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Reciprocity theorems for holomorphic representations of
some infinite-dimensional groups

Quelques théorèmes de réciprocité pour les représentations
holomorphes irréductibles de certains groupes de

dimension infinie

By Tuong Ton-That

The University of Iowa
Iowa City, IA 52242-1419 USA
tonthatSmath.uiowa.edu

(29.XI.1998)

Abstract. Let p denote the Gaussian measure on C1"* defined by

dp (Z) n-nk exp [- TV (ZZ^Ì dZ,

where Tr denotes the trace function, Z* ZT, and dZ denotes the Lebesgue measure on C**. Let
FnXk denote the Bargmann-Segal-Fock space of holomorphic entire functions on C1** which are
also square-integrable with respect to p. Fix n and let Tnxoo denote the Hilbert-space completion of
the inductive limit limfc_»oo TnXk- Let Gk and Hk be compact groups such that Hk C Gk C GL^ (C).
Let Goo (resp. Hf denote the inductive limit U*li Gk (resp. U?Li Hk)- Then the representation
H-Goo (resp. Ruf °f G«, (resp. Hf, obtained by right translation on Fnxoc, is a holomorphic
representation of Goo (resp. Hf in the sense defined by Ol'shanskii. Then Rc^ and Rn«, give r'se
to the dual representations R'G, and R'H, of the dual pairs (G^G«,) and (H'^Hfj, respectively.
The generalized Bargmann-Segal-Fock space ZFnx<x> can be considered as both a (G'^Gf-dual
module and an (H'n, Hft-AuA module. It is shown that the following multiplicity-free decompositions

of fnX00 into isotypic components ZFnxoo — ^ffiï„xoo ^2®ZL„xoo hold, where (A) is a

W (A
common irreducible signature of the pair (G'n, Gf) and (p) a common irreducible signature of the

pair (H^,Hf), and I„xoo (resp. I^Jf) 's both the isotypic component of the equivalence classes

PACS codes: 02.20.Tw, 02.20.Qs, 03.65.Fd
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(A)Goo (resp. (pZ)H and (A')G, (resp. (pf)H, )¦ A reciprocity theorem, giving the multiplicity of

(p)H in the restriction to Hco of (A)G in terms of the multiplicity of (A')G, in the restriction
to G'n of (p')H, constitutes the main result of this paper. Several applications of this theorem to
Physics are also discussed.

RÉSUMÉ. Soit p la mesure de Gauss définie sur l'espace vectoriel C1** par la formule

d/i(Z) 7r-n'cexp[-Tr(2Zt)] dZ, zeC1*1*,

où l'on désigne par Tr la trace d'une matrice, Z^ ZT, et par dZ la mesure de Lebesgue sur
<Olxk. Soit ZFnxk l'espace hilbertien de Bargmann-Segal-Fock des fonctions entières holomorphes

/: txyxk _^ q telles que / soient de carré-integrable par rapport à la mesure p. On fixe n et
l'on désigne par Tnx0o le complété de la limite inductive par rapport à k des espaces TnXk- Pour
chaque k soient Gk et Hk deux groupes compacts tels que Hk C Gk C GL^(C), et l'on suppose
aussi que Hk-i C Hk C Hk+i C • • • et Gk-i C Gk C Gk+i C •¦•¦ Soit Goo (resp. Hf la
limite inductive de la chaine {Gf (resp. (Hf). Alors la représentation Rax (resp. Rxif de Goo

(resp. #00)1 obtenue par translation à droite sur ZFnX0O, est holomorphe dans le sens de Ol'shanskii.
Les représentations Rc^ et Rh^ donnent lieu aux représentations R'c, et R'H, respectivement,
des paires duales (G'^Gf) et (H'n,Hf). L'espace hilbertien generalise de Bargmann-Segal-Fock
Fnx0o peut être considéré en même temps comme un (G'n, Goo)-module et un (H'n, Hf-xnoàAe.
On montre que l'on a les décompositions suivantes de ZFnxoo en uniques composantes isotypiques

Fnx0o — 2_^® nxoo — / ,®Aix
A) (A

OO'

où (A) est une signature irréductible commune de la paire (G'n, Gf et (p) celle de la paire (H'n, Hf,
et où I„XOo (resp. InXOO) est à la fois la composante isotypique de la classe d'équivalence de (A)G
(resp. (p)H et celle de (A')G, (resp. (u')H, On donne une démonstration d'un théorème de

réciprocité, donnant la multiplicité de (u)H dans la restriction à iïoo de (A)G en fonction de la

multiplicité de (A')G, dans la restriction à G'n de (ß')Hi ¦ L'article se termine par une discussion de

plusieurs applications en Physique du théorème précédant.

1 Introduction

In recent years there is great interest, both in Physics and in Mathematics, in the theory
of unitary representations of infinite-dimensional groups and their Lie algebras (see, for
example, [Kal], and the literature cited therein). Starting with the seminal work of I. Segal
in [Se] the representation theory of U (00) and other classical infinite-dimensional groups
was thoroughly investigated by Kirillov in [Ki], Sfratila and Voiculescu in [S&V], Pickrell in
[Pi], Ol'shanskii in [Oil], Gelfand and Graev in [Ge&Gr], Kac in [Ka2], to cite just a few. A
more complete list of references can be found in the comprehensive and important work of
Ol'shanskii in [012].

In [012] Ol'shanski generalized Howe's theory of dual pairs to some infinite-dimensional
dual pairs of groups. Recently in [TT1] and [TT2] we investigated the generalized Casimir
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invariants of these infinite-dimensional dual pairs. In [TT3] we gave a general reciprocity
theorem for finite-dimensional dual pairs of groups which generalized our previous results in
[KT1] and [LT1]. In this article we give a generalization of this reciprocity theorem to the case

of dual pairs where one member is infinite-dimensional and the other is finite-dimensional,
and discuss the general case where both members are infinite-dimensional. If Section 2 we
will review the reciprocity theorem given in [TT3] which serves as the necessary background
for the generalized theorem, and more importantly, discuss several interesting applications
of this theorem. Section 3 deals with our main theorem, and the paper ends with a short
conclusion in Section 4.

2 The Reciprocity Theorem for Finite-Dimensional
Pairs of Groups and Its Applications

In [TT3] our reciprocity theorem can be applied to the more general context of dual
representations but for this paper we shall restrict ourself to the case of the oscillator dual
representations and where one of the members is a compact group.

Let Cnxk denote the vector space of all nxk complex matrices. Let p. denote the Gaussian

measure on <CZlxk defined by

du.(Z)=n-nkexp[-Tx(ZZi)] dZ, Z € C1**, (2.1)

where in Eq. (2.1) Z* denotes the adjoint of the matrix Z and dZ denotes the Lebesgue
measure on CxN. Let ZFnxk ZF (Cixk) denote the Bargmann-Segal-Fock space of all
holomorphic entire functions on Cnxfc which are also square-integrable with respect to dp.
Endowed with the inner product

(f\9)= f(Z)gJZ)dp(Z); f,geZFnxk, (2.2)

ZFnXk has a Hilbert-space structure. It can be easily verified that the inner product

(f\9) f(D)g(Z)\z=0 (2.3)

where / (D) denotes the formal power series obtained by replacing Zaj by the partial derivative

d/dZaj (1 < a < n, 1 < j < k). In fact if (r) (rn,..., rnk) is a multi-index of integers

raj > 0 let Z{r) Z[\x ¦ ¦ ¦ Zrn\k and (r)! rf- • • -rnk\ then it is easy to verify that

Z(r)

[(r) ns

Z(r') \ I 2(0

Kr')!]V \[( VI 5

z<r'>
*(r)(r<)- (2-4)

[(r>) !i
It follows immediately from Eq. (2.4) that I Z(r) / [(r)!]2 1 forms an orthonormal basis for

I J (r)
iFnxk when (r) ranges over all multi-indices; moreover VnXk V (Cx*), the subspace of all
polynomial functions on Cnx*:, is dense in TnXk-
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Let G and G' be two topological groups. Let Rg and R'G, be continuous unitary and

completely (discretely) reducible representations of G and G' on Tnxk such that RG and Rf
commute. Then we have the following definition of dual representations (for the definition
of dual representations in a more general context see [TT3]).

