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Global existence and scattering for the nonlinear
Schrödinger equation on Schwarzschild manifolds

By I. Laba

Department of Mathematics, Princeton University
Princeton, NJ 08544, U.S.A.

and A. Soffer

Department of Mathematics, Rutgers University
Piscataway, NJ 08854, U.S.A.

(6.1.1999)

Abstract. We consider the nonlinear Schrödinger equation with a pure power repulsive ncnlineaxity
on Schwarzschild manifolds. Equations of this type arise when a nonlinear wave equation on a

Schwarzschild manifold is written in Hamiltonian form, cf. [2], [10]. For radial solutions with
sufficiently localized initial data, we obtain global existence, IA estimates, and the existence and

asymptotic completeness of the wave operators. Our approach is based on a dilation identity and

global space-time estimates.

1 Introduction

A Schwarzschild manifold is the space Rx R+ x S2 equipped with the Schwarzschild metric:

9 g^dx^dx",

which may be written in polar coordinates as:

/ 2M\ 2
dr2

9 „^l1"—K-T\TW-r2As>; (1.1)
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As2 d92 + sin2 9dcj>2 is the Laplace-Beltrami operator on a 2-dimensional sphere. The

parameter M > 0 is interpreted as the mass of the black hole. We restrict our attention to
the external Schwarzschild solution (r > 2M).

Scattering theory for the wave and Klein-Gordon equations on Schwarzschild manifolds

was first studied by Dimock [5] and Dimock and Kay [6]. Following these authors, we rewrite
(1.1) as:

g=(l-2J±)(dt2-drl)-r2L\s>, (1.2)

where r» is the Regge-Wheeler tortoise radial coordinate:

r, r + 2M log(r - 2M) (1.3)

(hence ~ 1 — 2M). The wave equation on the Schwarzschild manifold is:

agu o, (1.4)

where:

°, H detO1'2^ det,|VV^) (1.5)

is the d'Alembertian associated to g. Using (1.2), we may write (1.5) as:

/ 2Mx-i/32 _2 d 2 d \ _2a „v

(1.4)-(1.6) is equivalent to:

where:

^u + Hu 0, (1.7)

^ -r-2Ar^_r-(l_^)As2. (1.8)
or» or» v r y

In [5], it was proved that the wave operators for (1.7) exist and are complete. For the
Klein-Gordon equation Ogu + m2u 0 the existence of wave operators was proved in [6],
and asymptotic completeness - in [1]. The results of [5] on scattering were recovered in [4],
where the authors actually considered a more general class of noncompact manifolds; the
proof in [4] relied on a Mourre estimate obtained for such manifolds in [7]. (See also [12],
where certain techniques of geometric scattering theory were applied to the De Sitter model.)

An important open problem is to develop a scattering theory for equations such as (1.7),
but with a nonlinear perturbation added. Partial results in that direction were obtained
in [2], [10]; the class of metrics considered there is in fact more general than (1.1) and
includes other black hole models. In particular, Nicolas [10] studied a nonlinear Klein-
Gordon equation of the form:

Og u + m2u + XF(r) \u\2u 0,

where F(r) is an explicitly given factor vanishing as r —> 2M and as r —¥ oo. He obtained
the global existence of solutions to the above equation and an outgoing radiation condition
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for these solutions. We also remark that the Cauchy problem for the Yang-Mills equations
on Schwarzschild manifolds was studied in [14].

In the present paper, we take a different route and study the scattering theory for the
nonlinear Schrödinger equation:

OUif- Hu+\\u\p-lu, A>0; (1.9)
at

we will, moreover, restrict our attention to radially symmetric solutions, i.e., assume that:

AS2U 0. (1.10)

The payoff for these simplifications is that we will be able to present a relatively elementary
(modulo the estimates of [15]) proof of existence and completeness of the wave operators. As

one might guess by considering the geometry of the manifold, (1.9) has two scattering channels:

part of the outgoing wave escapes to the (spatial) infinity and becomes asymptotically
free, while another part approaches the black hole horizon and therefore displays a different
asymptotic behaviour. We prove that (in a suitable coordinate system) each part has the
asymptotics of a solution to a simpler linear equation. Our analysis of (1.9) is based on a

priori estimates, similar in spirit to the conformai and Morawetz identities; in particular, we
obtain the local decay of solutions and suitable space-time LP estimates.

We remark that the same proof, with only minor modifications, should work for slightly
more general nonlinearities of the form /(|m|)w, where f(s) is a suitable real-valued function:
for the sake of brevity, we do not attempt here to find the exact conditions on / under which
this can be done.

