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Consistent Histories and POV Measures

Oliver Rudolph

Theoretical Physics Group, Blackett Laboratory, Imperial College of Science, Technology and Med-
icine, Prince Consort Road, London SW7 2BZ, United Kingdom

(10.VII.1998)

Abstract This review is devoted to the history formulation of standard Hilbert space quantum me-
chanics. We will give an overview over the basic ideas and concepts of the history approach. The
consistent histories approach is usually formulated using the standard notions of observable and
state. We will argue in the second part of this review that the natural notion of an observable in
quantum mechanics is that of a positive-operator-valued measure (POV measure) and will show
that the consistent history formalism can be generalized to incorporate POV measures in a natural
and simple way.

1 Introduction

This article is about the foundations of quantum mechanics. Ever since the invention of quantum
mechanics many scientists — physicists, mathematicians and philosophers — have thought about the
problem of how the physical world could possibly be how quantum mechanics says it is. This is
clearly (atleast in part) a metaphysical problem. In quantum physics, it is the problem of interpret-
ing quantum mechanics. From a point of view of a philosopher, the problem of interpreting quantum
mechanics is an interesting problem in its own right. In contrast, a physicist is mainly interested in
the question whether a given theory is empirically adequate and successful. Quantum mechanics
enjoys an overwhelming amount of empirical success and it has shown an ever increasing range
of applicability. The spectacular empirical success of quantum mechanics as a physical theory is
based on the interpretative rule known as Born's rule. ! Born’s rule in its simplest form states that

! For a historical account of Bor’s rule we refer to the book by Jammer [1].
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the probability to find a system initially in the state ¢ in the state 1) is given by py, () = |(¢,¥)|%.
Thus, Born’s rule translates the abstract assertions of the theory (in terms of state vectors etc.) to
empirically testable statements in terms of probabilities. The probabilistic predictions of quantum
mechanics based on Born’s rule (or at least some of them) can (in principle) be tested by compar-
ing them with the relative frequencies of the various data in a long series of trials. 2 Born’s rule (or
some appropriate generalized formulation thereof) is contained or reproduced in any more extensive
interpretation of quantum mechanics known to the author. Quantum mechanics admits many dif-
ferent interpretations, e.g., the Copenhagen type interpretations, * the many worlds interpretation,
the modal interpretations, the quantum event interpretation [8] and the statistical interpretation [2]
to name only a few of them. Howeyver, all these interpretations contain or reproduce Born’s rule in
some way or other and thus the empirical content of quantum mechanics is remarkably indepen-
dent of the interpretation adopted. Different interpretations do not change the empirical content of
quantum mechanics.

So, why another work about the foundations of quantum mechanics ?

From a point of view of a physicist new work on the foundations of quantum mechanics will be
worth while only if it offers something new in content or perspective.

I will argue briefly in the sequel that the consistent histories approach to quantum mechanics
indeed offers something new as well in content as in perspective.

The investigation of how quantum mechanics is to be interpreted and what quantum theory is
really telling us about the deeper nature of physical reality is a slippery business. This is so be-
cause interpretations add no empirical content to the theory interpreted and accordingly we have
no empirical criterion to make a decision between competing interpretations. Due to the authority
of the founders of quantum mechanics and due to the lack of a sensible alternative interpretation,
the Copenhagen interpretation of quantum mechanics has for many years acquired the status of a
dogma. This goes as far as that in some quantum mechanics textbooks the Copenhagen interpre-
tation is treated as if it were the only conceivable interpretation of quantum mechanics. Since the
interpretation is undoubtedly part of quantum mechanics it is striking to see how little space is de-
voted to it and how uncritically the assertions of the Copenhagen interpretation are adopted in many
of the standard textbooks (with notable exceptions, including the book by David Bohm [3]. The rec-
ommendable lecture notes by Chris Isham [9] may also serve as a supplementary text to the standard
textbooks of quantum mechanics). It is well-known that the Copenhagen interpretation is plagued

2 This does neither mean that probabilities should or must be interpreted only as approximate relative frequencies
nor that probabilistic statements always (and exclusively) refer to ensembles of (similarly prepared) systems (as in the
so-called statistical ensemble interpretation, see Ballentine [2]).

3 I use the phrase Copenhagen type interpretation to denote collectively the different variants of the Copenhagen or
orthodox interpretation, to wit, the body of ideas which is with some justice also often called “orthodoxy” and which
is usually associated with the names of Bohr, Heisenberg, von Neumann, Pauli, Born, Jordan and others. More or less
rudimentary accounts of the Copenhagen interpretation can be found in almost all textbooks on quantum mechanics.
The best account of the ideas of the Copenhagen school ever written is perhaps the highly recommendable book by
David Bohm [3] (see in particular Chapters 6-8,22-23). Bohm’s book will serve as our general reference of the Copen-
hagen interpretation. Different variants of the Copenhagen interpretation may also be found in the recommendable
books by von Neumann [4] and Scheibe [5] and also in [6]. Our cumulative nomenclature ignores the differences in
the various versions of the Copenhagen type interpretations given by different authors; for an overview the reader is
referred to the monographs by Jammer [1, 7].
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with problems, mysteries and anthropomorphisms. The main problem of the Copenhagen interpre-
tation is the understanding and description of the measuring process. Usually, the time evolution of
the wavefunction of two interacting physical systems is unitary and governed by the Schrédinger
equation. Consider a macroscopic measuring apparatus designed to measure the value of some ob-
servable A. Accordingly, if a suitable quantum system interacts with this measuring apparatus, then
the (unitarily timedeveloped) state of the apparatus-object system after the interaction will in gen-
eral (e.g., if the quantum system is initially not in an Eigenstate of the observable A) be a superpo-
sition of macroscopically distinguishable states. Even if some kind of decoherence mechanism is
assumed to be present, the state of the apparatus after the interaction will in general be a mixture
of macroscopically distinguishable states [10]. In contrast, the time evolution during a measure-
ment process contains a nonunitary collapse. This is due to the fact that every measurement has
a definite outcome, the measuring result. The problem is that the measurement process is also a
physical interaction between the measuring apparatus and the measuring object and that we have
no intrinsic criterion to distinguish ordinary interactions from measurement situations. In its most
general form this problem is called the objectification problem of quantum mechanics [11]. This
problem assumes different faces within different variants of the Copenhagen interpretation. We
now describe briefly the ubiquitous solution of the Copenhagen type interpretation to the objectifi-
cation problem. According to this solution, one has to abandon the idea that macroscopic objects
— at least when they serve as measuring apparatuses — can be described by quantum mechanics.
Instead one has to introduce the following two assumptions (cited from [3], Chapter 23)

1. Quantum theory presupposes a classical level and the correctness of classical concepts in de-
scribing this level.

2. The classically definite aspects of large-scale systems cannot be deduced from the quantum-
mechanical relationships of assumed small-scale elements. Instead, classical definiteness and
quantum potentialities complement each other in providing a complete description of the sys-
tem as a whole.

These two assumptions clearly contradict the widespread belief that quantum concepts are more
fundamental than classical concepts and that the classical theory is a limiting case of the quantum
theory. If one wants to maintain the latter view, then clearly the Copenhagen interpretation must be
altered or abandoned.

Itis beyond the scope of the present work to discuss and criticize the Copenhagen interpretation
and its problems in detail. However, to the best of my knowledge at present there is no interpretation
of quantum mechanics totally free of ‘problems’ and a satisfactory solution of the objectification
problem is not known. It seems as if metaphysical problems of the kind just mentioned can never all
be solved by solely changing one’s metaphysical presuppositions. That said, I do believe, though,
that it is important for a physicist to be aware of the multitude of metaphysical presuppositions
and beliefs compatible with quantum mechanics. Metaphysical dogmas in theoretical physics and
‘wrong’ metaphysical research programmes may be an obstacle for further progress and may hinder
thus new developments. This is one of the main reasons why it is important to question the pervasive
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Copenhagen type interpretation of quantum mechanics and to investigate alternative interpretations
of quantum mechanics.

The consistent or decoherent histories approach to quantum theory is a fresh, novel attempt to
formulate a generalization of standard quantum mechanics. The consistent histories approach intro-
duces new concepts into quantum mechanics and is structurally different from all other approaches
to quantum mechanics. Nonrelativistic quantum mechanics in its standard formulation is not a the-
ory which describes the dynamical evolution pattern of events in time, but it is a theory which gives
probabilities to the various possibilities or events. The history approach to quantum mechanics can
be looked upon as an attempt to remedy this situation by introducing time sequences of possibilities
(or events) as a rough substitute for dynamical processes.

Among others the consistent histories scheme provides a novel framework for the interpretation
of standard Hilbert space quantum mechanics. This new interpretation has been developed mainly
by Robert Griffiths and Roland Omnés [12] - [19]. In this interpretation quantum mechanics is as-
serted to be a theory describing individual (microscopic and macroscopic) systems and their real
properties regardless of whether the systems are open or closed and regardless of whether there is
an external observer or not. That s, it is asserted that quantum mechanics provides an objective de-
scription of physical phenomena. There is no fundamental observer-system split and no reduction
of the wave-packetinduced by external measurements. The concept of measurement does not retain
the central and fundamental status it possesses in the Copenhagen type interpretations of quantum
mechanics. This philosophy is particularly interesting for quantum cosmology. In the philosophy
of science the consistent histories interpretation of quantum mechanics would be called a realis-
tic (but indeterministic) interpretation. According to the point of view of philosophical realism a
physical theory is a description of entities, structures and processes which really exist or occur in the
real physical world regardless of whether there are observers present or not. In contrast, an instru-
mentalist would say that all physical theories are in a sense phenomenological and that the purpose
of a physical theory is solely to provide an economical tool for making predictions. According to
this point of view the concepts and structures in a physical theory do not correspond to some real
entities or structures behind the phenomena. It should be stressed, however, that a realistic inter-
pretation does not necessarily interpret the theory in naive classical terms. Formulated differently:
philosophical realism does neither entail determinism nor the realism of classical physics. A re-
alist would not claim that all of reality can be described using classical terminology and classical
concepts. Indeed, for instance the Kochen-Dieks interpretation [20] - [23] of quantum mechanics
is a realistic but indeterministic interpretation not using any classical pictures. In the interpretation
based on the consistent histories approach to quantum mechanics the wave function (or more gener-
ally the state) is not interpreted as physical wave which really exists materially in space time, but as
comprising all propensities and tendencies inherent in the system in question. It is in this sense that
the state can be considered real in the consistent histories approach. In contrast, the Copenhagen
interpretation in its pure form is not a realistic interpretation of quantum mechanics. However, it
is also not a purely instrumentalistic interpretation of quantum mechanics. In the Copenhagen type
interpretation realistic and instrumentalistic point of views are mixed to a certain extend (depend-
ing on the author). An example for a purely instrumentalistic interpretation of quantum mechanics
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is the statistical ensemble interpretation [2].

In the consistent histories approach probabilities are thought of as propensities reflecting the
tendency that certain events will take place or that certain properties will be realized (upon repeti-
tion).