Definition 2.1. The representations Rg and R'G, are said to be dual if the G' x G-module

f„t is decomposed into a multiplicity-free orthogonal direct sum of the form

A)

where in Eq. (2.5) the label (A) characterizes both an equivalence class of an irreducible
unitary representation Ac of G and an equivalence class of an irreducible representation
A'G,, and fxk denotes the (\)-isotypic component, i.e., the direct sum (not canonical) of
all irreducible subrepresentations of Rg (resp. R'G,) that belong to the equivalence class Ag

(resp. A'G,). Moreover the G' x G-submodule Tnxk 's irreducible for all signatures (A); i.e.,

Z^jt « V(Xc) ® w(x'c', where V^c) (resp. w(x'o)) is an irreducible G-module of class (AG)
(resp. G'-module of class (A'G,)).

We refer to the decomposition (2.5) as the canonical decomposition of the G' x G-module
•J TlXfc-

In this context we have the following theorem which is a special case of Theorem 4.1 in
[TT3],

Theorem 2.2. Let G be a compact group. Let RG and R'G, be given dual representations
on ZFnXk- Let H be a compact subgroup of G and let Rh be the representation of H on ZFnxk

obtained by restricting RG to H. If there exists a group H' 3 G' and a representation R!H, on
TnXk such that RZH, is dual to Rh and R'G, is the restriction of R'H, to the subgroup G' of H'
then we have the following multiplicity-free decompositions of ZFnXk into isotypic components

^«x^Eei^E®2^ (2-6)
(A) (m)

where (A) is a common irreducible signature of the pair (G1, G) and (f) is a common
irreducible signature of the pair (H', H).

If AG (resp. \'cf denotes an irreducible unitary representation of class (A) and pH
(resp. fHi) denotes an irreducible unitary representation of class (p) then the multiplicity

dim [Horn// (pH : XG\f] of the irreducible representation pH in the restriction to H oj
the representation AG is equal to the multiplicity dim [HomG< (A'G, : p'h,\g')] of the irreducible
representation A'G, in the restriction to G' of the representation pJH,.

Remarks. In many cases Horn// (p : \g\h) and HomG (A'G : p'h,\g) are shown to be isomorphic

and can be explicitly constructed in terms of generalized Casimir operators as given in
[KT2] and [LT2].
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To illustrate this theorem we devote the rest of this section to some typical examples and
discuss their generalization.

Examples 2.3. 1) Consider TiXk with k > 2; then ZFiXk is the classical Bargmann space
first considered by V. Bargmann in [Ba]. Then 'Pixit is the algebra of all polynomial functions
in k variables (Zx,..., Zk) Z. Let G U (k) and G' U (1); then the complexification of
U (k) (resp. U (1)) is Gc GL* (C) (resp. G'c GL, (C)). An element / of ZFixk is of the
form

oo

f(Z)= J2 C{r)Z(r) (2-7)

l(r)|=0

with (r) (n,..., rk), \(r)\ r, + • ¦ ¦ + rk, and Z(r) Z? ¦ ¦ ¦ ZTkk, c(r) G C such that

E|Tr)l=o|c(r)|2(r)! < °°> where (rV- nl---rkl. The system |z(r) / [(r)!]2}, where (r)
ranges over all multi-indices, forms an orthonormal basis for ZFixk. Rcc and Rg are defined
by

[RGc(g)f](Z) f(Zg), geGLk(C),
[Rg (u) f] (Z) f (Zu), u e U (k).

(2.8)

R'G, and R'G, are defined by

'R'G,c(g')f](Z) f((g'YZ), g'eGLfC),
R'G,(u')f](Z)=f((u')tZ), u'GU(l).

(2.9)

The infinitesimal action of RGc is given by

Rl3=Zl8Z~' l^%A<k, (2-10)

which form a basis for a Lie algebra isomorphic to gl* (C).

The infinitesimal action of R'G, is given by

t=i '

which forms a basis for a Lie algebra isomorphic to glx (C). If p, q € V\xk then from Eq.
(2.1) of [TT4] we have

RGc(g)p(D)RGc(g-l) [RGc(gfp](D), g £ GL, (C) g' («r')', (2.12)
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so that if u € U (k) then

(RG(u)p[RG(u)q) [RG(u)p](D) (RG(u)q) (Z) (2.13)
z=o

Rc (t/) p (D) Rg (u1) R (ù) qJS)

p(D)RG(utû)q(Zf)

(v\q),

since vfû 1. A similar computation shows that

R!G,c(g')p(D)R'G,c((grl) [R{(gY)\(D), g'eGLfC), (2.14)

so that if u € U (1) then

(R'GI(u')p\R'G,(u')q) (p\q). (2.15)

Note that all equations above from (2.12) to (2.15) remain valid if we replace C1** by C1**
and GLi (C) (resp. U (1)) by GLn (C) (resp. U (n)).

It follows that RG, G U (k) (resp. R'G,, G' U (n)) is a continuous unitary representation

of G (resp. G') on Tnxk.

Let Vff denote the subspace (of Fixk) of all homogeneous polynomial functions of degree
("•) ism > 0. Then by the Borel-Weil theorem (see, e.g., [TT4]) the restriction of Rcc to V{

an irreducible subrepresentation of RGc with highest weight (m, 0,..., 0) and highest weight

*
vector cZj71, c 6 C*. In fact, by letting the infinitesimal operators Rij act on V\xk one

can easily show that V\xk is an irreducible subrepresentation of RGc. By "Weyl's unitarian
trick" the restriction of this irreducible subrepresentation to G gives an irreducible unitary
representation of G.

i
Let 0 p e V(fzl Then (R'G, (g') p) (Z) =p((g')lZ) p(g'Z) (g')mp(Z) for all

g' G GLi (C). So the one-dimensional subspace of Fixk spanned by p is an irreducible
G£-submodule with highest weight (m) and its restriction to G' is an irreducible unitary
G'-submodule. In fact, Euler's formula implies that

Lp mp, for all p G V[f.
Thus the canonical decomposition of the G' x G-module F\xk is simply

(2.16)

Flxk Y^®v[(rn)
xk- (2.17)

Let H denote the special orthogonal subgroup SO(k). Then Hc SO^C). Then the
ring of all H (or Jïc)-invariant polynomials in V\xk is generated by the constants and
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Po (Z) — $3i<j<fc Zf. The ring of all H (or i/c)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacian A po (D) YIkkh 92/dZf.
To find the dual representation of Rh we follow the method given in [TT3] by setting

X+ \po, X- l-pfD)=l-&, and£=^ + L. (2.18)

Then A'+ (resp. X~) acts on ZFixk as a creation (resp. annihilation) operator and E acts

on ZFixk as a number operator. In fact, if p G P[xk *^en X+p jPoP, X~p 5 Ap, and

Ep ((k/2)+m)p, so that X+ raises V{£\ to v[xk2), X~ lowers v\™\ to v[™k2) and i/
multiplies (elementwise) Vffk by the number (h/2) + m. An easy computation shows that

[E,X+]=2X+, [E,X~]=-2X-, [X~,X+]=E. (2.19)

Eq. (2.19) gives a faithful representation of the Lie algebra SI2 (R). Thus the dual action of
H is given by this representation. The integrated form of this Lie algebra representation
is more subtle to describe: it is the metaplectic representation of the two-sheeted covering

group SL2 (R) of SL2 (R) (or Sp2 (R)), and this group is not a matrix group. Its concrete
description can be obtained by applying the Bargmann-Segal transform which sends the

Schrödinger representation of this group to its Fock representation ZF\xk. However, for our
purpose, its infinitesimal action (2.19) together with the action of its maximal compact group
G' U (1), which is particularly simple, will suffice. Indeed, it is easy to show that we have

the following decomposition of V[xk:

Vit E® A*"2"', (2.20)

i=0,...,(m/2]

where [m/2] denotes the integral part of m/2, and HffZ. denotes the subspace of all

harmonic homogeneous polynomials of degree (m — 2i), i.e., all functions p G V{fk such

that Ap 0. For an integer r > 0 then it can be easily shown that the restriction R), of Rh
to Hff is an irreducible representation of H with signature (r, 0,..., 0) and highest weight

[*/2]
vector

f(rh(Z) l{Zl + lZs+lY' iffc 2s>
(2.21)V ; \(Zi+iZs+2)T, ifk 2s+l, l yff.

