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pour un opérateur de Schrödinger surfacique ergodique
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Université Paris 7, case 7012, 2 place Jussieu, F-75251 Paris Cedex 05
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Abstract.

In this paper we study the integrated density of surface states of a Schrödinger operator
with an ergodic surface potential. We also introduce another generalised function similar
to the spectral shift function known in the scattering theory. We show that these two
quantities exist and coincide. We also study certain properties: their relation with the

spectrum, smoothness, asymptotic behavior.

Résumé.

Dans ce texte nous étudions la densité intégrée d'états surfaciques d'un opérateur de

Schrödinger avec potentiel surfacique ergodique. Nous introduisons en outre une fonction
généralisée analogue à la fonction de déplacement spectral en théorie de la diffusion. Nous
établissons l'existence de ces deux quantités et nous montrons qu'elles coïncident. Nous

montrons aussi certaines de leurs propriétés: leur relation avec le spectre, la régularité, le

comportement asymptotique.



94 Chahrour

1 Introduction

Dans la théorie spectrale de l'opérateur de Schrödinger (continu ou discret), il y a deux
classes d'opérateurs qui ont été très étudiées. La première classe est celle des opérateurs
dont le potentiel est décroissant à l'infini. C'est la théorie de la diffusion. L'une des notions
importantes de cette théorie est la fonction de déplacement spectral. Elle a été introduite
par I.Lifchitz [18] et M.Krein [17] et on l'a beaucoup étudiée par la suite (voir e.g. [5, 22] pour
des résultats et des références). La seconde classe est formée des opérateurs dont le potentiel
est homogène dans l'espace, e.g. périodique, presque-périodique ou aléatoire ergodique (voir
[19, 6]). Dans ce cas il y a une caractéristique spectrale importante. C'est la densité d'états
intégrée.

Dans ce travail nous étudions un cas discret intermédiaire, où le potentiel est un champ
aléatoire ergodique porté par un sous-espace propre lA2 de l'espace tout entier lA sur lequel
l'opérateur de Schrödinger est défini. Il s'agit de l'opérateur

H H° + V, (1.1)

V(X) S(x)v(0, (1.2)

autrement dit, pour tout if € £2(Zd),

m)(X)= Y. 4>(Y) + ô(x)v(M(X), (1.3)
Y€Zd

|X-V|=1

OÙ

lA Zdl x lA2 {X (xf)\xe Zd\ £ e Zd2}, (1.4)

où ô(x) est le symbole de Kronecker, et où {v((,)}^Zd2 est un champ ergodique sur lA2.

En fait il s'agit là d'une situation particulière qu'on rencontre dans la théorie de l'état
solide et dans la théorie de 1 a propagation des ondes lorsqu'on a deux milieux homogènes
séparés par un plan ou, plus généralement, lorsqu'on a une inhomogénéité de dimension d2

dans un milieu de dimension d. On peut considérer que le cas d 3, d2 2 modélise
une feuille fine, ondulée de façon périodique, ou aléatoire, selon que le potentiel v(£) est

périodique, ou aléatoire. On peut regarder le cas d 3, d2 1 comme le modèle d'une
dislocation linéaire, ou d'un polymère. On peut enfin voir le cas d — 2, d2 1, v(f)
périodique, comme le modèle d'un interféromètre linéaire. Dans tous ces cas, on se trouve en

présence d'oscillations spéciales du milieu, qui apparaissent déjà dans le cas le plus simple où

v(£) est constant. On les appelle "ondes surfaciques" ou "ondes linéaires". Elles traduisent la
contribution de la surface, ou de la droite, de séparation aux propriétés thermodynamiques,
optiques, et cinétiques du milieu. Ces oscillations ne se propagent pas dans la direction x
transverse à l'inhomogénéité. En revanche, dans les directions longitudinales Ç, elles peuvent
se propager lorsque v(Ç) est périodique, ou être localisées lorsque v(Ç) est aléatoire.

Du point de vue mathématique, on met en évidence une partie spéciale du spectre o(H)
de l'opérateur, pour laquelle les fonctions propres généralisées correspondantes, solutions à
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croissance polynomial de l'équation Hip Xip, A € o(H), ont un comportement
asymptotique spécifique: elles sont décroissantes en x à l'infini, alors qu'en £, elles oscillent, ou
tendent vers 0 à l'infini suivant les cas (voir e.g. [3, 8, 9, 10, 12, 13, 15]). Cette partie spéciale
de o(H) est appelée "partie surfacique" du spectre, ou "spectre surfacique".

Lorsque le potentiel de l'équation de Schrödinger est un champ ergodique sur Zd tout
entier, la quantité la plus simple qui détecte le spectre de H est la densité d'états intégrée
(voir e.g. [6, 19]). Mais cette quantité ne détecte pas la partie surfacique du spectre. C'est
pourquoi nous sommes amené à introduire une notion de densité d'états intégrée adaptée à
la situation. Nous l'appelons la "densité intégrée d'états surfaciques".

Une quantité analogue a été introduite et étudiée [10] pour l'équation de Schrödinger
dans le cas continu, dans un contexte un peu différent où l'espace est partagé en deux demi-
espaces portant chacun un potentiel ergodique différent. Comme souvent, les preuves sont
techniquement plus compliquées dans le cas continu — par exemple dans [10] les auteurs
utilisent des intégrales de chemins — et les résultats sont moins complets.

C'est pourquoi nous nous concentrons ici sur le cas de l'opérateur de Schrödinger discret
(1.1)-(1.2). Nous prouvons (théorème 2.1) que la densité intégrée d'états surfaciques existe en
tant que distribution, résultat déjà établi dans [9]. Mais de plus, nous mettons en évidence sa
relation avec le spectre (théorème 2.2), nous résolvons un problème inverse simple (théorème
3.4), et nous prouvons des propriétés asymptotiques qui n'avaient pas encore été établies.
Les démonstrations utilisent l'identité de la résolvante convenablement exploitée selon le cas
considéré.

Pour ce qui est de la théorie de la diffusion, rappelons que la fonction de déplacement
spectral a été introduite et étudiée pour les potentiels décroissant à l'infini [5, 17, 18, 22].
Or, le cas d'un potentiel surfacique (1.2) sort de ce cadre. Nous montrons (section 3) que,
pour un tel potentiel, on peut définir une "fonction généralisée de déplacement spectral", à

partir de la considération d'une famille de potentiels surfaciques dont les supports sont des

"pavés" dont on fait tendre la longueur des côtés vers l'infini. Puis nous montrons que cette
quantité coïncide avec la densité intégrée d'états surfaciques (théorème 3.3).

Le lien entre le déplacement des valeurs propres et la phase de la diffusion pour des
potentiels tendant vers 0 à l'infini est bien connu en physique mathématique au moins depuis
longtemps, comme en témoigne le calcul du deuxième coefficient du viriel pour un gaz quan-
tique déjà effectué en 1937 dans [4].