So, one important point in favour of the consistent histories approach is that it can be used as
a framework for a realistic interpretation of quantum mechanics. This kind of interpretation was
clearly not envisaged by the fathers of quantum mechanics.  But there is more to consistent his-
tories.

The consistent histories approach incorporates radically new concepts whose introduction is,
however, well motivated by standard nonrelativistic quantum mechanics. Although the consistent
histories approach is accompanied by a radical change in the basic concepts of quantum theory, the
mathematical framework of standard quantum mechanics and quantum field theory can be to a large
extent retained. The new concepts of the consistent histories approach allow for a reassessment
of several conceptual problems of quantum physics in the framework of Isham’s general quantum
history theories [24]. Isham’s formulation of nonrelativistic quantum mechanics in terms of the
concepts of the histories approach provide an attractive framework for a quantum theory in which
space and time appear in a more symmetric way than in the usual formalism of standard quantum
mechanics - moreover, in Isham’s general quantum history theories [24], which are not discussed
in the present review, time plays a subsidiary role.

In standard Hamiltonian quantum mechanics the time variable is fixed from the outset as the
variable conjugate to the Hamiltonian. One important new ingredient in the consistent histories
scheme is the notion of history. In nonrelativistic quantum mechanics a history in its simplest form
is simply a time sequence of events. However, in standard quantum mechanics probabilities are
solely associated with events at some fixed time. In contrast, in the consistent histories approach
probabilities are associated with complete histories. > Moreover, in general a history is a more
general object than simply a sequence of single-time events. The idea to investigate general quan-
tum histories and general quantum history theories has first been put forward by Chris Isham in
Ref. [24]. Isham characterizes general quantum history theories by a list of axioms abstracted from
the mathematical structure of the standard consistent histories formalism.

It is not the purpose of this review to discuss all issues touched upon in this introduction in full
detail. The reader is referred to the references for a fuller account. Further standard references for
the consistent histories scheme are [25] - [52].

This paper is organized as follows: Section 2 is devoted to a general discussion of the notion
of state and observable in quantum mechanics. The general notion of observable discussed there is
perhaps not too well known. In the last two sections of Section 2 we discuss some issues which mo-
tivate and illustrate the consistent histories formalism which is presented in Section 3. We discuss
the most general formulation of the consistent histories approach to quantum mechanics compati-

4 It should be stressed that the ideas and principles of the consistent histories interpretation are by no means nec-
essary logical consequences of the mathematical formalism. On the contrary, the formalism of the consistent histories
approach is quite independent from the details of the interpretation adopted.

3 This is the reason why it is meaningless to talk about reductions of the state at the times of measurements in the
realm of histories.
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ble with the notion of observable as self-adjoint operator. In Section 4 we present the generalized
effect history approach which incorporates the generalized notion of observable put forward in Sec-
tion 2. It should be stressed that the approach presented in Section 4 of this work is equivalent to
the approach in Ref. [43] and more general than the approach in Ref. [42]. However, making use
of a theorem due to Foulis and Bennett considerably improves and simplifies the presentation (and
sets right a mistake in Lemma 4 in [42]). Section 5 presents the summary. Some background ma-
terial has been collected in Appendices A and B. These appendices recall some well-known facts
to establish terminology, and also present some less standard results. The material presented in the
Appendix A is used at many places in this paper (often without further notice). Before proceeding
with Section 2, the reader is invited to go rapidly through the Appendix A.

Notations and Conventions

Throughout this work we will make use of Dirac’s well-known ket and bra notation to denote vec-
tors in Hilbert space and dual vectors in the dual Hilbert space respectively.

Throughout this work $ denotes some Hilbert space, P(§)) denotes the lattice of all projection
operators on ), B(£)) denotes the set of all bounded operators on $.

2 Operational Quantum Physics

2.1 States in Quantum Mechanics

In standard Hilbert space quantum mechanics the state of some quantum mechanical system at time
t comprises all probabilistic predictions of quantum mechanics at time ¢ for the system in question.

Let S denote a quantum mechanical system with associated Hilbert space §j. In standard quan-
tum mechanics the set of all possible states of a quantum mechanical system is given by the set of
all density operators on £. ¢ Iiis often stated thai the pure states, i.€., states of the form g = |))(3)],
provide the most detailed possible description of the system in question. Accordingly, such states
are often referred to as states of maximum information. In contrast, mixed or nonpure states, i.e.,
states which are not one-dimensional projection operators, are often said to provide incomplete de-
scriptions or to be states of less than maximal information. This is due to the fact that every density
operator p has a decomposition as ¢ = Y, pi|1;) (¥:| where {|1;)} denotes an orthonormal system
in §). Itis at first sight tempting to interpret p as a mixture of pure states [t);) (1; | with weights p; > 0.
However, the decomposition of g is unique if and only if g has no degenerate Eigenvalue. Moreover,
any density operator g admits infinitely many convex decompositions into (possibly nonorthogo-
nal) pure states. Accordingly, mixed states do not admit an ignorance interpretation contrary to
what is suggested by the nomenclature. According to the ignorance interpretation of mixed states,
an individual system S prepared in the state g is actually in one of the component states |2);) with
probability p;. That the ignorance interpretation of mixed states is problematic was already recog-

¢ For simplicity we consider only systems without superselection rules.
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nized by Fano [53]. 7 Hence, in any interpretation which asserts that quantum mechanics describes
individual systems it is natural to treat pure and nonpure states on the same footing and not to regard
pure states to be more fundamental than nonpure states. This is in accordance with Gleason’s The-
orem (cf. [54, 55]) which can be used as another more formal argument in favour of this assertion.

Consequently, there is a widespread agreement that states should be identified with density op-
erators on Hilbert space. However, another possibility would be to adopt a more restricted notion
of state according to which states are identified with rays in Hilbert space. IL.e., the notion of state
is restricted to what has above been called ‘pure state’ and the notion of ‘mixed state’ is completely
discarded. The price to be paid for this is that in certain situations there may be systems with which
no pure state can be associated. Such situations can be easily imagined. Consider for instance a
system which is part of a compound system. Assume that the compound system is described by
some pure state. Then in general there will be no pure state associated with the subsystem.

The notion of isolated system is clearly an idealization. Real physical systems (for instance in
the laboratory) are never totally isolated from their environments. However, rejecting the idea of
mixed state ultimately leads to the conclusion that quantum mechanics is in general only applicable
to isolated systems not interacting with their environments. If some real physical system is initially
in a pure state, then due to the interaction with its environment this pure state will in general develop
to a mixed state. In general only the overall time development of the system plus its environment
is unitary.

The identification of states with density operators is also forced upon us by Gleason’s theorem
(cf. [55]) and by the requirement that self-adjoint operators represent quantum mechanical observ-
ables [56]. The notion of density operator plays also a central role in the theory of the decoherence
process [10].

We see that the restriction of the notion of state to rays in Hilbert space is extremely unnatural.
It is deeply rooted in the formalism and the structure of Hilbert space quantum mechanics that the
states should be identified with general density operators. Nevertheless, it is a possible — although
arguably artificial — point of view that only one-dimensional projection operators should be iden-
tified with states. We will not, however, adopt this latter point of view in this work. The reason
why we dwell on this point is that the situation for states is analogous to the situation for observ-
ables. However, in contrast to the situation for states in the case of observables the natural notion
of observable inherent in the quantum mechanical formalism is not generally used.

2.2 Observables in Quantum Mechanics

The term “observable” already suggests that an observable is something which can be observed
(this terminology is appropriate in the Copenhagen interpretation of quantum mechanics, whereas
in realistic interpretations the term “beable” or the term “speakable” would be more appropriate).
Every observable O has a certain range {10 of possible values. We will not impose any restriction,
whatsoever, on £2». Quantum mechanics is a probabilistic theory. Hence, an observable O is fully

7 In practical experimental situations, the “ignorance interpretation” of mixed states does provide, however, an in-
tuitive and often useful way to think about ensembles of systems.
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determined by the specification of a o-algebra F, o of subsets of 20 and a probability measure
Pp0 : Fpo — [0, 1] for every state p. It is natural to consider only the case that ¥, o is independent
of the state p and to write Fo.

The positive and bounded operators £ on £, satisfying

0<E<]1,

are called EFFECT OPERATORS or briefly EFFECTS and the set of all effects on the Hilbert space
will be denoted by E(§).

A GENERALIZED OBSERVABLE O is now a positive-operator-valued (POV) measure on some mea-
surable space (0o, Fo), i.e., amap O : Fp — E($), with the properties:

e O(A) > O(0), forall A € Fo;

e Let {A;} be a countable set of disjoint sets in Fp, then O(U;A;) = 3, O(A;), the series
converging ultraweakly;

L4 O(Qo) = 1.

Generalized observables are also called EFFECT-VALUED MEASURES.
Given any state g of S, then every generalized observable O induces a probability measure p, 0
on the measurable space (Q0, Fo) by

Poo : Fo — [0; 1],p9,O(A) 1= tra(O(A)o).

The number p, »(A) is interpreted as the probability that the observable O assumes a value in the
set A C Qo in the state p.

Conversely, let p, : 7 — [0, 1] be a probability measure on some measurable space (2, F). Itis
natural to assume that the map ¢ — p, preserves the convex structure of the space of all states, i.e.,
Priwies = 2; WiPg; Whenever 0 < w; < 1 with Y-, w; = 1. Then pyy)y|(A) induces a unique
bounded symmetric sesquilinear form ¢4 on §) for every A € F. From Riesz’s theorem it follows
that there exists a unique bounded operator T'(A) such that pyy((A) = trg(T(A)[)(@]). Itis
easy to check that the map A — T(A) is indeed a positive-operator-valued measure on (2, F).
Thus, we have seen that POV measures are the most general notion of observable compatible with
the probabilistic structure of quantum mechanics. The argument which has led us to this conclusion
is also valid if we restrict the notion of state to one-dimensional subspaces of Hilbert space (pure
states).

In standard texts on quantum mechanics observables are identified with self-adjoint operators
on $. As a consequence of the spectral theorem, these ordinary observables (associated with self-
adjoint operators on £)) are then in one-to-one correspondence with projection-operator-valued Borel
measures on the real line R, to wit, with maps O, : B(R) — P($)), such that O4(R) = 1 and
O,(UiK;) = ), O4(K;) for every pairwise disjoint sequence { K;}; in B(R) (the series converg-
ing in the ultraweak topology). B(R) denotes the Borel o-algebra of R and P($)) denotes the set of
projection operators on §). This notion of observable is usually motivated by the requirement that
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the expectation value of every observable should be real. This argument per se does not exclude
more general concepts of observables as considered here. Our above discussion shows however that
the notion of generalized observable is deeply rooted within Hilbert space quantum mechanics and
is naturally and almost automatically forced upon us by the mathematical formalism of quantum
mechanics.

Quantum mechanics is totally consistent without POV measures. Quantum mechanics is also
consistent without the notion of mixed state. As discussed in the last section, the price to be paid
for the abandonment of the notion of mixed state is that in certain situations there are quantum me-
chanical systems with which no state can be associated. Analogously, abandoning POV measures
would have the consequence that in certain measurement situations there would be no observable
which actually is measured.

