where :
I’ :L_J
i = exp(%ﬁf qs(t, 2')dt), fr =4+ cxp(¥i/ qe(t,2)dt). (2 — 12 — i)
—00 —o0

This shows that g+ € S§° , fr € S are such that f, = f_ , |g=| = 1 and we have
g+ = f+g+ . Now (2-12-ii) shows that a,.c = .?j+f7'+_ = §_F_, is a traceless self-adjoint
matrix that anticommutes with w.o . Note conversely that any such a matrix may be
written uniquely M = b.o with 2b; = {M,0,.} and b orthogonal to w . This proves
the unicity of the solution of (2-10) and gives a characterization of F, . The following
theorem gives the solution to the inverse problem : the reconstruction of the potential
knowing F, .

THEOREM 2-8. — Let F € S be a matriz valued function and w a unit vector. Suppose
that Foy = f.1 and F__ = f_I where fs+ are scalar functions such that fr=f
and |g+) =1, with g+ defined by (2-11), suppose further that G.F._ = g_F_, are
self adjoint with trace zero and anticommutes with w.oc . Then there exist a real valued

funictions ¢ ,and a real vector field a such that if Q) = pl+a.a then Foo(,w)=F(.) .

Proof.The condition |g4| = 1 implies that gy f, and g_f_ are real valued func-
tions.Define ¢ and a) by

20=04+f+ +3-f- ; 20y =9+f+ —9-71-

and let a, be the unique real vector field such

Byl =B L

then w orthogonal to ay ,let a = apw+4+ar and Q = p+aa then Q € § is
self-adjoint, consider the direct scattering problem then by Theorem 2-7, F..(..w) cxists
and 1s the solution to 2-10, hence Fu(.,w) = F(.) by the unicity of the solution. &
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III. The high energy asymptotic of the scattering amplitude and the inverse
problem.

In Section I we have introduced the scattering amplitude, it is modulo a factor depending
only on w(k) the restriction of the diagonal part of F(n,£) to the cone [ = |g|
identified to I' = IR} x 5% x S? by setting n = k6 and € = kw . A path k —
(k,0(k),w(k)) in T having a limit (oc0,0,w) as k — oo is said to be an Admissible
Path if the momentum transfer k(6(k) — w(k)) = 7 is constant for large £k . It is easy
to see that for such a path, w = 6 and 7 must be orthogonal to w , in fact consider
the pair (w,7) € S? xR® ,let k — w(k) be a path in S? with limit w then
ko~ (kyw(k) + k= 'r,w(k)) is admissible, all admissible pathes are generated in this
manner.The following Lemma results from Theorem 2-6.

LEMMA 3-1. — Let (1,w) € R® x §? ,such that (r,w) = 0 then along any associated
admissible path

lim w(k)™'T(k,0(k),w(k)) = —(27) /2 BFp a(T,w).

k—o00

The Lemma shows in particular that limy_ . w(k) *T(k,w,w) does not exist.

PROPOSITION 3-2. — Let Foo n be a given C® function of (1,w) € R>xS? on the set
(t,w) =0 , rapidly decreasing as a function of v , then the potentials v.a are uniquely

determined modulo a gauge trasformation. The direct problem with potentials ¢, a with
leads to Fuo a -

Proof.For a given w take coordinates ¢’ along w , and &” orthogonal to w . By
hypothesis the function §" — Fo a(0,£”) is given (omitting reference to w ). So
" = [ Fo a(a’,2")dz’ is also given. ;From relations (2-12) we have

/FOC’A(.’ITI, t'")dr' = diag(yy I,v_1)

!

+oo B
v (z") = [ qi(zy',:r”)exp(q:i/ q+(t, z") dt) da’
J —o0 — 00
this gives by integration
+00
gy (2] = :ti(exp(ﬁﬁ] g+ (z',z")dz") - 1),
— 00

since g+ is real this relation is inverted

+00
[ aalaw)de’ = £ilog1 ¥ (@)

J —00



312 Hachem

with the principal determination of the complex log . This last relation means that
" — G+(0,€") is determined uniquely.Recalling the definition of g4 , the above data
determine for any w the restrictions of ¢ and a) to the orthogonal of w this suffices
to determine ¢ . Let € € R*\ {0} and take w = |£]71€ , since a(&) — |&]72(a(€),€)€
is orthogonal to w , it is uniquely determined. Hence we have determined a+ Vp where

p=-A"YV.a) . ¢

Appendix.