While our results do not imply anything directly about scattering for a nonlinear wavt
equation (which would be more interesting than (1.9) from the point of view of physics), we
believe that the methods presented in this article may be developed further to yield progress
in that direction. To illustrate the connection between (1.7) and (1.9), we rewrite (1.7) in
Hamiltonian form:

4U.H(2 -.')(*)• <"«
This was in fact the approach taken in [5], [6]. [1]. [10], [4]. By diagonalizing the matrix
in (1.11) one may reduce the problem to studying the unitary group exp(—itflï), cf. [1],

[4]. It was further demonstrated in [4] that certain results of this type may be deduced fron
their analogues for the Schrödinger unitary group e~'tH. We hope to use similar methods tc
make progress on the scattering theory for a nonlinear variant of (1.7).

The paper is organized as follows. Section 2 takes care of preliminaries such as the
conservation of the L2 and energy norms for the solutions of (1.9). Assuming (1.10), the

problem becomes effectively one-dimensional. We simplify it further in Section 3 by applying
a suitable unitary transformation. The point of this reduction is that the kinetic energy part
becomes simply Z?2_; the price we pay is that we have to add a "potential" V. Our mair
estimates are proved in Sections 4-6. In Section 7 we combine them with the known L>

estimates for a 1-dimensional linear Schrödinger equation (see [15], where such estimates
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were proved and applied to a similar nonlinear scattering problem), and obtain the time
decay of IA norms of the solutions. The global existence of solutions, and the existence and
completeness of the wave operators between the nonlinear equation and the corresponding
linear Schrödinger equation, follow by a standard argument (cf. [13]).

The authors are grateful to the referee for helpful remarks and for bringing the article
[10] to their attention. The second author acknowledges partial support by the National
Science Foundation.

2 Preliminaries

Let u u(r,u),t) be a solution to (1.9), where H is given by (1.8); we will also use the
notation uf) u(-.t). Recall that rt is defined in (1.3). For future reference we note that
r is an increasing function of r» and:

• as r, —» oo. r —> oo and 1 — — —> 1;r '

• as r, -i- -co, r ~ 2M + e-1+r-/2M -» 2M and:

1 _ 2Ji „
1 0-M/2M (2 1}

r 2M v '

vanishes exponentially in |r,|.

We will assume that the initial data u0 satisfies (1.10) and belongs to the energy space:

% {u € L2(R x S2; r2drt du) : u(r, u) u(r) and E(u) < oo},

where the energy E(u) is defined as:

r 9 \
E(u) / (üHuA -\u\p+1)r2dr,du. (2.2)

J x p +1 '

We denote by ||k||w (E(u))1/2 the energy norm of u.

Observe first that the L2 norm of ut is conserved: this follows from the fact that the
operator H is symmetric and from the form of the nonlinearity in (1.9). The second basic
fact we will need is the conservation of energy.

Proposition 2.1 For any solution ut(r,u) — u(r,u,t) of (1.9) (not necessarily radially
symmetric), E(ut) is independent of t. In particular, if u0 6 H, then utÇ.H and ||m(||-h

lluo||w for all t.
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Proof. We compute:

ft /rxS3 üt-(H + XWf^ft r2dr,du /RxS2 üt ¦ §-t(X\utfl)ut r2dr,du

/ A(\\utr')[ut\2r2drtdu £l / » (A^V*-.«*»-
Hence:

11 (ö, ff«, + \\utr')r2dr.du fc^ | J(\\utrl)r2dr,du,

which proves the proposition. D

Corollary 2.2 Suppose that ut solves (1.9), u0 6 H. Then:

(i) fütHutr2dr+du < C||uo|&.

(ii) J \ut\r+l r2dr.du < C\\u0\[2n,

uniformly in t.

Proof. By Proposition 2.1,

/2A t
Ut Hut r2drtdu + / k|p+1 r2dr,du (2.3)

p+ I J

is constant in t. Since both terms on the right-hand side of (2.3) are positive, this implies
the corollary.

3 Reduction to a one-dimensional problem

£,From now on, we restrict our attention to the space L2adiai(R x S2;r2drtdu) of radiall}
symmetric functions in L2(R x S2; r2dr,du). We define a unitarv operator U : L2(R. irf) —)

L2radial(RxS2;r2drtdu)by:

U : ip(r) —? u(r,u) := r~lip(r),

and the symmetric operator H on L2(R,drt) by:

H U-iHU rHr-\

Using (1.8) and (1.10), we find that:

H Dl + V(r.), (3.1)

where D —id and:

v(r.^2f(t-2fy M
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Substituting ip U~lu ru in (1.9), we obtain that ib satisfies::

r\

i-ip Hrf, (3.3)

where H^ is the nonlinear operator:

H+ H + Ar-'+1|^|p-1. (3.4)

The energy space H is mapped by U~x to:

H {ij) e L2(R; du) : U\\\ := jî>- H^dr, < co}.

The remark before Proposition 2.1, and the unitarity of U, imply the conservation of the If
norm for solutions of (3.3). Moreover, from Corollary 2.2 we obtain the following.