An example for such a measurement situation is easily imagined. This example is essentially
due to Ludwig [57]. Consider a measuring device M consisting of a detector D and some test parti-
cle 7 and assume that the detector D is designed to measure the value of some ordinary observable
Or : B(R) — P($) associated with the test particle 7. An appropriately prepared incident phys-
ical system Z (e.g., a particle) interacts first with 7 and then the detector D measures the value of
the observable O7 of the particle 7. To obtain the observable Oz measured by the device M one
has to apply the unitary transformation given by the S-matrix S of the interaction between Z and
7 in an appropriate way to the observable measured by D. Let gz denote the initial state of Z and
o7 denote the initial state of 7. Then Oz can be expressed through S, pr and O as a partial trace

Oz : B(R) — €(9Hz),0z(A) := trg, (1 ® o1)S'(1 ® Or(4))S) ,

where )7 denotes the Hilbert space of the test particle 7 and $) z denotes the Hilbert space of Z. For
realistic physical S-matrices S the expression trg,. ((1 ® ¢7)St(1 ® O7(A))S) is in general not a
projection operator but an effect operator on $z. The observable Oz is so chosen as to conform
with the following requirement

trs @5, (S(oz ® or)S'(1® O1(A))) = trs, (020z(A)),

forall A C B(R).

Therefore whether a measuring device measures the value of a generalized observable or of
an ordinary observable associated with some self-adjoint operator may depend on an arbitrary cut
between the system and the apparatus. This argument can be formalized, see Ref. [58]. In summary,
we see that if we abandon the idea that POV measures represent the observables and stick only to
self-adjoint operators, then it cannot be said that in the above example of a measuring process the
measuring apparatus M measures the value of some observable of Z.

In the last decades many examples for POV measures have been discussed in the literature,
which show that POV measures are also useful. In the sequel I will only briefly mention a few
particularly interesting examples

e The problem of finding the ‘phase’ observable canonically conjugate to the number operator
for a harmonic oscillator has a long history. A satisfactory self-adjoint operator represent-
ing ‘phase’ has not been found and possibly does not exist [59]. However, in terms of POV
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measures the problem of defining a ‘phase’ observable has a simple solution unifying vari-
ous approaches to the problem. This can be found in Ref. [60, 61]. In this reference Busch,
Grabowski and Lahti consider the following POV measure M, on the Borel sets of (0, 27(:

M, : B(|0,2r[) — €($H),I — My(I) := Z l—%gﬁl— /;exp(i(n —m)p)de,

where §) denotes the Fock space of the harmonic oscillator. Busch et al. put forward the sug-
gestion that M, represents the appropriate quantum phase observable for the harmonic oscil-
lator. The POV measure M, is canonically conjugate to the number operator N in the fol-
lowing sense:

e M, (I)e™™ = Mo(I + o),

where I+ := {¢'+¢ mod 27 | ¢’ € I'}. Therelation of M, and various previous proposals
to the quantum phase problem is discussed in detail in Ref. [60].

e The simultaneous unsharp specification of several noncommuting observables can conve-
niently be described with the aid of POV measures. An unsharp position-momentum observ-
able is described in the book by Davies [62].

Many further examples and arguments in favour of POV measures can be found in the monographs
by Davies [62] and Busch, Grabowski and Lahti [61] and references therein.

Summarizing our discussion in the last two sections, we have seen that the most general and nat-
ural notions of state and observable in quantum mechanics are density operators on Hilbert space
and POV measures, respectively. These notions are particularly reasonable in the context of real-
istic interpretations of quantum mechanics. I have further briefly argued that these notions are not
only compatible with quantum mechanics but are in fact useful.

2.3 The Projection Postulate

In this subsection we make a brief digression to the intricacies of the orthodoxy.

One of the central concepts in the usual formulations of the orthodox interpretation of quantum
mechanics is the concept of reduction of the wave packet as a reaction to measurements performed
on the system in question. This concept is closely related to the idea of ideal measurement. A
measurement s said to be ideal if it is repeatable (loosely speaking an ideal measurement minimizes
the disturbance of the state due to the measurement). The projection postulate can be formulated as
follows: consider a quantum system in the state p. Suppose an ideal measurement of the ordinary
observable A is performed on the system and suppose that the Eigenvalue a is found upon this
measurement, then the state of the system undergoes the nonunitary transformation as a response
to the measurement

P(a)oP(a)
tr(P(a)o) ’
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where P(a) denotes the projection operator onto the Eigenspace corresponding to the Eigenvalue
a in the spectral decomposition of .A. This is the well-known Liiders-von Neumann projection pos-
tulate. It can essentially be traced back to von Neumann [4] but the formulation given here is due
to Liiders [63]. The objectification problem of quantum mechanics can now reformulated as the
problem of how the reduction of the state can be understood as a physical process.

The projection postulate can be generalized to sequential measurements. The resulting formula
has seemingly been first given by Wigner [64]. Suppose that a quantum system initially in the state
o is exposed to a succession of ideal measurements and suppose that at time ¢; the observable A,
is measured with the result a;, at time ¢, the observable .A; is measured with the result a; and so
on, then the final state after the last measurement is

P(an) - - - P(a2)P(a1)oP(a1)P(az) - - - Pan)
tr(P(an) - - - Pla2) Plar)eP(a1) P(az) - - - P(an))

Notice that we are using the Heisenberg picture and that accordingly the projection operators are
time dependent. For notational simplicity the time dependence is suppressed.

In the consistent histories approach the projection postulate and its underlying philosophy is
rejected. However, in its construction the following heuristic principle is adopted: The results of
measurement theory — in particular the Liiders-von Neumann rule for the wave function collapse
caused by measurements and its generalization for sequential measurements (the Wigner formula)
— have to be a consequence of the formalism of the consistent histories approach.

2.4 Quantum Properties

Consider propositions of the form “The value of the observable O is in the set A € Fp.” If O
is an ordinary observable we can associate the projection operator O(A) with this proposition. If
tr(O(A)g) = 1 for some state g, then we say that the proposition corresponding to O(A) is true
in the state  or briefly that O(A) is true in the state . ® Clearly, there may be another observable
¢ such that O(A) = O'(A’) for some A’ € For. Hence, the propositions associated with O(A)
and (’(A’) can only simultaneously be true. This observation has led von Neumann to the notion
of property of a quantum mechanical system. According to von Neumann, there is a one-to-one
correspondence between properties of quantum mechanical systems and projection operators on
Hilbert space. Birkhoff and von Neumann have studied in their classic work [65] the structure of
the space of all projection operators of a quantum system. ° They proved that this space carries the
structure of a nondistributive and hence non-Boolean lattice; for more details see Appendix A.5.

In classical physics meaningful propositions about a system are typically of a similar form: “The
value of the observable A is in the set A,” for some appropriately chosen subset A of R. Since
observables in classical physics are real-valued functions on phase space 3, we can associate with
every meaningful proposition the subset

PlAec Al:={peP|Ap) € A}

8 We will discuss the meaning of the notion of truth briefly but in more depth in the next section.
% Notice, that the original terminology in von Neumann [4] and Birkhoff and von Neumann [65] is in the spirit of
the Copenhagen interpretation.
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of phase space. In contrast to the quantum case, the set of all propositions about a classical physical
system is isomorphic to the space of all subsets of the classical phase space, specifically it consti-
tutes a Boolean lattice. '° Birkhoff and von Neumann argued that the characteristic feature which
distinguishes the quantum mechanical propositional calculus from the classical propositional cal-
culus is the breakdown of the distributive law in the quantum case.

The Hilbert lattice of all projection operators does not satisfy all requirements which might in-
tuitively be associated with a space of properties. The situation is even worse, when we consider
the set of propositions about a quantum mechanical system and take into account the full set of gen-
eralized observables as introduced in the last section. In this case the space of all “properties” of a
quantum system is isomorphic to the space of all effect operators on Hilbert space. The latter space
carries the structure of a D-poset, see Appendix A. The use of the term “property” with regard to
effect operators is counterintuitive. I shall thus refrain from using such a terminology. Instead, I
will use a different terminology better suited to the structure of the space of effect operators and a
realistic attitude.

Two propositions are said to be equivalent if they correspond to the same effect operator. Hence,
there is a one-to-one correspondence between effect operators on Hilbert space and equivalence
classes of propositions. I shall say that the effect operators represent the possible events which may
occur in the physical system in question. The idealized notion of real event as proposed here de-
scribes irreversible transitions from the possible to the actual. The notion of event is clearly an
idealization, but hopefully a useful one. The notion of event is not assumed to be restricted to the
macroscopic realm. Quantum events are assumed to take place also at a microscopic scale. Accord-
ingly, quantum mechanics is viewed as a fundamentally stochastic theory describing the evolving
pattern of events taking place in the real world. This evolutionary picture of physics has been re-
cently put forward by Haag [66, 67].

3 Standard Consistent Histories

3.1 Homogeneous Histories

We consider a quantum mechanical sysiein § without superselection rules represented by a separa-
ble complex Hilbert space $) and a Hamiltonian operator H. Every physical state of the considered
system is mathematically represented by a density operator on ), i.e., a linear, positive, trace-class
operator on §) with trace 1. We denote the set of all trace-class operators on ) by 7 (£)) and the
set of all density operators on §) by 7($)T. The time evolution is governed by the unitary oper-
ator U(t',t) = exp(—i(t' — t) H/k) which maps states at time ¢ into states at time ¢’ and satisfies
U, tYut',t) = U(t",t) and U(t,t) = 1.

In standard nonrelativistic quantum mechanics the observables are identified with PV Borel
measures on the real line and, accordingly, to every sequence of measurement outcomes there cor-
responds a sequence of projection operators. Led by the heuristic principle stated in Section 2.3,

101 do neither discuss here the question of whether some equivalence relation on the space of propositions should
be taken into account nor how such equivalence relation should be chosen.
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the basic idea in the consistent histories approach is to abstract such histories from their concrete
realization as a sequence of measurement outcomes and to think of histories as independent enti-
ties in their own right. Histories are then, loosely speaking, sequences of projection operators on
$. This idea can be formalized as follows:

Definition 3.1 A HOMOGENEOUS HISTORY isamap h : R — P($),t — hy. We call t;(h) :=
inf(t € RU {—00,00} | ht # 1) the INITIAL and t;(h) := sup(t € RU {—o0,00} | hy # 1)
the FINAL TIME of h, respectively. Furthermore, the SUPPORT OF h is given by s(h) := {t € R |
he # 1}. If s(h) is finite, countable or uncountable, then we say that h is a FINITE, COUNTABLE
or UNCOUNTABLE HISTORY respectively. The space of all homogeneous histories will be denoted
by H($), the space of all finite homogeneous histories by Hzin($) and the space of all finite
homogeneous histories with support S by Hs(9).

