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The Faddeev formula in the inverse scattering
for Dirac operators

Ghias Hachem

LAGA, UMR 7539 Departement de Mathématiques

Institut Galilée,Université dc Paris-Nord

Av.J. B.Clément

93430 Villetaneuse-France.

ABSTRACT.We study the high energy limit of the Faddeev Scattering Amplitude for the Dirac operator
associated with a potential Q We prove that the Fourier transform of the potential and the limit of

the scattering amplitude arc related by an integral equation Finally we apply these results to reconstruct

the potential modulo a gauge transformation.

RESUME. On étudie le comportement à haute énergie de l'Amplitude de Diffusion de Faddeev pour

l'opérateur de Dirac associée à un potentiel Q Nous montrons que la transformée de Fourier du

potentiel et la limite de l'amplitude de diffusion sont liées par une équation intégrale. Enfin nous

appliquons ces résultats pour reconstruire le potentiel modulo une transformation de jauge.

O-Introduction.

The free Dirac operator A in IR3 (see [T]), acts on 4-spinor fields according to :

du
Au= — i> a,- Venu. (0 — 1)

dxJ

where (aj)*=1 axe the Dirac matrices, they are 4x4 Hermitian matrices which satisfy the
following relations :

OjOk + ctkctj 25jk. (0 - 2)

Let Q be the multiplication operator by a 4x4 matrix valued function Q(.) the operator

H A + Q. (0-3)

is thought as a perturbed operator of A The scattering theory for the pair (A, H) is

well studied, see [G,S], [E], [Y], [B,H]. In an unpublished work [HI], we investigated the
scattering eigenfunctions for the Dirac operator H and the analytic properties of the
scattering operator In this paper we consider the high energy behavior of the scattering
amplitude. While the Faddeev formula for Schrödinger operator shows that the Fourier
transform of the potential is obtained as a limit of the scattering amplitude we show that
for Dirac operator the Fourier transform of the potential and the limit of the scattering
amplitude are related by an integral equation. This different high energy behavior was first
observed in the case of scattering by a spherically symétrie potential by Parzen who showed

/•OO

heuritically that lim 6i(k) — / V(r)dr where Si(k) is the phase shift at energy k2
fc-»oo J0
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for the I partial wave, while lim 6i(k) 0 in the case of Schrödinger operator. Recently
k—yoo

[B,G,W] established this result by studying the high energy asymptotics for the solutions
of the radial Dirac equation. For non radial potentials and in the framework of the 8

approach,see [H2] we obtained a related result for an analytic extension of the scattering
amplitude. Related works on the inverse problem for Dirac operator is [Is].In the papers
[J], [It] the high energy asymptotics of the scattering operator are considered, while [J]

uses a time dependant method [It] focuses on the high energy behavior of the resolvent.
The results we present are equivalent to those obtained by these authors, however our
method is based on the properties of the eigenfunctions and on the use of a Green function
introduced in inverse scattering by Faddeev.

I wish to thank the referee for calling my attention to the paper [It] and for his usefull
remarks.

In the standard representation we have :

fl 0

a4=lo -I
Where the (oj)._1 are the Pauli matrices and I the identity matrix. We set ß an
We denote by S the spinors space which we identify with (E4 with the Hermitian scalar
product and by M the algebra of 4x4 matrices over Œ If A, B € M then A* is

Hermitian adjoint of A and

{A,B} AB + BA.

A matrix A € M is formed with 2x2 matrices as blocks, denote by A& the matirx
obtained from A upon replacing the off diagonal blocks by 0 .We have {A,ß} — 2ßA/\

The Fourier transformation is denoted by ZF and is extended to 3 and M valued
functions in the usual way. We also denote by / the transform of / If H. K are
Hilbert spaces, L(H,K) is the space of bounded operators from H to K .We denote
by * the convolution.

I-The scattering theory for the pair (A, H)

The operator A acts in K L2(IR3,S) with HX(IR3, S) as domain and

a (A) =] -co,-l]u[l,+oo[.

