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Representation Theory for Q-Algebras

Gerd Niestegge

Kruener Strasse 91, D-81377 Muenchen, Germany

(3.III.1999)

Abstract. Q-algebras provide a non-boolean logical model and have been used to study quantum
measurement, interference phenomena in quantum physics and the nature of the quantum probabilities.
Each Q-algebra can be represented on a pre-Hilbert space, thus resulting in the standard model of
quantum theory, but the representations considered by the author in recent papers involve unnecessarily
large pre-Hilbert spaces (with an infinite dimension in all non-commutative cases even if the Q-algebra
itself has a finite dimension).

In the present paper, an "optimal" representation is constructed. It uses a pre-Hilbert space of
minimum dimension, and is unique in a certain sense. A Q-algebra of finite dimension becomes

isomorphic to a finite direct sum of matrix algebras.

1 Introduction

Q-algebras have been introduced in [2]. They provide a non-boolean logical model that can
be used to investigate quantum measurement, interference phenomena in quantum physics and

the nature of the quantum probabilities.
An element £ in a complex (associative) algebra cA. with an involution * is called an

(orthogonal)projection ifE=E* and E2=E, and an atom is a projection E with EaiE=<£ E.

A Q-algebra is a complex (associative) algebra dl. with unit element I and an involution *

satisfying the following two conditions:

(a) Xeof,X*X=0 77>X=0

(b) For every O^Aeri there exists an atom E with XE*0.

If cA is a Q-algebra, X.Yedt and YXY*=XYY* with Xedl, X is said to be statistically
predictable under Y; X is called the expectation value ofX under Y and is denoted by E (X\Y).

This definition is equivalent to the one presented in [2], which has been shown in [3].
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This is a new type of expectation value very different from the one familiar from
Kolmogorovian mathematical probability theory. The interpretation of X as an expectation value,
however, is justified from quantum physics at least if Y is a projection or the product of a finite
number of projections. For a projection E, E (X\E) is the expectation value of X after a

measurement with the outcome E. For a finite number of projections E\,...,E„, E (X[ E\Ei..:En) is
the expectation value of A after a series of measurements with the outcomes E\,E2,...,E„ and

depends on the order of the different measurements iî E\,Ei,...JL„ do not commute among each
other'21.

If £ is an atom in the Q-algebra cl, then every Xedl is statistically predictable under E and

the expectation value E (X\EZ) exists for all XecÂ. Then:

• E (X\E) e R for Xedl. with A=A*. and

• E (X*X\E)>0 for all Xedl.

As shown in detail in [2], this simple purely algebraic model is already sufficient to study the

quantum physical measurement process and typical quantum phenomena like indeterminism and

interference, revealing the non-Boolean character of these phenomena.
Each Q-algebra has a representation on a pre-Hilbert space bringing us to the standard model

of quantum physics, but the representations considered in [2,3] involve pre-Hilbert spaces that

seem to be unnecessarily large. With the representation constructed in [2] the dimension of the

pre-Hilbert space can not be lower than the cardinality of the set of atoms in the Q-algebra which
is infinite for each non-commutative Q-algebra. Therefore the algebra of all 2x2-matrices would
be represented on an infinite-dimensional space although, of course, a representation on a 2-
dimensional space is possible as well.

In the present paper, we search for "optimal" representations taking the representation theory
of C*-algebras as a model'11 which is possible only to a certain extent. The representation of C*-
algebras are constructed using states while atoms are used with Q-algebras. The representation
theory of Q-algebras turns out to be much simpler and more basic than the one of C*-algebras,
and we do not need to make any use of C*-algebra theory.

2 General representations

Let X be a pre-Hilbert space. Then let L{X) denote the space of those linear operators X
from X to X for which an opertor X* from X to X exists with

(n|AÇ) (A*ri|ç) for all mÇsSK.