In this work we focus attention on finite histories. Infinite or even continuous histories are much
more difficult to handle, see [37]. In the following we will identify every homogeneous history h
with the string of its nontrivial projection operators, i.e., we write b 2 {hy, }¢,es()-

Furthermore, to every finite homogeneous history b € Hy;,(5)) we associate its CLASS OPER-
ATOR WITH RESPECT TO THE FIDUCIAL TIME {,

ng(h) = U(to,tn)ht"U(tn,in_l)htn_l...U(tQ,t])hglU(tl,t()) (1)
= U(to, ti(h))he, (tn) Aty (En1)-.. e, (81) U (ti(R), o), (2)

where we have defined the Heisenberg picture operators
ha, () := Ut ti(R)) he, U (ti, ti(h))

with respect to the initial time ¢;(h) of A.
The following definition is motivated by Wigner’s formula and the heuristic principle men-
tioned in Section 2.3.

Definition 3.2 Let the state of a quantum mechanical system at time t, be given by the density op-
erator g(to). For every pair h and k of finite homogeneous histories we define the DECOHERENCE
WEIGHT OF h AND k by

dg(h, k) = tr (Cio (h)(to) Cio (K)') . 3)

The functional d, : Hin(H) xHsin(H) — C, (h, k) — d,(h, k) will be called the HOMOGENEOUS
DECOHERENCE FUNCTIONAL ASSOCIATED WITH THE STATE p.

In view of the heuristic principle stated in Section 2.3 it is natural to attempt to interpret the value
dy(h, h) as the “probability” of the homogeneous history k. The problem to be addressed in this
section is the problem of whether this interpretation makes sense, to wit, the problem of how and
in what sense d, can be extended to a probability functional.

Following Isham [24], we will proceed in several steps. The first question to be addressed is
the problem of what the appropriate mathematical representations of the grammatical connectives
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“and”, “or” and “not” in the realm of histories are, so that under appropriate circumstances we can
talk about propositions like “the history h is realized or (and) the history k is realized” etc.

In the second step (see Theorem 3.15), the functional d, will be extended to the space of gener-
alized (“composed”) history propositions, since as it stands, say, the expression d,(h or k, h or k) is
not defined. The resulting extension d, is not additive, i.e., in general one has d,(h or k, h or k) #
do(h, k) + do(k, k).

Thus, in the last step we formulate the necessary and sufficient condition a set of histories has
to satisfy in order that d, induces a probability measure on it, see Section 3.1.3. Only for those
sets C of histories satisfying the consistency condition the interpretation of the number d,(h, k) as
probability of the history h € C is justified.

3.2 Inhomogeneous Histories

For every finite subset S of R we can consider the Hilbert tensor product ®csf) and the algebra
B2 (%) of bounded linear operators on ®;esf. It was pointed out by Isham [24] that for any fixed
S there is an injective (but not surjective) correspondence og between finite histories with support
S and elements of BE (£)) given by

os : Hs(9) — BE(H), h =~ {hy, }pes — Buesh,. (4)

The finite homogeneous histories with support S can therefore be identified with projection op-
erators on ®esf. Hence, without the risk of confusion, we will almost everywhere in this work
briefly write A instead of os(h). The set of all projection operators on ®,es$ will in the sequel be
denoted by P2 (5). Obviously, not all projection operators in PS () have the form o5(h) for some
h € Hs(9).

When a homogeneous history vanishes for some ¢y € R, i.e., hy, = 0, then we say that his a
ZERO HISTORY. All zero histories are collectively denoted by 0, slightly abusing the notation.

Definition 3.3 Ler h,k € H(S)). We say that k is COARSER THAN h if h, < k; forall t € R and
write h < k. If furthermore h # k, then we write h < k. The set H($) equipped with the relation
< is a partially ordered set.

Definition 3.4 Two homogeneous histories h and k are said to be DISJOINT if there is somet € R
such that hysky = 0.

The identification of finite homogeneous histories with support S with projection operators on
®tesh allows for the introduction of a much broader class of histories. To this end we recall the
well-known fact that the set P($)) of projection operators on a Hilbert space §) carries the structure
of an orthocomplemented complete lattice, see Appendix A.5.

Definition 3.5 Let S be a finite subset of R, then we call the space P () of projection operators
on ®ies$ the SPACE OF FINITE INHOMOGENEOUS HISTORIES WITH SUPPORT S. The direct
limit of the directed system {PZ($) | S C R finite} will be called THE SPACE OF ALL FINITE
INHOMOGENEOQUS HISTORIES WITH ARBITRARY SUPPORT and will be denoted by Pﬁn(ﬁ).
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The definition of the direct limit of a directed system of D-posets can be found in Appendix
A.2.3. The lattice operations on P (£)) induce corresponding operations on the finite homogeneous
histories in H;n ($), which are explicitly described in the following remarks. These operations are
the sought mathematical representations of the grammatical connectives “and”, “or” and “not” in
the history formalism.

Remark 3.6 Let h,k € Hyin($) be two finite homogeneous histories, then the JOIN h V k of h
and k is defined to be the unique finite history with support s(h) U s(k) which is represented in
Pﬁh)w( k) (9) by (®uestyhe) V (®s;es(ryks; ) - The history h V k is in general not a homogeneous
but an inhomogeneous history. The JOIN \/; h; of any finite sequence {h;} of pairwise disjoint
homogeneous histories is analogously defined to be the unique finite history with support | J; s(h;)

which is represented in ’PSJ, (5] (9) by V; (®¢ie5(hj)hzi)-

Remark 3.7 Let h, k € H;in($) be two finite homogeneous histories, then the MEET h Ak of h
and k satisfies that (R AN k), := hy Ak is the projection operator on the intersection of the ranges of
he and k; for all t € R. The meet operation maps pairs of finite homogeneous histories to a finite
homogeneous history.

Remark 3.8 Let h be a finite homogeneous history with support s(h), then —h is the unique history
with support s(h) which in P, (%) is represented by 1 — @ ces(n) ie- We call —=h the NEGATION of
h. The negation —h of a finite homogeneous history h will in general be inhomogeneous. Obviously
the negation satisfies h V -h = 1 and h A —~h = 0. It is clear that —h is uniquely determined by
these two conditions.

Lemma 3.9 Let S be a finite subset of R, then the set PE () is an orthocomplemented complete
lattice.

Remark 3.10 The join, meet and orthocomplementation operations on PE(9) (where S is a finite
subset of R) and on P?}n (£)) are denoted by the same symbols (slightly abusing the notation).

In (24, 68] it is explained how to imbed P2 () into an infinite tensor product of operator alge-
bras and how to furnish the latter with a Hilbert lattice structure.

Definition 3.11 Two (possibly inhomogeneous) finite histories h and k are said to be DISJIOINT if
h < =k, where < is the partial order on P, 1y (9). We write h L k.

Lemma 3.12 Let h and k denote two disjoint finite histories, then h A k = 0.

Remark 3.13 For every finite S C R the meet, join and orthocomplementation operations on
PE(9) induce a meet, join and an orthocomplementation operation on ’Pﬁn(f)) respectively which
will be denoted by the same symbols.

Definition 3.14 Let A denote a finite collection {hi} of histories in P$, (). Then A is said to be
DISJOINT if each pair of histories in A is disjoint. A is said to be COMPLETE if \/, hi = 1.
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Let S C R. A history h € Hs($)) is called a SIMPLE HISTORY if h; is a projection operator on
a one dimensional subspace of §) forevery t € S. Denote the set of finite inhomogeneous histories
which can be generated from the set of simple homogeneous histories in Hs(f)) by the application
of a finite number of V operations by Fs($). The class operators can be extended to Fg()) by
requiring that C}, is additive in the following sense

Cio(hVk) := Ci(h) + Ciy(k) whenever b L k (5)
Ciy(=h) = 1= Cy(h). (6)

These definitions are compatible with the lattice theoretical identities =(h V k) = (—h) A (—k) and
—(hAk) = (—h) V (—k). Notice, that Equation 6 is a consequence of Equation 5. The fiducial time
to can be chosen completely arbitrary. ‘

Using Equation 5, the homogeneous decoherence functional can in an obvious way be extended
to the set Fs(9H).

However, a much stronger result is true. The homogeneous decoherence functional d, from
Definition 3.2 can be extended to a functional defined for arbitrary pairs of inhomogeneous histo-
ries.

Let S be a finite subset of R and define H(S) := ®;es$. For a finite dimensional Hilbert space
$) Isham, Linden and Schreckenberg [39] have proven that for every p there exists a unique trace
class operator X, on £(.S) ® $(S) such that d, can be written as

dg(h, k) = trﬁ(3)®y3(3)(h ® kxg),

provided s(h) C S and s(k) C S. A proof for this assertion can be found in Appendix B. For an
infinite dimensional Hilbert space §) the author and Wright [45] have shown that X, is in general
only bounded but not of trace class. Accordingly the homogeneous decoherence functional d, can-
not be extended to a finitely valued decoherence functional on the space of all histories but we have
to allow for infinite values of the extension. The main ideas are informally outlined in Appendix
B, the details can be found in [45]. Thus we have

Theorem 3.15 The homogeneous decoherence functionald, : Hsin(9) X Hyin(9) — C, (b k) —
do(h, k) can be uniquely extended to a DECOHERENCE FUNCTIONAL d, : P§, (9) x P§,,(H) —

C U {oo}. Let h, k' and k denote finite histories. The decoherence functional d, satisfies for all
h k', k € P§.(5)

o dy(h,h) € Randd,(h,h) > 0.

dy(h, k) = d,(k, h)*, whenever d,(h, k) € C.

d,(1,1) = 1.

do(h V W', k) = do(h,k) + do(l, k), whenever h L K and dy(h V W', k),dy(h, k) and
do(h, k) € C.

d,(0,h) =0, for all h.
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e dy(h,k) € Cfor all h,k € P}, () iff § is finite dimensional.

The proof for the first item d,(h, h) > 0 and for the second item d,(h, k) = d,(k, h)* can be found
in Appendix B. It is clear that d, is also o-orthoadditive on P () for every finite S C R in the
finite sector of d,.

3.3 Consistent Sets of Histories

Definition 3.16 Let h and k be two disjoint histories in P§,, (). Two histories h and k are said to
be PRECONSISTENT WITH RESPECT TO THE STATE g if d,(h, k) € C and if Re dp(h, k) = 0. Any
collection C of histories in P, () is said to be PRECONSISTENT WITH RESPECT TO THE STATE
o if every pair of disjoint histories in C is preconsistent with respect to the state p.

Let C' be a Boolean lattice of histories in P§,, ($)) with respect to the meet, join and orthocom-
plementation induced from P$, (%)) (see Remark 1) such that Oc: = 0 € P, (9). The unit in C'
will be denoted by 1¢:. Such a Boolean lattice C' of histories in P, () is said to be CONSISTENT
WITH RESPECT TO THE STATE g if (i) dp(h,k) € C for all h,k € C’, (ii) C' is preconsistent with
respect to the state g and (iii) dy(1¢, 1¢) < 1.