Proof of Lemma 2-2. With no loss of generality suppose that w is along the z; axis, let
x€S82, #>2 then

—ik(x,—71)

x(z)dx

< kh(., kw),x >= / k()
IR3 drr

Take cylindrical coordinates z1,p,¢ , p> 0, ¢ €]0,27] then

. .\ , A\/’p'?
< kh(., kw), x >*] dgyg Y(z1,p
R \/ ?
where
O .
1(Z1, 0) = 4—;/ x(x1, pcos g, psin )dy
0

The function ~(z;,.) extends to an even function of class C? such that
¥
0507 v < Cr®|Ix|

for any o, € N,a+ 3 < 2. Where ||x| is the norm in &7 . Integration by parts of

the inner integral gives
(,ik\/p?—iq:
Fﬂﬂ;;

/]R+ \/{)2 F "Cl

by integration over z;

v(z1, p)dp = - 5 aimlsling, 0\+?/ e*VPIFELy (w1, p)dp
IR,

< kh(., k

b:)ls

/ x(z1,0)dzy + I(x) + Jx(x)
R

+

/ _21}t1 I]_,O)dil?l
R_

:Z/ / e—ik(m,—\/ﬂ2+1§)ry;(m1,p)dﬂfldﬂ
RJR4

Observing that the first integral < heo(.,w),x > , we conclude by showing that
L) < CR Xl 100l < CElIxll, 6> 0.

The first estimate is easily obtained by integration by parts, the second estimate results
from the following lemma with f = 'y;, . The uniformity of the limit in w stems from
the fact that the constants do not depend on w independant. &

where

t\.'JIm

and
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LEMMA.. — Let f(z,p) be a C* function on IR x R ,we suppose f(x,.) is odd and

that for some 6 > 2
8207 f| < m(f)(1+7)"°

for a+pB<1,r=+/p*+22 andlet
Jlf) :/ / e~ # =V £ (x, p)dadp,
RJR,

then there exist 0 <6 < (0 —2)/3 such that

| Te(f)] < Com(f).k°.
Proof. With the polar coordinates z =rcos¢p , p=rsing , 7 >0, ¢ €]0,n[ we have
)= [ vie [ st
JR, 0

The function ¢(r, @) = f(rcos ¢, rsing) is of class C! and
198g] < C.m(f).(1 +7)>°

for a« <1 .Let A= kr ,then the inner integral is Iy(g(r,.)) with

In(u) = fo T emiNeos =Ty (g)dg,

This oscillatory integral has stationnary points at 0,7 , the amplitude function wu is the
restriction to [0, 7] of a periodic odd function . Using results from [H6], we can prove

[Ia(u)| < CA™T D sup |9%yl

lal<3
if uw€ C3 and by interpolation we prove that with &, ,such that 46 < p <1 ,
A (u)] £ CA™°Julou,

the norm of w is in Holder space C%# . Taking into account the estimates on ¢ we
have

[Ia(g(r, )| < Cm(F)E~r=0 (1 +7)177)

Inserting this estimate into Ji(f) gives the desired estimate. ¢
Proof of Lemma 2-3. Observe first that if ¢,o > 3/2 then

S, CWI o Wnte o gm
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with continuous injections, this results from the definitions and the Sobolev embedding
theorem. The Fourier transform maps S™ into &7 if ¢ > 3 and by duality (S™)*
into (8'~%)* . For f € S ,the convolution hx f is defined in &’ as the distribution
whose Fourier transform 1is f .h and we have we V f.ges

<hxfg>=<h fi>

Suppose that f € W. and g € Wls' with s > 3/2 | then fe W/ and g€ Wj .
Since W§ = H* is an algebra when s > 3/2 we have then fj € Wi, € &7, with
o>3/2.Let e=s—r—3/2 andtake t =3+¢e,0=3/2+2¢ and [+!'=m then
s—o=r—t .Since he (S;t)* we get

| < hx f.5>] < Clh|grry.1folsr—c < Cllismy-1flwe gl

this achieves the proof. &
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