The mapping A->A* provides an involution on L(X), and Lifo) is a Q-algebra with the atoms

being the orthogonal projections on the one-dimensional linear subspaces of X. \ÎX is complete

(i.e. a Hilbert space), every element from L(X) is a bounded operator and L(X>) coincides with
the algebra of bounded linear operators on X. \fdimX=n<oo, L(X) coincides with the algebra of
nxH-matrices.
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Definition 1: Let dl be a Q-algebra.
(i) A representation Uofdlona pre-Hilbert space 76 is a homomorphism Tl:dl-+L(76) with

n(/Hn(A))' for all Xedl.
(ii) A representation IT. of dl on a pre-Hilbert space X is called irreducible if each lineai

subspace ofX that is invariantfor Tl(dl) equals either X or {0}.
(iii) Two representations Oi and n2 of dl. on the pre-Hilbert spaces X\ and "X2 are callec

equivalent ifthere is a linear bijection T:X\—>X2 with

7TI,(A) n2(A)r forali X edl.

They are called unitarily equivalent if in addition, \Tr\ \ Ttfj \A\AI for °H ^» Ç e ^i •

Lemma 1 : Ifa representation TÏ ofa Q-algebra dlon a pre-Hilbert space X is irreducible, ther,

the dimension ofTl(E)3ö equals 1 or Ofor every atom E in ai.

Proof: We assume that there is an atom E'mdl such that Y1(E)X contains two orthogonal
nonzero vectors n,Ç. The linear subspace TL(ai)r] is invariant for Tl(dl) and contains r\, but does noi

contain Ç since

(n(A)r, | Ç) (n(A)n(£)r| I n(£)ç) (n(£A£)n I ç)

E(A|£)(n(£)ri|j;)= £(A|£)(n|c) 0

for all Xedl. Thus n is reducible. D

3 Representations resulting from atoms

With each atom £ in a Q-algebra ai, a representation TIe of dl can be associated in the

following way. The pre-Hilbert space XE is the left ideal cAE with the scalar product

(Y\Z):= e(y'z\e) fox Y,ZeX>E=dlE

and, forAecTT.,

n£(A)r= XY for YeXcf=dlE.

Lemma 2: (i) UE is irreducible for each atom E in a Q-algebra at, and UeÌoI) is a Q-algebra.

(ii) If If is any irreducible representation of a Q-algebra ai on a pre-Hilbert space X will
Tl(E)*0for an atom E in at, then If is unitarily equivalent to He.

(iii) If'dim(dtE)=n<cofor an atom E in a Q-algebra dt, then UeÌoI) is isomorphic to the algebre

ofnxn-matrices.

Proof: (i) Let Q be an invariant subspace of Xe=oIE with O*Ye0. Then ZXYe0 for each Xeat
Now let Z be any element from Xê=câE. For

1

V:=—j—, 7ZY
E(Y Y\E)



Niestegge 253

we get:

Q*VY —.t— rZY'Y —r— tZEY'YE ZE Z.
e[y y\e) e(y y\e)

Thus X/£=él, and we have shown that Ue is irreducible. Now we prove that UeÌoI.) owns
sufficiently many atoms. Ue{F) is an atom in Ylifdl) for each atom F in dl with Y1e(F)*0. If
Xedl such that TIeÌX) Yl^F) 0 for all atoms F in dt, then

0 (n£(A)n£(£))* =n£(£A*) for all atoms F in oi

=> £A ' Y 0 for all atoms £ in dt and YedlE

=> Y
*
XF 0 for all atoms £ in dt and rec^£

=> X* A 0 for all YecdE => A* F 0 for all YeaiE

=> o=n£(A-*) (n£(A))*=>o=n£(A).
(ii) We select x\el\(E)X with |t||=1 and define T:dlE->X via TY:=Y\(Y)r\ for Ke^£. T is

linear. Since n(c^)r| is invariant for 11 and Ç)*r\eY\(al)x\, Y\(c£)r\ must equal X because of the

irreducibility and thus Tis surjective. ForX,YecAE, we get:

x'y=ex'ye= e(x'y\e)e
and then

(7A| ry> (n( A)n| n(r)ri) (n| n(A'y)ri)

£(A*/J£)(r||n(£)n)= e(x'y\e) (X\Y).

