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fonction généralisée de déplacement spectral
pour un opérateur de Schrodinger surfacique ergodique
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Institut de Mathématiques de Jussieu, UMR 7586, Physique mathématique et Géométrie,
Université Paris 7, case 7012, 2 place Jussieu, F-75251 Paris Cedex 05
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Abstract.

In this paper we study the integrated density of surface states of a Schrodinger operator
with an ergodic surface potential. We also introduce another generalised function similar
to the spectral shift function known in the scattering theory. We show that these two
quantities exist and coincide. We also study certain properties: their relation with the
spectrum, smoothness, asymptotic behavior.

Résumeé.

Dans ce texte nous étudions la densité intégrée d’états surfaciques d'un opérateur de
Schrodinger avec potentiel surfacique ergodique. Nous introduisons en outre une fonction
généralisée analogue a la fonction de déplacement spectral en théorie de la diffusion. Nous
établissons I’existence de ces deux quantités et nous montrons qu’elles coincident. Nous
montrons aussi certaines de leurs propriétés: leur relation avec le spectre, la régularité, le
comportement asymptotique.
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1 Introduction

Dans la théorie spectrale de I'opérateur de Schrodinger (continu ou discret), il y a deux
classes d’opérateurs qui ont été tres étudiées. La premiére classe est celle des opérateurs
dont le potentiel est décroissant & l'infini. C’est la théorie de la diffusion. L’une des notions
importantes de cette théorie est la fonction de déplacement spectral. Elle a été introduite
par I.Lifchitz [18] et M.Krein [17] et on I’a beaucoup étudiée par la suite (voir e.g. [5, 22] pour
des résultats et des références). La seconde classe est formée des opérateurs dont le potentiel
est homogeéne dans 1’espace, e.g. périodique, presque-périodique ou aléatoire ergodique (voir
(19, 6]). Dans ce cas il y a une caractéristique spectrale importante. C'est la densité d’états
intégrée.

Dans ce travail nous étudions un cas discret intermédiaire, ol le potentiel est un champ
aléatoire ergodique porté par un sous-espace propre Z% de l'espace tout entier Z¢ sur lequel
I'opérateur de Schrodinger est défini. Il s’agit de 'opérateur

H=H+V, (1.1)
V(X) = d(z)v(¢), (1.2)
autrement dit, pour tout ¥ € £2(Z%),
(HY)(X) = 2. ¥(Y)+d(z)v(€)v(X), (1.3)
e
ou
28 =72% xZ% = {X = (z,6) | z € Z", £ € %}, (1.4)

ol &(z) est le symbole de Kronecker, et ou {v(€)}¢eze. est un champ ergodique sur 7%,

En fait il s’agit 1a d’une situation particuliére qu’on rencontre dans la théorie de 1’état
solide et dans la théorie de 1 a propagation des ondes lorsqu’on a deux milieux homogenes
séparés par un plan ou, plus généralement, lorsqu’on a une inhomogénéité de dimension ds
dans un milieu de dimension d. On peut considérer que le cas d = 3, dy = 2 modélise
une feuille fine, ondulée de facon périodique, ou aléatoire, selon que le potentiel v(&) est
périodique, ou aléatoire. On peut regarder le cas d = 3, d; = 1 comme le modéle d’'une
dislocation linéaire, ou d'un polymére. On peut enfin voir le cas d = 2, dy = 1, v(§)
périodique, comme le modele d’un interférometre linéaire. Dans tous ces cas, on se trouve en
présence d’oscillations spéciales du milieu, qui apparaissent déja dans le cas le plus simple ou
v(€) est constant. On les appelle “ondes surfaciques” ou “ondes linéaires”. Elles traduisent la
contribution de la surface, ou de la droite, de séparation aux propriétés thermodynamiques,
optiques, et cinétiques du milieu. Ces oscillations ne se propagent pas dans la direction z
transverse a l'inhomogénéité. En revanche, dans les directions longitudinales £, elles peuvent
se propager lorsque v(€) est périodique, ou étre localisées lorsque v(€) est aléatoire.

Du point de vue mathématique, on met en évidence une partie spéciale du spectre o(H)
de l'opérateur, pour laquelle les fonctions propres généralisées correspondantes, solutions a
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croissance polynomiale de I'équation Hy = A, A € o(H), ont un comportement asymp-
totique spécifique: elles sont décroissantes en z & l'infini, alors qu'en &, elles oscillent, ou
tendent vers 0 & I'infini suivant les cas (voir e.g. [3, 8, 9, 10, 12, 13, 15]). Cette partie spéciale
de o(H) est appelée “partie surfacique” du spectre, ou “spectre surfacique”.

Lorsque le potentiel de 1'équation de Schrédinger est un champ ergodique sur Z¢ tout
entier, la quantité la plus simple qui détecte le spectre de H est la densité d’états intégrée
(voir e.g. [6, 19]). Mais cette quantité ne détecte pas la partie surfacique du spectre. C’est
pourquoi nous sommes amené a introduire une notion de densité d’états intégrée adaptée a
la situation. Nous l'appelons la “densité intégrée d’états surfaciques”.

Une quantité analogue a été introduite et étudiée [10] pour 1’équation de Schrédinger
dans le cas continu, dans un contexte un peu différent ol 'espace est partagé en deux demi-
espaces portant chacun un potentiel ergodique différent. Comme souvent, les preuves sont
techniquement plus compliquées dans le cas continu — par exemple dans [10] les auteurs
utilisent des intégrales de chemins — et les résultats sont moins complets.

C’est pourquoi nous nous concentrons ici sur le cas de 'opérateur de Schrodinger discret
(1.1)-(1.2). Nous prouvons (théoréme 2.1) que la densité intégrée d’états surfaciques existe en
tant que distribution, résultat déja établi dans [9]. Mais de plus, nous mettons en évidence sa
relation avec le spectre (théoréme 2.2), nous résolvons un probléme inverse simple (théoréme
3.4), et nous prouvons des propriétés asymptotiques qui n’avaient pas encore été établies.
Les démonstrations utilisent 1'identité de la résolvante convenablement exploitée selon le cas
considéré.

Pour ce qui est de la théorie de la diffusion, rappelons que la fonction de déplacement
spectral a été introduite et étudiée pour les potentiels décroissant a I'infini [5, 17, 18, 22].
Or, le cas d'un potentiel surfacique (1.2) sort de ce cadre. Nous montrons (section 3) que,
pour un tel potentiel, on peut définir une “fonction généralisée de déplacement spectral”, a
partir de la considération d’une famille de potentiels surfaciques dont les supports sont des
“pavés” dont on fait tendre la longueur des cotés vers I'infini. Puis nous montrons que cette
quantité coincide avec la densité intégrée d’états surfaciques (théoreme 3.3).

Le lien entre le déplacement des valeurs propres et la phase de la diffusion pour des po-
tentiels tendant vers O a I'infini est bien connu en physique mathématique au moins depuis
longtemps, comme en témoigne le calcul du deuxiéme coefficient du viriel pour un gaz quan-
tique déja effectué en 1937 dans [4].