The reader may wonder what is meant by the “zero” and the “unit” in P}e}n(f)). Technically,
Pfn($) may be thought of as the direct limit of the directed set {P3(H)|S C R, S finite }. Ac-
cording to Appendix A.2.3 this direct limit carries the structure of a D-poset (actually, it also carries
the structure of a lattice) and it is understood that the zero history and the unit history of ’Pﬁn ($)
are the zero and the unit in this D-poset structure, respectively.

The condition Re d,(h, k) = 0 is often expressed in physical terms by saying that the events h
and k have vanishing interference in the state p.

The notion of consistency is important because it is the key to a probability interpretation of

the numbers d,(h, h) for some (pre-)consistent sets of histories. The Definition 3.16 of a consistent
set of histories is the minimal necessary requirement that d, induces a probability measure on the
consistent set in question as we will discuss more fully below.
Note that our above terminology in Definition 3.16 differs somewhat from the terminology used by
other authors. Further, some authors discuss more severe conditions. These authors call a pair &, k
of histories weakly decoherent if it satisfies Re d,(h, k) = 0 and mediumly decoherent if it satisfies
do(h,k) = 0.

There are other related notions of decoherence and consistency in the literature, see, e.g. [10].
However, since Definition 3.16 represents the mathematically minimal requirement we shall stick
to it and will not consider the stronger conditions. Let us recall that usually a probability space is
defined to be a triple (2, A, p), where €2 is an arbitrary set, .A is a Boolean ¢-algebra of subsets of
{2 and p is a probability measure on .A. This can be generalized as follows

Definition 3.17 Ler L be a partially ordered set and B C L be a Boolean lattice. A nonnegative

valuation m : B — Rt on B which is additive
k=1

N N
m [\/ ak] = Zm[ak], if ar A (\/ a,-) =0, foreveryk < N,
k=1 k=1

i=1
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is called a FINITE MEASURE ON B. If B is a Borel lattice, then N may be taken to be oco. In
this case m is o-additive. If B is not a Borel lattice, then N is always finite. If furthermore
m|1g] = 1, then m is called a PROBABILITY MEASURE ON B and the triple (C, B, m) is called a
PROBABILITY LATTICE.

A Borel lattice is a Boolean o-lattice [71].

Theorem 3.18 Let C C ’P}e}n(f)) be a Boolean lattice. If C is consistent with respect to the state p,
then the triple (Pﬁn(ﬁ), C,p,) is a probability lattice, where p, is defined by

dy(h,h)

. + —
pl? . C - R )pg(h') L dg(lc,lc)‘

Q)
The proof is straightforward.

In the literature it is often tacitly assumed that the preconsistent set of histories under consid-
eration forms (or generates) a Boolean lattice so that a probability interpretation of the diagonal
values of the decoherence functional makes sense. The probability defined by Equation 7 can for
finite homogeneous histories be interpreted as conditional probability, namely as the probability
of the sequence of the propositions hy, = h,, ..., hy,_; given that the sequence of propositions
hgk - hto is realized.

—j1

Lemma 3.19 Let (P}a}n(ﬁ), C,p,) be the probability lattice from Theorem 3.18, where p, is defined
by Equation 7, then for all h,k € C

e 0 <py(h) <1

* Do(hV k) + po(h A k) = po(h) + p,(k).

o po(h) < po(k) whenever h < k.

Corollary 3.20 Let C C ’P}e}n(ﬁ) be a Boolean lattice. Then C is a preconsistent set of histories
w.rt. the state o if and only if Oc = 0 € P},,(9), do(l¢,1¢) < 1 and if every pair h, k of histories
in C satisfies

do(h V k, BV k) + dy(h Ak, h A K) = dy(h, B) + d,(k, k). ®)

Remark 3.21 We notice that d, induces also probability functionals on sets of histories which
are not Boolean lattices. Let C be a preconsistent set of pairwise disjoint histories, then m, :
C — R, my(h) := dy(h, h)/ (X ec do(k, k)) is an additive functional on C and m,(h) can be
interpreted as probability of h € C. However, since C generates a Boolean sublattice of Kyin($) on
which d, induces a probability measure extending m,, it is enough to consider Boolean algebras
of histories.
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3.4 The Consistent Histories Interpretation

The interpretation of quantum mechanics based on the consistent histories approach has been de-
veloped by Robert Griffiths and Roland Omnés. In this subsection I briefly summarize the most
important aspects of the version of this interpretation adopted in this review. The version presented
here differs in some minor points from the original expositions by Omneés and by Griffiths (which
differ themselves in some aspects). And it differs slightly from the version given in [42]. I do not
claim that Omneés and Griffiths will necessarily fully agree with my presentation.

At the heart of the consistent histories interpretation lies the following philosophical maxim:
Whether or not some assertion or proposition is meaningful depends upon the context and the
framework into which the assertion is placed. Accordingly, one has always be careful not only to
specify the assertion itself but also its context. Propositions are always contextual. In the consistent
histories approach this principle is carefully obeyed. According to the consistent histories approach
in quantum mechanics probabilistic predictions and state histories are only meaningful with respect
to a consistent set of histories. Per se (i.e., without the specification of a consistent set of histories)
state histories and probabilistic predictions have no meaning.

The consistent histories interpretation of quantum mechanics is a realistic interpretation of quan-
tum mechanics. Quantum mechanics is asserted to be a theory describing individual systems re-
gardless of whether they are open or closed and regardless of whether they are observed or not. The
basic ingredients in the formalism of the consistent histories approach are the space of histories on
the one hand and the space of decoherence functionals on the other hand.

In standard Hilbert space quantum mechanics the state of some quantum mechanical system
comprises all probabilistic predictions of quantum mechanics for the system in question. In the
words of Popper [69] “the real state of a physical system, at any moment, may be conceived as
the sum total of its dispositions—or its potentialities, or possibilities, or propensities.” This idea of
the notion of state can be carried over to the history formulation of quantum mechanics: it is in this
sense that decoherence functionals can be said to represent the state of a system described by the
history version of quantum mechanics. This notion of state of a system has a peculiar transtemporal
meaning.

In the last section we have seen that in standard quantum mechanics it is natural from a math-
ematical point of view and for aesthetic reasons to identify the space of histories with ‘P}e}n(f)).
Whereas the homogeneous histories in ’P}’}n(f)) admit a direct physical interpretation in terms of
sequences of single time “events,” there is no such immediate interpretation available for general
inhomogeneous histories. It is natural, however, to interpret the latter as representatives of unsharp
quantum events, i.e, events which cannot be associated with some fixed time, but which are smeared
out in time. This proposal is supported by the following example which is adapted (rather stolen)
from [70]. In this reference Aharonov and Albert consider so-called multiple-time observables. For
definiteness, consider a spin-% particle and the following object

Uz;(tl,tz) = O'Z(tl) + O'z(tg),

where 0,(t,) denotes the self-adjoint operator representing the single-time spin observable in z di-
rection in the Heisenberg picture at time ¢; and where ¢ (t2) denotes the single-time spin observ-
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able in z direction in the Heisenberg picture at time t,. (The argument in [70] does not presup-
pose that the particle is free and is for instance also valid if the particle interacts with an external
magnetic field.) By considering an appropriate Gedankenexperiment, Aharonov and Albert argue
that the value of this multiple-time observable can be measured without measuring o(t;) or oz (t2)
individually. In the consistent histories approach the notion of measurement has no fundamental
status, but as a working hypothesis we take seriously the idea that objects like 0., (t1, t2) are phys-
ically meaningful also in the consistent histories approach and that they represent a new kind of
observable. Now, when we ask the question what kind of history corresponds to the proposition
“the value of the observable o, (t1,t2) is 0” we see that the corresponding history is of the form
P, 1(t1)® Py, (t2)+ P, (t1) ® P 1(2) in an obvious notation. Clearly, this is in general an inhomo-
geneous history. This example can obviously be generalized to much more general situations in-
volving also n-time observables. It follows that the propositions associated with general Aharonov-
Albert type multiple-time observables are in general inhomogeneous histories. This gives a physi-
cal meaning to (at least some of) the inhomogeneous histories introduced in Section 3.1. The discus-
sion substantiates the proposal that inhomogeneous histories correspond to events which are spread
out or unsharp in time.

In the formulation of the history approach given above the most general propositions about a
quantum mechanical system which have a physical meaning are identified with finite (or at least
countably infinite) history propositions. Other statements about a system which cannot be cast into
the framework of history propositions are not considered to be meaningful and hence are excluded
from consideration. Histories may be said to represent the possible temporal events which may oc-
cur. The probabilities associated with histories are considered to be objective entities in their own
right and are interpreted as measures of the tendency or propensity of an individual system to real-
ize certain histories. The probability measure on a consistent Boolean algebra of history proposi-
tions induced by the decoherence functional (according to Theorem 3.18) defines in this consistent
Boolean algebra two logical relations, namely an implication and an equivalence relation between
histories. A history proposition A is said to IMPLY a history proposition k if the conditional proba-
bility p,(k|h) = "’;(:(‘2)") is well-defined and equal to one. Two history propositions h and k are said
to be EQUIVALENT if A implies k and vice versa.

Itis straightforward to show that the notion of implication is independent of the consistent Boolean
lattice employed. If the history h implies the history k (w.r.t. g) in some consistent Boolean lattice
of histories, then h implies k (w.r.t. g) in every consistent Boolean lattice containing h and k.
Omnés’ “universal rule of interpretation” of quantum mechanics can now be formulated as

Rule 1 (Omneés) Propositions about quantum mechanical systems should solely be expressed in
terms of history propositions. Every description of an isolated quantum mechanical system should
be expressed in terms of finite history propositions belonging to a common consistent Boolean
algebra of histories. Every reasoning relating several propositions should be expressed in terms

of the logical relations induced by the probability measure from Theorem 3.18 in that Boolean
algebra.

We briefly discuss the significance of the different requirements in this rule. It is well-known
that every Boolean lattice is isomorphic to the algebra of clopen subsets of some topological space,
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see Theorem A.12. Hence, by requiring that every description and every reasoning should be within
a fixed Boolean lattice, all paradoxa and inconsistencies in quantum mechanics which are due to
the nondistributivity of the lattice of projection operators have been expelled from the language of
quantum mechanics by one single rule. The requirement that the Boolean lattice is consistent is
technical and due to the fact that a physically sensible probability functional can only be defined on
consistent Boolean lattices. There is a strong methodological argument supporting the Rule 1, i.e.,
the requirement of simplicity and economy of principles. There is a vast literature discussing ex-
amples illustrating the Rule 1. We refer in particular to Omnes’ extensive book [19] and to Griffiths
[12, 29] and Omnes [13]-[18].

