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Algebraic Realization of Supersymmetric Quantum Me-
chanics for Cyclic Shape Invariant Potentials

By Christiane Quesne ! and Nicolas Vansteenkiste

Physique Nucléaire Théorique et Physique Mathématique, Université Libre de Bruxelles,
Campus de la Plaine CP229, Boulevard du Triomphe, B-1050 Brussels, Belgium

(16.X.1998)

Abstract. We study in detail the spectrum of the bosonic oscillator Hamiltonian associated with the
Cs-extended oscillator algebra Ag)m, where C3 denotes a cyclic group of order three, and classify
the various types of spectra in terms of the algebra parameters ag, ;. In such a classification, we
identify those spectra having an infinite number of periodically spaced levels, similar to those of
cyclic shape invariant potentials of period three. We prove that the hierarchy of supersymmetric
Hamiltonians and supercharges, corresponding to the latter, can be realized in terms of some
appropriately chosen A,(;\%)al algebras, and of Pauli spin matrices. Extension to period-\ spectra in
terms of Cy-extended oscillator algebras is outlined.

1 Introduction

When supplemented with the concept of shape invariance [1], supersymmetric quantum me-
chanics (SSQM) [2] has proved very useful for generating exactly solvable quantum mechan-
ical models. Devising new approaches to construct shape invariant potentials is still under
current investigation (for a recent review see Ref. [3]). A recent advance in this field has
been the introduction of cyclic shape invariant potentials by Sukhatme et al [4], generalizing
a previous work of Gangopadhyaya and Sukhatme [5].

In addition, SSQM has established a nice symmetry between bosons and fermions [2].
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Such a symmetry has been extended to some exotic statistics. Replacing fermions by
parafermions [6], pseudofermions [7], or orthofermions [§], for instance, has led to para-
supersymmetric (PSSQM) [9, 10], pseudosupersymmetric 7], or orthosupersymmetric [11]
quantum mechanics, respectively.

The development of quantum groups and quantum algebras [12] during the last decade
has proved very useful in connection with such problems. In particular, various deforma-
tions and extensions of the oscillator algebra have found a lot of applications to quantum
mechanics, in general, and to SSQM and some of its generalizations, in particular.

Deformations of the oscillator algebra arose from successive generalizations of the Arik-
Coon [13], and Biedenharn-Macfarlane [14] g-oscillators. Various attempts have been made to
introduce some order in the various deformations by defining ‘generalized deformed oscillator
algebras’ (GDOAs). Among them, one may quote the treatments due to Jannussis et al [15],
Daskaloyannis [16], Irac-Astaud and Rideau [17], McDermott and Solomon [18], Meljanac
et al [19], Katriel and Quesne [20], Quesne and Vansteenkiste (21, 22]. In the remainder
of the present paper, we shall refer to GDOAs as defined in Ref. [21]. GDOAs have found
some interesting applications to the algebraic treatment of some one-dimensional exactly
solvable potentials [23, 24] or two-dimensional superintegrable systems [25], as well as to the
description of systems with non-standard statistics [19, 26, 27, 28].

G-extended oscillator (or alternatively Heisenberg®) algebras, where G is some finite
group, essentially appeared in connection with n-particle integrable models. It was shown
that they provide an algebraic formulation [29, 30, 31] of the Calogero model [32] or some
generalizations thereof [33]. In the former case, G is the symmetric group S, [30]. For two
particles, the abelian group S, can be realized in terms of Klein operator K = (—1)", where
N denotes the number operator. The Sy-extended oscillator algebra is then known as the
Calogero-Vasiliev [29], or modified [31] oscillator algebra.

The usefulness of GDOAs in connection with SSQM was pointed out by Bonatsos and
Daskaloyannis [34]. Then Brzeziniski et al [31], and Plyushchay [35] in more detail (see also
Ref. [36]), showed that the Calogero-Vasiliev algebra provides a minimal bosonization of
SSQM in terms of boson-like particles, instead of a combination of bosons and fermions, as
is the case in the standard approach [2].

In a recent work [37], we introduced a new type of G-extended oscillator algebras
A((j;)alu_a)\_z, where G is a cyclic group of order A, Cy = {I,T,7T2,... Pl }, and a9, a,
.., ax—2 denote A — 1 independent real parameters. Since C) is an Abelian group, its ele-
ments can be realized in terms of N only, so that Ag’;)a 1oy, Decomes a GDOA. The cyclic
group Cs being isomorphic to Ss, the Cs-extended oscillator algebra Agzo) is equivalent to
Calogero-Vasiliev algebra. Hence, new features only appear for A > 3.

To each AE;}))&L“GA_? algebra, one can associate a bosonic oscillator Hamiltonian Hy. That

3In both the oscillator and Heisenberg algebras, the creation and annihilation operators a', a are consid-
ered as generators, but in the former the number operator appears as an additional independent generator,
whereas in the latter it is defined in terms of at, a as N = ala.