Notre travail est & rapprocher d’un travail récent de V. Kostrykin et R. Schrader [16]
sur I'opérateur de Schrédinger en dimension 1 pour un potentiel vy (z) qui est la restriction
a l'intervalle [—L, L] d’un certain champ aléatoire ergodique v(z), z € R. V. Kostrykin et
R. Schrader montrent que si £,(A) est la fonction de déplacement spectral attachée a ce

potentiel, le quotient —I—;EL()\) a une limite pour L — 400, et que cette limite colncide avec la
2 d?

différence entre les densités d’états intégrées des opérateurs —— + v(z) et ——— agissant
& P dz? dz?

dans L?(R). Les résultats de cet article sont annoncés dans [7].
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2 La densité intégrée d’états surfaciques

Soient
L L L L
AL = {X = (xaé) = Zd ’ _5 S ml’-"al‘d1 S 5» _5 S &la--wgdz S E} (21)
le cube de coté L dans Z¢,
L L
Adl ={.’L‘EZd1 ——Z-Sl‘l,...,.’ﬂdl S'Z—} (22)
le cube de c6té L dans Z%4, et
L L
Ap={¢eZ® | -T<6,.. & <5} (2:3)

le cube de coté L dans Z%. On considére les deux opérateurs Hy,, HY , qui sont les restric-
tions de H et H° a Ay, i.e.

Hy, = Py H,

HRL = P’\LHO)

ol P,, est la projection orthogonale de ¢2(Z%) sur £2(Az). Pour chaque fonction bornée f
sur R, on définit la quantité

NE(f) = 25 Te{(Ha,) ~ F(HS,)), (24)

ou Tr A désigne la trace de A. Cette quantité N,(f) est bien définie pour toute fonction f
bornée car, le potentiel v étant borné, les spectres de HRL et de Hy, sont bornés.

Le résuitat principal de cette partie est le théoreme suivant:

Théoréme 2.1 Etant donné un champ ergodique quelconque v et une fonction f € C*(R)

telle que (1 + |z|)2fY € L3(R), j = 1,2, la distribution Ns(f) = Jim NE(f) existe presque
—00

surement. Elle est non aléatoire et donnée par la relation

Ny(f) =E{ X Ny((z,0),(z,0))}, (2.5)

z€Z%

ot N¢(X,Y) est le noyau (la matrice) de l'opérateur f(H) — f(H®) et ou E{...} désigne
lespérance par rapport au champ v.

La démonstration de ce théoreme s’appuie sur une série de lemmes et de propositions qui
suivent.

1

4

Tout d’abord on considére la fonction r,(A) = . Si A est un opérateur, r;(A) est

donc sa résolvante.
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Proposition 2.1 On suppose que v est borné. On a alors, pour tout z € C\ o(H),

Jim —=Te(r(Ha,) — o(H3,)) = E{ T [Ru((,0),(2,0)) = B(,0), (2, )]},

z€Z4

ou R,(X,Y) et R9(X,Y) sont les noyaux respectifs des résolvantes de H et H°.
Pour montrer cette proposition nous utilisons les deux lemmes suivants.

Lemme 2.1 Siv est borné, on a, presque surement,

Ty Py, {ru(H) - r2(HO)}.

lim L’I‘r{ﬂrz(.t'{,\,') —r(HR )} = Jim ) T

L—oo Ld

Lemme 2.2 Siv est borné et si z € C\ o(H), il existe a,C > 0 tels que

]E{lRZ(X! X) - Rg(XvX)l} < Ce—alxl‘

Preuve de la proposition 2.1. D'aprés la définition de N dans (2.4) on a

NE(r) = 2o e{ra(Ha,) - 72(HS, ).
En vertu du lemme 2.1,
hm NL(T,,.) = hrn Ld Tr Py, {r.(H -rz(HO)}
= Jim, L_d%fR (X, X) - F(X, X)]
‘}L”;L_d > 2 [R(X, X) = RY(X, X)]

EG '\d2 r€Zh

—Lh_rgom Z Z - RY(X, X)).
éeA xe’A

Le deuxiéme terme tend vers 0 quand L — oo, car, d’apres le lemme 2.2, il existe a et C > 0
tels que

lim ]E{Ld > ¥ [R(X.X) RS(X,X)]}‘ < Jim 0 3 =0,

L—oo
EEAT? zgA! TS

D’autre part,

S = > [R:((,€), (z,6) — R)(z,€), (x,€))]

reZd1
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est ergodique (voir [19, 6] pour la définition de 'ergodicité), et, par le théoreme ergodique,
on a

Jim > S(6)=E{SO)}

EE\

=E{ ¥ [R:((,0), (2,0)) - R2((=,0), (2,0))]}.

zezd

Pour montrer les deux lemmes 2.1 et 2.2 on va utiliser le lemme suivant.

Lemme 2.3 (Estimation de Combes-Thomas (e.g. [11])) Soit H = H°+V un opéra-
teur de Schridinger agissant dans €*(Z%). Le potentiel V est quelconque. Alors, pour tout
2€ C\o(H), le noyau R.(X,Y) de la résolvante de H est a décroissance exponentielle, i.e.

il existe C,a > 0 tels que
|R.(X,Y)| < CealX-Y1,

Preuve du lemme 2.1. Soient R, (X,Y) le noyau de la résolvante de Hj, et B2 (X,Y)
celui de la résolvante de HY .- 1l existe un opérateur I'z, dont le noyau vaut —1 sur dAp et
0 ailleurs, et tel que:

H=H, &H; +I;
H°=HY ®HY +T

ot Ap =Z4\ Ar. Si X ouY € Az, l'identité de la résolvante ([2, 20]) nous donne les deux
relations

R.(X,)Y)—R. (X,Y)= Z B (X, Zl)Rz‘L(Zg,Y), (2.6)
Z\,Z2€0A

RUX,Y)-R(X,Y)= > RUAX Z)R).(Z:,Y). (2.7)
Z1,Z2€0A L

En utilisant encore l'identité de la résolvante pour le couple d’opérateurs (HAL,HRL), on
trouve:

mﬁM%%Uﬂ— = > Y R.r(X, (0,n)v(m)R2L((0,), X)
AE/\L ne «ﬂ'g
DhZ Zuzxmm) R.1(X, (0,m))Ju(n)R2L((0,7), X

ZZRXOnmemm%MMM)

XE\L 7]61\

L@ZZRxw(mmwm

XeAL TFE'\



Chahrour 99

Montrons que le premier terme tend vers 0 quand L tend vers co. En utilisant la relation
(2.6) et le lemme 2.3, on trouve qu'il existe o, C1, Cy, C3, C > 0 tels que

‘Ldg Z Z ) - Rz.L(X’ (01 W))]U(W)RS,L((Q 77): X)’

XEAL T]E/\dz

- lez S Y Y R Z)R1(Z (0,1 R0, ), X)

XeAL eA"ﬁ Zy€0Ap
L Zo€dAjp

p Z Z Z Cle-alz_t1|8_a:€_(1|e—a|tzie—alc2"nle—a|£_n|e_oirl

XeAL dy (ty,{1)€0A
TEAL” (13.¢2)€0A]

Z Z Z C'Qe—alm—hle—aiﬁie—altﬂ8—a;n|e..a1:,_.|

(JE §)EAL neZd2 (t1 ¢1)€dAL
(t2.{2)€0A

(t1,41)€0A
(t2,(2)€0A

Ldz -1
L

De la méme fagon on montre que le deuxiéme terme tend vers 0 quand L tend vers co. On
a donc

IA
|- t“IH

IN

d2

h

<C

— 0, quand L — oo.