Furthermore for allXecÂ and YealE: 7n£(A)F 7Ay n(AT)r| U(X)T1(Y)x\ n(A)7T.
(iii) Vlsid) is isomorphic to a subalgebra of the «xw-matrices, and it is therefore sufficient to

prove that dim YIeÌcAI.) > n2. Let Y\,...,Yn be an orthonormal basis ofatE. Then

/ i \ / i \ (£ forfc /
Yk Y, EYk Y,E E[Yk Y,\e)e {Yk \ Y,)e |Q for ^

and hence

[Y, for fc /

YJYkY'-\0 fork*!
such that YlE\YjYk*\,j 1 n, k 1 n, are linearly independent in YlA<^)- 0

Now we introduce an equivalence relation ~ on the system of atoms in a Q-algebra, which
will later help us to construct the "optimal" representation.

Definition 2: Two atoms E and F in a Q-algebra ai are said to be equivalent (£~£) if the

representations flf and fir ire unitarily equivalent.
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Lemma 3: The following conditions are equivalentfor two atoms E and F in a Q-algebra ai:
(i) £~£(i.e. the representations UE and UF are unitarily equivalent).
(ii) The representations UE and UF are equivalent.
(w)TlF{E)*0.
(iv) There exists an X in oi with £A£*0.
(v) There exists an Y in at with E= Y*FY.

(vi) There are X, Y in ai with E=XFY.

Proof: The implications (i)=>(ii) and (v)=>(vi) are trivial.
(ii)=>(iii): Let T:dlE^atF be the linear bijection with 7TI£(A) n£(A)7' forali X e.ai..

Thenn£(£)*0 since n£(£)*0.
(iii)=>(iv): n£(£)*0 means that there is XedtF with 0* n£(£)A £A £A£.

(iv)=>(v): £A£*0 =>0*(£A£)* => 0^ £A£(£A£)* £A£A*£ e(xFX'\e)e. With

X:= £(a£A*|£)>0 and Y:=-j=X*E,

we then get: y'FY -EXFX' E E.
X

(vi)=>(i): E=XFY. Then

E=XFYE => FYE*0 => £K*£*0 => 0*FYEY*F= E (YEY*\F)F => X:= E (YEY*\F)>0.

We now define T.oiE^-dlF via

T(Z)=-j=ZY*F.-fx
We get for V.ZeolE:

(T{V)\T(Z)) - e{fYV'zy'f\f) - £(y£K*Z£y*|£)

- e(v'z\e)e(yEY'\f)= £(f*Z|£) (K|Z).

This implies that T is injective. We still have to prove that it is surjective. For VedtF we define

ZeaiE as

Then:

Z:=-t=VYE=-7=VFYE.
fx -JX

T(Z) - VFYEY'F FV V 0

Two atoms that are not orthogonal are equivalent (this follows fromLemma 3 (iv)), or two
atoms that are not equivalent are orthogonal (but, of course, orthogonality does not imply non-
equivalence).
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Two atoms in a commutative Q-algebra are equivalent if and only if they are identical (since
two commuting atoms are either equal or orthogonal and, in the second case, Lemma 3 (iv)
excludes that they are equivalent).

In the Q-algebra L(X) with a pre-Hilbert space X, all atoms are equivalent among each other
since, if the two atoms £ and £ are the orthogonal projections on the one-dimensional linear
subspaces generated by the normalized vectors r\,l\eX, then the operator T

T:X->X, 7V:=(ç|m/)ti

belongs to L(X) and

r%/ (ri|v|/)ç and T'ETy ={£,\v)t\ {^ Fy

for all \\ieX. Particularly in the algebra of all bounded linear operators on a Hilbert space or in
the algebra of «x«-matrices, all atoms are equivalent among each other.

Theorem 1: For a Q-algebra at with finite dimension are equivalent:
(i) ai is isomorphic to a matrix algebra.
(ii) E-Ffor each pair E,F ofatoms in at.

Proof: (i) => (ii): see above, (ii) => (i): Applying Lemma 2 (iii) it is sufficient to show the

injectivity of I7.£ for an atom £ in cA. For 0*Xeaf there is an atom £ with A£*0, and since £-£,
there is Yeot with F=Y*EY. Then: 0*A£=AT*£7 => 0*XY*E=Y\e{X)Y*E, i.e. YldX)±0. 0

Theorem 2: Each finite-dimensional Q-algebra ol is a finite direct sum ofmatrix algebras.