Proposition 3.1 U is a unitary operator from H to H. Moreover, if f(r) — ip(r,t) solves

(3.3) and ii>a Ç.H, then:

(i) !\£-fk\2drt<cu0[\\;

(n) f r-"+i\fr'dr, < CUol^,

uniformly in t.

Proof. Substituting ut r~li[>t in Corollary 2.2(i), we obtain that:

/ r 1ipt ¦ H(r 1V'()r2dr,eZü; fipt ¦ rHr 1ipt drtdu

J & ¦ Hipt dr,du ff- (Dl + V(r,))f dr.du

/ ij>t ¦ Dfipt drtdu + ff ¦ V(r,)tpt dr,du

is bounded by C||uo|Ih Cll^olli for all t. Moreover, since both terms in the last line are
positive, we find that:

f f- D2T.fdr,du < CUo\[\

uniformly in t, which after integration by parts yields (i). Part (ii) follows by substituting
ut r~lipt in Corollary 2.2fM,). D

4 The dilation identity

The starting point for our analysis of (3.3) is the observation that both the "potential" V
given by (3.2) and the nonlinear term in (3.4) are repulsive interactions. Hence the long-time
behaviour of the solutions is largely determined by the dispersive term D2, ¦ In particular,
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we obtain the local decay estimate's (Proposition 5.1); these in turn will be needed in the

proof of our results on scattering.

Throughout the rest of this paper we will denote by (•. •) the inner product in L-(R; dr,):
(vf) !x^4>dr,.

Proposition 4.1 There is an a G R (given explicitly by (4-1)) such that:

(ip,[H,iAa}ip) >0.

(rj,[Xr'p+l\vf\iAa}f >0

for all if 6 H, where Aa ^((r, - a)Dr, + DT,(r, - a)).

Proof. We have:

i[H,Aa} 2Dl -(r.-a)^Hdr,
where

dV(r.) 2M, 2Mw8M
dr, r4 \ r J \ j- I

is positive for 2.U < r < 8M/3 and negative for r > 8M/3. Let

&M 2Ma=_ + 2Mlog— (4.1)

be the value of r, corresponding to r 8.'U/3. Then —(r, — «)^- > 0 for all r, G R, r» / a.:

hence:
V> • [#, iAa]ip dr, > 0

OO

for all y eri, xp £ 0.

Next, we consider the commutator with the nonlinear term:

/^•[Ar-^IVf-VAahMr.
-AHo |V|2(r» - ^^(r-^l^r1)^,

We have

(4.2)

|2_^_^-P+l|,/,|P-l\ _ l^J?/ /, ¦¦l,.w>'-\

Using (4.3) and integrating the right-hand side of (4.2) by parts, we obtain that ir is equa!
to:

^TT1 r F"^* - a)) ' (r~p-l\ï>\P+l)dr,. (4.4;
p + 1 J-oo or.

Since r is a positive and increasing function of r,, so is r2(r, — a), hence 9r. (r2(r„ — a)) >
and the integrand in (4.4) is nonnegative. Since A > 0, (4.4) is nonnegative. This complete;
the proof of the proposition. Ü
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5 Local decay

The purpose of this section is to prove the following local decay estimates.

Proposition 5.1 Suppose that f solves (3.3), ipo € ri, and let ß > 3/2, 0 < R < co. Then

/oo 11(1 + r,2)~ß'2f\\2dt < Cß\\4>o\\LHn.,dr.)Mo\k, (5-1)
•oo

/oo
rR

dt r^l\u>tridr,<CR\\MLHK-.dr.)\\Mk- (5-2)
oo J-R

Propositiem 5.1 will be obtained as a consequence of Proposition 5.2 below.

Proposition 5.2 Let g(r,) g(r,-a), where g (s) fo(lAt2)~"dt for some a e (1/2.3/2)
and a is as in Proposition Al- Define:

l=\(g(rÀDr.ADTfg(r,)). (5.3)

(i) Let ut solve (3.3), Vo € Ü. Then ||7Vt||&2(R:dr.) < C||Vo||« uniformly in t.

(ii) For any 0 < R < oo there are Ci,C2,r > 0, such that for all ip € H:

roo rR
(il>,i[H^,j}f>Ci (l + r,2)-"-l[f2dr,+C2.R r^-f^fr,. (5.4)

J-oo J-R

Proof of Proposition 5.1, given Proposition 5.2. Clearly, it suffices to prove the proposition

for 3/2 < ß < 5/2. By Proposition b.2(ii), wc have:

A(ip,,-yf) (v,.i[Hv,yft)
> ci(f,(l + r,2)-Pii>t) +C2.R f_ÄÄr-"-1|VJr1dr.,

where ß a + 1. Integrating this inequality from -co to co in t. we obtain:

ffff, (1 + r,2)-%) + jrU dtf*Rr-»ffr'dr,
< Uxiit^fu.yut) -Ümt-^-oobPuTtt)

< 2sup(€R|(V(.7Vr)l

< 2||Vtlb HVtlk < 2||Vo||y HVolk,
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by Proposition 5.2(i). G

Proof of Proposition 5.2. We first note that g is bounded if o > 1/2. Hence:

ll7Vt|U*(R;dr.) < C||Vt||//l(R;dr.),

which implies (i).