Notre travail est à rapprocher d'un travail récent de V. Kostrykin et R. Schrader [16]

sur l'opérateur de Schrödinger en dimension 1 pour un potentiel vfx) qui est la restriction
à l'intervalle [—L,L] d'un certain champ aléatoire ergodique v(x), iéI, V. Kostrykin et
R. Schrader montrent que si Ci (A) est la fonction de déplacement spectral attachée à ce

potentiel, le quotient —ÇfX) a une limite pour L —» +oo, et que cette limite coïncide avec la

d2 d2
différence entre les densités d'états intégrées des opérateurs — —-r +v(x) et —7-r agissant

dx2 dx1
dans L2(R). Les résultats de cet article sont annoncés dans [7].
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2 La densité intégrée d'états surfaciques

Soient

AL {x (xf)zZd | ~<xi,...,xdl<^, —<&,...,&<§} (2-1)

le cube de côté L dans Zd,

AÌ' {ieZ* | -|<sbi,...,**<|} (2-2)

le cube de côté L dans Zdl, et

A? {Ç€Z* | -| <£,,...,fe<^} (2.3)

le cube de côté L dans Zd2. On considère les deux opérateurs Hal ff° qui sont les restrictions

de H et H° à Ax,, i.e.

Hl PAt#°,

où Pal est la projection orthogonale de £2(Zd) sur £2(Af. Pour chaque fonction bornée /
sur R, on définit la quantité

Nî(f) ± Tx{f(HAL) - /«)}, (2.4)

où Tr,4 désigne la trace de A. Cette quantité Ns(f) est bien définie pour toute fonction /
bornée car, le potentiel v étant borné, les spectres de i/jj et de H/,L sont bornés.

Le résultat principal de cette partie est le théorème suivant:

Théorème 2.1 Etant donné un champ ergodique quelconque v et une fonction f G C2(IR)
telle que (1 + \x\)2f{:i) € L2(R), j 1,2, la distribution NJf) lim NHf) existe presque

L—oo
sûrement. Elle est non aléatoire et donnée par la relation

Ns(f) v{E Nf((x,0),(x,0))}, (2.5)
xezdi

où Nf(X,Y) est le noyau (la matrice) de l'opérateur f(H) — f(H°) et où E{...} désigne
l'espérance par rapport au champ v.

La démonstration de ce théorème s'appuie sur une série de lemmes et de propositions qui
suivent.

Tout d'abord on considère la fonction r2(A) Si A est un opérateur, rz(A) est
A — z

donc sa résolvante.
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Proposition 2.1 On suppose que v est borné. On a alors, pour tout z € C \ o(H),

\n^^Tx{rz(HAf-rz(Hl)}=E{Y[M(^0)Ax,0))-R0z((x,0),(x,0))}},

où RZ(X,Y) et R°(X,Y) sont les noyaux respectifs des résolvantes de H et H°.

Pour montrer cette proposition nous utilisons les deux lemmes suivants.

Lemme 2.1 Si v est borné, on a, presque sûrement,

\im^Tx{rz(HAL)-rz(H°AL)} Um ±TxPAfrz(H) - rz(H0)}.

Lemme 2.2 Si v est borné et si z 6 C \ o(H), il existe a, C > 0 tels que

E{\RZ(X,X) - R°(X,X)\} < Ce-aW.

Preuve de la proposition 2.1. D'après la définition de N*1 dans (2.4) on a

En vertu du lemme 2.1,

^(rA -^rJt{rA{HAL)-rz(H0AL)}.

lim N^(rz) hm -1-Tx PAfrz(H) - rz(H°)}
L—»oo L—oo t/ï

"P^ts ElR*(x,x)-n?z(x,x))
L—oo Ldï

X£AL

Um t^ E E mx,X) - R°Z(X, X)}

-mn ^ E Yl^(X,X)-R°z(X,X)].

Le deuxième terme tend vers 0 quand L —+ oo, car, d'après le lemme 2.2, il existe a et C > 0

tels que

lim
L—.OD

E{Â E E [RAX,X)-R°Z(X,X)}} < IkC E e-a|*'=0.
çeA? zgA*1 x*A?

D'autre part,
5(0= E [«.((*, fl, (*.«)-•#((*. fl.fofl)]

iezdi
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est ergodique (voir [19, 6] pour la définition de l'ergodicité), et, par le théorème ergodique,
on a

Um JL E S(ü) E{S(0)}
ief2

E{ E [Rz((x,0),(x,0))-R°z((x,0),(x,0))}}.
xezdt

Pour montrer les deux lemmes 2.1 et 2.2 on va utiliser le lemme suivant.

Lemme 2.3 (Estimation de Combes-Thomas (e.g. [11])) Soit H H° + V un opérateur

de Schrödinger agissant dans C2(Zd). Le potentiel V est quelconque. Alors, pour tout
z G C\o(H), le noyau RZ(X.Y) de la résolvante de H est à décroissance exponentielle, i.e.

il existe C, o¦ > 0 tels que
\Rz(X,Y)\<Ce-aix-YK

Preuve du lemme 2.1. Soient Rz.fX.Y) le noyau de la résolvante de HAl et R°zL(X,Y)
celui de la résolvante de H° Il existe un opérateur Tr, dont le noyau vaut —1 sur dAL et
0 ailleurs, et tel que:

h hAl © h-tl + rL
H0 H0ALeH°AL + rL

où Al Zd \ AL. Si X OU.Y e Al, l'identité de la résolvante ([2, 20]) nous donne les deux
relations

RZ(X,Y)-RZ.L(X.Y)= E Rz(X,Zl)RzfZ2.Y), (2.6)
z,,z2ad\L

R°Z(X,Y)-R°2<L(X,Y)= E Rl(X,Zx)R0zL(Z2,Y). (2.7)
Z,,Z2edAL

En utilisant encore l'identité de la résolvante pour le couple d'opérateurs (HAl.HAl), on

trouve:

±-7r{rz(HAL)-rz(Hl)} -^-d2Tr{r2(HAJ-rz«)} --i- E E R,l(X,(0,v))v(v)ROz.l((O,v),X)
xeAL.v€f2

tx E E [Rr(x,(o.v)) -R;.l(x,(o,v))ïv(v)R°,Lmv),x
Ld>

*eA*- ^f
+7Ì7 E E RÀX,(o,v))v(vM(x,(o,v))-R°z.L(x,(o,v)

i
~JT2 E E Rz(X,(Q,rì))v(rì)R°z((0,r,lX

A'SAL veAdi
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Montrons que le premier terme tend vers 0 quand L tend vers oo. En utilisant la relation
(2.6) et le lemme 2.3, on trouve qu'il existe a, Ci, C2, C%, C > 0 tels que

Ld2

1

E E mx,(0,v)) - R*,L(X,(0,V)))v(V)R°zf(0,v).X)\
*6A^ vei&

rdl E E E R,(X.Zi)RzfZ2,(0,V))v(V)RlL((0,f,X)

< _ V V Y* Ç e-a|x-«ile-a|î-Cile-0!|*2le-a|Cs-)7le-or|{-»7le-a|i|
L 2

Xe\LrlpAd2 («LdJeSAj;

^ 4" E E E C2e-aìx-tl]e-a^e-aìt2Ìe-aMe-aìx]
(x,E)eAL -neZd2 ttl,(,)ed.\L

(t2,<2)€SAL

<TZ E C3e-^e-«M
ld2

(»l.<l)€8AL
tt2.(2)£dAL

Ld2-1
< C—T-; > 0, quand L —* oo.- i<i2

De la même façon on montre que le deuxième terme tend vers 0 quand L tend vers oo. On
a donc

lim ±Tr{r!(HAL)-rz(H°AL)}= Um ~ E E W.MM^M,*)L-<x 1^2
*«Ai. ,6AJ

lim--i- E E äz(A-,(0,7,))W(^)ä;((0,j7),^)
Ld2

XeAi Tjez^a

hm—TrPAJr2(H)-rz(tf°)}.