The symbol of A is :

A(C) Ca + ß, (1-1)
and we can find a unitary matrix Uo(£) such that V£ G IR3

Do(Ö-A(0üb(O «>(t)ß- (1-2)
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where the function w(£) (\ £ \2 +1)5 is the energy. The M valued function Uq(.) is

C°° A canonical choice is

(l + w)I -cj.cr

Let U0ii(.),l=l,..A, be the columns of U0(.) .For / e Cg°(IR3,S) we set

(*o/)(0 ü-o(0(^/)(0- (1-3)
Then the map <3?o extends to K as a unitary operator and

«M*o wß' C1 - 4)

where wj is the multiplication operator by the function w(.) Thus A is diagonalized
by $0 • For k € Œ, Im fc > 0 let c?(.,'fc) be the kernel of (-A - A:2)-1

#(*. *) T-T7 exp (^M)-

For k>0,g(.,±k) are the outgoing (+) and incoming (-) fundamental solutions of

(-A - k2) If z i a (A) and k(z) (z2 - l)i with Imfc(-z) > 0 then the kernel of
(A-z)-1 is:

GU(-,*) (.A+ *)*(¦, *(*))¦ (1-5-a)
The limits

GA(.,\±i0) (AA\)g(.,k(\±i0)) if |A| > 1 (1-5-6)
are well defined as distributions. Note that k(X±iO) ±sgn(A)(A2 — 1) ,where sgn is

the sign function.

Definition 1-1. — Let p(x) (1 + \x\2)? s € IR and k > 0 If X is a /ira'ie
dimensional vector space, the weighted Sobolev spaces KS(X) and W^(X) are defined by

KS(X) {/| ps/eL2(IR3,X) },

W*(X) {/| (J-A)*/6K.(X) },
where (—A) is the Laplacian. These spaces are endowed with their natural norms, denoted
by ll-llsi ll-IU.s respectively; we omit s when s — 0 As usual we denote by S the

space of rapidly decreasing functions in C°°(IR3,Œ) and for m,r 6 IN we set

<Srm {/|/ € Cm(IR3, <C); prdf £ L°°; \t\ < m},
endowed with the natural norm, then S flm^giN«?™ with the projective limit topology.

The dual S' is the space of tempered distributions. We will use also the spaces

S!f nmew5™ and S™ nrgiN>5rl • Function spaces of vector or matrix valued functions

are denoted similarly whenever their components belong to the above spaces.

Let TZ(z, A) be the resolvent of A Then A satisfies the Limiting Absorption Principle,
i.e., the limits

lim ll(\ ± ie, A) K(\±iQ, A) (1-6)
exist in L(KS(S),K_S(S)) for s > \ uniformly for |À| > S S > 1
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Hypothesis 1-2.. — Suppose the potential Q is in S and of the form Q — o..a + tp.I
where the vector function a(.) and tp(.) arc respectively the magnetic and electric
potential. Denote by |Q|m,r the norm of Q in S™

Proposition 1-3. — The operator H A + Q has a unique self adjoint extension m

K(S) with domain W^S) We have

cTess(W)=]-co,-l]u[l,+oo[.
The operator H has a pure point spectrum in the interval ] — 1,1[ and

lixriTl(\ ±ie,H) =Tl(\±iO.H) (1-7)
£-+0

exists in L(KS(S),K_.,(S)) s > \ uniformly for A, |A| > S S > 1 .In particular H
is absolutely continuous

The spectral properties of H are well known, see [E],[H 1],[Y],[G-S],[B-H ],[It.],[T].

Proposition 1-4. — For every £ 6 IR3 \ {0} the Lippmann-Schwmgcr equations

Uff) U{ffe'<^>-rftfw(O + i0),A)(QUl(.f)) (1-8)
for I 1.....4 Si 1 for I 1,2 and 5t — 1 for I '0,4 have unique solutions

Uff) £ WÌS(S) fc arbitrary, s > 3/2 the map £ •-» Ui(.f) is continuous and
bounded from the set |£| > S0 > 0 into W(15(S)

Proof.The existence of the solution is classical, the boundedness statement results from
the relation

Uff) Uofty^ - nSi(fO + *0), H)(QUQf.f)é< "c>)

and Proposition 1-3. v

Let U(..f be the matrix whose columns are {Ui(.f)\l 1,...,4} and set for
/eC^(lR3,S)

<I'/(0 y U'(xf)f(fdx. (1-9)
Then $ extends to a unitary operator in K(S) and

1>HacV wß.