Proof: Since orthogonal atoms are linearly independent, the number of equivalence classes of
atoms is n<oo, and a maximal set of pairwise orthogonal atoms in each equivalence class is finite.
Let Ejk, k=\,...,mp be a maximal set of pairwise orthogonal atoms in the/h equivalence class

(\<j<ri) and define

Dj:=Y,EA-
k=\

Then, D, (\<j<n) are projections with DjD/ 0 and DjXDr 0 for;*/" and Xeat. This follows
from EjkXEjv 0 for all fc,fc' (Lemma 3 (iv)). Since furthermore

7 1

n
we get: ai © DjdtD:.

j=\ J

Now apply Theorem 1 to each DfADj. Each atom £ in DjatDj is equivalent to £,i since,

otherwise, £ would not be equivalent to any Ejk, k=\,...,mp F would thus be orthogonal to each

Ejk, k=\,...,mj, and therefore orthogonal to Dp contradicting FDj=F*0. G
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The dimension of a pre-Hilbert space X is the cardinal number of a maximal orthonormal
family of vectors in X.

Lemma 4: Let at be a Q-algebra and E an atom in ai. The cardinal number ofa maximal set of
mutually orthogonal atoms in the equivalence class ofE equals dim(otE).

Proof: Let Q denote a maximal set of mutually orthogonal atoms in the equivalence class of £.
For each £eQ there is XFeat with FXFE*0 (Lemma 3 (iv)). Then EXFFXFE*0 and

E (XFFXf\E)>0. We will now prove that

{a££Af £|£sQ} with a£:
J e(x*ffxf\e)

is a maximal orthonormal family of vectors in olE. We get for £|,£2eQ:

a£i£,X£|£|a£2£2AF2£) a£ia£2£(A^£,£2A£2|£)

0 for £, * £2

1 for £, £2

Now we assume that O^Yecyf.E exists with KL |£A££|£ e QJ. Then

D:= -,

l rYEY*
E\Y Y]E\

is an atom (cf. [3]) with D~E (Lemma 3 (v)) and for all £eQ:

0 (y\fXfE) e(y*FXfE\e)^0 EY'FXfE=>DFXfE 0.

Since £~£, there is an element Z in dt with F=Z*EZ (Lemma 3 (v)). Hence

0=DZ*EZXFE= E (ZXf\E) DZ*E.

From 0*£AF£=Z*£ZA>£= E (ZXr\E) Z*E we get E (ZXr\E) *0. Therefore £>Z*£=0 and finally
DF=DZ*EZ=0. Thus, D is an atom that is equivalent to £ and orthogonal to all £eQ, which

contradicts the maximality of Q.
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4 Automorphisms

An automorphism of a Q-algebra at is a linear bijection Buyt -+ot with Q(XY)=Q(X)Q(Y) and

0(A*)=G(A)* for all X.Yedl. The group of automorphisms of a Q-algebra ct£ is denoted by
AutfAZ).

An automorphism 9 maps atoms to atoms with E (9(A)|9(£))= E (A|£) for each atom £ and

Xeat.

Lemma 5: (i) IfQ is an automorphism ofa Q-algebra at and E,F are atoms in oi with 9(£)~£,
then Tlf ° 9, which is a representation on 7fiF as well, is unitarily equivalent to Y[F.

(ii) IfQ is an automorphism ofa Q-algebra dl and ifE is an atom in at with 0(£)~£, then there
exists a unitary element U in L(Xf with Ue{Q(X))=IMe{X)U*for all XecÂ.

