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Algebraic localisation of linear response in networks
with algebraically decaying interaction, and applica-
tion to discrete breathers in dipole—dipole systems

By Claude Baesens! and Robert S. MacKay

Nonlinear Centre, DAMTP, Silver Street, Cambridge CB3 9EW, United Kingdom

(19.II.1998)

Abstract. Networks of units for which the coupling decreases algebraically with distance between
them are studied. It is proved that the linear response to an algebraically localised force is al-
gebraically localised if the response exists and is unique. Applications are given to equilibria of
networks of bistable units and to breathers in networks of oscillating dipoles.

1 Introduction

The response of a network with exponentially decaying interaction to an exponentially lo-
calised force is itself exponentially decaying, provided the response exists and is unique (by
response we always mean bounded response) (for a proof in a general setting, see [1]). Many
systems of physical interest, however, have algebraically decaying interaction. For example,
the potential energy of dipole-dipole interaction decays like the inverse cube of their separa-
tion, and that of van der Waals forces (due to correlations in dipole moment fluctuations) like
the inverse sixth power. Is there an analogous result for algebraically decaying interaction?
In this paper we give an affirmative answer.

Our interest in this problem was stimulated by work on “discrete breathers” in a mono-
layer of carbon monoxide molecules adsorbed on the surface of ruthenium [2]. Discrete
breathers are spatially localised time-periodic vibrations of a network of oscillators. In this

10n leave from Centre de Dynamique des Systémes Complexes, Université de Bourgogne, Dijon, France.
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case, the oscillators are the C'— O stretches and they are considered to be coupled by dipole-
dipole interaction, the ruthenium substrate being regarded as rigid. The strategy of [3] can
be easily adapted to the space ¢, of spatially summable perturbations from equilibrium and
hence to prove existence of ;-breathers, i.e. whose oscillation amplitudes are summable over
space, which implies spatial decay to equilibrium but with no particular rate (as the decay
could be lacunary). The question arises whether a better spatial decay result can be proved.

In this paper, we prove algebraic upper bounds for the linear response to an algebraically
localised force for a network with algebraically decaying coupling (provided the response
exists and is unique), give a general application to continuation problems, and apply it to
the dipole-dipole breather problem. We conclude by assessing how close our results are to
optimal.

2 Basic result

Let (S,d) be a countable metric space. For each s € S, let X and Y; be Banach spaces,
with norms |.|x,, |.lv,, respectively. Let X = {2 € X esX;: ||z]lx < oo} for some norm
||l.llx based on (|.|x,),cs, and suppose it is complete. Define Y similarly. We will drop the
subscripts on the symbols for the norms when the context makes them clear. Let L : X’ — Y
be a bounded linear map of matrix type?, i.e. one which can be written as

(Lx)r = 2 Lrsxs:

SES

with respect to components in X,csY; and X,c5X,. Let a > 0.
I p € €

Definition: A linear map L : X — Y of matrix type is said to be a-algebraically local if
there exists ¢ > 0 such that the modified operator L¢ defined by

L}, = (1+¢d(r,s))* Ly,
is a bounded operator from X to Y.

Definition: A configuration y € Y is said to be a-algebraically localised about site o € S, if
there exists ¢ > 0 such that y°, defined by

ys = (1+(d(o,5))" ys,
is also in Y. Similarly for z € X.

Note that if LS and y° are bounded for some ¢ > 0 then so are L? and y?* for all z > 0:
forz<Cusel+zd <1+ (d (recall d > 0), and for z > C use 1 + zd < (z/¢)(1 + (d).

2We are grateful to Mark Johnston for pointing out that we should have stated this assumption explicitly
in [1] also.



Baesens and MacKay 25

Theorem 1 If L : X = Y is a-algebraically local, y € Y 1s a-algebraically localised about
o€ S, Lis znvert1ble, and x = L™y, then z is a-algebraically localised about o € S. In fact,
IIL* — L|| < ||L7Y|7! for z small enough, and for such z,

< il
=TT - =0

|z

Lemma 1 If L is a-algebraically local then L* depends continuously on z € R.

Proof: We treat separately the two cases @ > 1 and 0 < a < 1.
Suppose a > 1. If 0 < p < ¢ then
¢* —p* < (¢ - plag™™

Given 0 < a < b, choose ¢ > b. Given r,s € S, write d for d(r,s). Then

1+bd\“ 1+ad\®
It — 1o — Ie
| TS Tsl (1+Cd> (1+Cd) }l Ts
(1+bd)*t
< - i, S
< (b-a)da 1t cd) |L7s]
< L.
Thus
|Lb - L® Il

If0<a<land0<p<gqgthen (1+4+¢)*—(1+p)* <qg*—p°® Given 0 < a < b, choose
¢ > b. Then

b )
Lb—L“ < E—_
| o= (1+ cd)” 17
< Lo
Thus
bx — g@
IL® — Lo < ——IIL°||. a

Lemma 2 Ifo,r,s € S and z > 0, then 1:3(:? <1+ zd(rs).