Equations (1-8) may be written as a matrix equation for U(.f) using (1-5-b) :

U(.f) U0(Ocl<^ - g(..\i\)*(AQU(.f) + w(0 QU(.f) ß)- (1-10)

Wre designate by S2 the unit sphere in IR3 and introduce polar coordinates for
£ : fc |£| and u |£|~ Ç and for x : r \x\ and 0 \x\~ x
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Definition 1-5. — The Faddeev Scattering Amplitude. For every Ç 6 M sei

F(vf) Uf(n)F(Q(.) U(.f))(v)- (1 - H)

Since Q(-)U(.f) is in S the map £ >-+ F(.f) is well defined and continuous from
IR3 \ 0 to S The relation of F to the Scattering Amplitude is illustrated by the

following.

Proposition 1-6. — For k > 0 we have as r —> oo

U(r9,ku) U0(ku)e'kr(u'e} - (2n)iw(k)U0(k9)ßFA(k9,ktv) — + 0(r~2) (1 - 12)
r

uniformly m u,9 € S2 and fc in a compact

Proof.We have following relations :

\x - y|-V*1*-"1 r-Vfcre-'fc<ö'»> + a(x, y, k)r~2,

Vxlx-t/l-V*!*-*1 =ifcör-1e,fcre-lfc<e'!'>+6(x,2/,fc)r-2

with |a(x,j/, fc)| < Cp(y)5 \b(x,y,k)\ < Cp(y)7 uniformly 9 G S2 and fc in a

compact. With V(.f) QU(.f) we have by integration over y

(g * v-)(r0) (i7/2)l'2V(k9, ku)r-lelkr + 0(r~2),
(A(D)g-kV)(r9) (^/2)l'2A(k9)V(k9,kfr-leikT + 0(i--2),

insert these relations in (1-10) and use the relations

F(k9, ku) Uf(k9)V(., ku)(k9), Uö1(k9)A(k9)U0(k9) w(k)ß

by noting that {F, ß} 2ßFA we get relation (1-12). 0

So the scattering amplitude matrix is :

T(k,9,u>) -(2fiw(k)ßFA(k9,ku).

As in the scattering theory for Schrödinger operators [N],[A,J,S], we can show that
T(k, 9, w) is simply related to the kernel of the S-matrix for the pair (A, H) [HI],[It]. The
scattering operator commutes with A it is then diagonal in the spectral representation of
A this implies that the S- matrix commutes with ß hence T(fc,.,.) is block diagonal.
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II-The Faddeev Formula

Let V(.f) e^_^U(.f)Uf(E,) where ec is the operator of multiplication by the

function efx) e'<x'^> and set

M-.0 e(-Ofl(-.I^D- (2-1)

After multiplication of the Lippman-Schwingcr equation (1-10) on the left by e,_c) and

on the right by Uq1^) we see that V(.f) satisfy the equation

'2 - 2)V(.f) I - h(.f)*(A(D + OQV(.,0 + QV(.f)A(0)

where we have used (1-2) and the relation

e(_0(A'*)e4 (e(_0A')*: VK G S'.