Proof: (i) Since 9(£)~£, n£ and 1\(E) are unitarily equivalent. Then n£ °9 and n9(£) °9,
which are representations on dtF and cAQ(E), respectively, are unitarily equivalent as well. On
the other hand, with

U:dlE^>ote(E), UY: Q(Y),

we get

LTI £ A)K 0( AT) 9( A)e(K) ne( £) (9(A))t/(r)

for YedlE and XecA such that ne(£) =>9 is unitarily equivalent to Y1E. Therefore n£ °9 is

unitarily equivalent to fl£.
(ii) Apply (i) with £=£. G

Each unitary element U of a Q-algebra cA. (i.e. U*U=UU*= I defines an automorphism

Qu^Aut(at) via B(AX):=UXU* for XecA, and BeAut(at) is called an inner automorphism if a

unitary element Ueoi exists with 9=9y.

inner.Corollary 1: Every automorphism ofthe Q-algebra L(X) with a pre-Hilbert space Xt is i

Proof: Applying Lemma 5 (ii) and having in mind that all atoms are equivalent in this case, it is

sufficient to show that the trivial representation of L(X) on X is unitarily equivalent to TIe for

some atom £, and due to Lemma 2 (ii) it is sufficient to prove its irreducibility. The irreducibility

immediately follows from the fact that there is an AeZ.(^) with XZ,=r\ for each pair of vectors

^,r\eX with 4*0. A can be defined as A(i|/):=(ç|v|/)r| for\\ieX. Q
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5 The "optimal" representation

Different representations of a Q-algebra have been considered in [2,3], but the pre-Hilbert
spaces involved with them seem to be unnecessarily large. The representation of an atom is an
orthogonal projection, but the dimension of the range of this projection is higher than one (indeed
infinite in many cases).

We are now interested in a representation that maps atoms to orthogonal projections with
one-dimensional range. We first note that all such representations are injective.

Lemma 6: A representation XI ofa Q-algebra olona pre-Hilbert space 76 such that Y\(E)*0for
each atom E in al is injective.

Proof: For each Q*Xedl there is an atom £ with A£*0. Then

0*EX*XE=E(X*X\E)E
=>0*E(X*X\E)and

0* E (X*X\E) n(£) n( E (X*X\E) E) U(EX*XE) U(E) Yl(X*) 11(A) T1(E)

=>0*n(A).G

For a family of representations na of a Q-algebra al on pre-Hilbert spaces Xa (aeT) the

direct sum is defined as follows: The linear space

© 'Xa:=\fyJ-* U Xa
ae/ I ae/

4(a) eXa for all a € y and 4(a) * 0 only for a finite number ofa e J)

becomes a pre-Hilbert space with the scalar product:

(Çi|ç2):-£<*i(ct)|*2(«»-
ae/

The direct sum © na is the representation ofcA on © Xa defined via
ae/ ae/

© na (A):= © na(A) forAec^.
a eV ' aeJ

© na(A) maps 4 tori with n(a):=ria(A)4(a).
ae/

Definition 3: A Q-algebra of. is said to be of type co with a cardinal number co if the cardinal

number of every set ofmutually orthogonal atoms in dt does not exceed co and if there exists a

set ofmutually orthogonal atoms in cA with cardinal number co.
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Theorem 3: For each Q-algebra al there is a representation TI on a pre-Hilbert space To

satisfying the following conditions:

(i) U(F)X is one-dimensionalfor each atom F in ai., and X is the linear hull of
U n(F)x.

all atoms
Fin ci.

(ii) dimXi equals the type ofoi.
(iii)For each QeAut(dt) there is a unitary element Uq in L(X) with

n(9(A))(7e £/9n(A)
for all Xeat.

(i\)Each representation H on a pre-Hilbert space X' such that TV(FJX' is one-dimensional for
each atom F in cA and X' is the linear hull of

U n'(F)X'
all atoms

F inert

is unitarily equivalent to Yi.

IfCi is a set of atoms containing one and only one atom out of each equivalence class, then YI

can be defined as

n:= © n£.
£efi

Proof: (i) For Q and n as above and for an atom £ we have to show that U(F) has a 1-

dimensional range. Since n£(£) 0 for all atoms £eQ that are not equivalent to £ (Lemma 3

(iii)), it is sufficient to consider n£(£) with £~£. The range of I"I£(£) has dimension 0 or 1

(Lemma 1 and Lemma 2), and since n£(£)*0 (Lemma 3), the dimension must equal 1.

For each l,eX> there are finitely many £|,...,£„€Q such that 4 has the shape

,A [0 forQ3£*£t
§ Z^with4,(£) jW£A {0TCi,E Ek.