In standard quantum mechanics texts, by and large, no attention is paid to the important issue
under which conditions probability assertions and combinations of probability assertions are justi-
fied and meaningful. Consistent historians are more careful. According to Rule 1 the assignment
of probabilities to certain histories is only admissible when these histories belong to a common
Boolean lattice of histories which satisfies the consistency condition. The philosophy underlying
this assertion is as follows (adapted from Griffiths [30]): We assert that for a quantum mechanical
system there are several incompatible (or complementary) frameworks for its theoretical descrip-
tion in terms of possible events and for making logical inferences about possible events or about
time sequences of possible events. All different frameworks (or in Griffiths’ terminology fopics of
conversation) are similarly objective. That is, the symmetrical treatment of several incompatible
frameworks in the mathematical formalism of quantum mechanics is not broken in the interpreta-
tion and (as is asserted in the interpretation) also not in the physical reality in the following sense:
it is the integral objective physical situation (for instance, but not necessarily, an experimental
arrangement) which determines the framework that should be used for the description and rea-
soning. The propensity that some particular event occurs depends upon the quantum system itself
and upon the integral physical situation. Particularly, in measurement situations the result of the
measurement depends upon the object under study and upon the mode of observation. However,
for isolated individual systems, we are free to choose the framework we want. The multitude of al-
ternative frameworks reflects the peculiar nature of quantum reality. It is in a sense as if with each
alternative framework we inspect another degree of freedom of the system of which there are in
principle an infinite supply.

It is easy to derive counterintuitive and even contradictory conclusions by using different in-
compatible frameworks for the description of a given system. Thus we are led to the conclusion
that the nature of quantum reality cannot be easily imagined and can only in part be described by
using ordinary language. The Rule 1 has to be understood as a ‘semantical’ rule which systematizes
the language of quantum mechanics. It clearly states what the assertions and predictions of quantum
mechanics are and it once and for all makes sure, whether a reasoning or an implication is allowed
or not. The causal relationship between different histories is coded into a logical relationship.

The notions of zruth and of reality are also framework dependent. We say that a history A is true
or an element of reality in the state g if dy(h, h) = 1. However, it is important to notice that the
assertion that a history h is true (or real) is only meaningful with respect to a p-consistent Boolean
lattice of history propositions. This statement clearly unravels that the assertion that the consistent
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histories approach is a “ realistic” interpretation must not be understood in a naive (to wit, classi-
cal) spirit. The alleged “quantum reality” is quite unusual and has rather strange features. Recently,
Isham [35] has proposed that the possible truth values which can be associated with a history ac-
tually lie in a Heyting algebra. !' The physical idea beyond this proposal is briefly as follows:
consider a Boolean lattice of history propositions B which is not consistent with respect to d,. Ac-
cordingly, no history in B can be said to be true. Nevertheless there may be a coarse-graining of B,
i.e., a Boolean sublattice of B, which is g-consistent. This consistent sublattice may contain ‘true’
histories k. Isham argues that the truth value associated with such histories in the fine-grained de-
scription provided by B should account for the fact that in a coarse-grained description these his-
tories are true. The formalization of this idea has led Isham to his proposal that the possible truth
values associated with histories lie in a Heyting algebra.

In summary, we assert that for every physical system there are elements of physical reality which
cannot be combined either in constructing a theoretical description or in making logical inferences
about them. Such complementary elements of reality are not independent. The exact form of the
framework for the theoretical description and for making logical inferences was specified above in
Rule 1 for the standard ‘logical’ interpretation of quantum mechanics and in Rule 2 below for the
generalized ‘logical’ interpretation developed in Section 4.

4 Consistent Effect Histories

4.1 Homogeneous Effect Histories

In Section 3.1 we have introduced the standard consistent histories formalism. One of the basic
ingredients of this formalism is the proposal that the observables in quantum mechanics have to be
identified with self-adjoint operators on Hilbert space.

We have argued in Section 2 that Hilbert space quantum mechanics allows for a much richer
notion of observable. Therefore it is worthwhile to study whether the consistent histories approach
can be generalized to incorporate POV measures. It is not claimed that the resulting extension can
be used in any concrete application of quantum mechanics to make qualitatively new predictions
different from the predictions of quantum mechanics. The problem investigated in this section is
mainly a matter of principle in the foundations of quantum mechanics. It is the question of whether
both the consistent histories approach and the concept of generalized observable can be uphold to-
gether or whether they are incompatible.

I will argue that the consistent histories approach can indeed be generalized.

Definition 4.1 A HOMOGENEQUS EFFECT HISTORY (OF THE FIRST KIND) isamap u : R —
€($),t — u¢. The SUPPORT OF w is given by s(u) := {t € R | u, # 1}. If s(u) is finite, countable
or uncountable, then we say that u is a FINITE, COUNTABLE or UNCOUNTABLE EFFECT HISTORY
respectively. The space of all homogeneous effect histories (of the first kind) will be denoted by

A Heyting algebra H is a lattice with universal bounds with an additional binary operation = with the property
thatforz,y,z € Hiz Ay < zifandonlyif z < (y = z).
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E($), the space of all finite homogeneous effect histories (of the first kind) by E;;,($)) and the
space of all finite homogeneous effect histories (of the first kind) with support S by Es(9). All
homogeneous effect histories for which there exists at least one t € R such that v, = 0 are
collectively denoted by 0, slightly abusing the notation.

The choice of the decoherence weightin Section 3 was motivated by the heuristic principle from
Section 2.3 and the form of the Liiders-von Neumann projection postulate. The state transformation
formula of the Liiders-von Neumann projection postulate can be generalized to the measurement of
POV measures. Assume that upon a measurement of the observable O the value of O is found to
be in the set A € Fp, then the generalized Liiders-von Neumann state transformation prescription
is

» YOA)0\/OA)
u(O(A)e)

In general, this prescription does not correspond to an ideal or repeatable measurement of O of
course. Anyhow, in the consistent histories approach we are looking for something different. We
are looking for a rule assigning probabilities to sequences of quantum events (represented by some
homogeneous effect history) subject to the following conditions:

o If the effect history u is degenerate, i.e., if its support contains exactly one time point s(u) =
{t}, then the probability assigned to the “history” u should be equal to the standard quantum
mechanical probability tr(u.g) of the effect u, in the state g.

e The probability assigned to ordinary histories should coincide with the probability assigned
in the standard consistent histories theory.

This shows that the following definitions are sensible.
The class operator Cy, defined above for finite ordinary homogeneous histories can be extended
to homogeneous finite effect histories u € Ef;,,(H)

CgO(U) = U(to,tn)\/'lT"U(tn,t"_])m...U(tQ,tl)\/’u_hU(tl,to) (9)
= U(to, ti(u)) /e, (tn) \/Utn; (tn=1)- /e, (81) U (t:(), o), (10)

where we have defined the Heisenberg picture operators
Ve (tk) = Ulte, ti(w)) ! /ag U (t, ti(w)
with respect to the initial time ¢;(u) of .

Definition 4.2 For every pair u and v of finite homogeneous effect histories (of the first kind) we
define the DECOHERENCE WEIGHT of u and v by

dp(u, v) == tr (Ci, (u)o(to) Cio (v)1) .

The functional d, : Efin(9) x Efin($) — C, (u,v) — d,(u,v) will be called the HOMOGENEOUS
DECOHERENCE FUNCTIONAL ASSOCIATED WITH THE STATE p.
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As in the standard consistent histories approach we wish to interpret the value d,(u,u) as the
probability of u. There immediately arises a serious difficulty with this decoherence functional. At
first sight it seems difficult (if not impossible) to construct a natural mathematical structure on the
space of effect histories such that the decoherence functional is additive in both arguments. Without
this structure a consistency condition generalizing Equation 8 cannot even be formulated and an
interpretation of d,(u,u) as probability seems to be impossible. These questions are investigated
in the next section.

4.2 Inhomogeneous Effect Histories

The notion of inhomogeneous effect history is introduced in close analogy to the parallel concepts
in the standard consistent histories approach. However, under which circumstances some inhomo-
geneous effect histories can be interpreted as composition of homogeneous histories by the gram-
matical connectives “and”, “or” and “not” — which was a major motivation for the definition of the
notion inhomogeneous history in Section 3 — will be studied only at the end of this section.

The map o given by Equation 4 can be extended to a map

fin t Efin(9) = BFa(9), v = {ug ues) = ®tres(uUts (11)

where Bf?‘.n(ﬁ) denotes the disjoint union of all B§($),S C R finite. The map o is neither
injective nor surjective. However, d,(u, v) depends on u and v only through o fin(u) and o in(v).
From a mathematical point of view it thus is to be natural to define the notion of inhomogeneous
effect history as follows:

Definition 4.3 Let S be a finite subset of R, then we call the space €% (%) = E(®es9) of effect
operators on ®.cs$) the SPACE OF FINITE INHOMOGENEOUS EFFECT HISTORIES WITH SUPPORT
S. The direct limit of the directed system {€2($) | S C R finite} will be called THE SPACE OF ALL
FINITE INHOMOGENEOUS EFFECT HISTORIES WITH ARBITRARY SUPPORT and will be denoted
by €3,,.(9). The elements in €%, () will also be called EFFECT HISTORY PROPOSITIONS.

The construction of €%, (£) is described in detail in Appendix A.3. The homogeneous ele-
ments in @?m (H) represen't equivalence classes of homogeneous effect histories. In this work we
will carefully distinguish between homogeneous effect histories as defined in Definition 4.1 and
homogeneous elements in G?’m ($). For clarity of exposition we will call the former homogeneous
effect history of the first kind or (where no confusion can arise) simply homogeneous effect histo-
ries, whereas the latter will be called homogeneous effect histories of the second kind.
All the €2(%), S C R and €%, (9) carry several isomorphic distinct D-poset structures, as dis-
cussed in Appendix A.3.

Recent results of the author and Wright [45] immediately imply that the decoherence functional
d, as defined above on the space of homogeneous effect histories (of the second kind) can indeed be
extended to a possibly infinitely valued functional on the space of inhomogeneous effect histories
with the desired properties. In particular, the author and Wright have shown that the decoherence
functional d, in Definition 3.2 can be canonically extended to a functional D, s on €2 () x €2(5)
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(with values in the Riemann sphere) which is additive in both arguments with respect to the canon-
ical D-poset structure on €2 ($) in the finite sector. Notice, however, that D, s does not extend the
homogeneous decoherence functional from Definition 4 2. The collection of all such functionals
D,,s for any finite S C R induces a functional D, on €%, () x €?,,($) which is additive in both
arguments with respect to the canonical D-poset structure on €3, ().

Leta € Q,a > 0. Consider the function g, : (€(H),Da) X (E(H),Da) — (E(9), D) X
(E(H), D), qa(Er, E2) == (Q7(E1), Q1 (Es)), where Q, denotes the D-poset isomorphism in-
troduced in Appendix A.3. The functional D, s := D,s © g, is a complex valued functional
defined on (€2(8H), Ba) X (E2(H), Ba). The functional D, s, is additive in both arguments with
respect to the D-poset structure @, on €(5).

The collection of all functionals D, s for any finite S C R and fixed « induces a bounded
functional D, , on (€F,(9), ®a) x (€ J,,m(i')), @) which is additive in both arguments with re-
spect to the D-poset structure @, on € fm(f)). All the functionals D, , are called DECOHERENCE
FUNCTIONALS WITH RESPECT TO THE STATE p.

Comparison with the decoherence weight defined in Definition 4.2 shows that it is the decoher-
ence functional D, which coincides with d, from Definition 4.2 when restricted to homogeneous
effect histories. So, the “physical” value of a is a = 2.