Quesne and Vansteenkiste 73

corresponding to Afo) is just the two-particle Calogero Hamiltonian, which has a very simple
spectrum, coinciding with that of a shifted harmonic oscillator. For higher A values, the
situation is entirely different as, according to the parameter values, the spectrum may be
nondegenerate, or may exhibit some (v + 1)-fold degeneracies, where v may take any value
in the set {1,2,...,A — 1}, with in each case various possibilities for the level ordering.

In [37], we extended Plyushchay’s work by showing that the C3-extended oscillator alge-
bra Ag%)al provides a minimal bosonization of Rubakov-Spiridonov PSSQM of order p = 2 [9)].
More generally, it can be proved [38] that Ag}){,l_m_ , leads to the same result for Rubakov-
Spiridonov PSSQM of order p = A — 1.

Here, we will address the problem of SSQM for cyclic shape invariant potentials of pe-
riod A. We will prove that the corresponding hierarchy of supersymmetric Hamiltonians and
supercharges, which repeats after a cycle of A iterations can be realized in terms of some ap-
propriate Ag);)al'_.ah_z algebras, and of Pauli spin matrices. Although the detailed derivation
will be carried out for the simplest nontrivial case corresponding to A = 3, it will become

clear that the arguments are still valid for arbitrary A > 3.

To deal with this problem, after reviewing the definitions of the C3-extended oscillator
algebra, and of the corresponding oscillator Hamiltonian in section 2, we will study in detail
the Hy spectrum associated with AQO)QI, and derive the complete classification of the different
types of spectra in terms of the algebra parameters ag, a1, in section 3. In section 4 , we
will then identify those spectra having an infinite number of periodically spaced levels, and
show that for some of them one can obtain the searched for algebraic realization of SSQM.

Section 5 contains some concluding remarks about the extension to period-\ spectra.

2 (3;-Extended Oscillator Algebra and Hamiltonian

Let us consider the bosonic oscillator Hamiltonian, defined (in units wherein Aw = 1)
by [37]
Hy = %{a,af}, (2.1)

where the creation and annihilation operators af, a satisfy the generalized relations

[Nel] = o,  [NT]=0, TP=1,
[a, a*} = I+ T + kT2, T = 723 gt (2.2)

o
together with their Hermitian conjugates. Here, N = N is the number operator, T = (TT)
is the (unitary) generator of a cyclic group C3 = {I,T,T?}, and «;, s are two complex
constants, restricted by the condition ko = &} (deriving from the relation T2 = TT).

In the present paper, we shall be concerned with a realization of T as a function of N,
given by
T = e2mN/3} (23)



74 Quesne and Vansteenkiste

in which case there only remain two nontrivial relations in equation (2.2), namely
[V, al] = af, [a, al] = I +2(Re k1) cos N — 2(Sm ;) sin N, (2.4)
According to [21], equation (2.4) defines a GDOA A(G(N)), with

G(N) =1+ 2(Rek;)cos :)TWN — 2(Sm k1) sin 2—;’N.

—
(o]
wn

S—

Provided its parameters satisfy some conditions to be given below, the algebra possesses

a bosonic Fock space F = {|n) |n =0,1,2,...}, spanned by the normalized ecigenvectors of
N,

Nn) = n|n), (nlm) = Bpm; (2.6)

which can be written as
-1/2 >
|n) =N, / (a*) |0}, i=10,1,2,..., (2.7)
where N, is some normalization constant, and |0) is a vacuum state, i.e.,

al0) = 0. (2.8)

From equation (2.4), it is clear that the operators af, a act differently in the three
subspaces F,, u = 0, 1, 2, of F, defined by F, = {3k +p) | £ = 0,1,2,...}, and such
that 7 = Fy & F; & Fp. Actually, these three subspaces are the carrier spaces of the
three inequivalent irreducible (one-dimensional) matrix representations of Cs, defined by
I'“(T) = exp(2nip/3), p = 0, 1, 2 [39]. The projection operators P, on the F, subspaces
are given by P, = 1 2 exp(—2mipv/3) T, or

Py = %—([—}-2(}03%]\[): P1=,-(I—(;OS%’TN+\/ES'111%"N),

«

Py = % (I — cos %EN — V3sin %IN) ‘ (2.9)

o=

As it can easily be checked on equation (2.9), the P,’s satisfy the relations
2
Pppu = 6/L,UP;” Z Pp =1, (210)
=0

as it should be.
In terms of such operators, equation (2.4) can be rewritten as
[N, aq =al [a, a.q =1+ agPy+ a1Py + aoPs, (2.11)

where a,, p = 0, 1, 2, are three real parameters, connected with k, and ko = k] by the
relations a, = $°2_, exp(2miuv/3) K, or

ag=2Rery, a;=—Rew; —V3Smeu,, as=—ag—a;=—Rek; +V3Im k. (2.12)
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Hence, we may also express G(N) as
G(N) =1+ ayPy+ a1 Py + agPs, with ag+ a; + a2 = 0, (2.13)

and denote the algebra A(G(N)) by A{), , where the two independent real parameters ag, a;
are specified. In the remainder of this paper, we will assume a, = 0ymod3, and P, = Pumod3
for arbitrary integer u values.