For each integer j > 0, the restriction of Rh to the subspace ffi^ is equivalent to R^
since pj is ^-invariant. Set

00

i& £>pÄ; (2-22)

then T['k is the (r, 0,..., 0)-isotypic component of R^¦ From (2.20) and (2.22) we see that
k

OO

Tixk Yl®Iixk- (2-23)
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Obviously, R'fr (u) R'G(u), u G G', leaves each one-dimensional subspace cff, c G C,
invariant, since R'G (u) (pj/i) ur+2] (f0h) (alternatively, E (pj/i) ((fc/2) + r + 2j) (f0h)),
for all h G U(ïlk. Clearly, X+ (pj/i) \p]f+x)h, h G ?4xjfc- Finally from the equation

A'" (po/) (fc + 2s)f + -po A / (2.24)

if / is a polynomial function of degree s, we deduce by induction on the integer j > 1 that

X- (pîh) =j(k + 2(r + j- l))p(rlh, h G H(;]xk. (2.25)

For each fixed h G n[^k let Jh denote the subspace of l[xk spanned by the set

{4h[j 0,1,2,...}.
Then it follows from the previous discussion that the subrepresentation of the Lie algebra
sl2 (R) on Jh is irreducible, and thus the metaplectic subrepresentation of SL2 (R) on Jh
is irreducible as well. As a U (l)-module Jh is reducible, and for this special case each
one-dimensional subspace cf0h, c G C, is an irreducible submodule, and the lowest one is ch
which has weight r (or (fc/2) 4- r) since

R!G(u)h urh, keU(1), or Eh- + r h (2.26)

In general, if a holomorphic discrete series of a noncompact semisimple Lie group such as

SL2 (R) considered as a A'-module, where K is its maximal compact subgroup, decomposes
into a discrete sum of irreducible submodules, each one of them can be characterized by a

signature (highest weight, for example) and the one with the lowest highest weight (under
the lexicographic ordering) is unique. This lowest K-type highest weight which corresponds
to the Harish Chandra's or Blattner's parameter, can be used to label the given holomorphic
discrete series. We shall call this label its signature. In our example, the holomorphic discrete

series Jh of SL2 (R) has signature r. If dim OhQ) d (actually, d (k+fl) - (^f3)) Z&*

is the r-isotypic component (of the metaplectic representation of SL2 (R)) which contains d

isomorphic copies of signature r.

Now let us verify Theorem 2.2 for this simple example. From Eq. (2.20) we have

dim HomSO(it) (j-, 0 q)so(fc) : (m, 0 0)v{k)

\ [k/2] k
SO(k)

1, if r m — 2i for i 0,..., [m/2],
0, otherwise,

and from Eq. (2.22) and Eq. (2.26) we have

dim Homu(i) mu(1) : r,SL2(R)
U(l)

1, if 2j + r m,
0, otherwise,

(2.27)

(2.28)
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which are obviously identical.

For arbitrary n such that n < k Eq. (2.7) remains valid with (r) (rn,... ,rnk) and
Z<r) Z[|' ¦¦¦Zrnf. Eq. (2.8), (2.12), (2.13), (2.14) remain valid. Eq. (2.10) is replaced by

Ra -Y,Zaidz~ ' l<i,j<k. (2.10)'

Eq. (2.11) is replaced by

Laß — 2_^ Za
dZf l<a,ß<n. (2.11)'

Let B'n denote the lower triangular Borei subgroup of G'c GL„ (C), let (A) be an n-tuple
of integers such that Xi > A2 > • • ¦ > An > 0, let A: B'n —¥ C* be the holomorphic character
defined on B'n by

I \Aj /,J \Xn\(b') (b'nf---(b'nn) if 6'

* b'

belongs to B'n.

,(A)Let Vnf denote the subspace of all polynomial functions on C which also satisfy the
covariant condition

/(Ò'Z) A(Ò')/(Z). (b',Z)eB'nxCnx .29)

Let R\ denote the representation of G obtained by right translation on P„xfc. Then by the
Borel-Weil theorem (see, e.g., [TT4, Theorem 1.5]) Rx is irreducible with highest weight (A)
and highest weight vector

ch (Z) CA,1"'2 (Z) A^-Aa (Z) ¦ ¦ ¦ AK (Z), CGC, (2.30)

where in Eq. (2.30) A, (Z) denotes the ilh principal minor of Z.

Similarly let Bk denote the upper triangular Borei subgroup of Gc GL, (C) and let
A' : Bk —> C* be the holomorphic character defined on Bk by

*'(&) $—& if*

6n

0

belongs to Bk.



230 Ton-That

Let Vnxk denote the subspace of all polynomial functions onCxfe which also satisfy the
covariant condition

f (Zb) X'(b) f (Z), (b,Z)=BlkxCnxk. (2.31)

Let R\, denote the representation of G' on Vnxk defined by

[R'A9')f](Z)=f((g')tz), g'eG'. (2.32)

Then R!x, is irreducible with highest weight (A') and with the same highest weight vector
given by Eq. (2.30). By Weyl's unitarian trick the restriction of R\ (resp. R'y) to G U (fc)

(resp. G' U (n)) remains irreducible with the same signature.

Let Inxk denote the G'c x Gc (or G' x G)-cyclic module in ZFnxk generated by the highest

vector fx given by Eq. (2.29); then by Theorem 3, p. 150, of [Ze], Tnxk ls irreducible with

highest weight (A', A). For the sake of simplicity we say that the Gc x Gc-module Tnxk has

signature (A). To prove that 2™ « V™kèV™k we define a map ft: V^l®^ ~> 2$*
as follows:

Let /' <S> f G Vnxk ®7'nxfc. Then /' and / can be represented in the following form:

/' £ c',R'y (g[) f, f J2 OjRx te) fx, (2.33)
•€/' je/

where in Eq. (2.33) c[,Cj G C, g[ G Gc, gj G Gc, and /' and / are two finite index sets. Set

* (/' O /) E.-6/w^.T (g[,gj) fx, where [T (g'„9j) fx] (Z) / ((5l')f Zg}). Since

ie/

and

Rx(g)f Y,cjRx(ggj)h
je/

it follows that

<è[(R'Ag')®Rx(g))(f'®f)]= £ C'^T W«j) A
!6/jeT

T (<?',(?) ft (/'$/)
for all 5' G Gc and <? G Gc- This means that <J> is an intertwining operator and by Schur's
lemma $ is either 0 or an isomorphism. Since

$ (fx ® fx) fx
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it follows that ft is an isomorphism. Since Vnxk is dense in Tnxk Theorem 3 (p. 150) of

[Ze] (see also [KT1]) implies that we have the Hilbert sum Tnxk E®^nx* f°r t^ie Pa^r

(U(n),U(fc)). (A)

Now suppose fc > 2n and set H SO (fc), Hc SOfc (C). Let Jnxk denote the ring of all
H (or /7c)-invariant polynomials in VnXk- Then JnXk is generated by the constants and the

n (n + 1) /2 algebraically independent polynomials

Pa0 (Z) J2 ZaiZßf, \<a<ß<n. (2.34)

It follows that the ring of all H (or Hc)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

An/J Paß (D) J2
dZQtdZä, '

1 < a < ß < n.

The infinitesimal action of R'Gc is generated by

Laß — / Za dZf l<a,ß<n.

(2.35)

(2.36)

Set Paß —paß, Eaß Laß + \k5aß, and Daß A.aß; then it follows from [KLT] (see

Eq. (3.3)) that {Eaß, Paß,Daß) defines a faithful representation of sp2n (R) on TnXk- By
construction this representation is dual to the infinitesimal action of Rh- The global action

R'H, is a unitary metaplectic representation of Sp2n (R), the two-sheeted covering of Sp2n (R)
(see [KLT] for details). As in the case of the pair (U (n), U (fc)) the common highest weight
vector (for R'H, the lowest A"'-type highest weight vector) of signature (p.) (p,v... ,pn)

with p,x > ¦ ¦ ¦ > nn > 0 and ßi € N, 1 < i < n, of the pair (Sp2n (R) ,SO (fc)] is

U (Z) A?'-"2 (Zq) A»^ (Zq) ¦ - ¦ A£» (Zq).

where the fc x fc matrix q is given by

1
' a. A, 1

v/2 illy -iH„

and

J_
72

Hv 0 n„
0 f2 0

ia„ o -m.

if fc 2v,

if k 2u+l,

(2.37)

and where H^ is the unit matrix of order v.