Define the operator S(£) on matrix valued functions by

S(fX l,(.A) * (A(D + 0 Q X(.) + Q X(.) A(f),

equation (2-2) is then written as V I — S(£)V the kernel (2-1) is a boundary value
of Faddeev fundamental solution of —A — 2i<Zf7 Ç G Œ3 and we know that S(f is

a compact operator W'_s s > 1/2 with norm 0(\Q\if r > 2s .uniformly in
{£, l£l > S} (See [H2] especially Remark 2-14, [WI], [N2]). Equation (2-2) is equivalent
to (1-10) and we have

PROPOSITION 2-1. — For Ç G IR3 \ {0} equation (2-2) has a unique solutions in WLS
s > 3/2 and the map £ >—> V(..f) is continuous and bounded on the set f. \Ç\ > 5}

Definition 2-2. — Let u G S2 and IR3 Elw© (IRu)1- the decomposition of IR3 into
subspaces parallel and orthogonal to u in this decompsiiion define the distribution

ltx(xfx'ff=l-0(x'f®5(xf (2-3)

where 0 is the one dimensional Heaviside distribution and S the two dimensional Dirac
distribution

The proof of the following two Lemma is given in the appendix.

Lemma 2-3. — We have lim k.h(.,ku>) - hao(.,f in (S2)* 9 > 2 in the strong
k—t + oc

dual topology uniformly in u>
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Lemma 2-4. — Let h G (<S™)* r > 3 .then the map f i-> h*f is continuous from
Wj into Wi, s > r —3/2 Z + /' > m T/ie map /ih ft* is continuous from (S™)*

with strong topology into L(WS,WZS)

Lemma 2-5. — For fc > 0 u G S2 define the operator Sf(f operating on matrix
valued functions by

Soo(u)X hO0(.,u)-k {u.a,QX},
Let I > 2 and s > 3/2 then the operator Soo(u) is bounded from W_s into
W!_s ,with operator norm 0(\Q\if for r > 2s and

lim S(ku) Soo(u),
k-*+oo

in L(W'_S,W°S) uniformly in u

Proof. By Lemma 2-3,2-4 lim k.h(.,ku) hof.u) in (S$)* 9 > 2 and
k—?-(-oo

lim k.h(.,küj)*=hO0(.,u/)* in L(W|.,W°S) uniformly in w with l>2, s > 3/2
k—t+oo
But from their definition S — S^ 71+72 where

Ti(k,u)X (k.h(.,ku)-h00(.,u))-k{u.aQX),

T2(k,u)X h(.,kw)* ((-ia.V)QX + {ß,QX}),
since multiplication by Q is bounded from W'_s into W^ we have lim 7î(fc,o;) 0

fc-++oo

L(W'_S,W°S) uniformly in w On the other hand it is well known, [WI], that the
operator h(.,ku)* is bounded from W'. into W'_s with norm 0(fc_1) uniformly in

u hence T2 is in L(WL,,,W°S) with norm 0(fc_1) from Lemma 2-4 and the fact
that multiplication by Q is bounded from W'_s into Wls with norm 0(\Q\if ,we
get the estimate for the operator norm of <S(£) and S^f) O

We will show that the operator (7 + Sqo) is invertible WL6 to this effect we solve for
X the equation

X K -hco(.,u)-k{u.a,QX}. (2-4)
where A" is a given matrix valued function. Let

then P~lu.aP ß let Y P~lXP L P~lKP and R P~lQP By
multiplying (2-4) on the left by P~l and on the right by P we get

Y L-hcc*{ß,RY}, (2-6)
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Any 4x4 matrix has the 2x2 block representation

"-{it «::)
and we have

{ß,M)=(2M++ °
{P' ' \ 0 -2M-

By using the relations Oi.Oj ieijkOk ,where e,jk is the signature of the permutation
(123) —¥ (ijk) we have (u.o)(a.o) u.a+(u/\a)o we compute

R=(^ a^), (2-7)
Va.i_.r7 q-I

with the notations q± tp ± au where 0|| a.to and a± a — a\\u Clearly ay is

the magnitude of the projection of a on u and a± its component orthogonal to w

We have

[RY]++ q+Y++ + ax.oY+_, [RYf. q_Y— + a±.<xY-+.

By expliciting the block structure of equation 2-6) we get Y+_ L+_ Y_+ L h

the equations decouple

Y++ L++ - 2hoo * (q+Y++ + a±.oY+f, Y"__ L__ + 2/1«, * (g_Y__ + ax.crY_+).