Preuve du lemme 2.2. L'identité de la résolvante donne

PZ(X,X)-P°(*>*)= E Rz(X,(o,v))v(v)R°z((o,v),x).

Puisque le potentiel est borné, le lemme 2.3 appliqué à R°Z(X, Y) et à RZ(X, Y) assure qu'il
existe a,Ci,C > 0 tels que

\RZ(X,X) - R°(X,X)\ < Ci E e-Q|"-çle-a|11 < Ce-QK
T)ëZd2

Lemme 2.4 On suppose v borné. Si f € C2(R), et si N/(X,Y) est le noyau de l'opérateur
f(H) - f(H°), il existe a,C > 0 tels que:

\E{Nf(X,X)}\<Ce-a{xK
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Démonstration. Comme v est borné, le spectre de H est borné. Il suffit donc d'établir
ce lemme pour les fonctions de classe C2 à support compact. Nous allons utiliser une
observation de [21]. Quitte à ajouter une constante, on peut supposer que H°, H > 1. Soit
tp3(\) A-VsA. On a:

tps(H) - <p.{H°) H-lésH(H~l - (H0)-1)

-i f emtI(H~l - (Hu)-l)é(s-u)H"du
Jo

+{H'X - (H0)-1)^*"0(H0)-1. (2.8)

En utilisant l'identité de la résolvante et en appliquant le lemme 2.3 aux noyaux de H~l et
de (H0)'1 dans chacun des trois termes ci-dessus on montre que \E{N{fl}(X,X)\ < C(l +
\$\)e~a'xK Soit maintenant / G C2(M) à support compact. On a

f(H) - f(H°) / £l{k) (H-2e'kH - (H°)-2e*H°) dk, (2.9)/r dk2

où / est la transformée de Fourier de /. Il résulte de (2.8) qu'il existe Ci, C > 0 tels que

\E{Nf(X,X)}\<Cie-aW /(1 + 1*
./R

car les hypothèses sur / font que

££(*) dk < Cc~a'Xi.
dk''

1 + > dk < +00. (2.10)

Lemme 2.5 Si v est borné et si f £ C2(R), la limite

lim -±-Jx PAff(H)-f (H0)}

existe presque sûrement et est non aléatoire.

Démonstration. On écrit:

lim ±-TxPAff(H)-f(H°)}= lim -^ E Nf(X,X)
L-.00 L*2 L-oo Ld2

XsAj,

^ElZdNf(X,X)
reAd2 xeZdi

- lim -L E E Nf(X,X).
L-oo Ld2 ^-J *-d T '

iïAÏ *<tfl

En utilisant le lemme précédent on trouve que ci-dessus le deuxième terme est nul. Quant
au premier terme, il converge en vertu du théorème ergodique. Il en résulte

Llim-LTrPAi{/(iï)-/(iï0)} E{E Nf((x,0),(x,0))}, (2.11)

ce qui achève la preuve du lemme.
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Lemme 2.6 Si v est borné et si f e C2(R), la limite

Um ±TT{f(HAL) - /«)} lim^TxPAL{f(H) - f(H0)}

presque sûrement.

Démonstration. Elle s'obtient par les même techniques que pour les lemmes 2.1 et 2.5.

Preuve du théorème 2.1. Supposons d'abord que v soit borné. Le lemme 2.6 donne alors:

lim NÌU) hm ±Tx{f(HAL) - /«)}L—OG L—«OO /y"2 *•

2^c/32"TrP^{/(H)-/(jff0)}-

Il découle de (2.11) que

Um 7VSL(/)=E{ E Nf((x,0),(x,0))}.
l£Zdl

Cette limite existe donc et est non aléatoire.

Montrons maintenant l'existence de Ns, lorsque v n'est pas forcément borné, sous la forme
d'une distribution sur la classe des fonctions / G C2(R) telles que (1 + |x|)2/ü) G L2(R),

j 1,2. On considère dans ce cas le potentiel

^(0 (5) si moi < a, (212)' 10 sinon,

et l'opérateur de Schrödinger HA de potentiel surfacique vA. Soit HAl sa restriction au cube

AL. On a, pour tout / G C2(R) telle que (1 + |x|)2/(;) G L2(R), j 1,2:

Um ^ Tx{f(HAL) - f(H°AL)} Um JL Tr{/(iïAJ - /«)}
+ \uno±Tr{f(HAL)-f(H°AL)}.

Dans le membre de droite, le deuxième terme existe du fait que le potentiel vA est borné
et que la condition (2.10) est vérifiée en raison des hypothèses sur /. Il nous reste donc à

montrer l'existence du premier terme. Les hypothèses sur / font que /' G L'(R). Il existe
donc une constante C, en fait C \\f'\\1, telle que

ÜJ^W(lW-/(ni lim^l/nA)^) dX

< Clim-LsuP|^(A)|
L—oo La2 AeR

< Clim -LCard{ÇGA?|Kfll>^}-
L—»oo L 2
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D'après le théorème ergodique on a alors

Um ±-\Tr{f(HAL) - f(HAL)}\ < CProb{|t;(0)| > .4} < co.

De plus ce terme tend vers 0 quand A tend vers l'infini. Ce qui prouve l'existence de Ns.

Remarque. Les auteurs de [10] ont montré que la densité intégrée d'états surfaciques existe
dans le cas qu'ils considèrent, mais qu'elle pourrait dépendre des conditions aux bords du
cube Al- Alors que le théorème 2.1 nous montre l'existence de la densité intégrée d'états
surfaciques comme distribution au sens de de Schwartz, et le fait qu'elle ne dépend pas des

conditions aux bords du cube AL-

Corollaire 2.1 La restriction de N3 à R \ o(H°) est une mesure positive.

Démonstration. Soit / G C2(R) à support compact, / > 0, et telle que supp / C R \ o(H°).
Alors,

N$L(f) -^TxPAL{f(H)}>0.

La fonctionnelle N3 est donc positive. Par conséquent, Ns l'est aussi. Mais une fonctionnelle
positive sur Cq(R) est, en fait, d'après le théorème de représentation de Riesz, une mesure
positive.

Lemme 2.7 Pour tout ensemble borélien A C R tel que A n o(H°) 0, on a

NS(A)=E{ E EH((x,0),(x,0);A)},
xezdi

où Eh(X,Y;A) est le noyau de la résolution spectrale Eh(A) de H.