_ _ 0
BEEOFTr{r (Hp,) = r:(HR,)} = Jim Ldﬂ X; Zd Rl Ju(n)R2((0,7), X)
L"’)EA2
I}E_{IOIO—FE > > Ry Jo(n)R2((0,7), X)
XGALnEZdQ

—_ I}an}o TI'PAL{Tz( ) - ""z(HO)}'

Preuve du lemme 2.2. L'identité de la résolvante donne

R.(X,X) - RYX,X)= 3 R.(X,(0,n)v(nR(0,n), X).

nezd2

Puisque le potentiel est borné, le lemme 2.3 appliqué & RY(X,Y) et & R.(X,Y) assure qu'il
existe a,Cy,C > 0 tels que

|Rz(Xa X) - RS(X, X)I <, Z g~aln=¢l—alz| < Ceol=l,

neZ2

Lemme 2.4 On suppose v borné. Si f € C*(R), et st Ny(X,Y) est le noyau de l'opérateur
f(H) = f(HO), il eziste o, C > 0 tels que:

IE{N;(X,X)}| < Ce ¥,
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Démonstration. Comme v est borné, le spectre de H est borné. Il suffit donc d'établir
ce lemme pour les fonctions de classe C? a support compact. Nous allons utiliser une

observation de [21]. Quitte & ajouter une constante, on peut supposer que H°, H > 1. Soit
@s(A) = A2, On a:

ps(H) _‘PS(HG) H! lSH( (HO) )
___,L/O emH(H— (HO) ) (s—u)HO du
+(H™ = (HO))elsH® (H0), (2.8)

En utilisant ’identité de la résolvante et en appliquant le lemme 2.3 aux noyaux de H~*
de (H%)~! dans chacun des trois termes ci-dessus on montre que |[E{N,, }(X,X)| < C(1 +
|s|)e~@2l. Soit maintenant f € C?(R) & support compact. On a

2
701 - 1% = [ £ 0y (-2 — (aoy-remny a (2.9
olt f est la transformée de Fourier de f. Il résulte de (2.8) qu'il existe C;,C > 0 tels que
—alz| dzf -al:::l
E{N/(X, X0} < Ciem! [ (1+ [kl) |25 ()| dk < Ce

car les hypotheses sur f font que

JACERL) ﬁ(k)ldk < 400 (2.10)

R dk? ' -

Lemme 2.5 Siv est borné et si f € C*(R), la limite

h—II.loLd Tr P {f(H) - F(H)}

eziste presque surement et est non aléatoire.

Démonstration. On écrit:

Jim —TrP,\L{f( f(H°)} = lim L—d ST ONH(X, X)

da
—o0 [92 —00 XerL

1
= jim =2 3 ) Ny(X X)
EEAd2 zeZh

Jm g T, T M)
€EA2 zgA ]

En utilisant le lemme précédent on trouve que ci-dessus le deuxiéme terme est nul. Quant
au premier terme, il converge en vertu du théoreme ergodique. Il en résulte

Jim T Py, {F(H) — f(HO)} =E{ 3 Ny{(z,0),(,0))}, (2.11)

ds
ma LA z€Z%

ce qui acheve la preuve du lemme.
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Lemme 2.6 Siv est borné et si f € C*(R), la limite

Lh_{gleL—dTT{f(HAL — f(H},)} = lim —-

n T P, {f(H) = f(HO)}

presque surement.

Démonstration. Elle s’obtient par les méme techniques que pour les lemmes 2.1 et 2.5.

Preuve du théoréme 2.1. Supposons d’abord que v soit borné. Le lemme 2.6 donne alors:

lim NE(f) = hm LidTr{f (Ha,) — f(HR,)}

L—oo

= Jlim - Te P, {f(H) = (HO)}

I1 découle de (2.11) que

lim NE(f) = { > Ny((z,0), (3:,0))}.

L—
o r€eZ91
Cette limite existe donc et est non aléatoire.

Montrons maintenant ’existence de N, lorsque v n’est pas forcément borné, sous la forme
d’une distribution sur la classe des fonctions f € C?(R) telles que (1 + |z|)2f") € L%(R),
= 1,2. On considére dans ce cas le potentiel

vA(E) = {v(ﬁ) si [v(§)] < A4, (2.12)

0 sinon,

et l'opérateur de Schrédinger H# de potentiel surfacique v*. Soit Hj sa restriction au cube
Ar. On a, pour tout f € C?(R) telle que (1 + |z|)%fY) € L}(R), j=1,2:

lim —Tr{f(Ha,) - F(H,)} = lim — Tx(f(Ha,) - F(HA)}

L—oo Ld2 L—oo Ld2

+ hm —-—Tr{f(HAL — f(H3,)}

Dans le membre de droite, le deuxiéme terme existe du fait que le potentiel v* est borné
et que la condition (2.10) est vérifiée en raison des hypothéses sur f. Il nous reste donc a
montrer l'existence du premier terme. Les hypothéses sur f font que f' € L}(R). Il existe
donc une constante C, en fait C = ||f’||;, telle que

Jm | Te(f(Hy) — FHA)] =

(e N

l
<c %Ld sup €£()

. 1 d2
< Cgi_rg.oﬁcard{& € A7 | [v(§)] > A}
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D’apres le théoreme ergodique on a alors

1
lim —

Jim | Tr{f(Ha,) = f(HR,)}H < CProb{|v(0)] > A} < oc.

De plus ce terme tend vers 0 quand A tend vers I'infini. Ce qui prouve l'existence de Ns.

Remarque. Les auteurs de [10] ont montré que la densité intégrée d’états surfaciques existe
dans le cas qu’ils considéerent, mais qu’elle pourrait dépendre des conditions aux bords du
cube Ar. Alors que le théoréme 2.1 nous montre ’existence de la densité intégrée d’états
surfaciques comme distribution au sens de de Schwartz, et le fait qu’elle ne dépend pas des
conditions aux bords du cube Aj.

Corollaire 2.1 La restriction de Ny ¢ R\ o(H°) est une mesure positive.

Démonstration. Soit f € C*(R) a support compact, f > 0, et telle que supp f C R\ o(H?).
Alors,
1
£

No(f) =14
La fonctionnelle NZ est donc positive. Par conséquent, N, 'est aussi. Mais une fonctionnelle
positive sur CZ(R) est, en fait, d’aprés le théoréme de représentation de Riesz, une mesure
positive.

TrPAL{f(H)} > 0.

Lemme 2.7 Pour tout ensemble borélien A C R tel que ANc(H) =0, ona

N,(8) =E{ ¥ Enu((2,0),(z,0):4)},

T€Zh

ou Ey(X,Y; A) est le noyau de la résolution spectrale Ey(A) de H.