Proof: We treat separately the two cases d(r,0) > d(s,0) and d(r,0) < d(s, 0).
If d(r,0) > d(s,0) then since d is a metric, d(r, s) > d(r,0) — d(s,0), and so

1+2d(r,s) > 1+ zd(r,0) — zd(s,0).
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It follows that

(1+2d(s,0))(1+ zd(r,s)) (14 zd(s,0))(1 + zd(r,0) — zd(s,0))

1+ zd(r,0) + 22 d(s, 0)(d(r, 0) — d(s, 0))

v

> 1+ zd(r, o),
and hence the desired result.
If d(r, 0) < d(s,0) then {2422 <1 <1+ zd(r, s). O

Proof of Theorem 1: If Lz = y then

ZL” (H—z—d(r,o)) 5 =gz,
ey 1+ 2d(s,o0)

So
(L+ff) FF =, (2.1)

.. [{1+zd(r,0)\"
Ly = l(1+zd(s,o)) ll Lrs-

If 2 > 0 and d(r,0) > d(s,0), then applying Lemma 2, we obtain

where

|f’5s| - |L:s - LTSI' (22)

If d(r,0) < d(s,0), interchanging the roles of r and s in Lemma 2 and taking the reciprocal
yields

1+ zd(r,0) .y 1

1+ zd(s,0) — 1+ zd(r,s)’

Using the standard inequality = + 1/z > 2, this leads to

1+ zd(r, o)
I el b i
1+ z2d(s,0)

) < (1+ zd(r,s8))* — 1.
Hence (2.2) holds for d(r, 0) < d(s,0) also. Thus

IL*)| < 127 - L.
But L? depends continuously on z by Lemma 1, and L° = L, so

1L = LI < IL7H7

for z near 0. Thus (L -+ Ifﬁ) is invertible for such z and the theorem follows from (2.1).0
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3 Application to continuation problems

As was done in [1] for exponential decay, we now show that under suitable conditions the
continuation of a non-degenerate algebraically localised solution of a 1-parameter family of
problems remains algebraically localised.

Suppose G : R x X — Y, (¢,2) — G.(z), is C'. We adopt the notation D for the
derivative with respect to z € X and d/0¢ for the derivative with respect to ¢ € R, unless
¢ is the only variable in which case we write d/de.

Given a solution zy of Gy(x) = 0 at which DGy is invertible then by the implicit function
theorem there is a neighbourhood of 0 € R on which G.(z) = 0 has a unique solution z(¢)
near 0, and this solution satisfies

dx oG
— =L —(x(e 3.1
i —CC) 3.)
where L, = DG (x(c)). The solution can be continued with respect to ¢ as long as L.
remains invertible.

We suppose a “reference state” in X, which we shall shift to the origin and hence denote
by 0. We say a family of linear operators P(u), g in a set M, is uniformly a-algebraically
local if there exists ¢ > 0 and p € R such that ||P*(u)|] < p for all € M.

Theorem 2 If 2(0) is a-algebraically localised about site o € S (with respect to reference
state 0), with continuation z(g) for ¢ € [0,&,] with L. invertible and a-algebraically local
there, ) = %21(0) is a-algebraically localised about o for € € [0,£1],G € C? and P = a%DG
is uniformly a-algebraically local for € € [0,e,] and ||z|| < sup{||z(e)]|: 0 < e < &}, then

x(e) is a-algebraically localised about o for all € € [0,¢&,].

Proof: Choose z > 0 so that ||L* — L|| < ||[L7!|~!. By compactness of [0,¢;] there are
common bounds, ||Q?l] < ¢, [[L7']]7* = ||IL* — L|| > ¢! > 0, and by the assumption on P,
|P?|| < p. For z € X, let

llzll. = [lz*]].

Then ||z(0)||, < co and our aim is to prove that ||z(¢)||. < oo for all € € [0, ,].

