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Impurity at the boundary of two quantum wires: 1D
Schrodinger equations with an asymmetric Coulumb po-
tential.

By
J. A. Reyes, M. del Castillo-Mussot and G. J. Vazquez

Instituto de Fisica, Universidad Nacional Auténoma de México, Apdo. Postal 20-364,
01000 Meéxico, Distrito Federal, México .

Abstract. In the momentum space we find the bound eigenenergies and eigenfunctions of the 1D
Schrédinger equation for an asymmetric Coulomb potential. We find that eigenfunctions in the
configuration space are expressed in terms of fractional derivatives. Our approach could provide
qualitative features of the electronic states of an impurity located between two different quantum
wires.

1 Introduction

In general, asymmetry in nature produces exciting physical phenomena. For instance, in the
study of artificial heterostructures there is recent experimental and theoretical interest in
the effects of asymmetry in quantum systems such as wells [1]-[5], wires [6] and dots [7].

The stationary states of the one-dimensional (1D) Schrédinger equation describing the
1D hydrogen atom (1D H atom) have attracted a great deal of interest [8, 9, 10, 11]. This
equation Is related to the exciton problem in the effective mass approximation in the study
of high temperature superconductors[12], semiconductor quantum wires [13, 14, 15, 16,
polymers [17, 18], and due to the existence of image forces on 1D electron gas at the helium
surface, is also related to the Wigner crystal [19, 20].
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A general characteristic of some 1D calculations is that the Frobenius series method was
employed to solve the 1D Schrodinger equation in real space, and this was done only for the
symmetric potential 1/|z|. To our knowledge the 1D asymmetric potential A/ |z| for z > 0
and A,/ |z| for z < 0 with A\; # Ay has not been investigated before. We believe that our
approach is illustrative since there are not many problems of this type suitable to be solved
in the momentum space.

Clearly, our 1D Hamiltonian does not describe a physical problem since real systems
always exhibit finite thickness. However, due to recent advances in the fabrication and
study of the physical properties of semiconductor heterostructures [13] it is now feasible to
construct and study a system formed by a fixed impurity of total charge Ze located between
two different semiconductor very thin quantum wires (QW) -with transverse thickness of the
order of nanometers. Hopefully, our results could exhibit some qualitative features of the
behaviour of such real system in the case of highly-confined electrons -for which & >> vy, =z
almost always if the system is oriented along the z-direction. Electrons experience asymptotic
Coulomb potentials Ze/e;r to the right and to the left where ¢; (i = 1,2) are screening
dielectric constants and r = /z2 + y% + 22, which is similar to our potential Ze/¢; |x|. On
the other hand, in a highly-confined real system electrons practically move in 1D since its
wavefunction can be written as f(y, z)e***. That is, an electron is free in the z-direction and
in the y- and z-directions it has its lowest energy when f(y, z) corresponds to the transverse
confinement groundstate.

2 Momentum space equation

The 1D Schrodinger equations with attractive asymmetric Coulomb potential to be consid-
ered here are given by

d*y (*rg ¢
s — = U 2.1
d;':z \ |z| ’ (21}

where v = 2mZe?/h*, £ = —€f€/{" and g = 1/¢; for z > 0 and g = 1/¢; for & < 0 . Here
m and e are the mass and electric charge of the electron and Z is a positive integer. We
restrict our work to consider just the bounded states associated to Eq.(2.1) for which their
corresponding wave functions are square integrable in the whole space. For such states the
Laplace transform £ exists for both the positive and negative parts of the real axis, defined

by

#s) = Ll = [ 1 §¢(§)1'”, (2.2
and can be performed by using the property [21] £ [¥(8)/8] =/ ¢([)[ [ valid whenlim,_ < ¥ (z)/A
is well defined. It should be remarked that it can be directly shown form Eq.(2.1) that ¥(x)
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does satisfy this condition. Here s is understood as s = ip/h. Taking the Laplace transform
of Eq.(2.1) gives

(—32 + S) %i—; + % (G(s) — G(o0)) — z—f—

where G(s) = 7 ¢(s')ds’ and di(0%)/dz is the right hand side limit of ¥(z) at z = 0. By
solving this equation for G(s) and rewriting the resulting expression in terms of p, we airive
at

(0*) =0, (2.3)

PR (o
8 = 2¢1VE
vE 3) L z>0 (2.4)

G(s) — G(o0) — ——(0") = A,
(5) = Gloo) = 2L (0% =y (
where A; is an arbitrary constant to be determined by normalization. Using the same
procedure but for the negative part of the real axis, we obtain

G(s) - G(-o0) = 27£(0°) = 4 (

_ s\ Ve
yE S) . w2 (2.5)

VE +s

where Ay is an arbitrary constant to be determined by normalization. By integrating
Eq.(2.1) one time with respect to z, it can be shown that the condition lim, ¢ ¥s(z)/z < 0,
leads to dy(0%)/dz = d¥(07)/dz. Thus by evaluating Egs.(2.4) and (2.5) at oc and