232 Ton-That

An element p of Vnxk is called H -harmonic if AaßP 0 for all a, ß 1,..., n. Let
Tdnxk denote the subspace of all //-harmonic polynomial functions of Vnxk and let Hnxk (p)
denote the subspace of all elements h of HnXk which also satisfy the covariant condition

h(b'z) (b'nf---(b'nnY»h(z), V6' G BL. (2.38)

Then according to Theorem 3.1 of [TT4], the representation Rh of H which is obtained by

right translations on ~HnXk (ß) is irreducible with signature (p.).

The infinitesimal action of Rh is given by

a=l,...,n ^ dzaj ajdzQ
1 < i < j < fc- (2.39)

From [KLT] the dual infinitesimal action of Rh is given by the system {Eaß, Paß, Daß} which
satisfies the commutation relations

[Eaß, Efu,] aßßEav - &avEßß

[Eaß, Pf SßßPau + ÖßvPaii

[EQß, DßV] —SaßDß„ — Oa„Dßß

[Paß, E>ßV] fßEvß + Öa„Eßß + 5ßßEva + OßvE^a

[Paß, Pßv] [Daß, D/w] 0
(2.40)

faß, 'ßa, '-'aß

Raß Daß,

Dnß D.ßa

Daß — ' aß, '-'aß ~ ±Jßa,

for all a,ß,ß,v — l,...,n.

By Corollary 3.11 of [TT4] the /i-isotypic component in Hnxk consists of dß copies isomorphic
to Hnxk (p), where dß is the degree of an irreducible representation of G' U (n) of signature
(/i,,... ,ßn)- Since from Eq. (2.40) and the fact that fß is //-harmonic

D^Eaßfß — [Dßu, Eaß] fß + EaßDßUfß

— fßDßvfß + 5avDßßfß

0,

it follows that Eaßfß is //-harmonic for every a, ß 1,..., n. Since [Eag, Rf'] 0 for all

a, ß 1,..., n and i, j 1,..., fc it follows that Eaß : Hnxk (ß) —» finxk are intertwining
operators, and thus are either 0 or isomorphisms. It follows that the g'-module generated
by the cyclic vector fß is irreducible with signature (ßi,...,ßn). In fact, from Eq. (3.14)
of [TT4] this space is a G'-module. Let G'fß denote this G'-module; then by construction
G fß C Hnxk-
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If h G G'fß then from Eq. (2.40) we have

DßVPaßh [DßU, Paß] h + PaßDßvh

— (&aßEvß + SavEßß + 5ßßEua A &ßvEßV) h,

and therefore DßvPaßh belongs to G'fß. It follows that JnXkG'fß is an irreducible sp2n (R)-
module with signature (p). LetH'nxk (ß) denote this module and ietT^fk be the //' x//-cyclic
module generated by fß; then a proof similar to the case l„xk shows that H'nxk (ß) <8> Hnxk (ß)

is isomorphic to Jfxk. By the "separation of variables theorem" 2.5 of [TT4] and from the
fact that Vnxk is dense in Fnxk it follows that the orthogonal direct sum decomposition
FnXk — YL®l-nxk holds. Therefore the reciprocity theorem 2.2 holds for these pairs (G', G)

(ß)
and (H',H) as well.

2) Let fc 21 and consider again the dual pair (G' U (n), G — U (fc)). Let H =Sp(fc); then
He =Spk (C). If / > n > 2 then the theory of symplectic harmonic polynomials in [TT5]
implies that the dual representation to the representation Rh on ZFnxk is a representation
of the group SO* (2n) H' whose infinitesimal action is given by Eq. (4.2) of [KLT]. Using
Theorem 2.1 of [TT5] and the "separation of variables theorem" for this case we can show

similarly that ZFnxk Yl®ffk ^or ^s dual Pa'r (^0* (2n), Sp (fc)). Thus the reciprocity

theorem 2.2 holds again for these pairs (G',G) and (//',//).

3) The case of the dual pairs

(G" U (p) x U (q), G U (fc) x U (fc))

and

(H' \J(p,q),H U(k))

can be treated in a similar fashion using the results of [TT6] and the infinitesimal action of
//' on Tnxk is given by Eq. (6.4) of [TT3]. However, its generalization to the case H U (oo)
in Section 3 is quite delicate and requires a quite different embedding that we shall describe
in detail below.

Let p and q be positive integers such that p + q n. Let fc be an integer such that
fc > 2max(p, q). Let (A) be a ç-tuple of integers such that Xi > A2 > • ¦ • > A, > 0. Let
Rx denote the representation of GL/t (C) (or U (fc)) defined on Vqxk given by Eq. (2.29) and
(2.30) with n replaced by q. We define the contragredient (or dual) representation of Rx as
follows.
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Let sT denote the r x r matrix with ones along the reverse diagonal and zero elsewhere:

f)
If VK G Oxk let W sQWsk- Thus W is of the form

W
W,qk

w.l.k

Wq,i

Wi,
(2A1)

>(*Let Pqxk denote the subspace of all polynomial functions in W which also satisfy the

covariant condition

f(b'w)=X(b')f(w) (2A2)

for all b' G B', where B'q is the lower triangular Borei subgroup of GL, (C), and b' sqb'sq.

Define the representation Rx of GL^ (C) (or U (fc)) on Vqxk by

[Rx (9) f] (w) / (Wskgsk) ff G GL, (C) (2.43;

Then Rx is irreducible with signature (0,..., 0, — Xq, — Xq_i,..., — Ai) and lowest weigh
vector X.

k

cfx (w^j AXl-X2(w)AX2-*3(w)---Ax<(il<), ceC*, (2.44;

of weight (—Ai, -A2,..., -A,,0,... ,0).

Let Vqxk denote the subspace of all polynomial functions in W which also satisfy the

covariant condition

f(wb)=x(b)f(w) (2.45;

where b skbsk, b G Bk (it follows that 6 is a lower triangular matrix of the form b

bkk D \ (a X
¦

¦ f ))¦ Let R' denote the representation of GL, (C) (or of G' U (q)) on Vqxk'

defined by

[r'(x y (g1) f] (W) f (s, (g')"1 Sqw) g' G GL, (C) (2.46;

Then R' is irreducible with highest weight (Ay) and with lowest weight vector given b}

cfx cG C*, of weight (-Ai, -A2,..., -A,).
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As in the case (A') ® (A) it can be shown that Vqxk ® Pqxk is isomorphic to Iqxk and

we have the Hilbert sum decomposition Fqxk J2 ®Tqxk for the pair (U (q) ,U(fc)).
(A

Now let G U (fc) x U (fc) act on Fnxk via the outer tensor product

Rv(k)®RV(k) (9i,92) f f ...?ß.L....
Wskgfsk

(2.47)

where Zg CPxk, W G Oxk, p + q n, gug2 G U(fc). Then G' U (p) x U (q) acts on Tn*k
via the outer tensor product

Kp)®ä'u(,) }(9'i,9'2)f / (g'lYz
sq(92Ì sqw

(2.48)

where (g[,g'2) G U (p) x U (q).

It follows that we have the isotypic decomposition for the dual pairs (G', G)

Fn E *

(")®(A

r(")®(A
(2.49)

where I, is isomorphic to 1 xk ® I x/tqxk

Let // {(ff.ff) : ff G U (fc)}; then // is isomorphic to U (fc) and H acts on ?,x, via the
inner (or Kronecker) tensor product Rh Rv{k) ® R'V(k) Let JnXk denote the ring of all
H (or He « GL* (Q)-invariant polynomials in VnXk- Then from [TT6] and [TT3] JnXk is

generated by the constants and the p x q algebraically independent polynomials

Paß -J; j {ZskWl)aS È Za,Wß„ l<a<p,l<ß<q. (2.50)

It follows that the ring of all H or (//c)-invariant differential operators with constant
coefficients is generated by the constants and the Laplacians

AQ/3 paß (D) E
d2

^dZa,dWf
1 < a < p, 1 < ß < q. (2.51)

Together with the infinitesimal action of GL„ (C) on TnXk the pQ^'s and AQ/3's generate a
Lie algebra isomorphic to su(p, q) with commutation relations given by Eq. (6.4) in |TT3].
The global action of this infinitesimal action defines a representation R'fr of //' SU (p, q)

on Tnxk which is dual to the representation Rh-

An element p of Vnxk is called H-harmonic if AQ^p 0 for all a l,...,p, and
ß 1,..., q. Let Hnxk denote the subspace of all //-harmonic polynomial functions of Vnxk

and let HnXk (ß) denote the subspace of Hnxk generated by the elements / G Vzfk ® Vqxk
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which also satisfy the condition AQ/j 0, 1 < a < p, 1 < ß < q. Let RH, ß (u) <2> (A/),
denote the representation of H on HnXk (ß) defined by