For any GDOA, one may define a so-called structure function F(N), which is the solution
of the difference equation F(N +1) — F(N) = G(N), such that F(0) = 0 [16, 20, 21, 22, 34].
In the present case, we get

F(;’V) =N + ﬁ1P1 = ﬂng, where ,61 = ), ﬂg = ap + a;. (2.14)

In the bosonic Fock space F, F(N) satisfies the relations
ala=F(N), aal=F(N+1), (2.15)
and the normalization coefficient A, in equation (2.7) is given by N, = [1}=; F (i), or
Ngw = 3% [C(BID(B,)] ™ T(k + DIk + By)T(k + Ba),
Nuy = 3% [T@E)T(B,)] " Dk + D0k +1+BL(k +By), (2.16)
Niesz = 3%*2[D(B)0(B,)]” Tlk + DD(k+ 1+ BTk + 1+ By),

in terms of gamma functions, and of 8, = (81 + 1)/3, B, = (B2 + 2)/3. The creation and
annihilation operators act upon |n) as

alln) = \/F(n +1)|n + 1), a|ln) = /F(n)|[n - 1). (2.17)

Hence, from equation (2.14), it is obvious that F exists if and only if F(1) > 0 and F(2) > 0,
or, in other words, the algebra parameters are restricted to those values for which

ag > —1, a] > -2 - aq. (218)

We shall henceforth assume that these conditions are fulfilled. Note that ap = a; = 0
corresponds to the standard harmonic oscillator.

It is now straightforward to determine the action of the bosonic oscillator Hamiltonian Hy,
defined in equation (2.1), in the bosonic Fock space F. For such a purpose, it is useful to
rewrite Hy in the equivalent forms

Hy=ala + %(I + agPy+ a1 Py + asPy) = N + %I + Y0Py + 71 P + 2P (2.19)

by using equations (2.11), (2.14), and (2.15). In equation (2.19), the parameters 7,, x4 = 0,
1, 2, are defined by

Yo = %Oﬂo, ¥y = %(20.’0 + a]), Y2 = %(O’O + al); (220)
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and satisfy the relation 9 — 1 + 72 = 0. The number operator eigenvectors |n) = |3k + p)
are also eigenvectors of Hy, corresponding to the eigenvalues

Egppy = 3k + p+ v, + 3, k=0,1,2,..., u=0,1,2 (2.21)

In each F, subspace of F, the spectrum of Hy is therefore harmonic, but the three infinite
sets of equally spaced energy levels, corresponding to u = 0, 1, 2, respectively, may be shifted
with respect to each other by some amounts depending upon the algebra parameters ag, a;
through their linear combinations 7g, 71, 72, defined in equation (2.20). We may therefore
obtain nondegenerate spectra, as well as spectra with some double or triple degeneracies. In
the next section, we will study such spectra in detail.

3 Classification of (s;-Extended Oscillator Hamiltonian
Spectra

To obtain the various types of Hy spectra, we shall proceed in two steps. We shall first
determine the possible orderings of the Hy ground states in Fg, 1, and Fa, corresponding
to the eigenvalues Fy, E1, and FE,, respectively. This will give rise to three general and two
intermediate classes of spectra. Then, for each of these five possibilities, we shall successively
study the relative order of the excited states in Fy, F1, and F3 in the nondegenerate, doubly-
and triply-degenerate cases.

Considering first Eg, E;, and E3, we obtain from equations (2.20) and (2.21)
El—Eg——-—%(ao-Fa‘l"i-Q), Ey— FE, = %(2—-0{0), Eo— Eg = %(a1+4). (31)

Since the parameter values are restricted by equation (2.18), it is obvious that the ground
states in Fy, Fi, and F2 may either be nondegenerate, or exhibit a double degeneracy. In
the former case, they may be ordered in three different ways, which we will refer to as (I),
(II), and (III), respectively, as listed hereafter

(1) Ey< E;<Ey if —1<ap<2and -2 — ag < ay,
(H) Eo < Ey < Ey if 2 < ag and —4 < oy, (32)
(II1) E; < Ey < B4 if2<apgand =2 —ag < a1 < —4.

In the latter case, their ordering is intermediate between classes (I) and (II), or (II) and (III),
and are given by ‘

(I-II) Eqg < Ey = Es if g =2 and —4 < a3,
(H—HI) Eg = FEy < E; if 2 < (o)) and a] = —4, (33)

respectively.

Let us now consider the excited states in Fy, F1, and Fs, and distinguish between non-
degenerate, doubly- and triply-degenerate spectra.
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3.1 Nondegenerate spectra

For nondegenerate spectra, we have only to consider the three general classes (I), (II),
and (III).

Starting with class (I), we note that since E3 — E; = (2 — a;1)/2, and E3 — E; = (4 -
ag — a1)/2, we have three different possibilities for the ordering of E3 with respect to Eq,
and EQI

Ey< F1 < Eqg < Ey if—-l<ap<2and -2 —aqpg< a; <2,
Fo< EF1 < E3< Es if ~-l1<ag<2and 2 < a; <4- ap, (34)
Ey < B3 < Ey < Ey if -l1<ag<2and4-—oap< a;.