—00, respectively, the continuity of the derivative allows to write (Ai/el)ei"""’l(Q“‘/E) =
(A-Z/Q)e_w”/(gez‘/z), which yields the eigenenergy spectrum; E, = —(1/e14+1/e5)?*mZ%e*/ (8&2112)
with n an integer. Taking the derivative of (G, for a particular n yields

iGis) A (VE-s)mTET

= — , 2.6
ds \/E (\/E + s)ﬁ?-H ( )
or written in terms of p, we have after manipulation
dGn ﬁQet‘ling(qr_g/’(el +€2)) a.rct.an(pl’mel 62/771282(61-}-62))
d)n(p) = = A D) § (27)
dp P2+ [(1/e1 + 1/ey)mZe? /hin)

where A = vA; /¢y = vAy/€y. The corresponding probability densities associated to each

n-eigenfunction can be calculated from F,(p) = |dG,, /dp|* yielding P,(p) = A'fl/(ri'-,‘-!-\/é)e
where A, is a normalization constant. Notice that for a given n, P,(p) has the same form as
that of the only bound state of an attractive delta potential, that is to say, we could adjust
the strength of the delta potential in such way that we could repro?uce P,(p) for any n.
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3 Wavefunctions in real space

To obtain the eigenfunctions in real space v,(z), we take the inverse Laplace transform of
dG,/dp or Bromwich integral for both the positive and negative parts of the real axis,
defined by

00 V+)oc .
vn(e) = LN = 25 f, . 16N, (3.1

~)oo

Here the integration contour is a vertical line in the complex plane which may be closed
by an infinite semicircle in the left hand semiplane, r is a constant to be chosen so that all
the singularities of ¢(s) are on the left hand side of the vertical line. Substitution Eq.(2.6)
into the last definition and integrating by parts, we have

) 29,
_ Anz %T-Hw ds (\/E - S) e e, (3.2)

¥n(z) = 27e VE+s

and if we introduce the dimensionless variable z = (s + V€)/(s — V). Eq.(3.2) can be
expressed as the contour integral in the complex unit circle |z| < 1 given by

—-ico

(3.3)

A (el ~2¢z/(1-2)
Un(z) = AnCe fcd’_e—

2m T (1—g)*

where ( = v/E€x. It is convenient to rewrite the contour integral of Eq.(3.3) in terms of the
variables w — ¢ = 2(z/(1 — z), to obtain

C—le’( wnga+]e—w
wlp) = Ar dw
¥a(2) " omi / Tw =y
-1.¢ dnga
g e (gnga+.'te—() ’ (34)

I'(nga + 1) d¢m9

where a = 2¢1€5/(€; + €2). With this transformation the new contour encloses the point
w = ( in the w plane. In Eq.(3.4) we have used the Osler-Nekrassov definition for the
fractional derivative [22], given by

g h(w) 1 d"h(w)
2mi jgc dw(w O™ T(p+1) d¢n

for any function h(w) and real number 7. Here ['(n} is the Gamma function . To expand
Eq.(3.4) we use the Leibnitz rule’s generalization
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"¢ (fg] _ & (nga\d™emtfdiy 4
2 ( k )dcﬂga—kiﬁ’ o

mnga
ds k=0

valid for arbitrary value of ¢, and the formulae [23]

PGB naa] B [(nga + 2) k1

d¢ree=k — T(k+2) ’ V)
d¥e™¢ et
2 _ € Pk, —0), 3.7
o = STk =), (3.7
where I'(¢, ¢) is the incomplete Gamma function defined by [24]
Ile,¢) = < f t-letdt. (3.8)
L(e) Jo
By substituting the above expressions into Eq.(3.4) we write ¢,,({) as
o [ngao ['(nga + 2)
b (C) = 2m AL e I'(—=k,—(). 3.9
Q)= 2mange s 3 (M) eI ro, g 39)

Finally, we shall exhibit explicitly the asymptotic behavior of ¥ ,(¢) for both small ¢ and
large values of (. From Eq.(3.8) we have I'(¢,0) = 1/I'(c + 1), and thus we can approximate
¥1.,(¢) around the origin as

Y1.0(C) = 2T A CF(n), (3.10)

where F'(n) is a finite positive constant given by

= (nga ngo + 1
Fln) = ; (3.11)
(n) ,;(k)l"(k-%?)l"(l—k)

On the other hand, using the fact that I'(—c, () = (° for large values of { we obtain the

following asymptotic expression

B —¢ o [nga) nga+1 .
0nl0) = 2mane e - ("4 (312

In summary, we have obtained the 1D bound states of an asymmetric Coulomb potential
which to our knowledge has not been investigated before. We found the eigenergies and
gave expressions of the eigenfunctions in terms of fractional derivatives which in turn can be
written in terms of incomplete Gamma functions. Also we provided analytical asymptotic
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expressions of these eigenfunctions for small and large arguments. We hope that this paper
may stimulate further work on the study of asymmetric quantum problems with Coulomb-

type and related singular potentials.
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