R{,f(9)f / _Zg
Wskg'sk

for all ge H. Then Theorem 5.2 of [TT3] implies that:

(2.52)

The representation R^ of H « U (fc) on %nxk (p) is an irreducible unitary representation

of class (p) which has signature

(ß) ("i> vp, 0,. ,0,-AB -f), (2.53)

where in Eq. (2.53) va, 1 < ot < p, and Xß, 1 < ß < q, are integers such that vx > - ¦ ^
and Ai > • • • > A, > 0. Let /„ U (Z) fx (w), where /„ is given by Eq. (2.30)

Mwith v replacing A and fx is given by Eq. (2.44). Let ffff be the H' x //-cyclic module
generated by fß; then a proof similar to the previous cases shows that H!nxk (ß) <8>Hnxk (ß)
is isomorphic to 2j£fc. By the "separation of variables theorem" 1.5 of [TT6] and Theorem

5.1 of [TT3] it follows that the orthogonal direct sum decomposition Tnxk J2®^nxk holds.
(A

Therefore the reciprocity theorem 2.2 also holds for these pairs (G', G) and (//', //).

4) This example is a generalization of the previous example. Consider r copies of one of

the following groups: U(fc), SO(fc), or Sp(fc), with fc even for the last, and let each of

them act on a Bargmann-Segal-Fock space ZFp>xk, 1 < i < r, by right translations. Let

Pi + p2 + • • ¦ + pr n, and let G denote the direct product of r copies of each type of group.
In the case of U (fc) we allow the rth copy to act on TVïXk either directly or contragrediently;
for the other cases it is not necessary to consider the contragredient representations since

they are identical to the direct representations.

On each FPlXk for the U (fc) action we have the dual action of U (pi) by left translations,
and with possibly the dual (left) contragredient representation in the case i r. For SO (fc)

we have the metaplectic representation of Sp2pi (R), and for Sp(fc) we have the corresponding
representation of SO* (2p;). Let G' denote the dual group of G thus obtained. Let H denote
the diagonal subgroup of G; then in the case of U (fc) an element of H is of the form
(u, u,..., u) or (u,...,u,u), u e U (fc), and in other cases an element of H is of the form

r r-l
(u, u,..., u), u e SO (fc) or u GSp(fc). Let //' denote the dual group of H thus obtained.

r
Then H' is isomorphic in each case to U (n), Sp2n (R), or SO* (2n). As in previous examples
it is straightforward to verify that the reciprocity theorem 2.2 holds for these pairs (G',G)
and (H',H).
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3 Reciprocity Theorems for Finite-Infinite Dimensional
Dual Pairs of Groups

Let H be an infinite-dimensional separable complex Hilbert space with a fixed basis

{ei,e2)...,ek,...}.

Let GL, (C) denote the group of all invertible bounded linear operators on H which leave

the vectors en, n > fc, fixed. We define GL^ (C) as the inductive limit of the ascending
chain of subgroups

GL, (C) C • • • C GL* (C) C • • •.

Thus

GLoo (C) {A (af i, j G N | A is invertible

and all but a finite number of oy — 5,-j are 0}.

If for each fc we have a Lie subgroup Gk of GL, (C) such that Gk is naturally embedded in
Gk+i, k 1,..., n,..., then we can define the inductive limit Goo — lim Gk — U/tli @k- F°r
example, U (oo) {u e GL«, (C) : u* u"1}, and thus U (oo) is the inductive limit of the

groups U/t of all unitary operators of H which leave the vectors en, n > fc, fixed.

Following Ol'shanskii we call a unitary representation of Goo tame if it is continuous in

the group topology in which the ascending chain of subgroups of type < I > fc

1, 2,3,..., constitutes a fundamental system of neighborhoods of the identity 1^. Assume
that for each fc a continuous unitary representation (Rk,Hk) is given and an isomorphic
embedding ik+l : Hk —> Hk+i commuting with the action of Gk (i.e., ik+1°Rk (g) Rk+Ï (g)o
ik+i) is given. For j < k define the connecting map tpjk: G3 x Hj —» Gk x Hk by

fjk (9j,Xj) (9k, xk), (g3,Xj) e G, x Hj, (3.1)

where in Eq. (3.1) gk (resp. xk) denotes the natural embedding of gj (resp. x3) in Gk (resp.
Hk)- Then obviously the diagram

Ctj X rij —-> rij

w4 |4=*ì-,*-#B«4h (3-2)

Gk x Hk —¦> Hk

is commutative. Let Hoo denote the Hilbert-space completion of UtLi "Rk and define a
representation R^ of GK on Hk by

•Roo (5) x Rk(g)x if g e Gk and x G Hk- (3.3)
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Then obviously R^ is a unique continuous unitary representation of Goo on Utli Rk which
can be extended to a unique continuous unitary representation of Goo on Woo- Let tpk denote
the canonical map of (Gk,Hk) into (G^.Hf and ik denote the canonical map of Hk into
¦%oo; then obviously the diagram

GkxHk ^ Hk

J> (3-4)

(-Joo x rtoo ' rloo

is commutative.

The following theorem, which is well-known when ik+1 is an isometric embedding (see,

e.g., [012]), is crucial for what follows.

Theorem 3.1. // the representations (Rk,Hk) are all irreducible then the inductive limit
representation (Roo,H.f is also irreducible.

Proof. Let A be a bounded operator on Hoo which belongs to the commutant of the algebra
of operators generated by the set {.Roo (ff) ,ff G Goo}. Since UStli 'Rk is dense in H&, and
all the linear operators involved are continuous we can without loss of generality consider
them as operating on U*Li Rk and satisfying A (if (x)) Ax for fc < / and for all x G Hk-
Let Pk denote the projection of UStli Rk onto Hk. Let Ak denote the restriction of A to
Hk; then Ak is a bounded linear operator of Hk into U^°=i Rn- It follows immediately that
PkAk'. Hk —> Hk is a bounded linear operator on Hk. Let x G Hk and suppose AkX Ax
belongs to Hi- If / < fc we may use the isomorphic embedding ilk if1 o ¦ ¦ ¦ o ill+l : Hi —> Hk
to identify Ax with an element of Hk so that PkAkx Akx — Ax, and thus

Rk (gk) PkAkx /?oo (gk) Ax AR«, (gk)x PkRk (gk) x, VgkeGk.

If I > k then use ik to identify Hk with a subspace of Hi. Write Ax y + z where y belongs
to the identified subspace of Hk and z belongs to its orthogonal complement in Hi- Since all
representations are unitary and for gk G Gk we have ik o Rk (gk) Rt (gk) ° ik it follows that

PkRco (gk) Akx PkRk (gk) y R^ (9k) PkAx.

By assumption R^, (gk) Ax ARX (gk) x, therefore

Rk (gk) PkAkx Äoo (gk) PkAx

PkRoo (gk) Akx PkAkRoo (flit) x PkAkRk (gk) x.

Since this relation holds for all x G Hk and gk G Gk it follows that PkAk belongs to the
commutant of the algebra of operators on Hk generated by the set {Rk(gk),gk G Gf-
Schur's lemma for operator algebras (see, e.g., [Di, Proposition 2.3.1, p. 39]) implies that
PkAk Xfk, where A* is a scalar depending on fc and Ik is the identity operator on Hk-
Now A is a map of inductive limit sets such that PkAk: Hk —> Hk, and it follows from the
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definition of an inductive limit map that Xk A; for sufficiently large fc, I with fc < I. Indeed,
if x € "Hk and Akx Ax e H3 with j < k then PkAkx i\ (Ax) Xkx. For I > k we then
have

\,if (x) Pft (if (x)) P,A (if (x)) PtAx

i\ (Ax) if (ii (Ax)) if (PkAk (x)) Xkif (x).

On the other hand, if Ax e H3 with j > fc then for all / > j we have

P,A, (if (x)) P,A (if (x)) PtAx Pf3 (*} (x))

PtP3A3 («* (x)) Pt (X3ik (x)) ij (X3ik (x)) X3ij (ik (*)) X3f (x).