In view of our above remarks and due to the pairwise isomorphy of all (€%, (), @), we con-
clude that the value of @ € Q* can be chosen at will. Indeed, it can be easily seen by inspection
that the Foulis-Bennett Theorem in Appendix A.4 and all subsequent definitions in this section are
forminvariant under the D-poset isomorphisms (). It has only to be kept in mind that the “physi-
cal” form of the decoherence weight corresponds to a = 2. In the rest of this section we will work
with the value @ = 1. All results obtained in the @ = 1 “representation” can easily be shifted
1somorphically to the “physical” a = 2 case.

The Foulis-Bennett Theorem allows for an intrinsic definition of the notion of Boolean sublat-
tice of the D-poset (Gfm(ﬁ), ®). 12

Definition 4.4 A sub-D-poset (B, @) of (€9,.(), ®) is said to be a BOOLEAN SUBLATTICE OF
(& fm(ﬁ), @) if B satisfies the coherence law and the law of compatibility.

We also say that a Boolean sublattice of (€, (), ®) is a Boolean lattice of effect histories.
The reader may wish to recall the definition of the notion of sub-D-poset given in Appendix A.2.
It is important to remember that the universal bounds 0y, 195 of B do not necessarily coincide with
the universal bounds 0,1 of % fin(£) and that the D-poset structure on B induced by the D-poset
structure on €%, () does depend on 1o and Ogs.

Remark 4.5 Since €%, (%) is a D-poset, €%,,(9) is in particular a partially ordered set. However,
for two elements e;,e; € € er(.6) the supremum e; V ey and the infimum ey N\ es not necessarily

exist. That is, €% fin (£) is not a lattice. But there exists a partially defined join operation denoted

12 In [43] I have given a seemingly more artificial definition of the notion of “admissible Boolean sublattice.” How-
ever, an application of the Foulis-Bennett Theorem shows that the every admissible Boolean lattice as defined in [43)
is isomorphic as a D-poset to a Boolean sublattice of (¢ j,n(ﬁ), @) as defined here. The isomorphism is denoted by 9t
in [43].
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by V and a partially defined meet operation denoted by A. Strictly speaking a SUBLATTICE L OF

€ (9) is a subset L C CF, () such that L endowed with the restrictions of V and Ato L is a
lattice. It makes thus sense to speak of sublattices of € fm(Sﬁ) However, it is important to notice
that a Boolean sublattice of €9, ($) is not necessarily a sublattice of €%, () in this sense.

Our target is to generalize Omnes’ ‘logical’ rule and thus to single out the appropriate subsets
of €%,.($) on which the decoherence functional D, ; induces a probability measure and on which
a description and a reasoning involving inhomogeneous effect histories compatible with ‘common
sense’ can be defined.

Definition 4.6 A Boolean sublattice (B, ®) of (€%,,(9), ®) is called CONSISTENT W.R.T. g if (i)
0 € B, if (ii) D,1(b,V') € Cfor all bV’ € B, if (iii) for every pair of disjoint elements by, b, € B
(i.e., elements satisfying by Ay by = 0) the consistency condition ReD,;(b1,b;) =0is
satisfied, and if (iv) Dg,l(lm, 1{3) <1

Theorem 4.7 Let (B, ®) be a consistent Boolean lattice of effect histories. Then the decoherence
functional D, induces a probability functional p, o on B by

D,,1(b,b)

b — pg,%(b) = _——Dg’l(l%, er)

The proof is straightforward.

Definition 4.8 An cffect history propositione; € € fm(f)) is said to IMPLY an effect history propo-
sition ey € €3, () in the state o if there exists a consistent Boolean sublattice B of € fin(9) con-

taining ey and e, and if the conditional probability p, s (ezle;) = ’i"—':f(—;';%-@ is well-defined and
@
equal to one. We write ey =, ey. Two history propositions e, and e, are said to be EQUIVALENT

if e) implies e, and vice versa. We write e; < o €2.

Remark 4.9 The so-defined notions of implication and equivalence of effect histories are certainly
framework independent. However, there is a major difference between Definition 4.8 and the
parallel notions in the standard consistent histories formalism. In the latter case the conditional
probability p,(k | h) is independent of the p-consistent Boolean lattice chosen. In the consistent
effect histories approach the situation is different. To understand this, consider two p-consistent
Boolean sublattices B and B’ of € jm( $)) both containing the effect history propositions e, and e,.
In general e N e; does not exist in € fm(.?j) and correspondingly in general ey A €3 # €1 Agy €3
(even if ey A ey exists in € fm(ﬁ) ). To wit, even if e, = ey, there may be a consistent Boolean
lattice B containing e, and e; such that p,, (€2 | €1) is not one or is not well-defined. However,
it is reasonable to define e, =, e if there exists a consistent Boolean sublattice B of €% fin(9)
containing ey, ex and some further element e3 € € fm(f)) satisfying e; > e3 and ey > e3 such

that % is well-defined in B and equal to one. But this is exactly what has been done in

Definition 4.8.
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The Generalized Rule of Interpretation

The generalized “universal rule of interpretation” of quantum mechanics can now simply be for-
mulated as

Rule 2 Propositions about quantum mechanical systems should solely be expressed in terms of
effect history propositions. Every description of an isolated quantum mechanical system should be
expressed in terms of finite effect history propositions belonging to a common consistent Boolean
sublattice of effect histories. Every reasoning relating several propositions should be expressed in
terms of the logical relations induced by the probability measure from Theorem 4.7 in that Boolean
algebra.

It is clear that Rule 2 is indeed a generalization of Rule 1.

5 Conclusion

In this review we have discussed the basic ideas underlying the notion of generalized quantum me-
chanical observable as POV measure and the standard formulation of the consistent histories ap-
proach to quantum machanics based on the standard notion of quantum mechanical observable.
We have seen that the consistent histories formalism admits a generalization covering also POV
measures. We conclude that these two modern developments in our understanding of quantum me-
chanics are not mutually exclusive but, on the contrary, are mutually compatible.

A Miscellaneous Definitions and Results

A.1 Posets and Lattices

Definition A.1 Let P be a nonempty set. A binary relation < on P is called a PARTIAL ORDER if
forall x,y, z € P the following conditions are satisfied

ez <z (reflexivity)
o ifr<yandy <z, thenx =1y (antisymmetry)
o fr<yandy <z, thenx <z (transitivity)

In this case the pair (P, <) is called a PARTIALLY ORDERED SET or a POSET. A poset is said to
have UNIVERSAL BOUNDS if there exist two elements 0,1 € P such that0 < x < 1forallz € P.

If z < y for some elements z,y in a poset, then we also say that z is smaller than y, that z is
contained in y or that y is greater than z.

Definition A.2 Ler P be a poset. A non-zero element a € P is called an ATOM if y < a implies

y = 0ory = a. P is said to be ATOMIC if for every non-zero element x € P there is an atom a
witha < .
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Definition A.3 A LATTICE is a poset L any two of whose elements x,y have a greatest lower
bound or “meet” denoted by x Ay and a least upper bound or “join” denoted by x V' y. A lattice is
called COMPLETE if each of its subsets L, has a greatest lower bound and a least upper bound. A
lattice L is said to be a o-LATTICE if each countable subset of L has a greatest lower bound and
a least upper bound.

Definition A.4 We say that a lattice L is DISTRIBUTIVE iffor all x,y, 2z € L the following identity
is satisfied

zsA(yVz)=(xAy)V(zAz). (12)

Lemma A.5 A lattice L is DISTRIBUTIVE if and only if for all x,y,z € L the following identity
is satisfied

zV{yAz)=(xVyA(zVz2). (13)
Definition A.6 A lattice L is MODULAR ifforall x,y,z € L
zV(yAz)=(xVy) Az, whenever x < y. (14)

Let L be a lattice with universal bounds. An element x' € L is said to be a COMPLEMENT of
z€ LifxAx' =0andx V' =1. Ifany element of L has at least one complement, then L is said
to be COMPLEMENTED. A lattice L is said to be RELATIVELY COMPLEMENTED if all its intervals
(i.e. sublattices of the form a < x < b, with a,b € L) are complemented.

Definition A.7 A mapping L: P — P is said to be an ORTHOCOMPLEMENTATION on a poset P
with universal bounds if for all x,y € P

° (xJ..).L = i,
o ifr <y, thenyt <zt
e zVrlt=1.

In this case the pair (P, L) is called an ORTHOCOMPLEMENTED POSET. A lattice L with an
orthocomplementation is called an ORTHOLATTICE.

Definition A.8 An ortholattice L which satisfies for all z,y € L
xV (zt Ay) =y, whenever x < . (15)
is called ORTHOMODULAR.
Remark A.9 Any modular ortholattice is orthomodular.
Definition A.10 A BOOLEAN LATTICE is a complemented distributive lattice.

Throughout this paper we will use the terms Boolean lattice and Boolean algebra synonymously
For a justification we refer the reader to the monograph by Birkhoff [71], Section 1.10.

Remark A.11 Complements are unique in distributive lattices.

Theorem A.12 (Stone) Every Boolean lattice is isomorphic to the algebra of clopen subsets of
some topological space.
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A.2 D-posets and Orthoalgebras
A.2.1 Basic Definitions

Definition A.13 A DIFFERENCE POSET or D-POSET is a partially ordered set D with greatest
element 1 and with a partial binary operation © : Dy — D, where D, C D x D, such that

b © ais defined if and only if a < b for all a,b € D,

bea<bforalla<b,

bo (b&a)=a,foralla<b,

s a<b<c=cob<cOaand(cOa)O(cOb)=bOa.

Difference posets have been introduced by Kopka and Chovanec [72] and have been further studied
in [73, 74,75, 76, 77, 41].

Proposition A.14 Let (D, ©) be a D-poset. Then
e D has universal bounds, givenby 1 and0:=161;
e a©0=aq,foralla € D;

e aOa=0,forallae D,

Ifa,be Dwitha < b, thenb=aifandonlyifbo&a=0;

Ifa,be D witha < b, thena=0ifandonly ifbSa ="5;

e Ifa,b,ce Dwitha < b < ¢, thenbSa < cOaanda < c8(ba) and (cOa)o(bSa) = cob
and (c6 (boa))©a=(cOb);

e Ifa,b,ce Dwithb< candwitha < cOb,thenb<cSaand(c6b)Sa=(cSa)ob.

Definition A.15 A set D with two special elements 0,1 € D supplied with a partially defined
associative and commutative operation @ : Dy — D, where D, C D x D, is called an EFFECT
ALGEBRA if

o For every a € D there exists a unique a' € D such that a ® o' is defined and a ® o' = 1,
[orthosupplementation law]

o If1 ®bisdefined, thenb =0, forallb e D. [Zero-One law]
An effect algebra D is called an ORTHOALGEBRA if furthermore

o Ifb® bis defined, thenb =0, forallb € D. [consistency law]
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Effect algebras have been introduced by Foulis and Bennett [78, 79]. Whenever a @ b is well-
defined for a,b € D, then we write a L b. Let (D, ©) be a D-poset. Define

adb:=16(16a)ob),

whenever the right hand side is well-defined. Then @ is a well-defined partial binary operation on
D and (D, @) is an effect algebra. Conversely, let (D, @) be an effect algebra. Define

bSa:=(adb,

whenever the right hand side is well-defined. Then © is a well-defined partially binary operation
on D. Further, define a < bfora,b € D if there exists ¢ € D such that¢ L. a and a ® ¢ = b. Then
(D, ©) is a D-poset. Therefore the notions of D-poset and effect algebra are equivalent and we will
use both terms synonymously in this work.