To prove (ii), it suffices to verify that:

roc
(iP,i[H,i\iP)>cx (\ + r,2)-°-l\iP\2dr„ (5.5)

J — OO

($,i[\r-»+1[iP[*-\i\iP) > C2.R r r-r-'W^dr,. (5.6)
J-R

The proof of (5.6) is similar to that of Proposition 4.1. We have:

*l*(r.),7] -5fl-*(»-.)-or,

Putting *(r») Ar-p+1|v|p_1, we obtain:

noV-iAr-^ivr^iv^r,
- Tooim^izfr-^fr^dr,
- rco5(r»)^r2^(r-"-1|V|p+1)dr,

*fer* /-°°oc Ìz(r2~9(r,)) ¦ (r-^IVr1)^,
where we used (4.3) and, at the last step, integrated by parts. We now use that for any
R > 0 there is an e > 0 such that

9 (a.
dr, \r ~9{r*]) * €

for —R <r,<R, and conclude that the last integral is

> e j r-p-1|V|p+1dr,.
J — R

The proof of (5.5) essentially follows [9]. We compute:

i[Df1] 2DrfgDr. -l-g"\ (5.7)

i[V,j] -9^rV(u). (5.8)
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Since g(r,) > 0 for r, > a and g(r,) < 0 for r, < a, and the opposite inequalities hold for

V'(r,) (see Section 4), the term (5.8) is nonnegative. It remains to prove that:

JiP-i[Dl,j}il>dr, > f(\ + r,2Ya-l\f2dr,. (5.9)

We first define the unitary transformation:

S : L2(R;dr,) -> L2(R; s2ds),

ip(r,) ~~* s'lip(s + a) =: <p(s).

Then:

(5.10)
Si[Dfy]S* -2s-^sg'(S)iss-lg'"(s)
— -OA a'A - in'A - In» - In'"~ Lds y ds $y ds sy 2« •

Since

] V • i[D2r,, 7]V dr. j i ¦ Si[Dl ,j}S'cb s2ds,

(5.9) is equivalent to

If Si[Dfi\S'<ps2ds > ci j(\ + r2)-°-l\<p[2s2ds. (5.11)

It therefore suffices to prove (5.11) for cp € L2(R; s2ds).

We first prove that the operator

d d 2 d
L -Tg'-, g'T (5.12)

ds ds s ds

is nonnegative on L2(R;s2ds). Writing ff^ cpLcj>s2ds J?M +/o°°, and changing variables
s —> — s in the integral /^, we see that it suffices to prove that

roo _
/ 4>LcPs2ds>Q (5.13)

Vo

for cp € Hi := £2([0, co); s2ds). (We denote here by L the operator defined in (5.12) acting on

Hf To this end, we observe that Hi can be identified with the subspace H2 of L2(R3; d3x)

consisting of spherically symmetric functions. Namely, we introduce spherical coordinates
(s, u) in R3 so that s2 xf + xl + x2, d3x s2ds. Then the operator

T : Hi —i H.2,

cp(s) -> <j>(s,w) tp(s),

is unitary. Under this identification, L becomes an operator on H2 equal to TLT*. However,
an explicit computation shows that

TLT* J2Dx^g'(spDXx,
~A s s
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which is obviously nonnegative since g' (1 + s2fa > 0. Hence L is nonnegative.

To finish the proof of (5.11). it remains to check that

-V-^coU + s-2)-'-1 (5.14)

for some Co > 0. However, by an explicit computation the left-hand side of (5.14) is jqual to

o(l + s2)~"-2(b+(3-2cj)S2),

so that (5.14) holds if 0 < o < 3/2. G

6 Pseudoconformal identity

Let X {cp e H : [\(p\\x < co}, where:

IHU W* + IM||l.(rj*..)-

We continue to denote by (•, ¦) the inner product in L2(R;dr,).