Démonstration. Soit A = [a,b] C R\ o(H?) et soit x()) la fonction caractéristique de A.
Soit € > 0, et soient x; et yo deux fonctions appartenant & C?(R), & support compact et
telles que

suppx1 C [a —&,b+ ¢,

suppx2 C [a +&,b—¢],

xX1(A) = x2(A) =1, VA€ [a+2¢,b— 2,
x2(A) £ x(A) £ xa(A), YAeR

D’apres le théoréme 2.1,

[0 _ [0 mien
A—z A—z '
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ou

m(d\) =E{ 3 Eu((z,0),(z,0);d\)}.

z€Z91
En vertu de l'unicité de la transformation de Stieltjes [1], on a

[raMN(@) = [xa()ym(@n).
Puisque x(A) < x1()) et que N est une mesure positive sur R \ [-2d, 2d], on trouve:
Ny(8) £ [N md) < mle—e,b+e]),

Comme cela est vrai pour tout £ > 0, on a donc Ny(A) < m(A). En utilisant la fonction xa
on montre de la méme fagon que N (A) > m(A). D’'ou 'égalité.

Théoréme 2.2 On a
supp N \ o(H°) = o(H) \ o(H’).

Démonstration. Soit A C R un ensemble borélien tel que A No(H®) = . Si Ny(A) =0, on
a, d’apres le lemme précédent,

Y. En((z,0),(2,0);4) =0,

T€Z%

et puisque Ex((z,£), (z,€); A) est ergodique en &, on a, pour tout & € Z%,

Z EH((Iag)! (mag),A) = 0.

z€Z%

Ey est positive, donc
Ey(X,X,A) =0 pour tout X € Z¢,

ce qui veut dire que Egx(A) = 0 et que ANo(H) = 0. D’autre part, il est clair qu'on a
I'implication Ex(A) = 0= N,(A) = 0.

En général, il n’est pas évident d’étudier les propriétés de la mesure N; a 'extérieur du
spectre de H°. Cependant, dans le cas particulier ol le potentiel est une suite de variables
aléatoires bornées indépendantes et identiquement distribuées, dont la densité est bornée
presque partout, un théoréme analogue au lemme de Wegner (voir [19, 6]) montre:

Théoréme 2.3 Soit H = H° +V avec V(X) = §(z)v(€) ot {v(€)}ecze est une suite de
variables aléatoires bornées, indépendantes et identiquement distribuées, dont la densité p
est bornée presque partout:

sup |v(€)] =vp < o0 et
£ezd2

ess-sup |p(v)| = peo < 0.
veR
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Alors, pour tout Ao > 2d, la densité intégrée d’états surfaciques est une mesure absolument
continue sur (—oo, —Xg) U (Mg, 00), et sa densité ps(\) est bornée presque partout :

2U0Poo
ess-sup ps(A) < :
AGRpp( ) & o — 2d

Démonstration. L'opérateur Hy, dépend analytiquement du parametre v(§). Il existe donc
une numérotation des valeurs propres {\l} et des fonctions propres normalisées {)}} telle
qu’elles soient contintiment différentiables (voir [14]), et on a

ONf
SR th 0, 2.
G |%i(0,€)]
Soit ¢.(A) € C*(R) une fonction croissante, égale & 1 si A > ¢, et 4 0 si A < —z. Soit

A < —Ag. Considérons la fonction ¢, x(u) = p.(A—pu). Cette fonction est nulle sur (A+¢, 00),
elle tend, quand ¢ tend vers 0, vers la fonction caractéristique de la demi-droite (—oo, A], et
sa dérivée est a support compact [A — €, A+ ¢]. On a, de par la définition de NE,

1
NEper) = [@A=mNEA) = = & weA= D),
R Laz 5
,‘eo-(HAL)

donc la quantité NL(i, ) est dérivable par rapport & v(£) et

aNL(QOE )\) 1 L oL
___S__- g — ! A _ A 1
6?.)(15) Ld2 ,\f—e%AL) (IDE( 1 )311(6)
1 !
=-75 2 SA=RI09F (2.13)
Alea(Hy,)

D’autre part,

(Ha¥)= 3o > $M)eX)+ 3 v(@(0. &)

XeA Y y d
L | X=Y|=1 €€ 1_2
Po.r ConSéquent, pour tout Ai < A ‘+‘ E, on a

M <2d+w S [WE0,6)

dg
EEAT

car (H%L, 4F) < 2d. Ensuite,

> IwF0,6P >

dg
EEAT

Ly _ — =9
Ml-2d  Ptel-2d do-2d
Vo Vo Vo

En utilisant la relation (2.13) on trouve que, pour tout A < —\q, on a:

ONE(¢. do—2d 1 ,
‘E{&% el R B A0-ah)

d2
Yo L )\,‘EU(HAL)



Chahrour 105

soit

IE ON; (¢e) }’.

EEA

TaE{ [ A0 - wNHaw} < 2 B

D’autre part,

B x Bty g [ 2 eadygpainien)

EGA? 8v(€ EEA? av(é)
< L%p,, max E{/I%—M }
£eA2
& [®p., max IE{N ((—oo, A+ E])lzgg)_iovo}
gen]?
S onm

v(€)=

car la perturbation Hy L| () est de rang deux, et donc (voir [19]),

_—1)0

LeNE((—oco, A +])[P0=% <2,

v(€)=—vo —

On a donc, pour tout A < —Xg,

2vp

@L(A—p) est & support compact situé & I’extérieur du spectre de H°. On peut donc appliquer
le théoréme 2.1. En faisant tendre L vers 'infini, on obtient

Qvopoo
ffﬁe)\ )N, )—A0—2d

et en intégrant cette inégalité par rapport a A sur A = (a, b], ot a < b < —Ag, on obtient
2'UOPOO
pe(b— p) — — u))N,(d — A
Jloelb =) = pela— w)Nu(du) < T2 1A,
ou |A| désigne la mesure de Lebesgue de A. En passant a la limite pour £ — 0, on aboutit &

2U0Poo
L A

ce qui veut dire que N; est absolument continue sur tout ensemble borélien de (—o0, —Ag),
27-’01000

Ao — 2d
presque partout sur cette demi-droite. On montre de la méme fagon qu’elle est absolument
continue sur [Ag, 00) et que sa densité est bornée par la méme constante presque partout sur

[)\0, o0

donc qu’elle est absolument continue sur (—oo, —Ag), et que sa densité est bornée par



106 Chahrour

3 La fonction généralisée de déplacement spectral

La fonction de déplacement spectral £ a été introduite par I. Lifchitz [18] et M. Krein [17)
pour un couple d’opérateurs (A, B) tel que B — A soit nucléaire, i.e. Tr{B — A} < o0. Ils
ont montré que cette fonction £ est réelle, appartient & L}(R), et qu’elle est donnée par la

formule de trace
TH{/(B) - f(4)} = [ f(NEM)aA

pour une certaine classe de fonctions f. Dans cette section on étudie l'existence d'une
fonction analogue adaptée & notre situation.