Furthermore, since B4 — E5 = (ap + 4)/2 is positive over the whole parameter range, in
the first two cases the remainder of the spectrum is entirely determined, so that we obtain
Ey<Ei1<E;s<E3< Bij<Es<Eg<--,andEy< E1< E3<Ey<Ey< Eg<Es< -
respectively.

In the third case, we have to study the ordering of Eg with respect to E;, and Ep. As
E¢ — Es = (8 — 1)/2, and Eg — E; = (10 — ag — @1)/2, there again appear three different
possibilities:

Eog< E3< E1 < E; < Ey if-l<ap<2and4—ag< aj <8,

Ey < E3< E, < Eg < Ey if -1 < ap<2and8< a; <10 - ag, (3.5)
Eog< EF3< Eg< E1 < Ey if —1<ag<?2and 10 — ap < ag,

where for the first two the remainder of the spectrum is entirely determined.

By recursively carrying on such a classification, we get two nondegenerate spectra sub-
classes (I.1) and (I.2), themselves labelled by some index n running over 1, 2, 3, .. .:

(Iln) EBg<Ez3<---<FE3p 3<FBE1<Ey<E3 <Eg<Es<--
if—l<ap<2and bn—ayg—8 < a; < 6n-—4,

(1.2.n) Ey< E3<-++< E3, 3< Ey < E3;, < Ea < E4y < Egpqs (3.6)
< By ves
if —1l<apg<2and 6n—4< a; <6n-—ay— 2.

The parameter values in equation (3.6) can simply be obtained by combining those defining
class (I) in equation (3.2) with the conditions E3,_3 — E; = (6n —ap —a; — 8)/2 < 0
for both subclasses, and either E3, — E; = (6n — a; — 4)/2 > 0 for the first one, or
E3n, —Ey = (6n —ag— a1 —2)/2 > 0 and Es, — E5 = (6n — a3 — 4)/2 < 0 for the
second one.

It is worth noting that the parameter values corresponding to type (I.1.n) and (I.2.n)

spectra cover all class (I) parameter range, but for —1 < ap < 2, &3 = 6n — 4 or a; =
6n —ag— 2, wheren=1, 2,3, ....
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Figure 1: Examples of nondegenerate H, spectra belonging to class (I): (a) type (I.1.2)
spectrum with ag = 0, a; = 6; (b) type (1.2.2) spectrum with ag =0, a; = 9.
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Figure 2: Examples of nondegenerate Hy spectra belonging to class (II): (a) type (I1.1.2.2)
spectrum with ag = 10, oy = 4; (b) type (I1.2.2.2) spectrum with ag = 10, a7 = 7.
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Figure 3: Examples of nondegenerate H spectra belonging to class (III): (a) ty (III 1.2.2)
spectrum with ap = 18, a; = —12; (b) type (I11.2.2.2) spectrum with oy = 21, ay = —15.

A similar procedure can be used for classes (II) and (III). Both of them separate into two

subclasses (II.1), (II.2), and (III.1), (I11.2), but the latter are now labelled by two integer

indicesm,n=1, 2,3, ...,

and

(IL1.m.n)

(11.2.m.1)

(ITII.1.m.n)

(IIL.2.m.n)

instead of only one as for class (I). They are given by

EFo< By < - < Fgpy_g< Fy< Fspy < By < -+ < E3;s3n—6

< Ezm-1 < By < Egpian-3 < Egmya < By < -+

if 6m —4 < ag<6bm+2and 6n— 10 < a; < 6m + 6n

—ag -8, (3.7)
Ey<FE3<:---< E3, 3< Ey< Eg, < E5 < Egpag < -+

< E3m-1 < E3mi3n-3 < £1 < E3mia < Egmyan < B4 < - -+

if6m -4 <ag<bm+2and 6m+6n—ay—8 < ag

< 6n — 4,

Eo< Es <~ < Egp1 < By < Egﬂ+g < Hsg < ¢s0 € Bgmaan—a

< E3m-3 < E1 < E3m4an-1 < E3m < B4 <

if 6m +6n —10 < ag < 6m +6n —4 and 6m —ag— 8 < a;

< 2—06n, (3.8)
Eo< Es< < Egp 1 <Ey< Ezpio< B3 < Egpys < ---

< E3m—3 < E3m+3n—1 < El < E3m < E3m+3n+2 < E4 B s
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if6m+6n—4< ayg< bm+6n+2and —4 —6n < a;
< bm — ap— 2,

respectively.

The parameter values given in equations (3.7), and (3.8) can be checked in the same
way as those in equation (3.6). Furthermore, those corresponding to type (II.1.m.n) and
(I.2.m.n) spectra cover all class (II) parameter range, but for 6m — 4 < ag < 6m + 2,
oy =6n—4ora; =6m+6n—ayg—8 wherem,n=1,23,...,and a1 > —4, ag = 6m + 2,
where m = 1, 2, 3, .... A similar remark applies to type (II.1.m.n) and (II1.2.m.n) spectra,
and class (III) parameter range, the exceptions being now 6m + 6n —4 < ag < 6m + 6n + 2,
ay=—4—-6nora =6m-—ay—2, wherem,n=1,2,3,...,and -2 —ag < a; < —4,
ag=6n+ 2, wheren =1, 2,3, ....