These two equation are similar, so it suffices to consider the first. Recall now that
h00(x',x",u) 5©(a;') ® <5(x") we omit the reference to u to see that, the integral
equation is equivalent to

cV(Y++ - L++) -iq+(x).(Y++ -L++)+ M+

where M+ — iq+L++ — a±.oL+- with the initial conditions at -oo

lim (y"++-L++)(a;',a;")=0

So we get

Y++(x',x") L++(x',i") + j e<**-î*'"")jlf+(*,s")*)e"**f(*',*"), (2 - 8)
7—CO

where q+(x',x") f'^q+fax") .We can check that if L G W_s then the solution
Y G W'_s and that the map L *-¥ Y is bounded.



Hachem 309

Proposition 2-6. — The limit lim V(..ku) V0O(.,u) exist in W°s s > 3/2
fc->+oo

uniformly in u G S2 and is the unique solution of the equation

V00(.)w) I-/i00(.)w)*{u;.a)QVr00(.1w)}. (2-9).

Proof. Let S > 0 as in Prop.2-1, and u fixed. For fc > 5 we have

V(.,ku) - V^fu) [/ + SooM]-1 («SooM - <S(M) V(., fco;),

by Lemma 2-5,
lim S(ku) «Soc^ix»),

fc—H-oo

in L(WLS,W°S) uniformly in u Since [I-fSooH]-1 is bounded in L(W°S,W°J
and {V(., ku),k > 6} is bounded in W_s we have Hxxik-,+00(V(ku) V00(.,u) 0

Theorem 2-7. — The Faddeev Formula. The limit linn.-, oc F(77 + ku,ku) F^rjju)
exist in Sf ,uniformly in u G 52 Foo(.,ü;) G S and the following equation holds

Foc(..u) R(..u)-R(.,u)*(hao(.,u).{ß,Fao(.,u)}), (2-10)

where R(.,u) is given by (2-7). The limit F^ is given by relations (2-11),(2-12).

Proof.The proof results easily from the Proposition 2-5, by noting that

F(ri + £,£) Ufi! + trl-(FQ(-)V(t, -))(v)-U0(0-

0

For the Schrödinger operator we have

Q(n) —47T lim A(n + ku, ku)
k—>oo

where A(Ç,n) is the scattering amplitude and the limit is taken with fixed momentum
transfer n This is the Born approximation to the scattering amplitude sec [Nl]pg 282,
[N2] pg 25, this relation is known as the Faddeev formula In the case of the Dirac operator
the high energy limit of F at fixed momentum transfer is linked to the potential Fourier
transform by equation (2-10).

Equation (2-10) leads to the solution for the inverse problem, in order to see this we analyse
the equation to find the structure of i^ which we denote simply by F omitting the
reference to u Decopmposc the equation into blocks after performing the inverse Fourier
transform

F++=R++(l-2h00(.,w)*F++) F_+=Ä_+(l + 2M.,w)*F__)
F+.=R+fl- 2h00(.,u>)*F++) F__=JR__(l + 2/ioo(.,u0*F__)
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Note that R++ q+I 7?__ q_I and ÄH R h aj_.<7 Observe that for
w G 5 the scalar equation u iu(l ± 2/i00(.,w) * u) has a unique solution in u £ S
so we must have F++ f+I and F /_J /+ /_ becing numerical function in
5 since Tri?+_ Trfi_+ 0 we conclude that TrF+_ TrF h 0 Denote by

g+,g~ the functions g± — (lA 2hco(.,u) * f±) from Definition 2-2. we see that

gfx'.x") It t I' f±(t-x")dt (2-11)
J—oo

so equation (2-10) is recast into

F++ f+I F__=/_/ (2-12-0
F+_ g+.a±.cr F_+ tj_.ax.o (2 - 12 - ii)

where :

q±(t,x")dt), /± g± exp(T-i / q±(t,x")dt). (2 - 12 - in)
-CO 7 —CO

This shows that (/__. G 5^° /± € <S are such that /+ /_ |(/_tj 1 and we have

g-t /±p± Now (2-12-ii) shows that ai.a g+F+_ g_F |_ is a traceless self-adjoint
matrix that anticommutes with u.o Note conversely that any such a matrix may be

written uniquely M b.o with 2bk {M,0}c.) and b orthogonal to w This proves
the unicity of the solution of (2-10) and gives a characterization of Fx The following
theorem gives the solution to the inverse problem : the reconstruction of the potential
knowing Fœ