A priori la fonction de déplacement spectral n’existe pas puisque le potentiel ne tend pas
vers 0 dans les directions longitudinales £. C’est pourquoi on considéere

v1(6) = Py (€)0(6) (3.1

ou P4, est la projection orthogonale sur le cube A‘iz. Soit
L

Hp=H+V, (3.2)

ol Vi (X) =wvr(€)d(z). Le potentiel V, est & support compact. La fonction de déplacement
spectral du couple (Hy, H°) existe donc. Notre objectif dans ce paragraphe est de montrer

que —— Td; COTVerge au sens des distributions lorsque L — oo. On considere toujours la fonction

1
rald) = P On a la proposition suivante.

Proposition 3.1 Siv est borné, la limite

1
h_rgo I Tr {'rz(HL) - ’I"Z(HO)}

existe presque surement. Elle est non aléatoire, et elle est égale a

0
[}%FTY'PAL{T'Z( )—TZ(H )}

Démonstration. On a la relation

—= Tr{ro(Hy) = ro(H%)} = Y. [R..r(X, X) - RY(X, X)),

d
L XeZzdz

L
ol R, (X,Y) et RYX,Y) sont les noyaux respectifs des résolvantes de Hy, et H°. Soient
Ar, A%, A les cubes définis par (2.1), (2. ?) (2.3). 11 vient

—= Tr{r=(Hy) — r:(H%)} 3 [R.(X, X) — RY(X, X))

L _L_d

XEAL
+E S [Ren(X,X) — RY(X, X)]
X¢AL
_L_{i; > [B:(X, X) = R (X, X)),
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Le deuxieme terme ci-dessus s’écrit, grace a l'identité de la résolvante,

T 2 [Rep(X,X) ~ RUX X)] = —— 3 % ReslX,(0,m)u(m)RY(0,1), X).

XéA Lo d
AL X¢A5ne/\f

La décroissance exponentielle des noyaux des résolvantes (lemme 2.3) permet d’écrire

S [R..(X, X) = RY(X, X)] id S Z 3 Cremelemel=nljy(n))|

XéAL ' mgA"l €A% nen2
SCQ‘EE; > el S e 3 ju(n)
zgAd! A nEA
<C Z ekl — 0, quand L — oo.
:cé!\i]

=

D’autre part le troisiéme terme s’écrit, en utilisant encore l'identité de la résolvante,

o TR X) - Rs(X, X)) = 2 5 5 Rl (0,m)o(0) Ra(0,7), ).

d
XGAL XEALneAZ

La décroissance exponentielle des noyaux des résolvantes (lemme 2.3) permet d’écrire

S [Re(X, X) = Ros(X, X)]| < Gy S OL X e e o)

TEAL 4 .EEA 1]¢A

Ld Z |v | Z ezl Z e—alél

nﬁl\ z€Z% gezd2

= 3 R,

d
néALz

‘ Ld2

ce qui tend vers O par le théoreme ergodique. On en déduit que:

lim —Tr{r (Hp) —r.(H")} = Jim

T > [R(X, X) — RY(X, X)]

XeAL

1
% Ld2

hngoL—dTr Py {r.(H) —r.(H°)}.

Cette limite existe et est non aléatoire (voir la proposition 2.1).

Proposition 3.2 Siv est borné et si f € C*(R), la limite

lim —Tr{f(HL) f(H")}

L—oo [

extste presque sturement. Cette limite est non aléatoire, et elle est égale a Ns(f).
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Démonstration. Comme v est borné, le spectre de H est borné. Il suffit donc de montrer ce
lemme pour les fonctions de classe C? & support compact. On a:

hm —Tr{f(HL - f(HY)} = Tr P, {f(H) — f(H®)}

M T Ld
— > [f(HL)(X, X) = f(H)(X, X)]
XQAL
_% ZA F(H) (X, X) — F(HL)(X, X)].

On a déja vu au lemme 2.6 que la limite

Jim LidTrPAL{f(H) — F(H)}

existe et est non aléatoire. Cette limite est égale & Ny(f) (cf. 2.1).

En utilisant les deux relations (2.8) et (2.9), on montre que les deux autres termes tendent
vers 0 quand L — oo pour toute fonction f € C*(R) a support compact, ce qui achéve la
démonstration de la proposition.

Théoréme 3.1 Il existe une distribution & telle qu’on ait presque sirement

hm—/f()\f,; JdA = /f

pour toute f € C*(R) telle que (1 + |z])2f¥ € L*(R), j = 1,2. Cette distribution £ est
unigque, a une constante additive prés.

Nous appelons cette distribution la fonction généralisée de déplacement speciral.

Démonstration. Supposons d’abord que v soit borné. Il résulte alors de la formule de trace
(voir [5, 22]) que

lim —/f EL(\)dA = Jim —Tr{f(HL) FIHO)).

L— ooLdi’

Cette limite existe d’aprés la proposition 3.2, donc la distribution existe aussi.

Montrons maintenant l’existence de £ lorsque v n'est pas forcément borné, sous la forme
d’une distribution sur la classe des fonctions f € C?(R) telles que (1 + |z|)2fY) € L*(R),
7 =1,2. On consideére alors le potentiel

wA(£) = {8(5) si [u(€)] < 4, (3.3)

sinon,

et Popérateur de Schrédinger Hf de potentiel surfacique P4 (§ ) (€), o PA? est la projec-
L .
tion orthogonale sur le cube A%. On a, pour tout f € C*(R) tel que (1 + |z|)2f) € L*(R),
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j=12,

lngoL—dTr{f(HL) f(H)} = hm —Tl{f Hp) - f(HD)}

+ Jim = Te{f(HE) - F(HO)}.

Dans le membre de droite, le deuxiéme terme existe du fait que le potentiel v# est borné
et que la condition (2.10) est vérifiée en raison des hypothéses sur f. Il nous reste donc a
montrer l'existence du premier terme.

En fait Hy est une perturbation de H7 de rang card{¢ € A7 | [v(€)| > A} qui est fini. La
fonction de déplacement spectral £# du couple (Hy, Hf!) existe donc, et est majorée par ce
rang. Si f € C*(R) est telle que (1 + |z])?fP € L*(R), j = 1,2, il existe donc une constante
C, en fait C = [|f'||, < 400, telle que

1 107,
Jim o T () - DN = Jim | [ )b d
< C Jim oz suplef()

C hr{.lozla—card{f € A% |u(€)| > A}

= (CProb{|v(0)| > A} < cc.

IN

De plus, cette limite tend vers 0 quand A tend vers oo. D’oli l'existence de & dans le cas olt
v n'est pas nécessairement borné.

Remarque. On peut montrer par des arguments analogues qu’on a presque surement
1 1 ,
hm —Tr{R.; - R} = Lh—loIéo EE;IE{Tr{Rz,L - R}}

—oo L2 _ ,
£(N)
/ Py (3.4)

Cette relation est analogue a la formule de trace qu'on connait pour la résolvante dans le
cas des perturbations décroissantes (voir [5, 22]).

Théoréme 3.2 La restriction de £ a R\ o(H°) est une fonction monotone presque partout.

1 .
Démonstration. Les fonctions L—d&, sont monotones et bornées sur R \ ¢(H?). La famille

de fonctions {Ef L} converge donc vers une fonction monotone bornée presque partout.