Some examples of class (I), (II), and (III) nondegenerate spectra are displayed on figures 1,
2, and 3, respectively. One should remark that only type (1.1.1) spectra, for which —1 <
ap < 2and —2—ag < a; < 2, have the same level order as the standard harmonic oscillator,
the spectrum of the latter being retrieved in the special case where ag = a; = 0.

3.2 Doubly-degenerate spectra

Doubly-degenerate spectra may appear as limiting cases of the nondegenerate ones of
subsection 3.1, whenever two contiguous energies become equal, or they may directly result
from the two intermediate classes, defined in equation (3.3). They belong to three different
types, labelled by a, b, ¢, and corresponding to Fo—-F;, Fo—F2, and F,—F» degeneracies,
respectively.

For class (I), for instance, we can obtain type a spectra by considering the limit £y = E3,
in subclass (1.2.n), defined in equation (3.6), thereby getting the condition a; = 6n —ap— 2.
The remaining two possibilities, namely E3,_3 = E; in subclass (I.1.n) or (1.2.n) for n = 2,
3, ..., can be excluded because the former leads to the same types of spectra and parameter
values as those already found, while the latter would imply the a; value 6n — a¢ — 8, lying
outside the interval (6n — 4,6n — ap — 2). Similarly, type b spectra can be obtained by
considering the limit Ey = Ej3, in subclass (I.1.n) or (I.2.n), thus giving the condition
a; = 6n — 4. On the contrary, type c spectra cannot be derived as limiting cases of class (I)
spectra, as E, < E; by definition of the class, and Ey < E4 over the whole parameter range.

We conclude that class (I) doubly-degenerate spectra are given by
(Ima) Eg<Ej<---< Es3,_3< E3,=FE; < Ey < E3,43 = E4
< Eg < -
if -1 <ap<2and a; =6n—ay— 2,
(Inb) Eg<Ez3y<---<E3,_3<E;<E3, =Ey<E, (3.9)
< Egny3=E5 < ---
if -1 < ap<2and a; =6n -4,
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Figure 4: Examples of doubly-degenerate Hy spectra belonging to class (I): (a) type (1.2.a)
spectrum with ag = 0, @1 = 10; (b) type (1.2.b) spectrum with ag = 0, a; = 8.

where n runs over 1, 2, 3, .... Together with type (I.1.n) and (I.2.n) nondegenerate spectra,
they clearly exhaust all class (I) spectra.

By proceeding in the same way, the doubly-degenerate spectra, arising as limiting cases
of class (III) nondegenerate ones, can be shown to separate into the following types:

(Illm.n.a) Eo < Fs <+ < Egp_1 < BEg < Egpia < B3 < Egpys < -+
< E3m-3 < E3mi3n-1 < E3m = E1 < E3miani2
< Egmiz=Eg < -
if 6m +6n —4 < ag< 6m+6n+ 2 and a; = 6m — ag — 2,
(Ill.m.n.b) Es < B35 < - - < E3p_1 < E3pyo = Eg < Egpps = Eg < ---
< Bzmian-1 = E3m 3 < BE1 < Egmysnio = Eam < Eg < - (3.10)
if6bm+6n—4<ay<bm+6n+2and a; =—4 — 6n,
(IIl)m.n.c) Ea< Es < -+ < E3p_1 < Eg< Egppg < E3 < ---
< E3mi3n—4 < E3m-3 < Ezmysn—1 = E1 < E3p
< Egmyanye = Eg < -
if og =6m +6n—4and -4 —6n < a; < 2 - 6n,

where m, n run over 1, 2, 3, .... Together with type (III.1.m.n) and (II1.2.m.n) non-
degenerate spectra, they cover all class (III) parameter range, but for the discrete values
ag=06m+6n+2 o =—-4—6n, wherem,n=1,2,3, ...
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Examples of doubly-degenerate Hy spectra belonging to class (II): (a) type
(II.2.2.a) spectrum with ay = 10, a3 = 6; (b) type (I[.2.2.b) spectrum with ay = 10,
a; = 2; (¢) type (I1.2.2.c) spectrum with ag = 8, a; = 4.
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Figure 6: Examples of doubly-degenerate Hy spectra belonging to class (III): (a) type
(II1.2.2.a) spectrum with a9 = 24, a; = —14; (b) type (I11.2.2.b) spectrum with ag = 24,
a; = —16; (c) type (II1.2.2.¢) spectrum with ag = 20, a; = —12.
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The doubly-degenerate spectra arising as limiting cases of class (II) nondegenerate ones
can be grouped with those appearing in the intermediate classes (I-II), and (I1I-1II) to provide
the following types:

(lmn.a) Eg< E3<---< E3p3< E3< E3p < E5< -+ < E3myan—6

< E3m-1 < E3mi3n-3 = E1 < Ezmy2 < Egmyan = E4 < -

if6bm —4 < ag < 6m + 2 and o] = 6m + 6n — ap — 8§,
(Il)mm.b) Eg<E3<- < Esp3=FEy<Es3, =E;<---

< E3m43n—6 = Esm-1 < E1 < E3myan-3 = Esmi2 < B4 < - -

if 6m — 4 < ag < 6m + 2 and a7 = 6n — 10, (3.11)
(Il)mn.c) Eg< E3<-- < Egp_3< Ey < E3, < E5 < Egpyg < -

< E3m-4 < E3myan—6 < Esm-1= E1 < Esmyan-3

< Egmyz=Eg <---

if g =6m —4 and 6n — 10 < a; < 6n — 4,

where m, n run over 1, 2, 3, .... Here we note that type (IL.m.n.a), (ILm.n.b) (with n > 2),
and (IL.m.n.c) (with m > 2) spectra come from class (II), and together with type (II.1.m.n)
and (II.2.m.n) nondegenerate spectra cover all class (II) parameter range, but for the discrete
values apg = 6m + 2, a; = 6n — 4, where m, n = 1, 2, 3, .... On the contrary, type (II.1.n.c)
[resp. (IL.m.1.b)] spectra result from the intermediate class (I-II) [resp. (II-III)], and cover all
the corresponding parameter range, but for the discrete values ag = 2, a; = 6n — 4, where
n=1,23,... [resp. oy = —4, ag = 6m + 2, where m =1, 2, 3, .. ]

Some examples of doubly-degenerate spectra are displayed on figures 4, 5, and 6. One
should note that the lowest doubly-degenerate state is the kth one, where k = n + 1,
n+2,2m+n,n, 2m+n—-1,2m+n+1, n+1, or 2m + n for type (I.n.a), (Ln.b),
(ILm.n.a), (ILm.n.b), (ILm.n.c), (IIll.m.n.a), (IIL.m.n.b), or (IIl.m.n.c), respectively, and
that above such a doubly-degenerate state, there always remain some nondegenerate ones.
For type (II.m.1.b) spectra, and only for them, the ground state is doubly degenerate.

3.3 Triply-degenerate spectra

The allowed parameter values not encountered in subsections 3.1, 3.2 correspond to
triply-degenerate spectra. The latter may be separated into the following three types:

(I.n.abc) Eoy< E3< -+ < E3p_3< Es, =FE; = Ej
< Egnt3=Eg4=E5; <---
if ap =2 and a; = 6n — 4,
(Il)m.n.abc) Eg< E3< -+ < Egpn < Esp3=E3< Egy=Es < ---
< E3m43n-6 = Esm—1 < Esm+3n—3 = Ezmi2 = E)
< Ezmt3n = Ezmys = B4 < -+~ (3.12)
if ag =6m + 2 and a; = 6n — 10,
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Figure 7: Examples of triply-degenerate Hy spectra: (a) type (I.2.abc) spectrum with ag = 2,
a; = 8; (b) type (II.1.2.abc) spectrum with ag = 8, a; = 2; (¢) type (III.1.1.abc) spectrum
with ag = 14, a; = —10.

(IIl.m.n.abc) Es < E5 < -+ < E3pn1 < Egnyo = Eg < Egpys = B3 < -+
< E3m+43n-1 = E3m-3 < E3mi3n+2 = E3m = E
< E3m43nts = Eamiz = Eg < - -
if ag=6m +6n+2 and a; = —4 — 6n,

where m, n run over 1, 2, 3, .... The first type comes from the intermediate class (I-II),
the second one from class (II) or from the intermediate class (II-1II), according to whether
n > 2 orn = 1, while the third one results from class (III).

Some examples of triply-degenerate spectra are displayed on figure 7. Below the infinite
set of triply-degenerate states, there appear n nondegenerate states in type (L.n.abc) spectra,
while in the case of type (II.m.n.abc) [resp. (IIL.m.n.abc)] spectra, there are n — 1 [resp. n]
nondegenerate states, followed by m [resp. m] doubly-degenerate ones. For type (IL.m.1.abc)
spectra, and only for them, the ground state is doubly degenerate. No spectrum with a
triply-degenerate ground state is obtained.
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4 Period-Three Spectra and Supersymmetric Quan-
tum Mechanics

From equations (3.6), (3.7), and (3.8), it results that type (I.1.1), (II.1.1.1), and (III.1.1.1)
spectra, characterized by

(I.1.1)  Eyg< By < Ey<E3<Ef< Es< -
if —-1<ag<2and =2 —ap < a; < 2,
(II.L1.1.1) Eg< Ey<E1<BE3<Es<Ej<---
if 2<ag<8and —4 < a; < 4 — ag, (4.1)
(II1.1.1.1) Ey < Ey< E) < Es < E3< Ey<---
if2<ag<8and -2 —ag < a; < —4,

respectively, have an infinite number of periodically spaced levels. More precisely, the level

spacings are given by wy, wy, wo, wo, w1, w2, ..., where w,, u =0, 1, 2, can be expressed in
terms of the algebra parameters «ag, a;, as

(IT1.1.1.1) wo =

(11.1)  wo=3(apg+01+2), wi=3(2-ay), wo=3(2-a),
(I1.1.1.1) wo = -é-(o:l +4), w = %(O.‘g —-2), we= % 4— qp— ay), (4.2)
1
2

(—0’1 "_4)1 Wl = %(00+G1+2), W = 5(8—“0):
respectively. In all three cases, the normalization of Hg is such that Q3 = wg + w; + wo = 3.