Proposition 6.1 Assume that p > 3, and let e > 0. Let Vt be a solution of (3.3) tuck that
Vi € A. Then:

J\f, g - DT.)2Wt)dt < CT(\\iPi[[2x + HVill^1); (6.1)

rT rOO

/ / r-^\frfr,dt<Cr(\\iPi\\% + Ui\\P^); (6.2)
J1 J-oo

and, for t > 1,

(Vt, g - Dr)\h) < Cr1+*(||Viiß + ||</<+1); (6.3)

/OO r-p+1|Vt|p+1dr, < cr1+£(||Vi|ß + ||Vi!l£+1); (6.4)
-oo

(f,V(r,)f) < Cr^dlVilß + ||Vilr*+1); (6.5)

the constants in (6.1)-(6.5) may depend on A, p, e but are independent ofT, t.

Proof. Throughout this proof we will denote by C a constant which may depend on p, A, c

and may change from line to line, but is always independent of ip, t, T.

Let
<3>(t) $o(t)+Ab(t),

where

Mt) *((§ - Dr,f + V), *(i) Ar-^IV,!"-1.
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Observe that:
0<(Vi,*o(l)Vi)<C||Vi|ß, (6.6)

0<(vi,*(l)V'i)<C||Vi||P+1. (6.7)

Indeed, (6.6) is obvious from the definition of $0 and A. To prove (6.7), we will use that in
dimension 1:

IIVIloo < C||V||2/2||-Dr.V||2/2, (6-8)

and that r~l is bounded, hence:

/oo
roo

|Vi|p+1dr, < CUVilL-1 / |Vi|2dr, < CUVill^1.
-oo J-oo

The main idea of the proof of Proposition 6.1 is to estimate

(Vr, *{T)rfr) - (Vo, $(0)Vo) [ |(Vt, $(t)Vt)*

from below. We have A(ipt,$(t)ipt) (f,D$(t)ipt), where

L>*(t) |*(i)+x[^, *(*)]¦

We will also write

D0$o(t) jt$o(t) + i[H,$o(t)}

We compute:
D$(t) |($oW + tV) + i[H + *, $o(<) + AH]

£>„*<>(*) + |(<*) + i[H, t<H] + i[V, $o]

DoMt) + £(<*) + ^[Dft^ + *[*,t(g - Pr.)2] (6.9)

A>$o(t) + |(**) + *'[*, -5(r.i?r. + ör.r.)]

DoMt) A * + tft<H + r,^7<H(r,).

We first estimate the nonlinear terms, beginning with (ipt,r,-£7^(r,)ipt):

roo \ih\2r.£:*dr, f_f i^lir2r,i-fr^\iptr^)dr,
-^roc^(r-2r,)r-"-i|Vtr1dr.

-^Ho^K + r2)r-»-1|Vt|p+1cir,. (6.10)

-^r1(/^ + /?Ä + J?)^('3)r.r-*-1|^r1dr.
-^ri/-00oo'-p+1l^lp+1^..



286 Laba, Soffer

By (2.1), for any 5 > 0 there is fi > 0 such that \-^7(r2)r,r~2\ < X6 for r, < -R. Fence

/—R
f) roo

\^-(r2)r,\r-p-v\f\p+idr, < X5 r~p+l[iPf+ldr„ (6.11)
-oo Or, J—oo

provided that R is large enough. Next, -ê-(r2)r, is bounded for —R < r, < R, so tiat:or.

J^dtfKf^ff-Pffr'dr,
< Cf^dtf^r-^lfl^dr, < C\\f[[2x,

by (5.1); the constant C depends on R and hence on 5, but not on T. Finally,

(6.12)

eoo fi
/ ^-(r2)r,r""-1|V(|P+1^ > 0. (6.13)
Jr or,

Plugging (6.11)-(6.13) into (6.10), we obtain:

fT(f,r,-A-y(t)f)dt

< -\(^-5)fTdtfr^\f\^dr, + C[\f\\2x (6.14)

-(^î-5)/fT(^*WV'(> + C||V1||2v.

Next, we have

Jït(ipt, § ipt)dt XfftJZ, |^|2Ä(r-^1|^r1)dr.Ä

^/r^rooKr-^iv.r1)*.^
^i!ÏtA(iPt,^(f)f)dt
^l(T(Vr,*(T)Vr) - (Vi,*(l)Vi) - JiT(Vt, *(t)ih))dt.

Combining (6.14) and (6.15), we obtain:

fT(f, (*(t) + i|*(i) + r.^*(t))^> dt

(6.15)

< e^(t(Vt,^(T)Vt)- (Vi,*(l)Vi)) -CiffirPtMWJdtACWiWl,

where ci ?^| — 5 satisfies ci > 0 if 6 > 0 was chosen small enough.