Démonstration. Soit A [a, b] C R \ cr(H°) et soit x(A) la fonction caractéristique de A.
Soit e > 0, et soient \i et X2 deux fonctions appartenant à C2(R), à support compact et
telles que

supplì C [a-e,b + e],

suppx2 C [a + e,b-e],
Xi(A) X2(A) 1, VA G [a + 2e,b-2e],
X2(A) < x(A) < Xi(A), VAGR.

D'après le théorème 2.1,

/-Xi(A)7Vs(dA)
_=

r
J X-z J

Xi(X)Ns(dX) _ fxiWm(dX)
X-z '
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ou

m(dX)=E{ E EH((x,0),(x,0);dX)}.
iezdi

En vertu de l'unicité de la transformation de Stieltjes [1], on a

Jxi(VNs(dX) Jxi(X)m(dX).

Puisque x(A) < Xi(A) et que Ns est une mesure positive sur R \ [—2d, 2d), on trouve:

NS(A) < J xi(A) m(dX) < m([a -e,b + e}).

Comme cela est vrai pour tout e > 0, on a donc NS(A) < m(A). En utilisant la fonction Xi
on montre de la même façon que NS(A) > m(A). D'où l'égalité.

Théorème 2.2 On a

suppJV, \ o(H°) o(H) \ o(H°).

Démonstration. Soit A C R un ensemble borélien tel que A n cr(H°) 0. Si NS(A) 0, on
a, d'après le lemme précédent,

E EH((x,0),(x,0);A) 0,

xezdi

et puisque En((xf), (xf);A) est ergodique en Ç, on a, pour tout £ G Zd2,

E EH((xf),(xf);A) 0.

xdldi

Eh est positive, donc

EH(X, X, A) 0 pour tout X G Zd,

ce qui veut dire que EH(A) 0 et que A n o(H) 0. D'autre part, il est clair qu'on a

l'implication EH(A) 0 => NS(A) 0.

En général, il n'est pas évident d'étudier les propriétés de la mesure A^s à l'extérieur du

spectre de H°. Cependant, dans le cas particulier où le potentiel est une suite de variables
aléatoires bornées indépendantes et identiquement distribuées, dont la densité est bornée

presque partout, un théorème analogue au lemme de Wegner (voir [19, 6]) montre:

Théorème 2.3 Soit H — H° + V avec V(X) 6(x)v(Ç) où {v(0}^zd2 est une suite de

variables aléatoires bornées, indépendantes et identiquement distribuées, dont la densité p
est bornée presque partout:

sup |w(fl| v0 < oo et
£ezd2

ess-sup \p(v)\ Poo < oo.
ne»
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Alors, pour tout X0 > 2d, la densité intégrée d'états surfaciques est une mesure absolument
continue sur (—00, —A0) U (Ao, 00), et sa densité ps(X) est bornée presque partout :

2v0poo
ess-supps(A) <

AeR A0 — 2d

Démonstration. L'opérateur HAl dépend analytiquement du paramètre v(Ç). Il existe donc
une numérotation des valeurs propres {AtL} et des fonctions propres normalisées {i/',L} telle
qu'elles soient continûment différentiables (voir [14]), et on a

ÔA7k l^(0.fl|2-
dv(e)

Soit tpc(X) G C°°(R) une fonction croissante, égale à 1 si A >e, et à 0 si A < —e. Soit
A < —A0. Considérons la fonction tptfii) tps(X—pt). Cette fonction est nulle sur (A-re, 00),
elle tend, quand e tend vers 0, vers la fonction caractéristique de la demi-droite (—00, A], et
sa dérivée est à support compact [\ — e,\Ae]. On a, de par la définition de N3,

A^,a) / Ve(\ - ß)N'(dp) -L £ ipe(X - Xf),
R L feAH„L)

donc la quantité N3(tpei\) est derivable par rapport à v(Ç) et

dv(i) V\^/ dv^
1

"T72 E */.(A-Af)|#(0,fl|2. (2.13)

D'autre part,

\f£<r{H/,L)

(HALfip)= E E *0W>(x)+ E «(flWo,flla

Par conséquent, pour tout Af < A + e, on a

|Af|<2d + t;o E l^(0,fl|2,

car (H°ipf, ibf) < 2d. Ensuite,

Ç6A?

En utilisant la relation (2.13) on trouve que, pour tout A < —Ao, on a:

dv(0 vo Ld2
e.eAdL2

K^> u A,ea(tfA
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soit

D'autre part,

±E{jRf(X-fN^(dp)}<-^d\E{j: dNsL(tpe.x)-

Ao-2dl l^J, dv(S)
££AL2

ME^|^}| He/^^*K))*«))}|a»(fl

< L*Poo max E{JV*((-oo, A + e})\l[fpvo}

<2Poo,

car la perturbation HAL\vv^ffo est de rang deux, et donc (voir [19]),

L^((-oo,A + £])i:«j:\<2.
On a donc, pour tout A < —A0,

E{^çV(A-M)A/sL(dM)}<
2^oPoo

Ao — 2d

tp'c(X — ii) est à support compact situé à l'extérieur du spectre de H°. On peut donc appliquer
le théorème 2.1. En faisant tendre L vers l'infini, on obtient

f f£(X-p)Ns(dp)<
Jr

2v0po

A0 - 2d '

et en intégrant cette inégalité par rapport à A sur A (a, b], où a < b < — Ao, on obtient

fR(tps(b -p)- tp£(a - p))Ns(dp) < ^ZL |A|,

où |A| désigne la mesure de Lebesgue de A. En passant à la limite pour e —» 0, on aboutit à

ce qui veut dire que Ns est absolument continue sur tout ensemble borélien de (—oo, — Ao],

donc qu'elle est absolument continue sur (—oo, —Ao], et que sa densité est bornée par —
Ao ~~ 2d

presque partout sur cette demi-droite. On montre de la même façon qu'elle est absolument
continue sur [Ao, oo) et que sa densité est bornée par la même constante presque partout sur
[A0,oo).
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3 La fonction généralisée de déplacement spectral

La fonction de déplacement spectral £ a été introduite par I. Lifchitz [18] et M. Krein [17]

pour un couple d'opérateurs (A,B) tel que B — A soit nucléaire, i.e. Tr{P - A} < oo. Ils
ont montré que cette fonction £ est réelle, appartient à L:(R), et qu'elle est donnée par la
formule de trace

Tr{/(P) - f(A)} f /'(A)Ç(A)dA,
./R

pour une certaine classe de fonctions /. Dans cette section on étudie l'existence d'une
fonction analogue adaptée à notre situation.

A priori la fonction de déplacement spectral n'existe pas puisque le potentiel ne tend pas
vers 0 dans les directions longitudinales £. C'est pourquoi on considère

vl(0 PMOv(0 (3.1)
"-L

où PAd2 est la projection orthogonale sur le cube Af Soit

HL H° + VL, (3.2)

où VL(X) vL(£)ô(x). Le potentiel VL est à support compact. La fonction de déplacement
spectral du couple (Hl, H°) existe donc. Notre objectif dans ce paragraphe est de montrer

que -jY converge au sens des distributions lorsque L —» oo. On considère toujours la fonction

TzM ^ • On a la proposition suivante.
A — z

Proposition 3.1 Si v est borné, la limite

&£tt{r,(2fc)-r,(Ä«)}
existe presque sûrement. Elle est non aléatoire, et elle est égale à

lim±-JxPAL{rz(H)-rz(H0)}.