Spectra of a similar type were recently encountered by Sukhatme et al [4] in the context
of SSQM with cyclic shape invariant potentials of period three. In such a case, one may
construct a hierarchy of supersymmetric Hamiltonians, and corresponding supercharges in
terms of superpotentials that repeat after a cycle of three iterations. In terms of the operators

d d
A, = == W (z,b,), Al = o i W (z,b,), p=012..., (4.3)

where 0, denotes a set of parameters such that b,.3 = b,, and the superpotentials W (z,b,)
satisfy the shape invariance conditions

W2(z,b,) + W'(z,b,) = W2(z,bur1) = W (z, buy1) +wy, p=0,1,2, (4.4)

the supersymmetric Hamiltonians #,, and supercharge operators QL, @, are defined by

HO) — g7 0 i (0 A 0 0 )
H“_( 0 oy _ gy )0 w=Lo 0 ) =4, 0) @

where

HO = AlA,,
W = 4, 4 (b= — At 4 )y =1,2 4.6
H = g |u_._1+50 I— #4#*{'_50 ) IJ'“ gl & § ()
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and 65“) denotes the ground state energy of H*) (with 550) =0).

Since Al = Ag, Az = Ag, H® = HO 4 553)1’, one finds
Hupa=Hew Q=0 Quaesd,. (4.7)

Hence, there are only three sets of independent operators {H“,QL,Q‘L}, corresponding to
w =0, 1, 2. Each one of them fulfils the defining relations of the sqm(2) superalgebra

(@) =@=0, [Ha@l=Mu@d=0 {2.Q}}=H, (4.8)
The eigenvalues ¥ n =0, 1, 2, ..., of KW, 1 =0, 1, 2, satisfy the relations

0 = gV =,
P = gV =gP® = wy+w, (4.9)

© 1 2 3 «
SSALU = Elgkl-u—l = gkl—u—? = 81§(Il—1)+u = k{3 + pr,
p=0

wherek=1,2,...,v=0,1, 2, andE_O_

We shall now proceed to show that one may realize the operators defined in equa-
tions (4.5), (4.6), and satisfying equations (4.7), (4.8), in terms of creation and annihilation
operators aL, ay, p =0, 1, 2, belonging to Cs-extended oscillator algebras AS‘)‘%(“” 3= 0,

0 1

1, 2, whose parameters a((,“), ag") take some appropriate values corresponding to type (I.1.1)

spectra. We shall actually prove that one may assume

Al = ! Ay = ug, p=01,2 (4.10)

Mu?

For such a purpose, let us start with some algebra Ag?gal, and from its generators let us
construct the operators

H™ = F(N 4+ u) = N+ pul + agPy_, — ayPy_,, (4.11)

where in the last step we used equations (2.9), and (2.14). It is straightforward to see that
the eigenvalues £ of H(¥ satisfy equation (4.9) with w, = 1 +a,, ¢ =0, 1, 2, and Q3 = 3.
For this result to be meaningful, the conditions w, > 0, x = 0, 1, 2, have to be fulfilled. The
latter imply the following restrictions on ag, aj,

-1l<ag<?2, -1l1<a;<1-—a. (4.12)

The parameter values satisfying equation (4.12) form a subset of the set of allowed parameter
values for type (I.1.1) spectra, as defined in equation (4.1).

From equation (2.15), it results that H(® and H(), defined in equation (4.11), can be
rewritten as H® = afe and HV = aal, respectively. Comparing with equation (4.6), we
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conclude that equation (4.10) is valid for x = 0, provided we define ag = af, ap = ¢, so that

the corresponding algebra parameters are a( ) = ap, ag ) = £ fiyp,

Let us now define aJ{, a, and a;, as in such a way that equation (4.10) is also valid for
=1, and g = 2. From equations (4.6) and (4.11), we obtain

HO = a{a1+(l+ao)I—N+I+&0P0—Oézpl,
HP = ajal + (1 + @)l = N + 21 — 2Py + aoPy, (4.13)
and
H(z) = a£a2+(2—|—ao+al)1 =N +2.[—062P0"+‘Q'OP2)

H® = agad + (2+ ag+ 1)l = N + 31 + 0gP; — g Py, (4.14)
from which we derive

a1, 0} = T+ 01Py+ asPr+ aoPs,  ag,0d] = T+ 0aPo+aoPr+anPp (4.15)

Finally, from equation (4.11), it results that H®) = H© 4+ 37, so that Al = AES 5 ag,
Az = Ap = ap, as it shoud be.