Théoreme 3.3 Soit A = [a,b] C R\ [-2d,2d]. On a:
£(b+0) —€(a—0) = —N,(A).
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Démonstration. Pour toute f € C*(R) & support compact, telle que supp f C R\ a(H?),

[ FOEN ax= [ SN

Mais € est une fonction monotone sur R \ ¢(H°). Elle est donc & variation bornée. On peut

ensuite écrire:
= [FGEM) = [ FIN(an),
ce qui veut dire que —d€(A\) = N,(dA). Dol le résultat.

Ce théoréme nous permet de définir £ sans ambigiiité en imposant que

lim £(X) =

A—xo00

Autrement dit,
E(/\) _ { —Ns((—o00,A]) si A< -2d
TAN(N +00)) i A > 2d,

Théoréme 3.4 On suppose supv(§) = v < +oo. Soit € la fonction généralisée de
déplacement spectral du couple d’opérateurs (H, HO) ot H est l'opérateur défini dans (1.1).
Alors, s1 £ =0 au sens des distributions, H = H°, i.e. v =0.

Démonstration. Pour montrer que le potentiel est nul, il suffit en fait de montrer que
E{v(0)} = 0 et que E{v?(0)} = 0. Soit xgr € C*(R) une fonction & support compact, telle
que xXg =1 sur I = [-2d — vy, 2d + vp). D’une part, en vertu du théoréme 3.1,

_,}_rgoﬁ;/& xeWdr = [ EX)xr(N)dr = 0. (3.5)

D’autre part, puisque supp&; C I, cn a

. 1
Jim o [ e (xe(dr = Jim 7 ] &L\ (3.6)

D’aprés une propriété essentielle de la fonction de déplacement spectral, on a (voir [5], [22])

1
Ldgf& d)\———TrVL = ¥ vl
geAP?
Le théoréme ergodique donne que, presque siirement,
1
lim — > v(§) = E{v(0)}. (4:7)

L=00 [d2
€eAs?

Il résulte des relations (3.6) et (3.7) que

Jim 7 [ & (0xa(N)dr = EQw(0)}, (58)
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Il suffit alors de comparer (3.5) et (3.8) pour obtenir que
E{v(0)} = 0.

En utilisant encore une fois une propriété élémentaire de la fonction de déplacement spectral
(voir [12]), on a:

1 I
o f AL (N = —- Tr{H} - HE)},
mais

Tr{H; — Hj} = Te{(H®)* + H°V, + VL H + V7 — (H®)?}
= Tr{VZ} + 2 Te{H°V;}.

D’autre part,
Tr{HV.} = Z HY(X, X))V (X) =0,

Xezd

car la matrice de H° a ses éléments diagonaux nuls. Donc,
1 1 5y 1 )
E//\fL()\)dA = z—d—Z'TI{VL} = ETI PA?'U ’

Enfin, pour montrer que
E{v?*(0)} = 0,

on refait la méme démonstration que ci-dessus pour la fonction AE()\) & la place de £()).

4 Analyticité de £(\) 4 ’extérieur du spectre du lapla-
cien

Dans cette partie on considére le cas ou le potentiel surfacique {v(£)}¢cz. est une suite de
variables aléatoires indépendantes identiquement distribuées (v.a. i.i.d) dont la densité est

p(v) = ~9() (4.)

ol g est une fonction positive sur R, analytique sur {z | |[Im 2| < 1}, et vérifiant

/ glz)dz=1 (4.2)
R
et oll o est un parametre tel que
o> 2d(1 + sup |g(z)|) (4.3)
0<Imz<1

Nous proposons la démonstration du théoreme suivant:
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Théoréme 4.1 Soit H l'opérateur défini dans (1.1), ot le potentiel surfacique {v(€)}ceze
est une suite de variables aléatoires indépendantes identiquement distribuées dont la densité
p(v) vérifie les conditions (4.1)-(4.3).

Alors, la fonction généralisée de déplacement spectral € du couple d’opérateurs (H, H°)
existe, et il existe \g(0) > 2d tel que £ soit analytique sur (—oo, —Ag(c)) U (Ao(0), 00).

Observons que cette propriété d’analyticité n’est en général pas facile & établir. Dans
tout ce paragraphe on considére I'opérateur r? qui agit sur £2(Z%) et dont le noyau est

r2(6:m) = B2((0.€), (0,m)). (4.4)
Soit h? I'opérateur agissant sur £2(Z%) défini par
B = (r)~t 4 2 (4.5)

Pour la clarté de 'exposé, on divise la démonstration de ce théoréme en plusieurs lemmes.

Lemme 4.1 Soient A\g > 2d, € > 0. Alors, il existe C(Ag,€0) tel que

”hg” = C(/\Q,EQ) pour tout z € D,

D={z=X+1ie||\ 2> X, € <L &0}

Démonstration. Soit \g > 2d et soit T = [—m, 7]. r? est opérateur de noyau

ro(€,n) = : f rg(fc)ei”(ﬁ_")dn,
2

©(2m)92 Jrd
ou 1 dk
O(k) = 4.6
TZ(K’) (27?)("'1 J[]I'da .u]_(k) + EQ\I‘C) =2 ( )
et
d ds
Ei(k) =—-2> cosk;, Ey(k)=-2) cosk;. (4.7)
i=1 i=1
Soient z=A+icet A > ). Ona
A —2d
0 > ' i
|Tz(’{')| = (l’\] of 2d)2 4 62
) 0 1 AZ . ) ’
D’autre part, r; = —-;(1 - 7), ou A, est 'opérateur de noyau

ei6=Mk dkdk.

_ Ey (k) + Es(k)
A:(&m) = /-w Ei(k) + Ea(k) — 2
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1
On a donc 2r? + 1 = —A,, puis
2

1A
h2=r2 7”,
2d|z|

IA z“—|

¥ pour tout z € D.

Il en résulte que

< 2d (|)\|+2d)2+e2 < 2d(l)\| + 2d)? + €*
= 2l - Al=2d = (]A] - 2d)?
Ao + Qd)2 + €2
(Ao — 2d)?

[|n2 < C(Xo, £0),

ott C(Do, €0) = 2d &

Lemme 4.2 Soit v > 2d. Il eziste alors A\o(7y) > 2d et eo(7y) > 0, tels que:
C(Mo(7),€0(7)) < -

Démonstration. C’est un calcul élémentaire.

Proposition 4.1 Soit {v(€)}¢cze. une suite de variables aléatoires indépendantes identique-
ment distribuées dont la densité p(v) vérifie les conditions (4.1)-(4.3).