Démonstration. On a la relation

^Tx{rz(HL)-rz^;! ^
1

Tx{rz(HL)-rz(H°)} ^-2 E [Rz,l(X,X) - R°Z(X,X)},
XzZd2

où Rz.l(X, Y) et R°(X, Y) sont les noyaux respectifs des résolvantes de Hl et H°. Soient
AL,AdfAdL2 les cubes définis par (2.1), (2.2), (2.3). Il vient

±-Tx{rz(HL)-rz(H°)} -^- E [RZ(X,X) - R°Z(X,X)}
U U X€AL

+tÌ Y,{Rz,l(X,X)-R°z(X,X)}
XUl

-JT, E [Rz(X,X)-Rz,l(X,X)).
L xeAL
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Le deuxième terme ci-dessus s'écrit, grâce à l'identité de la résolvante,

-L £ [R:l{X,X)-RI(X,X)) -^-2 E E Rz,l(X,(0,V))v(V)R°z((0,v),X)
XÌAL b X^LrteA"2

La décroissance exponentielle des noyaux des résolvantes (lemme 2.3) permet d'écrire

~ E {Rz.l(X,X)-R\(X,X)} <-L E E E Cie-^e-a^\v(v)\Ld2 Ld,XÌAl xtA^ teAL2 77eA^2

1

ff2<c^ E e"*1*1 E ^a|çl E Hv)\
xïA^ i£Zd2 VeAdL2

< e E e_Q|x| -* °. quand l->°°-

D'autre part le troisième terme s'écrit, en utilisant encore l'identité de la résolvante,

-L £ [rz(x,x)-r:.l(x,x)] -^ E E W.MMÄi((o,7?),x).

La décroissance exponentielle des noyaux des résolvantes (lemme 2.3) permet d'écrire

\±-Y,\UX,X)-Rz.l(X,X)]\<C3-±-Y: E E e-^e-^Kr,)!

<c«Ä E l*fo)l E e-aW E ^„gA*2 *€Z*> Çê^2

< c± E l*fo)l.
VÌA2

ce qui tend vers 0 par le théorème ergodique. On en déduit que:

lim -LTr{r2(#L) _ rz(H0)} lim -L
L—ooLd2 L-oo Ld2
lim JL-I^Ifc) - r_,(i/0)} Um-^ £ [RZ(X,X) - R°Z(X,X)}

xeAL

Ixm-^Tx PAL{rz(H)-rz(H0)}.
L—oo L/2

Cette limite existe et est non aléatoire (voir la proposition 2.1).

Proposition 3.2 Si v est borné et si f e C2(R), la limite

&àw(^)-/(A°)}
existe presque sûrement. Cette limite est non aléatoire, et elle est égale à Ns(f).
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Démonstration. Comme v est borné, le spectre de H est borné. Il suffit donc de montrer ce
lemme pour les fonctions de classe C2 à support compact. On a:

hm ^r2Tx{f(HL) -f(H0)} ±.TrPAL{f(H) - f(H0)}

+tÌ Zlf(Hi)(X,X)-f(H°)(X,X))
V XiAL

1

j:if(H)(X,X)-f(HL)(X,X)}.TAU XdAL

On a déjà vu au lemme 2.6 que la limite

Um -^Tr PAff(H) -f(H0)}

existe et est non aléatoire. Cette limite est égale à Ns(f) (cf. 2.1).

En utilisant les deux relations (2.8) et (2.9), on montre que les deux autres termes tendent
vers 0 quand L —* oo pour toute fonction / G C2(R) à support compact, ce qui achève la
démonstration de la proposition.

Théorème 3.1 II existe une distribution £ telle qu'on ait presque sûrement

1
hm — J /'(A)fr(A)dA / f(X)i(X) dX

pour toute f G C2(R) telle que (1 + |x|)2/ü) G L2(R), j 1,2. Cette distribution Ç est

unique, à une constante additive près.

Nous appelons cette distribution la fonction généralisée de déplacement spectral.

Démonstration. Supposons d'abord que v soit borné. Il résulte alors de la formule de trace
(voir [5, 22]) que

Cette limite existe d'après la proposition 3.2, donc la distribution existe aussi.

Montrons maintenant l'existence de Ç lorsque v n'est pas forcément borné, sous la forme
d'une distribution sur la classe des fonctions / G C2(R) telles que (1 + |z|)2/ü) G L2(R),

j — 1,2. On considère alors le potentiel

vA(a=fv(0 si \v(0\ < A, (33)
10 sinon,

et l'opérateur de Schrödinger Hf de potentiel surfacique PAd2(t;)vA(Ç), où PA<*2 est la projection

orthogonale sur le cube Adf On a, pour tout / G C2(R) tel que (1 + |x|)2/ü) G L2(R),
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J 1,2,

Um JL Tx{f(HL) - f(H0)} Um JL Tr{/(HL) - /(J#)}

+ lim-LTr{/(^)-/(^0)}.
L—.00 L,a2

Dans le membre de droite, le deuxième terme existe du fait que le potentiel vA est borné
et que la condition (2.10) est vérifiée en raison des hypothèses sur /. Il nous reste donc à

montrer l'existence du premier terme.

En fait HL est une perturbation de Hf de rang card{£ G AL2 | |u(fl| > A} qui est fini. La
fonction de déplacement spectral ÇA du couple (Hl,Ha) existe donc, et est majorée par ce

rang. Si / G C2(R) est telle que (1 + |x|)2/ü) G L2(R), j 1,2, il existe donc une constante
C, en fait C ||/'||j < -foc, telle que

lim^|Tr{/(/fL)-/(^)}| lim-L //'(A)tf(A) dX

< C lim-L sup |^(A)|
L—oo L"2 AeR

< C lim —cardß G Adf \v(Ç)\ > A}
L—»oo L"2

CProb{|v(0)| >/1} < oo.

De plus, cette limite tend vers 0 quand A tend vers oo. D'où l'existence de Ç dans le cas où

v n'est pas nécessairement borné.

Remarque. On peut montrer par des arguments analogues qu'on a presque sûrement

-/A*" (-)g(A)

(A-z)2
Cette relation est analogue à la formule de trace qu'on connaît pour la résolvante dans le

cas des perturbations décroissantes (voir [5, 22]).

Théorème 3.2 La restriction de £ à R\o(H°) est une fonction monotone presque partout.

Démonstration. Les fonctions -j-t-Çl son* monotones et bornées sur R \ o(H°). La famille

de fonctions j yT^l J converoe donc vers une fonction monotone bornée presque partout.

Théorème 3.3 Soit A [a,b] C R\[-2d,2d\. On a:

ab + 0)-Ç(a-0) -Ns(A).