Theorem 2-8. — Let F G S be a matrix valued function and u a unit vector. Suppose
that F++ f+I and F__ /_/ where f± are scalar functions such that f+ /_
and \g±\ 1 with g± defined by (2-11). suppose further that g+F^ j7_F_+ are
self adjoint with trace, zero and anticommutes with u.o Then there exist, a real valued
functions tp and a real vector field a sudi that if Q tpl+a.a then Foc(.. w) F(.)

Proof.The condition \gf 1 implies that g+f+ and g~f- are real valued
functions.Define tp and an by

2tp g+f+ + g-f- 2(Zj| g+f+ - g_f_

and let a± be the unique real vector field such

g+F cix-o.

then u orthogonal to aj^ .let a an.u + a±. and Q tp + a.a then Q G 5 is

self-adjoint, consider the direct scattering problem then by Theorem 2-7. F00(.,a;) exists
and is the solution to 2-10. hence F00(.,a;) F(.) by the unicity of the solution. 0
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III. The high energy asymptotic of the scattering amplitude and the inverse
problem.

In Section I we have introduced the scattering amplitude, it is modulo a factor depending
only on w(k) the restriction of the diagonal part of F(nf) to the cone |£| [n\

identified to T JR*+ x S2 x S2 by setting n k9 and £ ku A path k i->

(k,9(k),u(k)) in F having a limit (oo,9,u) as fc —> oo is said to be an Admissible
Path if the momentum transfer k(9(k) — u(k)) r is constant for large fc It is easy
to see that for such a path, ui 9 and r must be orthogonal to u in fact, consider
the pair (u. r) G S2 x IR3 let fc h-» u(k) be a path in S2 with limit u then
fc t-r (k,u(k) + k~lT,u(k)) is admissible, all admissible pathes are generated in this
manner.The following Lemma results from Theorem 2-6.

Lemma 3-1. — Let (r,u) G IR3 x S2 ,such that (t,u) 0 then along any associated
admissible path

lim w(kf1T(k,9(k),u(k)) -(2n)l/2ßFooA(r,ui).
fc—>oo

The Lemma shows in particular that lim^oo w(k) lT(k.u.u) does not exist.

Proposition 3-2. — Let FX.A be a given Cx function of (r. u) G IR3 x S2 on the set

(t,u) 0 rapidly decreasing as a function of r then the potentials tp.a are uniquely
determined modulo a gauge trasformation. The direct problem with potentials tp,a with
leads to F»,a •

Proof.For a given u take coordinates Ç' along u and £" orthogonal to u By
hypothesis the function £" >-, Fco,a(0,c;") is given (omitting reference to u So

x" h-» / FOCi&(x',x")dx' is also given. ^.Frorn relations (2-12) wc have

jFx,fx',x")dx' diag(7+/,7_J)

q± (x', x") exp(7fi / q± (t. x") dt) dx'
-oo J — oo

this gives by integration

r+oo
7±(x") ±i(exp(Ti / ^(x'.x")^') - 1).

since q± is real this relation is inverted

f+ OO

q±(x',x")dx' ±iloS(lTh±(x"))
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with the principal determination of the complex log This last relation means that
£" i-> q±(0f") is determined uniquely.Recalling the definition of q± the above data
determine for any u> the restrictions of tp and â|| to the orthogonal of u this suffices

to determine tp Let £ G IR3 \ {0} and take u |£|_1£ since a(£) - |£r2(â(£),Of
is orthogonal to w it is uniquely determined. Hence we have determined a + Vp where

p= -A~l(V.a) 0

Appendix.