Since PtA[ (if (x)) — Xtif (x), we must have A; A; for all / > j. This implies that A A/qq

where A G C is a constant and /oo is the identity on "Hoo- By the same Schur's lemma quoted
above the representation R^, on "Hoo must be irreducible.

Now fix n and consider the chain of Hilbert spaces TnXk from Section 2 with fc > 2n.
Let (G'n, Gk) denote a dual pair of groups with dual representations (R'n, Rk) acting on Tnxk
as in Theorem 2.2. Then we have the chain of embedded subgroups Gk C G/t+i C • • ¦ ; for
example, U (fc) is naturally embedded in U (fc + 1) via the embedding u —> (Jj °), u G U (fc).
Therefore we can define the inductive limit Goo !imG,t {Jkyin^k- We also have an
isometric embedding ik+l : Tnxk —> Fnx(k+i) sucn that

lkk+l0Rk(g) Rk+l(g)°^kk+l¦

To see this we take the case n 1: then an element / of TnXk is a function of Z (Z\,..., Zk)
of the form given by Eq. (2.7), and the verification of the equation above is straightforward.
Let fnxco denote the Hilbert-space completion on (fk>2n-^nxk- Then it is clear that the
inductive limit representation R^ of Goo on ZFnx<x is tame and satisfies the relations (3.2),
(3.3), and (3.4).

If Gk is a compact group then every irreducible unitary representation of Gk is of the form
(PxkArxk) with highest weight (Xk) (mi,m2,... ,n%i,...), where mi,m2l... are nonnegative

integers satisfying m\ > m2 > • • • and the numbers rrij are equal to 0 for sufficiently
large i. Consider the decomposition (2.5) of Definition 2.1 of the dual module ZFnxk into
isotypic components

Jrnxk=J2®I>
(A*)

(Afc)
nxk

where the signatures (Ajt) actually depend essentially on n, but since n is fixed, to alleviate
the notation we just tacitly assume this dependence. Also for fc sufficiently large if (A*)
(mi,... ,m;,... then (A,t+i) (mi,... ,rui,...,...) and we write succinctly (Xk) C (Xk+f).

For sufficiently large fc we can exhibit an isomorphic embedding ik+l : Tfxk ~* f,x(k+i)-
If Hk is a subgroup of Gk such that H'n contains G'n and (H'n, Hk) forms a dual pair then the
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same process can be repeated for the chain (H'n, Hk) C (//,',, Hk+l) C ¦ ¦ •. If Gk (or Hk) is

of the type U (fc) x • • • x U (fc) then each if, is an isometric embedding; for other types of

r
Gk (or Hk) the definition of ik+1 is more subtle. This can be examined case by case although
the process is very tedious. To illustrate this we consider the case FiXk with Hk — SO (fc)

and Gi Sp2 (R) SL2 (R). Then Eq. (2.22) and Eq. (2.23) imply that

OO OC

^ix^E®1^ with zÏxê £®pjjÄ
r=0 ]=0

where po,* (Z) Zj-I VZ\, (r)k (r, 0,... ,0), and H.\^k are the subspace of all harmonic

k

homogeneous polynomials of degree r. Obviously a harmonic homogeneous polynomial h of
degree r in fc variables can be considered as a harmonic homogeneous polynomial of r in
fc + 1 variables. So we can define an isomorphic embedding ijjl+1 : Ilxk —> T\fkf) by sending

fakh into f0 ik+x\h, and clearly

Rh (uk) (p0,(fc+i)/l) PÌ>,{k+i)Rn (u*) h ikk+iPÌ,kRH («*) h

ikM ((R„ (uk)pl:k) (RH (uk) h)) ikk+l (RI{ (uk) (p>0Jch))

for all uk e Hk. Thus, RH (uk) o ijj+1 ijj+1 o RH (uk) for all uk e Hk. It follows that

ik+l can be extended to the whole space F\xk and that ik+1 (ZFixk) 5Z®'*+i [fxl ^s an

isomorphic embedding of ^"ix* into Fix(k+i)- Also note in this very special case (r)k C (r)k+1
for all fc > 2 and that no other signatures (r)k+1 occur in Fix(k+i) without (r)k occurring in
^Fixk, this fact is an exception and almost never happens in the general case (e.g., n > 2).

By Theorem 3.1 the tensor product representations RG, ®/ïG and -R^' ®^//i °^'n xGco

and H'n x H^ on ZLZnxoo an<^ ^nxoa- respectively, are irreducible with signature (A)TO and (p)^,
respectively, where if (Xk) (m-,,m2....,m,,...) then (A)M (mi,m2,...,mu ...,0,...,0)

OO

and similarly for (p)œ- Note that as n is fixed, the group G'n remains fixed; however, its

representation R'G, on Fnxk does depend on fc, and should be written as (/ÎG, J and as

fc —> oo, R'G, has to be considered as an inductive limit of representations, although for
\ n/ oo

fc sufficiently large all the representations [RG, are equivalent. The same observations

apply to R'H, J and R^jf, I To illustrate this let us consider again the case U (1) x U (fc)

and SL2 (R) x SO (fc) acting on T\xk. Indeed, the infinitesimal action of R'G, is given by Eq.

(2.11) as Lk ELi Z,d/dZ, and L,+1 Ef=i Z,d/dZ„ and for p G V^l C V™k+l) Eq.

(2.16) implies that

Lkp Lk+ip mp.
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By Eq. (2.18) the infinitesimal actions of R'H, on TiXk and ^iX(fc+i) are given, respectively,
by

k k

2+Lk, Xt--2zZZl Xk~-iT,dZ?>
1=1 i=i '

fc + 1 „,. l£i„, „_ l^ô2

and

(3.5)

'+ \- n/ jZj, xk+1 - y jifc+i - —— + Lk+i, xk+i - 7,Z^*i' ^*+i~2-^9Z?'
i=i i=i

If hk e "Hjxjt then Eqs. (2.24), (2.25) applied to {Ek,XfXk} show that Jkhk is an ir-
M
lx(A+l)reducible representation of sl2 (R) with signature (r). Similarly if hk+i G 'H1rX(it+1) then

Jk+ihk+i is also an irreducible representation of sl2 (R) with signature (r).

Let Tnxoo denote the Hilbert-space completion of (Jk Tnxk; then F„xao limf„xt is the
inductive limit of the chain {Fnxk}.

After this necessary preparatory work we can now state and prove the main theorem of
this paper.

Theorem 3.2. Let Gx denote the inductive limit of a chain Gk C Gk+i C • • • of compact
groups. Let RGao and R',G, > be given dual representations on ZF„X0O. Let H^ denote the

inductive limit of a chain of compact subgroups Hk C //jt+i C ¦ ¦ ¦ such that Hk C Gk for
all fc. Let Rhoo be the representation of Hœ on TnxOQ obtained by restricting RGca to H^.
If there exists a group H'n ZZ> G'n and a representation Rf, > on FnX0a such that Rf, > is

dual to Rh„, and R',G,, is the restriction of Rf, « to the subgroup G'n of H'n then we have
the following multiplicity-free decompositions of ZFnxoo into isotypic components:

FnXca / ,®Tnxoo 2_j®^-nxoo ("¦")
(A) (n)

where (A) is a common irreducible signature of the pair (G'n,Gf) and (p) is a common
irreducible signature of the pair (H'n, Hf).

If XGgo (resp. Xf,, denotes an irreducible unitary representation of class (A) and ßHoo

(resp. ß',H') denotes an irreducible unitary representation of class (ß) then the multiplicity
dim [Hom/f^ (ßH^ '¦ ^GoJffoo)] °/^e irreducible representation /zHoo in the restriction to Hx

of the representation AGoo is equal to the multiplicity dim HomG'„ X\g^ '¦ Afa).
G'

of

the irreducible representation Xf,, in the restriction to G'n of the representation p',H,,

Proof. As remarked above, the dual (G'n,Gf-module ZDnxX0O is irreducible (by Theorem 3.1)
with signature (A), and isotypic components of different signatures are mutually orthogonal
since their projections T„xk are mutually orthogonal. Finally if a vector in Fnxoo, which we

may assume to belong to Tnxk for some fc, is orthogonal to ZL\xoa for all (A), it must therefore
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r(A)be orthogonal to lnxk f°r al' Wk, ana- hence must be the zero vector in Fnxk, and thus zero

in Tn>
holds.