110 Chahrour

Démonstration. Pour toute / G C2(R) à support compact, telle que supp/ C R \ <j(H°),

Jf'(X)Z(X)dX Jf(X)N,(dX).

Mais £ est une fonction monotone sur R \ o(H°). Elle est donc à variation bornée. On peut
ensuite écrire:

-Jf(\)dÇ(X) Jf(X)Ns(d\),

ce qui veut dire que — dÇ(X) Ns(dX). D'où le résultat.

Ce théorème nous permet de définir f sans ambigùité en imposant, que

lim Ç(A) 0.
X—±00

Autrement dit,
j(^_(-Ns((-CK>,X]) si A < -2d
Çl ' \Ns({X,+oc)) si A > 2d.

Théorème 3.4 On suppose sup^f(0 Vq < +00. Soit Ç la fonction généralisée de

déplacement spectral du couple d'opérateurs (H,H°) où H est l'opérateur défini dans (1.1).
Alors, si Ç 0 au sens des distributions, H H°, i.e. v 0.

Démonstration. Pour montrer que le potentiel est nul, il suffit en fait de montrer que
E{v(0)} 0 et que E{V(0)} 0. Soit xr G C"2(R) une fonction à support compact, telle

que xh 1 sur / [-2d — v0, 2d + v0]. D'une part, en vertu du théorème 3.1,

lim -L / fr(A)x*(A)dA / Ç(A)**(A)dA 0. (3.5)
L—00 Li2 JR JR

D'autre part, puisque supper, C /. on a

lim yL / a(A)x*(A)dA Um -L / çL(X)dX. (3.6)
t-»oo L,2 Jr l—oo L"2 Ji

D'après une propriété essentielle de ia fonction de déplacement spectral, on a (voir [5], [22])

ÇëAl2

Le théorème ergodique donne que, presque sûrement,

P* JZ E «(fl EMO)}. (3.7)

^2
Il résulte des relations (3.6) et (3.7) que

1

lim — / &(A)x*(A)dA E{t,(0)}. (3..
,—00 L"2 JR
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Il suffit alors de comparer (3.5) et (3.8) pour obtenir que

E{«(0)} 0.

En utilisant encore une fois une propriété élémentaire de la fonction de déplacement spectral
(voir [12]), on a:

^/Aa(A)dA -^Tr{/f2-tf2},
mais

Tx{H2 - H2} Tx{(H0)2 + H°VL + VLH° + V2 - (H0)2}

Tx{V2} + 2Tx{H°VL}.

D'autre part,
Tx{H°VL}= E H°(X,X)Vl(X) 0,

xezd

car la matrice de H° a ses éléments diagonaux nuls. Donc,

L / A^(A)dA ± Tx{V2} ±Tx P<2v2.Ld-

Enfin, pour montrer que
Eiy(o)} o,

on refait la même démonstration que ci-dessus pour la fonction AÇ(A) à la place de £(A).

4 Analyticité de £(À) à l'extérieur du spectre du lapla¬
cien

Dans cette partie on considère le cas où le potentiel surfacique {w(fl}çSz<i2 est une suite de

variables aléatoires indépendantes identiquement distribuées (v.a. i.i.d) dont la densité est

P(v) -<?(-) (4.1)

où g est une fonction positive sur R, analytique sur {z \ \ \xxiz\ < 1}, et vérifiant

/ g(x)dx 1 (4.2)
Jr

et où a est un paramètre tel que

ff>2d(l+ sup \g(z)\). (4.3)
V 0<lmz<l '

Nous proposons la démonstration du théorème suivant:
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Théorème 4.1 Soit H l'opérateur défini dans (1.1), où le potentiel surfacique {v(Ç)}pçz,d2
est une suite de variables aléatoires indépendantes identiquement distribuées dont la densité
p(v) vérifie les conditions (4.1)-(4.3).

Alors, la fonction généralisée de déplacement spectral £ du couple d'opérateurs (H,H°)
existe, et il existe Xq(o) > 2d tel que £ soit analytique sur (—oo, —Ao(cr)) U (Ao(ff),oc).

Observons que cette propriété d'analyticité n'est en général pas facile à établir. Dans

tout ce paragraphe on considère l'opérateur r°z qui agit sur £2(Zd2) et dont le noyau est

r°z(t,r,) R!>z((0,Ç),(0,v)). (4.4)

Soit h°z l'opérateur agissant sur i2(Zd2) défini par

h°z (r0z)-l + z. (4.5)

Pour la clarté de l'exposé, on divise la démonstration de ce théorème en plusieurs lemmes.

Lemme 4.1 Soient X0 > 2d, e > 0. Alors, il existe C(X0,e0) tel que

\\h°\\ < C(X0,s0) pour tout ze D,

où

D {z X + ie\\X\ > A0, £<ef.

Démonstration. Soit A0 > 2d et soit T [—tt, tx). r° est l'opérateur de noyau

où

w-j&L *»»%)-. (i6)

et
di di

Ei(k) -2EC0S*i. E2(k) -2^2 cos Ki. (4.7)
1 1 !=1

Soient z X + ie et X > Xo- On a

|A|-2d\r°z(f\ >
(|A|+2d)2+e2 '

1 A \D'autre part, r° —(1 -), où Az est l'opérateur de noyau
z v z '

Ei(k) + E2(K) ,,.__„r Em + mvz[^'vi h*Ei(k) + E2(K)-z
(Î-")K dkdn.
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On a done zrz + 1 -Az, puis
z

'

||4s|| < L pour tout ze D.

Il en résulte que

2d (|A| + 2d)2 + e-2 (|A| + 2d)2 + e2

IIM - W^d \X\-2d - 2d
(\X\-2d)2 - C(A°'£o)'

ahCtX M_o,(Ao + 2d)2 + £2
ouC(Ao,£o)-2d

(Ao_2d)2

Lemme 4.2 Sozi 7 > 2d. // existe alors Xo(f) > 2d et £0(7) > 0, tels que:

C(A0(7),£o(7))<7.

Démonstration. C'est un calcul élémentaire.

Proposition 4.1 Soit {v(^)}^eZd2 une suite de variables aléatoires indépendantes identiquement

distribuées dont la densitép(v) vérifie les conditions (4.1)-(4.3).