It remains to estimate:

Do<S>o -C±-Dr,)2 + W(r,),

where

rir. „, ö T,. 2M/ 2Mx 2Mr,, 2M\ /8M n^W K(r,)+r.—K(r.) —(!-—)+-^(l-—)(_-3)

(6.16)
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We have:

\W(r,)\<C(l + r2)-3'2,

which is almost - but not quite - sufficient for the local decay estimate (5.1) to be applicable.
To remedy this, we write:

f\f,W(r,)iPt)dt < c£(iPt,(l + r2,)-V2iPt)dt < h Ah,

where:
h CfT(f,x(l+r2,)-V2f)dt,

h CfT(iPt,(\-x)(lAr2)-*l2iPt)dt,
and x(?"», t) is a bounded C°° function such that x 1 for 1 + r2 < t, t > 1, and x 0 for
1 + r2 > 2t, t>l. To estimate I2, we use that (1 -t-r2)-3/2 < t~3l2 on suppx, hence:

/2<C7^rr3/2||Vt||l<Ä<C||Vi| %,

where we also used that the L2 norm of f is constant. It remains to estimate Ji. We have

for any e > 0:

X(l + r2)-§ x(l + r2)£ (1 + r2)-f-£ < Ct'(l + r2)-§-£ < CT£(1 + r2)" H
for 1 < t < T. Hence using (5.1) we obtain:

h < CT j\f, (1 + r2,r3'2-*ipt)dt < CT[\iPi\\2x.

Thus:

j\f,Do$of)dt< - j\f,(A- DT_)2ipt)dt + CT*[\iPi\\2x. (6.17)

Combining (6.17) and (6.16), we find that:

(Vr, (%(T) A T<H(T))ifc) - (f, ($0(1) + *(l))Vi)
JiT(iPt,D$(t)i>t)dt

< - Sï(A, (it - DT,)2f)dt - ci fT(f, <a(t)ipt)dt

+^Ti{T^t, *(T)Vr) - (Vi, *(l)Vi)) + CrilVillfv-

Rearranging (6.18) and using (6.6)-(6.7), we finally obtain:

,2

(6.18)

(Vr, $o(T)Vr) + jfcTWr, *(T)Vr)

< -Si (it, {ti - Dr.) 1>t)dt - ci^fr-p+l\ipt\"+ldr,dt (6.19)

+C(T'||V1||2v + IIVill£+1)-
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Note first that the integrands in the integrals

\2fl\ik,^t-DT.)f)dt,
(620)

/r/r-p+1|V(|p+1^,ei<

are positive. Hence the left-hand side of (6.19) is bounded from above, uniformly in T, by

C^IIVill^ + llVill^1)-

However, it is also trivially bounded from below by 0, since $o(T) and fy(T) are nonnegative
for all T. This yields (6.3)-(6.5). Finally, to get (6.1)-(6.2) we plug (6.3)-(6.5) back into
(6.19). This ends the proof of the proposition. G

7 Global existence and scattering theory

In this section we prove our main L°° estimate on Vt (Proposition 7.1). Interpolating this
estimate with the conservation of the L2 norm yields V estimates, which will be an essential

part of our proof of asymptotic completeness. Recall that the space X was defined at the
beginning of Section 6.

Proposition 7.1 Let Vt solve (3.3), Vo £ X. Assume that A > 0 and p > 3. Then for any
e>0:

HVtlU < ct H+«||Vi||2/2 (HVII2* + llVlr£+1)1/4- (7.1)

(This in particular implies global existence in L°°.)

Proof. ^,From (6.8) we have:

llV.lloo ||e»2/4tVt||oo < CHVtHflPr.e^Vtllf

C||V,|l2/2IK§-^.)Vt||2/2

<cr^\\Mi/2(H\\% + U\\T)1/4-

where we have used that, by (6.3),

vl/2-II \ I t. II,. < I t -1 ' v I II / ,l[- -U I Ir, IK. '

MV2i

This proves (7.1). G

Dr.)M2<ct-i+<(w\\% + M\\T)

The main result of this section is the following theorem, in which we compare the nonlinear

dynamics associated with the equation (3.3) to the linear evolution e~ttH. We will state
all of our results on scattering for the case t —> co; for t —¥ -co analogous results obviously
hold.
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Theorem 7.2 (i) (Existence of wave operators) Assume thatp > ^(3 + \/l7)(« 3.56). Then

for any V+ € H1 (R) D Lq> (R), where q' 1 + -, there is a rp0 € H1 (R) such that if Vt « <Ac

solution of (3.3) with initial condition ip0 at t 0, then:

||e-**V+ - VtlU*(R) -> 0 as t -> co. (7.2)

(îi) (Asymptotic completeness) Assume that p > 4, and /ei Vo € A. Lei Vt ^e ^e solution
of (3.3) with initial condition Vo (rf t 0. TVien t/iere is a V+ 6 -^2(R) sticft i/iai ^.^,) is

saiis^/ied.

Observe that by Holder's inequality:

jWdu < (f\iP\2(rt2 + l)dr,Y/2(J(r.2 + l)-^dr,)l~^;

the last integral is convergent since ^f > 1. Hence /V C Lq' (R) fl ff^R), and (%) holds in
particular for ip+ € X.