Definition A.16 Let (D, ®) be aD-poset. APROBABILITY MEASURE ON D isamapp: D — R*
satisfying p(1) = 1 and p(a & b) = p(a) + p(b), whenever a & b is well-defined.
A2.2 Sub-D-Posets
Let (D, ©) be a D-poset. Then it is natural to say that a subset S C D is a sub-D-poset of D if
e 1€5;
e boae S,foralla,be Switha <b.

However, we need a more general notion of sub-D-poset. Consider a subset S of D. Then the partial
order on D induces a partial order on S. We assume that S possesses universal bounds Og and 1g
not necessarily coinciding with the universal bounds 0, 1 of D. In this case we define a partial binary
operation ©s : D, N (S x S) — D by

bOsa:=0s® (bo0s)© (a6 0s),
foralla,b € S witha < b.

Definition A.17 Let S be a subset of the D-poset (D, ©) with universal bounds 0g,1g. Then the
pair (S,O5) is called a SUB-D-POSET of D if b&s a € S foralla,b e Switha <b.

It is easy to verify that a sub-D-poset of a D-poset is a D-poset in its own right. The operation
@s dual to O is given by

a®sb = 15605 ((1s6sa) Ssb)
= (a60s)® (b6 0s5) ®0s,

whenever the right hand sides are well defined. In the main text we shall drop the subscript .S in the
symbols ©s and @ and simply write (S, 8) for a sub-D-poset of (D, ©). This abuse of notation
can be justified by the observation that & is unambiguously determined by © and by the universal
bounds of S.
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A.2.3 Directed Systems and Direct Limits

Definition A.18 Let (T, <) be a partially ordered set. A T-DIRECTED SYSTEM of D-posets is a
family Dg := {Dy,t € T} of D-posets supplied with a family of morphisms f;s : Dy — Ds,t,s €
%, defined iff t < s, such that

e fu=1dp, forallt € %;
o Ift <s<rin%, then fo fts = fir.

Let Dg be a T-directed system of D-posets. Then a D-poset £ supplied with a family of morphisms
{ft: Dy = L}iex is called the DIRECT LIMIT of Dg if

e Ift <sin%, then fofte = fis

e If D is a D-poset supplied with a set of morphisms {g: : Dy — D,t € T}, then there exists
a unique morphism g : £ — D, such that gf, = gi, for allt € T.

The direct limit of a directed system of D-posets always exists [41].

A.3 The D-poset &(5)

The set E(5)) of all effect operators on a Hilbert space ) [with the scalar product denoted by (-, -)]
can be organized into a D-poset by defining a partial ordering < and a partial binary operation © on
Dby A < Bif (Az,z) < (Bz,z) forallz € Hand C = B Aif (Bzx,z) — (Az,z) = (Cz,x)
forall z € 5. This D-poset structure can be alternatively characterized by the partial sum @, where
E, ® E, is defined if £y, + E; < 1by E} ® E, := E) + E;. We refer to the so defined D-poset
structure on €($)) as the CANONICAL D-POSET STRUCTURE.

The D-poset structure on E(§)) is not unique. It is possible to define a countably infinite family
of D-poset structures on €(£)). Let a be a rational number with a > 0 and define

A@q B := (AY*+ B*)% forall A, B € €(H) satisfying AY/* + BY/* < 1.

That these expressions are well-defined is a consequence of the work of Langer [80]. In particular
it follows from Proposition 2 in [80] that E* is well-defined and that E is itself an effect operator
forall E € ¢($) and alla € Q,a > 0. The pair (€(H), Do) is a D-poset for every o > 0.
However, all these D-poset structures are isomorphic. The D-posetisomorphisms are given by @, :
(E(H), ®) — (E(H), a), u — u®. |

Let in the sequel T denote the set of all finite subsets of R partially ordered by set inclusion.
Foreveryt € R set &($), := €(£) and forevery T = {t1,...,tn} € T set E(H)1 = € (RterHt)
where §); := $ forall £ € R. Then it has been shown in [41] that forevery T' C S € T there exists
a morphism frs : €($)r — E(H)s such that {E(H)r, T € T} supplied with {frs,T C S € T}
is a T-directed system. Let, e.g., T = {t1,t3} C S = {t1,t2,t3}, then frs(A®B) = ARI®B.
Therefore the direct limit of {(€($)r,®),T € %} exists and will be denoted by (€, (), ®).
€($)z can be constructed as follows: consider the disjoint union Ures®($)7 and call two elements
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hi, hy of UTGQE(ﬁ)T EQUIVALENT if there exist T],TQ,T]Q € Tsuchthathy € Ty C Tig, hy €
T, C T2 and such that fr,1,,(h1) = fr,1y,(h2). Then €%, () is the quotient space of Urez€(H)T
by the such defined equivalence relation. It is easy to extend the D-poset structures on &(§j)r, for
T € % to a D-poset structure on €5, (5).

A.4 An Alternative Characterization of Boolean Lattices

Boolean lattices can be characterized as special D-posets. The following Theorem is due to Foulis
and Bennett [79]

Theorem A.19 Let (B, ®) be a D-poset such that for all a,b,c € B:
e Ifa®b, b canda® care defined, then (a ® b) @ cis defined. [coherence law]

e Foralla,b € B, there existc,d,e € B such thatd® e and c® (d ® e) are defined, a = c® e
andb=d®e.
[law of compatibility]

Then B can be organized into a Boolean algebra in one and only one way, so that
e 0<b<1forallbe B,
o a®bisdefinedifandonlyifa ANb=0,
e aANb=0impliesa®b=aVb.

Conversely, let B' denote a Boolean lattice, then a partial binary operation ©p is defined by
a®s b :=aVbwhenever a Ab = 0. The pair (B', ®p') is then a D-poset satisfying the coherence
law and the law of compatibility.

We will call a D-poset satisfying both the coherence law and the law of compatibility a BOOLEAN
D-POSET.

If (B, ®) is a Boolean sub-D-poset of (€(5)), @), then (Qa(B), ®q) is a Boolean sub-D-poset
of (€(9), @q) such that foralla,b € B

¢ Qa(aAd) = Qala) Aq Qa(b);
L Qa(a \% b) = Qa(a) Va Qa(b);
* Qala’) = Qala).

That is, the D-poset isomorphism @), lifts to an isomorphism between the corresponding Boolean
lattices.
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A.5 Hilbert Lattices

It is well-known that there is a one-to-one correspondence between closed subspaces of a Hilbert
space §) and projection operators on §). In this work we will freely switch between both pictures
and identify each projection operator with the subspace onto which it projects. We denote by P(5)
the set of all projection operators on the Hilbert space $. For all p;, p; € P($) one defines

e p; < ps if p; projects on a subspace of the range of p,, (< defines a partial order on P($))),

e the join p; Vp, of p; and p; to be the projection operator which projects on the smallest closed
subspace of §) which contains the subspaces p; 9 and po 9,

o the meet p; A p, of p; and p; to be the projection operator which projects on the intersection
of p1 9 and p,$ and

e the orthocomplementation —p; of p; to be the projection operator which projects on the or-
thogonal subspace of p; § in 5.

Analogously, for any family {p; }; we define the meet A;p; to be the projection operator projecting
onto N;p; ) and the join V;p; the be the projection operator onto the closure of U;p;$. Then we have

Theorem A.20 P(%)) is a complete, atomic, orthomodular lattice. The atoms are the projection
operators onto the one-dimensional subspaces of $. If $ is finite dimensional, then P(8) is
modular.

B The Tensor Product Form of the Standard Decoherence Func-
tional

In this appendix we give some remarks on the proof of Theorem 3.15.

Since the state g is a density operator, there exists an orthonormal basis {|ef) }; of § and positive
numbers {w;} such that 3, w; = 1 such that g can be written as p = ), wilef)(ef|. Now let h, k
be homogeneous finite histories and let m := #s(h) and n := #s(k).

For every k € N, denote by ®%,$ the k-fold algebraic tensor product of , the set of all finite
sums of homogeneous vectors of the form ¢; ® ¢2 @ - - - ® P, where ¢; € 5. Define an operator
Sk : ®59H — K Hby Si(01@¢:®--@x) := ¢2®--®pr®¢;) and extend by linearity. Moreover,
define an operator Ry : @59 — @55 by Ri(¢1 @2 ® k-1 @ i) i= $r @ 1@ - @2 @ 1)
and extend by linearity. In the sequel we assume without loss of generality s(h) = s(k). This can
always be achieved by inserting the 1 € P(5)) appropriately. In particular, m = n. We denote the
unit operator on ®*$ by 1.

A straightforward computation now shows that d,(h, k) can be written as

do(h, k) = trgmmg (A ® K)(UL 15,10 ® U 15,10 DeUts et ® Utitatn) )
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where
Uh,tz,...,tn = U(t(},tl) ® U(togt2) - ®U(t0:tn),
with some fiducial time t; and where

2)9 = (Rﬂ. ® ln)(12n—] ® Q)S2n(Rn ® ln)

Inserting resolutions of the identity for 15,1 shows that there exist 2n orthonormal bases {|ef )},
k € {1,...,2n}, of ) such that

De= 3w {lBNETI@INE2 @ @ el el |®

11,0082

tntl tn42 ln+1 lzn 12n 1

Bleren| ® 2y et @ - @ el ) ekl |}

The orthonormal bases {|efj)}, j € {1,...,2n — 1} are completely arbitrary, whereas necessarily
le2") = |ef) for all 4.

Obviously, 2), is a trace class operator on ®2$ if § is finite dimensional.

Now, using the abbreviation U, := Uy, 1,,...t.. do(h, k) can also be written as

"nﬁ 1

de(h k)= 3w {(Eh @20 @ Uahlhllel @€ B @)X

x (e @t @@ Upkhf|elt @ el @ @ el

By choosing "7 = e"’” forall j € {0,...,n — 1}, one immediately sees from this represen-
tation that d,(h, k) = de(k h) and that also thc cxtcnsion d, of d, satisfies d,(h, k) = d,(k, h)*
and d,(h, h) > 0 for arbitrary inhomogeneous histories h, k € P, ().

If § is infinite dimensional, then one can perform the same manipulations but has to be aware
that 9), will not be of trace class. In [45] it is shown that ), is a bounded operator on ®2"$). So,
the sum defining d,(h, k&) will diverge for some inhomogeneous and infinite dimensional h and k.
We conclude that d, can be extended to a functional d,, : P, ($) x P§,(H) — CU {co} which
is orthoadditive in each argument in its finite sector. The details can be found in [45].
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