Il existe alors Xq(o) > 2d et eo(cr) tels que, pour tout z X + is tel que |A| > Ao(ff),
£ < eo(o), la, limite

lim-LE(TrPA,2E-f-V1
L-00 Ld2 l al ^ n V 7

existe et soit analytique en z, où h°z est l'opérateur de noyau h°(Ç,î]) \h°(Ç,r))\, où PAd-

est la projection orthogonale sur Adf et où

7 1+ sup |5(2)|
0<lmz<l

Démonstration. D'après le théorème ergodique, chaque terme de la série

TrPA„2v
t- \ 7

converge quand L —> 00. De plus, les conditions mises sur o font que 7 > 2d. En vertu du
lemme précédent, il existe Ao(7) > 2d et £0(7) > 0 tels que, pour tout z — X + ie tel que
|A| > A0(t") et £ < £0(7), on ait

\WÀ\ < C(A0(7)), £0(7) < 7,

et la série converge. Comme elle est bornée par une borne qui ne dépend pas de z, sa somme
est analytique sur {z X + ie \ X > X0(ï), e < £0(7)}-
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Proposition 4.2 Sous les mêmes conditions que la proposition précédente, il existe Ao(ff) >
2d et £o(ff) tels que

lim EJTr P<2 g {-=^(h0z(v - z)"1)"j

existe et soit analytique sur {z X + ie \ X > Ao(7), e < £0(7)}-

Démonstration. D'après le théorème ergodique, chaque terme de la série converge quand
L —» 00. Il nous reste à voir la convergence de la série elle-même. On a

T^T^A^E^^^--)-1)"L L n>l n

JT2 E E^ E hl(Ui)(v(^)-z)-K..(v(^i)-z)-1h%n_i,^)(v(^)-z)'
£€ALn>l » £i,...,«„=£

et donc:

wAA^t E —^i«« -*r'r}}

-^:£Si...LJft:(«')h'-,A"K"-''f",l|E{Kiö^'^-lE(M^ m(5

Pour tout 7 cff, c < 1, on considère le chemin

C (-oc, Re z - 7) U D U (Re z + 7, 00)

où £> est le demi-cercle de rayon 7 et de centre Re z. On a

1 il W P(v) i.._ f V(v)E{—-—\\ < f Pi-V>
dv f —X(v- z)m" - Jr \v- z\m Jc \v-

f |p(Rez + 7e"')|
Jo IRez + 7e'9 - zl

p(v) n \p(Re z +-yeie
¦ dv ¦ '

R\(Rez-7,Rez+7) \V — Z\m Jd \ tie Z + 7e"
1 /-, ^7^(1 + T sup IffWl)

7 v CT 0<lm;<l y

1 r

<(-(1+7TC SUP |5(z)|))
^r.rr a^t.„ .^i /

<

ou

yCO 0<lmz<l
1

7 -, i—TTT > 2d.
l+sup0<im2<1|5(2)|

Par conséquent,

n>l " ^ feAr n>l n e, £„

1 - - y-If^^Tr/^£
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et donc, en vertu de la proposition 4.1, on trouve que la limite

existe et est non aléatoire.

Lemme 4.3 Soit A, l'opérateur de noyau

A'^)=j^2 Lìogr°{KyKi'~v]idK'

où r°(n) est défini par (4.6). Alors,

lim -77 Tr P. d2Az
L-oo Ld2 AL

existe et est analytique sur {z A + ie \ X > Ao(t"), e < £0(7)}-

Démonstration. En fait, puisque le noyau de A. dépend de la différence (£ — rj), les termes

de la suite -7-7 Tr P. d2Az sont constants et cette limite est égale à
ld2 a2 &

(2ir)

On a

A'W - (if Llo^K)dK-

|A| "2d „ n, _
1

< \r°z(f\ <
(|A| + 2d)2 + £2 - ' z' y|- A0-2d '

donc r° ne s'annule pas, et la limite est analytique.

Lemme 4.4 Soit {v(t;)}(ezd2 une suite de variables aléatoires indépendantes identiquement
distribuées dont la densitép(v) vérifie les conditions (4.1)-(4.3). Alors:

l™ïkTl'Vog{v-z)
existe et est analytique sur {z X + ie \ X > XQ(j), e < £0(7)}.

Démonstration. D'après le théorème ergodique,

lim — Tr P• d2 log(t; - z) [ log(w - z)p(v)dv.
L—oo L 2 L Jr

Puisque p est analytique sur {z | | Imz| < 7 < ff}, on peut écrire

lim^ -^- Tr P^ log(u - z) j log(u - z)p(v)dv

où C est le même chemin que dans la proposition 4.2. D'où l'analyticité car v 1-+ log(v — z)

ne s'annule pas sur C.
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Lemme 4.5 Soit rz la fonction définie dans la section 2. Alors

AxPAL{rz(H)-rz(H0)}=TxPAdL2vd0z(l+vr°zf\

où r.(X) où d° -7-r° est l'opérateur de noyau

dPz(ç,v) Rf((o,fl,(o, v)),

et où P° (X,Y) est le noyau du carré rz(H°) x rz(H°) de la résolvante de H°.

Démonstration. On applique l'identité de la résolvante à if et H°.

Lemme 4.6 On a

Iz^^^^+T^A^i^-^+Tr^E^a^+^^-^r1)"]
n>l

~TxPAdL2vd°z(l+vr0zr\

où Az est l'opérateur défini au lemme 4.3.

Démonstration. On montre ce lemme par des calculs simples de la dérivée de la somme des

trois opérateurs précédents.

Preuve du théorème 4.1. Soit Çl la fonction de déplacement spectral du couple d'opérateurs
(Hl, H°), où Hl est l'opérateur défini par (3.2). D'après la proposition 3.1, le lemme 4.5 et
le lemme 4.6, on a

hm l f ^im~ h I (SdA -^hTr^^ - *<*"»

lim±-2TxPAL{rz(H)-rz(H0)}

2^>iTrPAi2{^(1+w°rl}

lim -LA [Tr PAd2Az + Tr PA„2 logfr - z)
l^oo L"2 dz<¦ L Ai

(-1)"+T*p^Y:K-f-^rx+z)(v-z)-iT].
»>1 n

1 /-Il(A) dADonc, pour tout z A + ie tel que |A| > A0(ff) et e < e0(o), la limite lim -r— j
L—oo iv"2 J X — Z

existe et est non aléatoire sur (—oo, —Ao(ff)) U (Ao(ff), oo). En utilisant des arguements standard

d'analyse complexe on obtient que £ existe presque sûrement et qu'elle est analytique
sur (-oo, -Ao(ff)) U (A0(ff), oo).
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5 Un exemple où £ n'est pas analytique sur le spectre
du laplacien

Soit H H° + V un opérateur de Schrödinger agissant sur Zd Zdl x Zdï avec un potentiel
V(X) v(t;)ô(x), où v(Ç) est une suite de variables aléatoires indépendantes identiquement

1 adistribuées avec une densité de Cauchy p(v) —- -. Cette densité est analytique sur
w a2 + v2

{z G C | Imz < a}. On va voir néanmoins, par le calcul explicite de la fonction généralisée
de déplacement spectral f, que, pour di 1, £ est analytique sur R \ (—2d, 2d), alors que,
pour d2 1 ou 2, il y a des points de l'intervalle (—2d, 2d) en lesquels cette fonction n'est

pas analytique.