Proof of Theorem 7.2. To prove the existence of wave operators (part (ij), we need to
solve the integral equation

roo
Vt e^("V+ - »A j e-'(t-s)"r-p+1|V.r V* «fc (7-3)

for a given V+ £ ^(R) G L2(R; r.dr,). Let

/OO
-

e-<(t-»)«r-p+i|^|J>-i0ids. (7.4)

Let JVr L*([T, oo); L'(R)) for suitable k, q which will be chosen later. We first prove that

WHMxr < CoU\\PxT, (7-5)

with Co independent of <p and T.

We will use the Lq estimates for the Schrödinger unitary group e~ltH in dimension 1,

proved recently by Weder [15]: if H — D2 + V(x) is a Schrödinger operator on L2(R) with
the potential V(x) satisfying / | V(x)|(l + |x|)7di < oo for some 7 > 5/2 (which clearly holds
for V given by (3.2), then:

lle-^PclU^,) < Ct-W (7.6)

for 1 < q1 < 2, 1 + h 1. Pc is the projection on the continuous spectral subspace of H;
for H H, it follows e.g., from Proposition 4.1 that H has no point spectrum and therefore
P„ l.
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Using (7.6) and the fact that r~l is bounded, we estimate:

wHMxr J nr c-'^»r'p^\ósrifds\\LHmLk{dt)

<|n*-«r(è_})ii'-,H-1«iitf'(dr.)HU*)
< ft~\t-sf->--f\f\\PldSLPl'(dr.) Ilt*(dt)

(7.7)

< Co| |Inaili«'(<ir,)
IP

ULPi(dt)

where: 11111 + - - + -, - +
k k n q q' ^2 q'

(at the last step we used the generalized Young's inequality). The double norm in the last
line of (7.7) is equal to H^IIxt- if

pn k, pq' q. (7.9)

Solving (7.8H7.9), we obtain:

2(p+l) 2(p-l)(p+l)
ç p + 1, k —, k — 7.10

p — 1 p + Ò

Hence, if q,k are chosen as in (7.10), the mapping ZF is a contraction on the ball Bt<x
{\\<P\\xt — £}' where e depends on p but not on T.

Using (7.6), we obtain that for V+ € L2(R) n Z/(R),

||||e_,'HV+||i'(*.)llr,t([r,oo);<(t) -> 0 as T -> co,

provided that (| — -)k > 1. For q and fc as in (7.10), this condition is satisfied when:

S+VÎ7
p > w 3.56.

2

Therefore, given a V+ € iïx(R) H L' (R), we may choose T large enough so that e~ltI,ip+ G

Btß,T- Using a standard contraction argument, we can now solve (by iteration) the equation
(7.3) for t >T. The solution ipt(r,),t > T, belongs to AV and solves (in the weak sense) the
differential equation (3.3) with the initial condition Vr e~'THip+ 6 H1('R). By conservation

of energy, Vt € Hl(R) for t > T. Finally, we extend Vt to all t e R by solving (3.3)
backwards (i.e., for t <T) with the initial data as above at t T. We obtain a solution Vt
with

HVt||«.(R) < q|e-(°AV+llHHR) < C||lMU.(R)
for all t e R.

Next, we claim that
[\eüäipt - V+||w(dr.) -+ 0 as t -¥ co. (7.11)
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Indeed, multiplying both sides of (7.3) by e,tH and then proceeding as in the proof of (7.5),
we obtain for t >T:

iiet("vt - 0+iii.<*v) Aiire-fcV^iv.rv^iu*..)
^Ars-^-.'UV.II^^., (7.12)

for 1 + 1 1. The last line in (7.12) is bounded by Ci(i)||V||p-, with Cx(t) -> 0 as t -> co,
if

(ö "" ~)f > l> Pn fc- P?' Q-
2 q

Again, it is easy to verify that one can choose £, n so that these conditions are satisfied.

By (7.11), e'tHipt converges to V+ strongly in Lq(R); moreover, we saw earlier that the
H1 norms of e'tHipt are bounded uniformly for all t. Hence eUIIf has a weak limit in I?.
Since the I? norm of eUHipt is constant in t, the L2 convergence is strong. The Lq limit, ip+,

belongs to L2, hence the L2 limit must also be equal to ip+.

We obtain that:

UV, - e-t("V+lb(dr.) ll^Vt - V+lb(dr.) -? 0,

which proves Theorem 7.2(i).

To prove (ii), i.e., the completeness of wave operators, we consider the integral equation

e-'^Vt Vo - iX /VV'+^rVs ds, (7.13)
Jo

for Vo € X. The equation (7.13) is equivalent to (3.3) with initial condition Vo at t 0.