MA similar argument applies to the isotypic components 2,yxoo, and thus Eq. (3.6)

Now fix (A) and (f). Then the restriction of RGoo to Tnxoo decomposes into a (non-
canonical) orthogonal direct sum of equivalent irreducible unitary representations of signature

(A)^. A representative of this representation may be obtained by applying Theorem 3.1

to get the inductive limit (Goo, ^(A)^) of the chain (Gk, Rxf, for example, when Gk — U (fc),

the representation RXk is given by Eq. (2.29) on Vnxk- Considered as a G^-module X„xoo

decomposes into a (non-canonical) orthogonal direct sum of equivalent irreducible unitary
representations of signature (A')n. A representative of this representation may be obtained

by applying Theorem 3.1 to get the inductive limit (G'n, R',x, > J (note that although G'n is a

stationary chain at n, the representations R',x,, depend on fc even though they are all equivalent

and belong to the class (X')n); for example, when Gn U (n) the representation R'x,

is given by Eq. (2.32) on Vnxk which is defined by Eq. (2.31). By an analogous argument

we infer that the same conclusions hold for (p), InXœ, (Hx,, fi(M)œ), H'n, Rf j.

Now consider the decomposition of the restriction to Hk of the representation Rxk of
Gk. The multiplicity of (ß)k in (X)k \nk is the dimension of Hom#t {Rßk '¦ R.lAjjrJ, where

UoxxiHk (Rßk '¦ Rxk\f{k) is the vector space of linear homomorphisms intertwining Rßk and

R\k\nk- Since Gk and Hk are, by assumption, compact, this dimension is finite. If Tk : "Hßk —>

Hxk is an element of Hom//t (Rß : Rxk\Bk), vrheieHp (resp. Hxk) denotes the representation

space of Rß (resp. Rxk), then since Hß C ffk and Hxk C Tnxk it follows that we have an

inductive chain of homomorphisms \Tk: Hß —¥ Hxk}- Let H.ß<x> (resp. Hxf) denote the
inductive limit of Hß (resp. Hxk)\ then there exists a unique homomorphism T^ : Hßoo —> Hx^
(see, for example, [Du, Theorem 2.5, p. 430], or [Ro, p. 44]). Again by Theorem 3.1,

Rxa, \jmRXk (resp. Rßoa lim-R^J is irreducible with signature (A)^ (resp. (ß)^), and

it is easy to show that Too is an intertwining homomorphism. Conversely, all homomorphisms

of inductive limits arise that way. Consequently, the chain Horn//,. (Rß : R\k\frk)
induces the inductive limit Hom^ (Rß '¦ ^AoJ//«,)- Obviously for sufficiently large fc,

By duality, we obtain in

R'i\i ^
: R'i.j \ I ; actually this chain stabi-

dim [Hom^ (RH : Rxk\Hk)] dim [HomWoo (Rßca : RxJh„)]-

the same way the inductive limit Homr (A'„)„ A'n

lizes for fc sufficiently large. It follows from Theorem 2.2 (see also the proof of Theorem 4.1

in [TT3]) that dim [HomWoo (ßHoe '¦ AgJwJ] dim HomcGn I A(G'„)„ : ^fa). D

As an example we again consider the case Fixoo with Gœ U (oo), G[ U (1), Hx
SO(oo), and H[ SlT(R). Then from Eq. (2.17), (A)* (rn,0,... ,0), A'j (m), and

r(A)tAxk 'Pixl ll follows that (A)^ (m.O.O.Ö) and Z^ pj™i", the vector space
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of all homogeneous polynomials of degree m in infinitely many variables Zx, Z2, etc. The
infinitesimal action of/?'(u(1)) is given by Eq. (2.10), Lk E.=i Ztd/dZi, so the infinitesimal

action Lim) is given the formal series ESi Z,d/dZ,. For H^ SO (oo) and H[ SL2 (R)
the actions are more delicate to describe. From Eq. (2.22), (ß)k (r, 0,... ,0), where r

[k/2]

is an integer > 0, and therefore (ß)^ (r, 0,0,01. Let Hixk denote the space of all

harmonic homogeneous polynomials of degree r in fc variables Zi,...,Zk then from Eq.

(2.22) 2^* E©Pot^ix*. where p0,k (Z) E*=1 zf- We define the actions ÄS0(co) and
j=0

R', N as follows:
(SL2(R))
\ / oo

Consider the algebras (sl2 (R))fc with the bases {Ek, Xk, Xk} given by Eq. (3.5); define

the projective or inverse limit of the family < (sl2 (R))k ,fxk > as follows: For each pair of

indices l,k with I < k a continuous homomorphism cfif: (sl2(R))A -> (sl2(R)); by sending
£* to Ei, X£ to A+, Afc" to X~l, and extends by linearity to (sl2 (R))k -> (sl2 (R)),. Clearly

¦f satisfies fhe following:

a) <j)k is the identity map for all fc,

b) if i < I < k then cj>k $ o <j>f.

The inverse limit of the system {sl2 (R)k) is denoted by

sl2 (R)x hjnsl2 (R), (E^XfX^)
where Ex -1«, + LM, *£ - E #, *» ö E äz*' (3'7)

r=l 1=1 '

Then {.E^, A+, A^,} acts on -Fixoo as follows: If / G ^ixoo then we may assume that

f € Fixk îox some fc and

E00f Ekf, X+f X+f and X~f Xrf. (3.8)

If 'HixS denotes the subspace (of "PfJ^f) of all harmonic homogeneous polynomials of
infinitely many variables Zx, Z2, etc. (i.e., /i G "Hixoc if and only if h G 7>lxoo and X^h 0)
then

oo

Ä E© (2A-)^i-- (3-9)
3=0

where in Eq. (3.9) 2A+ (po)^ ESi £?• Note that wfx'So corresponds to the inductive

limit of the chain < Hixk \¦ Let Rfçff), denote the inductive limit representation of the



244 Ton-That

jM,chain figoffc)' t'ien ^soroo) together with Eq. (3.8) describes completely the action of the

dual pair I SL2 (R), SO (oo)] on the isotypic component Xjxo^ and thus we have the isotypic

decompositions for the dual pairs (U (1), U (oo)) and I SL2 (R), SO (oo) I,

•^lxoo — 2_^©^lxoo° — 7 ,®M.
r(r)oo
lXOO!

and thus Theorem 3.2 is verified for this example.

Since the next two examples are very important by their applications to Physics we shall
state them as corollaries to Theorem 3.2.

Corollary 3.3. Let G^ denote the direct product of r copies of H^ where H^ U (oo),
SO(oo), or Sp(oo). If Goo o,cts as the exterior tensor product representation l/(Al>°° ®
• • • ® U(Ar)oo; where each y(A,)°o; 1 < i < r, is an irreducible unitary Hoo-module, then //oo
acts as the inner (or Kronecker) tensor product representation on V'Al'°° ® ¦ ¦ • ® y(Ar>°°.

// XGoo denotes an irreducible unitary representation of class (AX)G (Ar)G and

ßHoa denotes an irreducible unitary representation of class (ß)H then the multiplicity
dim [Hom^ (h-Hoc '¦ ^„Ih^,)} °f the representation (ß)H in the inner tensor product

(^i)oo® " ' *® ("Moo ^s eQual to the multiplicity of (ß)H in the inner tensor product

(f)k ® • • • ® (Xr)k for sufficiently large fc.