Il existe alors Ao(c) > 2d et eo(o) tels que, pour tout z = X + ie tel que |A| = Ao(0),

e < eo(o), la limite
1 RO\
i 7 {m e T 0(3 )}
existe et soit analytique en 2z, ou F est [ ’ope’mteur de noyau “ﬁE(g, n) = |h2(&,n)|, ot PA?
est la projection orthogonale sur A , et ou

_ o
7 1+ sup |g(2)|

0<Imz<1

Démonstration. D’aprés le théoréme ergodique, chaque terme de la série
ho
T Py ( )
bl

converge quand L — oo. De plus, les conditions mises sur o font que ¥ > 2d. En vertu du
lemme précédent, il existe Ag(F) > 2d et £o(F) > 0 tels que, pour tout z = X + ic tel que
Al > Ao(7) et € < &(7), on ait

IRl < C(Aa(@), &0(F) <7,

et la série converge. Comme elle est bornée par une borne qui ne dépend pas de z, sa somme
est analytique sur {z = A+1ic | A > A(F), € < &)}
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Proposition 4.2 Sous les mémes conditions que la proposition précédente, il existe A\o(c) >
2d et eo(o) tels que

L}i_noloE{Tr Pa Y. (_;)n(hg(v — z)*l)“}

n>1

eziste et soit analytique sur {z = A+1ic | A > A(F), € < &(F)}-

Démonstration. D’apres le théoréme ergodique, chaque terme de la série converge quand
L — oo. 1l nous reste a voir la convergence de la série elle-méme. On a

E&—Tlp Z(-—l

n>1 n

" (how — 2y

PP Y RAEG0E) =) (bl6nms) = ) hnm1s ) 0(60) — =)

EEAL n>1 &

-----

et donc:

Lid|lE{TrP d ; %(ﬁg(v - z)'l)”}}

<Xy > EG] - IHnmn. IS )| B

gehpnzl g (v(&1) — 2)mien) v(€n) — 2)™¢

,,,,,

Pour tout vy =go, ¢ < 1, on considere le chemin
C =(-oc,Rez—y)UDU (Rez + 7, )

ou D est le demi-cercle de rayon ~ et de centre Rez. On a

1 p(v) B p(v)
‘E{WH < /Ei I,U_ zlmdv - _/(-:. ”U . zlm

m ~ i6
-/ 2y, [ ez o,
R 0

B \(Re z—7,Re z+7) ]’U = Z|m IRez + yeif — z[

1 Ty
< —(1+—= sup |g(2)])
Y 0 0<Imz<l
= —LL 98 B Z
- (ccr( O<Im€<1 o€ )!))
<=,
Y
ol o
5= > 2d.
1 + SUPg«1mz<1 19(2)]
Par conséquent,
! (=1)" .o |R2(E &l - - - 1hS(6n—1,&n)]
B TP ¥ (- )| s X T
S genpn>1 gy, v LLr

sﬁTrPALzl(i) ,

n>1 Y
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et donc, en vertu de la proposition 4.1, on trouve que la limite

Jim g B{TPr, S 00 =)

n>1

existe et est non aléatoire.

Lemme 4.3 Soit A, l'opérateur de noyau

- 0( ) einle=m)
A(&m) = L [erz log r%(k)e dx,
ot 7(k) est défini par (4.6). Alors,

ILIQO L];iz Tr P d,A

existe et est analytique sur {z=A+1c | A > (7)), € L ()}

Démonstration. En fait, puisque le noyau de A, dépend de la différence (§ — n), les termes

, 1 . . "
de la suite & g PAdzAz sont constants et cette limite est égale a
L

i
A.(0) = r)E [m log r%(k)dk

bt IA| — 2d 1
— < r%(x)| <
rzarre S =Wl o5

donc 72 ne s’annule pas, et la limite est analytique.

Lemme 4.4 Soit {v(§) }¢cze. une suite de variables aléatoires indépendantes identiquement
distribuées dont la densité p(v) vérifie les conditions (4.1)-(4.3). Alors:

1
1}{{1:.10 I% Tr P A2 log(v — 2)

existe et est analytique sur {z = X +1ic | A > M(F), € < ()}
Démonstration. D’apres le théoréme ergodique,
lim — Tr P A2 log(v — z f log(v — z)p(v)dv.
L—oo L
Puisque p est analytique sur {z | | Im 2| < 7 < o}, on peut écrire
hm Tr P A2 log(v — z) / log(v — 2)p(v)dv
L—o Ld

olt C est le méme chemin que dans la proposition 4.2. D’oti I’analyticité car v — log(v — 2)
ne s’annule pas sur C.
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Lemme 4.5 Soit v, la fonction définie dans la section 2. Alors

Tr Py, {r:(H) —r,(H°)} = Tr PAdg’Udg(l + o))
L

) 1 \ d e
ot m,(A) = T ot dd = d—rS est 'opérateur de noyau
= g 2

d2(¢,m) = R¥((0,€), (0,m)),

et ou RO (X,Y) est le noyau du carré r,(HO) x r,(H°) de la résolvante de HO.
Démonstration. On applique l'identité de la résolvante & H et H°.
Lemme 4.6 On a

d 1 . e
ey [TrP A, + Tr P dglog(v—z)+TrPizT;( n) ((r™ + 2)(v = 2) 1)]

= E Tr Pyapvdy (1 + vr2) 7,

ou A, est l'opérateur défini au lemme 4.3.

Démonstration. On montre ce lemme par des calculs simples de la dérivée de la somme des
trois opérateurs précédents.

Preuve du théoréme 4.1. Soit £ la fonction de déplacement spectral du couple d’opérateurs
(H, HY), ot Hj, est l'opérateur défini par (3.2). D’apres la proposition 3.1, le lemme 4.5 et
le lemme 4.6, on a

lim /(&“()\) d\ = lim —Tr{rz(HL ) —r.(H°)}

L—oo L2 J (X — 2)? L—oo Ld
o
Lh_rgoFTrPf\L{Tz (H) —r.(H")}
= |
_I}E& Ld Ty P d;{'l)d (1+vrd)~1}
1 d
—I}ggoﬁdz[ﬁpdzA +Tr Pys; log(v — 2)
1) i
+TrPAaL2 > (=1) ((r2 1-+-:f:)(v—z) 1 ]
n>1
. EL(N)
Donc, pour tout z = A + ic tel que |A| > Ao(0) et € < go(0), la limite hnoloL—d . d)\

existe et est non aléatoire sur (—oo, —Ag(c)) U (Ao(0), oc). En utilisant des arguements stan—
dard d’analyse complexe on obtient que £ existe presque sirement et qu’elle est analytique

sur (—oo, —Ag(0)) U (Ao(0), 0).
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5 Un exemple ou £ n’est pas analytique sur le spectre
du laplacien

Soit H = H°+V un opérateur de Schrodinger agissant sur Z¢ = Z% x Z% avec un potentiel
V(X) =v(€)d(x), olt v(&) est une suite de variables aléatoires indépendantes identiquement

distribuées avec une densité de Cauchy p(v) = — . Cette densité est analytique sur

T a? + v?
{zeC|Imz < a}. On va voir néanmoins, par le calcul explicite de la fonction généralisée
de déplacement spectral €, que, pour d, = 1, € est analytique sur R \ (=2d, 2d), alors que,
pour d; = 1 ou 2, il y a des points de l'intervalle (—2d, 2d) en lesquels cette fonction n’est

pas analytique.