We will prove that the integral

roo
/ e'sHr-p+i\iPsrlipsds (7.14)

Jo

is norm convergent in Lq(R) for some 2 < q < oo (depending on p). Indeed, by (7.6) we
have:

^ie«'*v^v»rvsiu*(R)<fc < jf *~(è~i)iitf.iik,(K)<fc.

for j + 4r 1, g > 2. The last integral can be broken up into fg + f™. Since p > 4 and
q' > 1, gp > 4, so that by Sobolev's inequality:

ll^llz/A. < C||Vs||tf>(R) C||Vo||i/i(R)-

Therefore the integral /0 is bounded by:

C||Vo||ip(R) j[V{W>ds < C'||Vo|k>(R),
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since „2 q

To prove that J' is finite, it suffices to verify that

ll^||^(R)<C(Vo)s-a (7.15)

for some a satisfying | — 1 +ap > 1, i.e.,

i + ap>l. (7.16)

We obtain (7.15) by interpolating between (7.1) and the conservation of the L2 norm:
IIVslU2 HVolk2- Such interpolation yields (7.15) for

a<1j(l-0) S^l. (7.17)
4 4<7'p

We may find an a satisfying both (7.17) and (7.16) if q'p + 2 > 6r/. It therefore suffices tc
take l<g'<g2-if4<p<5 and 1 < q' < 2 if p > 5.

Let cp+ 6 L"(R) be the L" limit of (7.14). Then (7.13) implies that:

||e'(HVt — Vo + iA0+||/,,(R) —> 0 as t —> co.

The same argument as in the proof of (i) proves now that the convergence takes place alsc

in L2. Let V+ Vo + *A0+, then:

lim \\e'tÊf - V+|b(R) Mm ||Vt - <r""V+IU'(R) 0.
t-»oo t—>oo

This ends the proof of the theorem. G

Recall that H D2_ + V(r,). where V(r,) is a short-range C°° potential given by (3.2)
We can therefore apply the well known results on short range scattering (see e.g., [3]) to the

evolution e~'tH. As noted before, H has no point spectrum, hence the wave operators

W+ s - lim ettÈe-ltD?-
t->oo

exist and are complete (i.e., axe unitary on L2). Thus for any initial condition V+ € L2(R]
there is a </>+ € £2(R) (<j>+ W+V+) such that:

\[e~ü"iP+ - e-'tD-cP+\\L2{R) -> 0 as t -> co.

Combining this with Theorem 7'.2(H), we obtain the following corollary.

Corollary 7.3 Assume thatp > 4, and let Vt be the solution of (3.3) with the initial condi
tion Vo 6 ^1(R) H L2(R; r,dr,) at t — 0. Then there is a cp+ 6 L2(R) such that:

llVt - e-'tD'>cP+\\L2(R) -> 0 as t -> co. (7.18;
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Similarly, by Theorem 7.2ft/ there is a subspace S of L2(R) (equal to WfHl n L1+1/p))
such that for any cp+ e S there is a Vo € H1(R) f°r which (7.18) holds.

Finally, let us reformulate Corollary 7.3 in terms of the original equation (2.1), to which
(3.3) is unitarily equivalent. Recall from Section 3 that Vt solves (3.3) if and only if

ut(r,u) Uipt(r) r~lipt(r)

solves (2.1). Moreover, the condition Vo € A" is equivalent to:

ueH, r,u e L2(R x S2; r2dr,du). (7.19)

Corollary 7.3 states that if u, solves (2.1) and the initial condition w0 at t 0 satisfies (7.19),
then there is a u+ e L2(R x S2; r2dr,du) such that:

\\Jut - e-'w'- Jm4 [\L2iK;dr.) -»• 0 as t -> oo, (7.20)

where
J U~1 : L2(R x S2; r2dr,du) -> L2(R; dr,),

(Ju)(r) (U'lu)(r) ru(r,u)
for radially symmetric u. (7.20) may be interpreted as follows (cf. [5], [6], [1]). All solutions
e-'tDr„ jw+ 0r tne £ree Schrödinger equation on the cylindrical manifold R x 52 (with the
usual metric) split up into two parts, one of which escapes to the "spatial infinity" r, —> oo,
the other approaches the horizon r, —> -co. Hence Jut, where ut solves (2.1), will have
similar characteristics. However, if we return to the usual coordinates on the Schwarzschild
manifold, the waves approaching the horizon and the spatial infinity will begin to look
differently. As r, —> oo, r ~ r, and the asymptotic dynamics generated by J~lD2J, is
similar to that for a free Schrödinger equation in R3. On the other hand, when r, —> -co,
r —> 2M and the identification operator J is essentially a multiplication by 2M; hence the
asymptotic evolution is given by a one-dimensional Schrödinger equation. This phenomenon
seems to be typical for evolution equations on Schwarzschild manifolds, cf. [1], Section 1.
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