Proof. If (Xi)^ (Xj, Xj,..., A;,...) where X{ are integers such that X\ > Aj > ¦ • • and

A^ 0 for all but a finite number of j, let n denote the total number of all nonzero entries
A^, 1 < 2 < r; then VA^o ® • • • ® l/(Ar'<» can be realized as a subspace of the Bargmann-
Segal-Fock space Fnxoo- From Theorem 3.2 it follows that V(Al)°° ® • • • ® V(Ar)°° belongs to
the isotypic component Xnx%£° of .^"„xoo, thus U(Al)°° ® • • ¦ ® T/(Ar)<*> is the inductive limit
of the chain {l/^1'* ® • • • ® V<Ar'*}. If ßH^ is an irreducible unitary representation of class

(p);/oo then by Theorem 3.2

dim [Hom^ (pHoo '¦ XGfHf)] dim Home; A'(OU : pfa)o

where A'^G, (resp. p',H,, is the representation of GJ, (resp. Hn) dual to XGfxesr,. ßHoo)-
For sufficiently large fc every pHoo is the inductive limit of a chain ßHk and for such a fc

Theorem 2.2 implies that

dim [HomHjt (ßHk : XGk\Hk)] dim

dim

Homo; I X[G,n)k : ß[H,nh

HomG-n A'(G,n) : /fa),

and this achieves the proof of Corollary 3.3.
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Remark. The reason that this corollary only holds for sufficiently large fc can be seen in the

following example. Let Gk U (fc) x ¦ • • x U (fc) and Hk U (fc) and consider the tensor

4 times

product (1,0,..., 0) ® (2,0,..., 0) ® (2,0,..., 0) ® (3, 0,..., 0); then for fc 2 we have the
v / v v ' s

v / v v /
k k k k

spectral decomposition

(1,0)® (2,0) ® (2,0) ® (3,0) (8,0) + 3 (7,1) + 5 (6,2) + 5 (5,3) + 2 (4,4),

for fc 3 we have

(1,0,0)® (2,0,0)® (2,0,0)® (3,0,0)
(8, 0,0) + 3 (7,1,0) + 5 (6,2,0) + 5 (5,3, 0) + 2 (4,4,0)

+ 3 (6,1,1) + 6 (5,2,1) + 5 (4,3,1) + 3 (4, 2, 2) + 2 (3,3, 2),

for fc > 4 we have

(1,0,-...0) ® (2,0 0) ® (2,0 0) ® (3,0 0)

k k k k

(8,0,..., 0) + 3 (7,1,0,..., 0) + 5 (6,2,0,..., 0) + 5 (5,3, 0,..., 0)

+ 2 (4,4,0,..., 0) + 3 (6,1,1,0,..., 0) + 6 (5, 2,1,0,..., 0) + 5 (4,3,1, 0,..., 0)

+ 3 (4, 2, 2,0,..., 0) + 2 (3,3, 2,0,..., 0) + (5,1,1,1,0,..., 0)

+ 2 (4,2,1,1, 0,..., 0) + (3, 3,1,1, 0,..., 0) + (3, 2, 2,1, 0,..., 0).

Thus we can see that the spectral decomposition of (l, 0) ®(2,0] ®(2,0J ®(3,0J
is the same as that of order fc for fc > 4, with infinitely many zeroes at the end of each

signature.

Note also that this corollary applied to the tensor product (1,0) ® • • • ® (l,0j to-

r times
gether with the Schur-Weyl Duality Theorem for U (r) implies the generalized Schur-Weyl
Duality Theorem proved by Kirillov for U (oo) in [Ki].

Corollary 3.4. Let V'*"«»,..., V^Ar'°° and 1/^'°° be irreducible unitary representation of
//oo- Let V^ '«o be the representation (of Hf contragredient to V(A*,. Let /°° denote the

equivalence class of the identity representation o///oo- Then the multiplicity of (ß)x in the

tensor product (Ai)^ ® • • -® (A,.)^ is equal to the multiplicity of I°° in the tensor product
(Ai)00®---®(Ar)oo®(p^)oo.

Proof. To prove this corollary we apply Corollary 3.3 to Goo #00 x • ¦ • x //00 and
N v '

r
Gk Hk x ¦ ¦ ¦ x Hk-, then apply Theorem 3.2 to Goo #00 x ¦ ¦ ¦ x H^ x H£, and

r r
Gjt Hk x ¦ ¦ ¦ x Hk® Hk and finally apply Theorem 2.1 of [KT3] to obtain the desired
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result at order fc. The main difficulty resides with the definition of the identity representation

on y(Al>~ ® • • • ® y(Ar)o° ® IAM >°°, which we will construct below.

For each fc let Ik denote the identity representation of Hk on V(Al)' ® ¦ • ¦ ® U<Ar>* ® V"'" )k

This means that if /* occurs with multiplicity d in V(Al)l ® ¦ ¦ ¦ ® V(Ar)* ® V*-" '* then there
exist d nonzero vectors flk, i l,...,d, such that Rnk (u) f,.k f,,k for all u G Hk. By
construction each f,.k is a polynomial function in Fnxk for some n. Thus fhk is an Hk-
invariant polynomial in Fnxk. If -I,,k denotes the one-dimensional subspace spanned by fitk,
then for sufficiently large fc and for each fixed i l,...,d we have a chain of irreducible
unitary representations [Hk,Ik ,Jifk- We can define the isomorphism ipf+l : J,tk -+ Ji,k+i
by V'jt+i (c/t^t) cfijc+i, c G C; then obviously

<•! (^ («) A*) R"k+, («) /.'.*+! **»+, («) V't. (/..*) -

for all u e Hk. Also for all fc, I, m with fc < / < m we have ?/>£, V;m ° V^ • Thus we can
define the inductive limit representation {//oo, /°°, J,,f), where the action of Hoo on Jioo is

defined as follows:

Let u G Hoo; then u e Hk for some fc. If / G J,,i for some £ then

«ff. (u) /l ß//t (tt) $/ for » < *,

and

Ri^(y-)fi RHk(u)ipff forfc</.

Then it follows from Theorem 3.1 that {//oo, ^°°, ^,00} is irreducible with signature (O)
\ / 00

The only problem with this approach is that the isomorphism embedding ibk+i is not the
isomorphic embedding i*+1: F,,xk —> -^nxCM-i)- To circumvent this difficulty we define the
inverse or projective limit of the family {Hk,Ik.Jk} where J* denotes the subspace of all

///t-invariants in V(Al)* ® ¦ • • ® VA')/, ® V^ß A, as follows: For each pair of indices I, k with
/ < fc define a continuous homomorphism <j>f : Jk —¥ Jt such that

i) <j>k is the identity map on Jk,

ii) if 1 < I < fc then <j>f <j>\ o 4>f.

Here we can take cj>f as the truncation homomorphism, i.e., cpf is defined on the generators
f,,k by

<t>ì (kk) fi-
The projective limit of the system {Hk, Jk, <j>f} is then formally defined by

J^ := bjn Jk i (A) G f] Jk : ft <t>f (fk) VI < fc I
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Let TTk : Joo,- —> Jk denote the projection of Joo,_ onto Jk- Let /°°*- denote the representation
of //oo on Joo^; then nk (I°°" f) nk (/)¦ Recall that if VnXk denotes the subspace of all
polynomial functions on <Clxk the Vnxk is dense in TnXk- Let "Pnxoo UfcLi 'Pnxk denote the
inductive limit of Vnxk; then clearly Vnxoo is dense in Tnxoo- Let Vf^ (resp. iFff denote
the dual or adjoint space of'Pnxco (resp. ZFnxoo). Then since "PnXoo is dense in ZFnxoo, Ffk
is dense in V„xoo. By the Riesz representation theorem for Hilbert spaces, every element

/* G ZF*xoo is °f the form • |/) for some / G ZFnxoo, and the map /* —» / is an anti-
linear (or conjugate-linear) isomorphism. Thus we can identify ZF^ with T^ and obtain the
rigged Hilbert space as the triple Vnxoo C f„xoo C T'rêxoo (see [G&V] for the definition of
rigged Hilbert spaces). However, generally an element of Joo,_ does not belong to V*xoo,
but can still be considered as a linear functional (not necessarily continuous) on Vnx0o, and

furthermore, in this context the identity representation 1°°*- will respect the isomorphic
embedding ikk+l : ZFnxk -> ZFnx(k+i)- Q

4 Conclusion

We have studied thoroughly several reciprocity theorems for some dual pairs of groups
(G'n,Gf and (H'n,Hf, where Goo is the inductive limit of a chain {Gf of compact groups,
Hoo is the inductive limit of a chain {Hf such that for each fc, Hk is a compact subgroup of
Gk, and G'n C H'n are finite-dimensional Lie groups. These theorems show, in particular, that
the multiplicity of an irreducible unitary representation of Hoo with signature (ß)H in the
restriction to Hoo of an irreducible unitary representation of Goo with signature (A)G is

always finite. This is extremely important in the problem of spectral decompositions of tensor
products of irreducible unitary representations of inductive limits of compact classical groups.
This type of problems arises naturally in Physics (cf. [K&R]), and in [H&T] tensor product
decompositions of tame representations of U (oo) are investigated. In [012] Ol'shanskii
generalized Howe's theory of dual pairs to some infinite-dimensional dual pairs of groups. This
is the right context to generalize the reciprocity theorem 3.2 for the infinite-dimensional dual
pairs (G'oo, Gf) and (H'^, H^) which will be part of our work in a forthcoming publication.
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