For 4*0 we get YkE^Y&O, and

Fk:= T~* FT YkEYk
E[YkYk\E)

is an atom in at with 4t en(pk)X since Ff^k (E) 0 4* (£) for£*£*,

Fk%k{Ek) FkYk =FkYkEk } ,YkEkYkYkEk =YkEk =Yk =%k{Ek)
E[YkYk\Ek)

and hence

(u{Fk)%k)<E) Fk%k(E) l\k(E) for£eQ,i.e. u{Fk)%k =%k.

(ii) This follows from Lemma 4, taking into account that atoms that are not equivalent are

orthogonal.
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(iii) We define j:Q->Q such that/'(£)~9(£), i.e.y'(£) is that representative out of the equivalence
class of 8(£) that has been selected for Q. Then we get from Lemma 5 (i) that Yljtg\ °8 and

n£ are unitarily equivalent representations, i.e. there is a linear bijection Te-ZXjie)-AXe with

TEnM(6(X))=UE(X)TE forali X eoi and

(r£n|r£Ç> (ti|Ç> for all x\£eXm

for each Eed. We now define Vo as follows:

VQ: © ^£-> © ^£, Fe4(£):=7£4(y(£)).
£efi £en

Since/' and the TE (EeQ) are bijections, V& is a bijection. Furthermore:

<M|K64}= Z(r£nU£))|r£4(/(£)))= L(nl/(£))|çO(£)))
£en £efi

X(r,(£)|4(£)) (tlk> for T|,Ç« e 3J£
£en £<E"

and forAst^:
(Ken(A)4)(£)^7,£ny(e)(A)4O(£))=ns(0-,(A))r£4(y(£))

(n(9-'(A))F94)(£) foreach£ eQ,4 e^,
i.e. Fen(A) n(9"l(A))F9. Finally, we replace Aby 0(A) and define Ue:= V'x.

(iv) For each Ee Owe select r|£ eYl'(E)X' with |ri£||= 1, and we define for \eX:

74:= Xn'f^))%^'
£en.

T is a linear mapping from ^ to XZ. Furthermore for 41 »42 e ^ ^1^ Efed:

^(e)^2(e) e^(e)'^(e)e=e(^(e)'Ue)\e)e={^(e)\^2(e))e
and

41(£),42(^) ^1U),^(^ o for£^

(£ and £ are not equivalent, and use Lemma 3 (iv)), hence

if £ * £
(n'(41(£))n£|n'(42(£))n£) (n£|n'((41(£))'42^))Ti£} {(4i(£)|^(£)) |f£ F

(n'(£)ri£=r|£ and ||n£|=l)and therefore (74,|742) (41|42).
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To prove that T(X)=X' it is sufficient to show that there is a 4eSK with 74=r| for each

0*"n e U\F)X" with an atom Final. There is one and only one atom D in Q with D~F and Yeoi
with FYD*0 (Lemma 3 (iv)). We now define 0*4e^ via:

JO for£*£>
**E'''~\fYD for£ D.

Then
0 * 74 U'(FYD)x\D TY(F)YY(YD)x\D an

with 0*ae C since dimYY(F)X'=\, and finally T\ — IA r\.

We will now prove that 7TI(A)=n,(A)7'for all Xedl. Let %eX.

ir(A)74:=rr(A) £n'(4(£))ri£ Xrr(A4(£))n£ 7n(A)4. a
£en, £efi,

With an injective representation of a Q-algebra ai on a pre-Hilbert space X, the dimension
of X can not be lower than co if cA is of type co. Thus the representation of Theorem 3 uses a

preHilbert space of minimum size. Furthermore, part (iv) of Theorem 3 means that this

representation is unique in a certain sense.

6 Conclusions

The above Theorem 3 yields a representation of a Q-algebra ai on a pre-Hilbert space such

that each automorphism ofcA can be expressed via unitary operators on the pre-Hilbert space, but
the map from the automorphisms to the unitary operators need not be a group homomorphism.
This is a major difference to the representation constructed in [2] where this map is a group
homomorphism. Nevertheless, the representation of Theorem 3 is superior since it owns

interesting properties (pre-Hilbert space with minimum dimension, uniqueness) that the one

constructed in [2] does not provide.
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