First we show that ’3;;-;&(’5) is algebraically localised whenever z is. Now

GBGE = Q(¢ +/ £,tx) z dt.
(=), <

Using Lemma 2, ||Pz||, < ||P#||||z*|l, so l

Next we use (3.1) and Theorem 1 to obtain

c(q + pllzll.).
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Integrating this differential inequality from z(0) we obtain

lz(e)ll: < [12(0)

€FF 4+ (e — 1) = < o0,

T I

so x(e) remains a-algebraically localised. O

Extension to multi-dimensional parameter spaces is easy to achieve by taking one-dimensior
paths.

4 Breathers in dipole—dipole networks

We recall from [3,4] that in many networks of oscillators, time-periodic solutions of compact
support at the uncoupled limit can be continued to a range of weak coupling. The con-
tinuation process does not necessarily impose any spatial decay on the resulting solutions.
Instead of performing the continuation in a space with some a priori spatial decay properties,
we prefer to deduce spatial decay properties afterwards. This is because the continuation
process often works equally well starting from solutions of the uncoupled network with no
spatial decay properties, and yields interesting solutions like multi-breathers. But if the so-
lution at the uncoupled limit is spatially localised then we can often deduce spatial decay of
the continuation. For example, exponential decay was obtained in [3] for the continuation of
solutions of compact support for 1D nearest neighbour chains and results were quoted there
extending this conclusion to a variety of situations. Subsequently, using the idea of [1], this
result was generalised in [4] to all networks with exponentially decaying interaction.

Here we apply Theorem 2 to prove algebraic decay in space for time-periodic solutions
of some dipole-dipole networks obtained by continuation of solutions of compact support at
the uncoupled limit.

Suppose S is a ZP -lattice with Euclidean metric, and suppose interaction potential

17 _ € ("Er - xs)z
and let
U.(z) =3 V(a,) + ¢ W(x) (4.2)

for some local potential V.

For simplicity, instead of breathers we begin by considering the problem of continuing
equilibria of U, from ¢ = 0, for V' with (at least) two non-degenerate critical points, without
loss of generality at x = 0 and 1. So we consider the implicit function problem

Ge(z) := DU (5) = 0.
Then L = D*W has off-diagonal elements

Ly, =ed(r,s)7%.
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Use the £, metric, any p € [1,00], for the spaces X and Y. Then L is bounded iff X' > D
(independently of p). We will assume this inequality, else the energy due to displacing a
single site is infinite. The modified operator L* is bounded iff « < K — D. Thus we see that
L is algebraically local if K > D, and we can choose any « € [0, K — D) and any z > 0. For
interacting dipoles (K = 3) on a surface (D = 2) we can take any a € [0,1], for example
a = 0.99.

Applying Theorem 2 to an initial equilibrium with z, = 1,2, = 0 for r # o, we obtain
llz()||l: < oo. For p = oo this says that

C

[+ (e)] < (1+ 2d(r,0))®’

which is an algebraic decay result, though not as fast as for the coupling. Stronger results,
however, are obtained with p < co. In particular, p = 1 gives

> |z (€)|(1 + zd(r, 0))* < 0. (4.3)
T
If z(g) is “full”, in the sense that |z,| lies between two positive constants times a decreasing
function of distance, then this implies that |z,| < Cd(r,0)™%, but our method does not
guarantee that x(g) is full so in general (4.3) is the strongest bound that we obtain. In the
next section we give examples where the true solution has |z.| ~ Cd(r,0)™*. Thus our use of
Lemma 2 must be throwing away a lot in the cases p > 1. This merits further investigation.

To prove algebraic localisation of breathers for a network with potential (4.2), instead
of having two critical points we just require V' to have a non-degenerate local minimum,
without loss of generality at 0. We study the implicit function problem G, p(z) = 0, where
Ger : C3(Sp,R%) = C) (S‘T,RS) is defined by

Gair @), () = ) + 5= (a(0),

and C}(St, R®) is the space of C* functions from a circle S; of length T to R®, with the

norm
lzll? =3 laslk,
SES
for 1 < p < oo, or ||z|| = sup,eg |s|x for p = oo, where |.|y. is the C*-norm, and then we will

apply Theorem 2 (cf. [4]).

It can be checked that L := DG, . is bounded if K > D and is «-algebraically local
for all &« < K — D. If (0) is a breather for £ = 0 with only one site s = o excited and L is
invertible there then by the implicit function theorem we obtain a breather z(¢) for ¢ small.
Using Theorem 2, for all € to which the breather can be continued with L invertible and z
small enough, we deduce that ||z(¢)||, < co. Hence z(e) is a-algebraically localised about
site o.

Again the strongest result is obtained for p = 1, though approximate analysis below
suggests that it is not quite optimal.
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The same analysis applies to problems with algebraically decaying interaction of more
than just two body form.