Comme Z% est un ensemble dénombrable on peut ’écrire Z% = {n; | i entier > 1}. Le
potentiel s’écrit alors:

I
™38

v(©)d(x) = > v(n)d(z)s€ —n) v(m:)8(z)6(§ — mi)-

neZd2 1

o
Il

Notons H; = H° + V;, j > 1 lopérateur de Schrédinger de potentiel

:
= ZU 1:)0(x)0(€ — 771)

i=1

H;., — H; est un opérateur de rang 1. On a donc

Tz (H —T‘z HO =i J+1 —TZ(HJ')], (51)

ol r;(A) = L’identité de la résolvante s’écrit, en utilisant les noyaux, sous la forme

1
A=z
U(TI'J'+1)RHJ' (X1 (O’ "?j+1))RHj ((nj+19 0)’ X)

1+ v(n01) Re, ((0,mj41) (0, m541))

Le fait que H; = Hji1|v(n,,,)=0 confirme que Ry, (X,Y) et v(n;41) sont indépendantes. Si
I'on prend 'espérance de la relation précédente, on obtient

RH5+1(X’ Y) - RHj(XY Y) =

vp(v) do }’

E{RH;,'+1(X1 Y) - RHj (XaY = —E{RH 0 WJ+1))RHJ((77J+I»0)vX) R 1 +,UC

ot ¢ = Rpy;((0,7541)(0,m;41)) et ot Im ¢ - Im 2z > 0. Puisque

/» vp(v) dy < (—iarsign(Im 2))
R1+v( 14 (—iasign(Imz))¢’

on peut écrire que, pour tout 7 > 1, on a

E{Ry,,.(X,Y) = Ry,(X,Y)} = Ry 5, (X,Y) = Ry, (X,Y),
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ou Ry .y, .., (X,Y) est le noyau de l'inverse de H; + V; j+1 — 2, avec

Veg+1(X) = 7(2)8(2)8(§ — mj41),
et
v(z) = —iasign(Im z).

La relation (5.1) nous donne
E{RZ(X- Y) - RS(X, Y)} = Ez(}(a Y) - RS(X, Y);

ol R,(X,Y) et R)(X,Y) sont les noyaux respectifs des résolvantes de H et H°, et ol
R.(X,Y) est le noyau de 'inverse de H°+V, — 2, pour V,(X) = §(z)v(z) potentiel surfacique
constant complexe. On en déduit

]E{ Z RZ((I’O): (I’ 0)) - Rg((:ﬂ,O), (I,O))} = Z ﬁz((I,O), (.’E,O)) - RS((I,O), (331 O))

zeZd z€Zd
(5.2)

Lemme 5.1 Soit € la fonction généralisée de déplacement spectral pour un potentiel sur-
facique constant vé(z) en dimension d = dy + da. Soit &g, la fonction de déplacement
spectral du couple Ag, et soit Ny, la densité d’états du Ag,, ot Ay, et Ay, sont les laplaciens
respectifs sur £2(Z%) et (*(Z%). Alors,

EN) = [ €l - mNa(d)

On remarque que, d’aprés ce lemme et 1'équation (5.2), la fonction généralisée de déplacemer
spectral s’écrit sous la forme

EN) = [ B0 - 0)Na(dn), 5.3

ol &, est définie par la relation

€, (V)
(A—2)?

Te{(Ag, +7(2) Py — 2)~} — (Ag, — 2)71} = —/ d),

ol Fy est la projection orthogonale sur z = 0, i.e. (Fo)(z) = 9(0).

Remarque. On peut voir Edl comme la fonction de déplacement spectral du couple non
autoadjoint (Ag, + v(2) Py, Ag,).

On fera le calcul pour d; = 1 ol §;,_, se calcule explicitement. On a :

&) = sign()\);lr- arctan

=X -2
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ol x est la fonction caractéristique de R*. Il est clair que cette fonction est de classe C* sur
(—20,2), sur (—2,2) et sur (2,00). Sa dérivée est

- « )\ 1
= si - Al —2).
El()‘) &gn()\)ﬁ mag Y )\2 _ 4X(| I )
Pour dy = 1, la densité d’états s’écrit explicitement:
(A) = o= ——=—x(2 = ]A)

La fonction généralisée de déplacement spectral s’écrit en utilisant (5.3):

E()\) = sign(\)= arctan du.
5( ) g ( )7'1' max(—2,~|A+2[) \/(/\_/J')Q—llpl(.u) H

1 fmin(Q,IA-QI) o

€ est continue sur R, et, vu que €, est dérivable par morceaux, € D’est aussi. De fagon
explicite:

2y = L= DD

4T 1A (4 = |AD

+sign()\) min(2,|A-2) a(A — pu) 1

du.
T max(—2,—|A+2|) ()\ — #’)2 _ 4&2 EE (/\ _ #)2 _ 4}91(#) U

€ est bornée sur (—oo, —4) U (—4,0) U (0,4) U (4, 00). On peut trouver des équivalents de 3
aux points —4, 0, 4.

(1 1

i
£ ~ —é;\/_l:)T—I quand A — 0,
1 1

quand A N\, —4,

d) /4
v S

€ est analytique sur R\ (—4,4), et & variation bornée sur R. En revanche, elle n’est pas
analytique aux points —4, 0 et 4 qui sont trois points du spectre de H°.

Pour d; = 2, on a:
No(dp) = pa(p)dp,
ou:

2 1 1
p2(p) = fzpl(u—V)pl(u) dv,  p(v) = DTNy x(2 = |v]).

Cette densité est a support compact [—4,4]. Elle a un comportement logarithmique au
voisinage de 0, i.e. il existe une constante C telle que

1
p2(p) ~u—o Clog m
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La fonction de déplacement spectral s’écrit donc

£ = [ B - weslu)da

De fagon explicite,

_ _ 1 pmin(4,A-2)) &
E(N) = sugn(/\)—/ arctan pa(p)dp.
T Jmax(—4,—|A+2|) ()\ - ,LL)Q =4

§ est bien continue sur R et elle est dérivable par morceaux. Le calcul explicite de la dérivée
nous donne

) = %:02()\ = 2)x(A(6 = A) + %Pa()\ + 2)x(=A(6 + X))

+sign() 1 /mizl(4,|A—2|) a(\ = p) 1 (W
AT max(~d.-3+2)) /(X — p)2 — 402+ (A —p)? — AP

Puisque )l\ln’é p2(A —2) = oo et que Alim? pa(A + 2) = oo, on trouve que & n’est pas dérivable

aux points —2 et 2, et qu’elle a un comportement logarithmique au voisinage de ces deux
points:

=

§ (A) ~ =2 —C'log |)\ = 2],
€(N) ~am—2 —Clog|A +2|.

On en déduit que & est bien analytique sur R\ (=6, 6), et & variation bornée sur R, mais elle
n’est analytique ni en —2, ni en 2 qui sont deux points du spectre de H°.

Pour dy > 3:
Ny (di) = pa, (1) dps,
ol |pa,(1)] < oo pour tout u € R. Ainsi, € est de classe C! sur R, donc & variation bornée
sur R.
On remarque que dans cet exemple £ est toujours & variation bornée. Une démonstration
analogue a celle du théoréme 3.2 montre que %5 L converge presque partout sur R vers &

lorsque L — oo. Une démonstration semblable a celle du théoreme 3.3 montre que N et €
coincident sur R tout entier. Par conséquent, N, définit une mesure sur R tout entier.
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