Proof of Lemma 2-2. With no loss of generality suppose that u is along the Xj axis, let

X G S2 9 > 2 then

r g-ifc(xi-r)
< kh.(., ku),x >= / fc x(x)dx

Jn3 47rr

Take cylindrical coordinates Xi,p,tp p > 0 tp g]0. 27t[ then

/' /' e'k\/A+f
<kh(..ku).X>= dxie-lkXl kp -y(xi,p)dp

Jm. Jn+ fp-A x\
where

1 f"l(xi,p) — / x(^i.Pcos<p, psin^>)aV
47r ./o

The function 7(^1,.) extends to an even function of class C2 suchthat

|ö-<7| < Cr""llxll
for any a, ß G IN, a + ß < 2 Where ||x|| is the norm in Sg Integration by parts of
the inner integral gives

f kpc\J^lfxi.p)dp V'*'';^! o) + i[ Ak^+^f(xi,r)dP
JlR+ VP + xl JK-t-

by integration over xi

< /,-/((.. ku), x >= \ f x(xi,0)dxi + Ifx) + Mx)
* 7lR+

where

h(x) \l e-2'kxf(xi,0)dxi
1 7ir_

and

Mx)=il I e-'k^-^+^fp(xi,p)dxidp
Jm. Jm+

Observing that the first integral < hoc(..u),x > wc conclude by showing that

\h(x)\ < Ck-l\\x\\; Ufc(x)l<Cfc-ó||xll. 5>0.
The first estimate is easily obtained by integration by parts, the second estimate results
from the following lemma with / f The uniformity of the limit in u stems from
the fact that the constants do not depend on w indépendant. <0>
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Lemma.. — Let f(x.p) be a Cl function on ïïl x IR ,we suppose f(x,.) is odd and
that for some. 9 > 2

19^/1 <m(f)(l + r)~e

for a + ß < 1 r fp2 + x2 and let

Jk(f)= / e-ikl*-y&+*)f{x,p)dxdp,
Jm Jm+

then there exist 0 < S < (9 — 2)/3 such that.

\Jk(f)\<C.m(f).k-6.

Proof. With the polar coordinates x rcoscp p r sin cp r > 0 <p g]0, 7t[ we have

Mf)= I rdr r c-^°s*-Vg(r,cP)dcP,
Jm+ Jo

The function g(r, cp) f(r cos cp, rsixicp) is of class C1 and

\d%g\<C.m(f).(l + iT-B

for a < 1 Let A kr then the inner integral is L\(g(r,.)) with

Ifu) f e-lX(cos,l,-l)u(cP)dcp.
Jo

This oscillatory integral has stationnary points at 0. n the amplitude function u is the
restriction to [0.7r] of a periodic odd function Using results from [Hö], we can prove

\h(u)\<C\-1 ^sup|öQU|
M<3 0

if u G C3 and by interpolation we prove that with 5, p ,such that 45 < p < 1

\h(u)\<C\-s\u\0.ß,

the norm of u is in Holder space C0''1 Taking into account the estimates on g we
have

\Ix(g(r,-)\<Cm(f)k-sr-5(l + r)1-s)

Inserting this estimate into Jff) gives the desired estimate. <C>

Proof of Lemma 2-3. Observe first that if t, a > 3/2 then

5™, C W™ ; W™+CT C 5rm
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with continuous injections, this results from the definitions and the Sobolev embedding
theorem. The Fourier transform maps S™ into SZf1 if t > 3 and by duality (S™)*
into (S'f1)* For / G S .the convolution h * f is defined in S' as the distribution
whose Fourier transform is f.h and we have we V/. c/G «S

<h*f,g >=< h,fg>

Suppose that / G Wj, and g G Wf with s > 3/2 then / G Wf and 17 6 Wf,
Since Wq Hs is an algebra when s > 3/2 we have then fg G Wf+(, C <SfjT,f with
cj > 3/2 Let e s - r - 3/2 and take t 3 + e, o 3/2 + 2e and / + Z' m then
s - o r - t Since // G (Sf1)* we get

I < h*f,g > I < CIÂI^-.j.l/pljr-, < C|A|(5m).|/|w,|p|wi.

this achieves the proof. 0
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