5 True decay

For networks with algebraically decaying interaction, our theorems give upper bounds on
the spatial decay of linear responses and of solutions of nonlinear problems obtained by
continuation from localised solutions. For comparison, we compute here the asymptotics of
the decay for some simple 1D problems.

Let
L.=1—-eA:R?® 5 R,

where
A,«S = |T = SI_K for r -_/'1—' 8, Ass = Ov

for some K € N, and use {; norm. The operator A is bounded if & > 1, so L. is a-
algebraically local for all « < K — 1 and L, is invertible for ¢ < ||A]|7'. Given y € ¢, and
k € 53, let
1 .
N T ,lre—-zkr,
g(k) = 5 Y

SO - .
b= [ k).

-7

Then the solution z € (; of L.x = y is given by

. (k)
il =
k) = Steey
where
Mke) = 1—¢3 |n| Fetn
n#0
= 1- ng[((k),
where
g (k) = > n X cosnk.
n>1
For example, for ' = 2, we have
2 k2 k
gg(k‘):%-+—4——7—r— for 0<k<2or

and then repeated periodically. In particular, gx is CX~2 and piecewise C*~! with jumps
in the (K — 1)st derivative.
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Now suppose 15 = 0, y, = |r|~F for r # 0, some P € A/, then y € ¢, for P > 1 and is
a-algebraically localised about r = 0 for @« < P — 1. The Fourier transform

A 1
g(k) = ;gp(k)-

Hence g )
(k) = = —9F .
7 (1 - 2egg(k))
For € # 0, this function is CN~2 and piecewise C¥~! with jumps in the (N — 1)st derivative,

where N = min(K, P). Thus by Fourier analysis (e.g. [5]), there exists C' # 0 such that
|z-| ~ C|r|~V.

Compare our bound

S (1+z|r))*z,] < C'(ev,2) forall a<N-—1,
rez

which is slightly weaker.

Next we consider continuation of equilibria for the 1D case of the example (4.2). The
equilibria are given by
Vi(z,)+ed |r—s|™"(z, — ;) =0.
SFET
We know that the continuation of the initial solution zo = 1,z, = 0(r # 0) is in £; for
K > 1, thus |z,| — 0 as |r| — oo, and so it makes sense to separate the linearised part of
the equation about 0 from the remainder:

wh o g 3 [r= sl (& — @) = go = w3 = Viow) = D(f),
SET
where w3 = V"(0). It follows that
y(k)

k) = 2 (on (k) = 92 0))

Now y, = O(z?) implies that y, decays more rapidly than z, with r and hence that 7 is
strictly smoother than Z (a little more work is required to give a rigorous statement here).
Hence we deduce that the smoothness of & is that of the denominator, i.e. & is C*~2 and
piecewise C*~1 with jumps in the (K — 1)st derivative. It follows that there exists C(g) # 0
such that '

z, ~ C(e)|r|7¥.

The same sort of argument can be attempted to find the asymptotics of the spatial
decay for breathers in this model. We recall that in the case of finite range interactions
in a translation invariant lattice, the decay in space of each time-Fourier component of a
breather is asymptotically exponential with exponent given in the simplest cases by the
smallest imaginary part of the roots k£ of the continuation of the dispersion relation for
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linearised solutions about equilibrium to complex wave number [6] (strictly speaking, the
analysis given there needs extending to estimate the effect of the nonlinear remainders,
including interaction of different time-Fourier harmonics, and this effect can lead to different
results for the spatial decay of some of the harmonics, as was realised in [7]; a rigorous
analysis can be obtained by bounding the spatial Fourier transform of the m!" harmonic in
a strip |Im k| < 6,,).

In the case of algebraically decaying interactions, the dispersion relation does not have an
analytic continuation to complex wave numbers, and in any case the problem always reduces
to a linear inhomogeneous one rather than linear homogeneous, because of the infinite range
of the interaction. We can write the equations of motion as

i twiz, +ed r—s|X (@ —z) =y =iz, —V'(z,) =0 (If) .
s#ET
If the breather has frequency wy, its time-Fourier harmonics separate on the left but are
mixed on the right. We obtain for the m* time-Fourier component z™ of the breather

7 0E) = i (k)
wi — mPwt +2¢ (gr(k) — gx(0))
It is not easy to make a rigorous argument in this case, but it is plausible that y™ decays
in space faster than z™, at least for the fundamental (m = 1), and hence the smoothness of
Z™ would be given by the denominator again, so the oscillation amplitude would decay in
space like C|r|~¥.
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