We conclude that the choice made in equations (4.10), (4.11), and (4.12) provides an
algebraic realization of SSQM for any cyclic shape invariant potential of period three.* The
matrix elements of the supersymmetric Hamiltonians and supercharges H,, QL, Qu, p=0,
1, 2, are expressed in terms of boson-like operators a! p = 0,1, 2, belonging to Cs-

a

73l i72]
extended oscillator algebras Afi)al, Agi),_aﬂ_al, A(ﬂo_ahao, respectively, where o, a; are
related to the level spacings through the relations wg = 14+ ap, w; = 1+aj, ws = 1 —ag—a;,
and restricted to those values satisfying equation (4.12). The commutators of such operators
u:ﬂ, a, are given by

[awal] =1 +af P+ ol P + 0§ Py, (4.16)
where the parameters a'f,‘“) = @pyp, v = 0, 1, 2, fulfil relations similar to equation (4.12), i.e.,

(»)

~1<afP <2,  -—1<o®<c1-al. (4.17)

(#) ()

For different p values, the sets {ag -g“ )} only differ from one another by a cyclic

permutation.

As a final point, we would like to stress that the Hamiltonians M), gwen in équa—
tion (4.11), differ from the corresponding bosonic oscillator Hamiltonians H W = =5 {ap, aT}
through a linear combination of projection operators P,,

H® = BHP ~ L5 (1+ W) P, + €1, (4.18)

41t is obvious that by an appropriate change of energy scale, one can get any Q3 value instead of Q3 = 3,
as considered here.
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Figure 8: Spectra of the Hamiltonians H®), u = 0, 1, 2, 3, defined in equation (4.11), for
ap=0, aj =

(1]

or
HO = H? -15(1+a,)P,
v
HY = HP+ 131+ 200 - ap) P
= HO+15°(1+a)P,
v

H® = HP + 3> (3=202— a,;2)P,

v

= H(SO) + %Z(B + gy — ay+2)Pu- (419)

This explains why the H®) and H(g“ ) spectra, corresponding to parameter values satisfying
equation (4.17), consist of periodically spaced levels characterized by different w, values,
although in both cases the level order is similar, and actually coincides with that of the
standard harmonic oscillator.

On figure 8 are displayed the spectra of H®), n =0, 1, 2, 3, for a9 = 0, and a; = %

The corresponding values of w, are wg =1, w; = %, wg = %, and the associated C3-extended

oscillator algebras are Ag‘? /2 Ag%l_l /2 A(_Sl) /2,00 Tespectively.

5 Concluding Remarks

In the present paper, we considered a bosonic oscillator Hamiltonian Hy, associated with

the Csz-extended oscillator algebra AE,?G)QI introduced in [37], and we studied its spectrum in

terms of the algebra parameters ag, a;. We showed that such a spectrum has a very rich
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structure, contrary to what happens for the two-particle Calogero Hamiltonian, connected
with the Cy (or Ss)-extended oscillator algebra Affo) (also referred to as the Calogero-Vasiliev
algebra). In particular, we obtained both nondegenerate spectra, with or without the same
level order as the standard harmonic oscillator, and spectra exhibiting some double and/or
triple degeneracies.

More importantly, we pointed out that some of the nondegenerate spectra, namely those
of type (I.1.1), (II.1.1.1), and (II.1.1.1), have an infinite number of periodically spaced levels,
as the spectra arising in SSQM when considering cyclic shape invariant potentials of period
three [4). We finally obtained a matrix realization of the supersymmetric Hamiltonians
and supercharges associated with the latter in terms of creation and annihilation operators
aL, au, ¢ = 0, 1, 2, belonging to Cs-extended oscillator algebras, whose parameters are
obtained by cyclic permutations from a starting set {ag, ay, a2}, for which -1 < ag < 2,
-1l1<a; <1-agp and as = —ag — aj.

It is obvious that the results derived in the present paper can be extended to bosonic
oscillator Hamiltonians Hy associated with Cj-extended oscillator algebras AL, . cor-
responding to A values different from three. Although the complete classification of their
possible types of spectra in terms of the algebra parameters ag, a1, ..., ax_2, becomes rather
complicated for A > 3, generalizing the results for spectra with periodically spaced levels is
straightforward. In particular, it can easily be shown that the hierarchy of supersymmetric
Hamiltonians and supercharges {7‘-[#,(,'221,62,J | w=0,1,...,A =1} of [4], corresponding to
cyclic shape invariant potentials of period A > 2, can be built from creation and annihilation
operators af a,, p=0,1, ..., A =1, belonging to Cy-extended oscillator algebras, whose

p?
parameters are obtained by cyclic permutations from a starting set {ag, @1,...,ax_1}, for
which —1 < a0 < A=1, - l<a,<A-pu—-1-S*ja, ifp =12 ..., A2 and
ax—1= — Ey;o Qy.

A very interesting open question is the possibility of realizing C)-extended oscillator
algebras in terms of differential operators. Since one-dimensional Hamiitonians are known
to have no degeneracies in their bound state spectrum, the existence of degeneracies in the
Hg spectrum for some parameter values shows that such a realization should at least involve
two variables.
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