Comme Z6,2 est un ensemble dénombrable on peut l'écrire Zd2 {ru \ i entier > 1}. Le

potentiel s'écrit alors:

ce

«(fl*(*) E v(fS(x)S(i-V) ^v(r1,)ô(xm-r1,).
T)£Zd2 1=1

Notons Hj H° + Vj, j > 1 l'opérateur de Schrödinger de potentiel

Vj(X) 'tv(rh)ô(x)6(Ç-rii).
i=i

Hj+i — Hj est un opérateur de rang 1. On a donc

00

rz(H) - rz(H°) EM+i) - rz(H3)}, (5.1)
j=0

où rz(X) L'identité de la résolvante s'écrit, en utilisant les noyaux, sous la forme
A — z

t;(7?j+1)PJf.(X,(0,7?j+1))PHJ(fa+i,0),A-)
RHj+l(X,Y) - RHj(X,Y) 1+^+Ä((0,,j+l)(0i,j+l))

•

Le fait que Hj Hj+i|v(w+1)=o confirme que RHj(X,Y) et v(rjj+i) sont indépendantes. Si

l'on prend l'espérance de la relation précédente, on obtient

E{RHj+1(X,Y) - RHj(X,Y)} -E{RHj(X,(0,n]+i))RHj((Vj+i,0),X) J^^^dv],
où RHj((0,r]j+i)(0,T]j+i)) et où ImÇ • Imz > 0. Puisque

/ pkdv
Jr1+v

on peut écrire que, pour tout j > 1, on a

vp(v) (—iasign(Imz))
—dv ; jz tt—
C 1 + (-ta sign(Im z))Ç

E{RH]+1(X,Y) - RH,(X,Y)} RHj+K;JX,Y) - RH,(X,Y),
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où RH +yz (X, Y) est le noyau de l'inverse de Hj + Vz.J+i — z, avec

VzJ+i(X)=1(z)5(x)8(Ì-rìj+i),

et

7(z) —msign(Imz).

La relation (5.1) nous donne

E{RZ(X. Y) - R°Z(X, Y)} RZ(X, Y) - R°Z(X, Y),

où RZ(X,Y) et P°(X, Y) sont les noyaux respectifs des résolvantes de H et H°, et où

RZ(X,Y) est le noyau de l'inverse de H° + Vz — z, pour VZ(X) 5(x)~/(z) potentiel surfacique
constant complexe. On en déduit

E{ E Rz((x,0),(x,0))-R°z((x,0),(x,0))}= E R-z((x,0),(x,0))-R°((x,0),(x,0)).
xezdt xezdt

(5.2)

Lemme 5.1 Soit Ç la fonction généralisée de déplacement spectral pour un potentiel
surfacique constant 'yô(x) en dimension d di + d2. Soit Çd, la fonction de déplacement
spectral du couple Adl et soit Nd2 la densité d'états du Ad2, où Adl et Ad2 sont les laplaciens
respectifs sur £2(Zdl) etf(Zd2). Alors,

_ r2d2

e(A)=/ Çdl(X-p.)Nd2(dp).
J-ld-i

On remarque que, d'après ce lemme et l'équation (5.2), la fonction généralisée de déplaceme:
spectral s'écrit sous la forme

_ r^d2 _É(A)=/ t;di(X-p)Nd2(df, (5-3)

où fdl est définie par la relation

Tr{(Adl + fz)P0 - zf - (Adl - z)"1} - j TJ^â^A,

où Po est la projection orthogonale sur x 0, i.e. (Paip)(x) %b(Q).

Remarque. On peut voir Çdl comme la fonction de déplacement spectral du couple non
autoadjoint (Adl Af(z)P0,Adi).

On fera le calcul pour di 1 où Çdi=1 se calcule explicitement. On a :

?i(A) sign(A)- arctan ° y(|A| - 2)
Tt \/Xz — 4



Chahrour 119

où x est la fonction caractéristique de R+. Il est clair que cette fonction est de classe C1 sur
(—oo,2), sur (-2,2) et sur (2,00). Sa dérivée est

ri(A) slgn(A)^7=^1^-ix(|A|-2).
Pour d2 1, la densité d'états s'écrit explicitement:

Pi(X)^n7^=x(2-\M)-

La fonction généralisée de déplacement spectral s'écrit en utilisant (5.3):

1 ,rnm(2,|A-2|) a
6(A) sign(A)— / arctan—; ^=pAf)dp.

TT Jmax(-2,-|A+2|) J'\ - pf - 4

£ est continue sur R, et, vu que fj est derivable par morceaux, £ l'est aussi. De façon
explicite:

r(A)=l ^4-'A')
47rv/|A|(4-|A|)

sign(A) r^m{2,\\-2\) a(X-p) 1

TT 7max(-2.-|A-r2|) J(\ _ ffl _ 4 Q2 + (A - f)2 - 4

£ est bornée sur (—00, —4) U (-4, 0) U (0,4) U (4,00). On peut trouver des équivalents de £

aux points —4,0,4.

quand A \ —4,

r(A)

8tt f4 + X

quand A —» 0,

quand A/4.
£ est analytique sur R \ (—4,4), et à variation bornée sur R. En revanche, elle n'est pas
analytique aux points —4. 0 et 4 qui sont trois points du spectre de H°.

Pour d2 2, on a:

N2(df) p2(p)dp,

où:
r2 11P2(fl= pi(p-u)pi(v)dv, Pi(v) 7—r -x(2-\v\).

J-1 2tt V4 — v1

Cette densité est à support compact [—4.4]. Elle a un comportement logarithmique au
voisinage de 0, i.e. il existe une constante C telle que

P2 (m) ~^-o CÌ0%Tfr
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La fonction de déplacement spectral s'écrit donc

É(a) /_4Ji(a-m)p2(m)<^.

De façon explicite,

1 /-min(4,|A-2|) Q
£(A) sign(A)— / arctan —p =p2(u)du.

Tt ymax(-4,-|A+2|l \ _ ,,^2 _ A

£ est bien continue sur R et elle est derivable par morceaux. Le calcul explicite de la dérivée
nous donne

!'(A) ^P2(A - 2)x(A(6 - A)) + l-p2(X + 2)X(-A(6 + A))

I ,min(4,|A-2|) a(X - ß) 1

+ sign A - /
; 2 rj—-Pi(ß)dß.

Tt 7m»(-4,-|A+2|) 7(A _ Aj)2 _ 4 Q2 + (A - /i)2 - 4

Puisque lim p2(A — 2) oc et que lim p2(X + 2) oo, on trouve que £ n'est pas derivable
A—'2 A—?—2

aux points —2 et 2, et qu'elle a un comportement logarithmique au voisinage de ces deux
points:

6'(A)~A-2-Clog|A-2|,
f(A)~^_2-Clog|A + 2|.

On en déduit que £ est bien analytique sur R \ (—6,6), et à variation bornée sur R, mais elle
n'est analytique ni en —2, ni en 2 qui sont deux points du spectre de H°.

Pour d2 > 3:

Nd2(dp) pd2(p)dp,

où |pd2(wl < °° pour tout ß eR. Ainsi, f est de classe C1 sur R, donc à variation bornée

On remarque que dans cet exemple 6 est toujours à variation bornée. Une démonstration

analogue à celle du théorème 3.2 montre que yr-^L converge presque partout sur R vers Ç
L/

lorsque L —» oc. Une démonstration semblable à celle du théorème 3.3 montre que Ns et 6

coïncident sur R tout entier. Par conséquent, A^s définit une mesure sur R tout entier.
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