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Abstract. A new predictor-corrector exponentially fitted Numerov-type method is developed for
the numerical integration of the radial Schrédinger equation and of coupled differential equations
arising from the Schrodinger equation. The Numerov-type method considered contains free pa-
rameters which allow it to be fitted to exponential functions. The new fourth algebraic order
method is very simple and integrate more exponential functions than both the well known fourth
order Numerov type exponentially fitted methods and the sixth algebraic order Runge-Kutta type
methods. Numerical results also indicate that the new method is much more accurate than the
other exponentially fitted methods. Based on the method developed in the present paper and on
the method of Simos [24] a new variable-step procedure is developed for the numerical solution of
the coupled differential equations arising from the Schrédinger equation. Numerical illustrations
indicate that the new variable-step method is more efficient than other well known variable-step
methods.
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1 Introduction

The one-dimensional Schrodinger equation has the form:

y'(x) + f(z)y(x) =0 (1.1)

where 0 < z < oo and f(z) = E — (I + 1)/2® — V(z). We call the term [(l + 1)/
the centrifugal potential, and the function V(z) the potential, where V(z) — 0 as 2 — oo.
According of the sign of the energy E there are two main categories of problems for the (1.1)
(see for details [28]). In (1.1), E is a real number denoting the energy, | is a given integer and
V is a given function which denotes the potential. The function W(z) = I({ + 1)/2® + V (z)
denotes the effective potential, which satisfies W (z) — 0 as z — oo. The boundary conditions
are:

y(0) =0 (1.2)

and a second boundary condition, for large values of z, determined by physical considerations.

There is a real need for the numerical solution of the one-dimensional Schrodinger equa-
tion in many scientific areas. Some of these areas are the nuclear physics, the physical
chemistry, the theoretical physics and chemistry (see [1, 5, 27]).

There is much activity in the area of the solution of the radial Schrédinger equation
(1.1). The result of this activity is the development of a great number of methods (see [1-3],
[5-12], [15-26]). The most important characteristics of an efficient method for the solution
of the problem (1.1) are the accuracy and the computational efficiency. The development of
methods with the above mentioned characterisitcs is an open problem.

The Numerov’s method is one of the most popular methods for the solution of (1.1).
The reason of this popularity is explained in [35].

An alternative approach to deriving higher order methods for (1.1) was given by Cash
and Raptis [2] (see for details in [35]). The characteristic of these type of methods is that
are very complicated compared with the Numerov-type methods.

Another approach for developing efficient methods for the solution of (1.1) is to use
exponential fitting. Raptis and Allison [19] have derived a Numerov type exponentially fitted
method. Numerical results presented in [19] indicate that these fitted methods are much more
efficient than Numerov’s method for the solution of (1.1). Many authors have investigated
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the 1dea of exponential fitting, since Raptis and Allison. An intersting work in this general
area was that of Ixaru and Rizea [7]. They showed that for the resonance problem defined
by (1.1) it is generally more efficient to derive methods which exactly integrate functions of
the form

{1,z,2% ..., 2P, exp(zvz), v exp(fvz),. .., ™ exp(tvz)}, (1.3)

where v is the frequency of the problem, than to use classical exponential fitting methods.
The reason for this is explained in [25]. For the method obtained by Ixaru and Rizea [7] we
have m = 1 and p = 1. Another low order method of this type (with m = 2 and p = 0)
was developed by Raptis [16]. Simos [22] has derived a four-step method of this type which
integrates more exponential functions and gives much more accurate results than the four-
step methods of Raptis [15,17]. For this method we have m = 3 and p = 0. Simos [23] has
derived a family of four-step methods which give more efficient results than other four-step
methods. In particular, he has derived methods with m = 0 and p =5, m =1 and p = 3,
m = 2 and p = 1 and finally m = 3 and p = 0. Also Raptis and Cash [20] have derived a
two-step method fitted to (1.3) with m = 0 and p = 5 based on the well known Runge-Kutta-
type sixth order formula of Cash and Raptis [2]. The method of Cash, Raptis and Simos (3]
is also based on the formula proposed in [2] and is fitted to (1.3) withm =1 and p = 3. We
note that the method of Cash, Raptis and Simos [3] is a Runge-Kutta type method and it
is very complicated. In [35] Simos has derived a simple explicit exponentially-fitted method
with m = 3 and p = 0.

The purpose of this paper is to derive a simple Numerov-type predictor-corrector method
fitted to (1.3) and in particular to derive a method with m = 4 and p = 1 i.e. to derive a
method which integrate much more functions of the form (1.3) than the methods proposed
previously. We note also that the above mentioned values of m and p are the largest values
which we can obtain for this method. The new method is much more accurate than the
exponentially-fitted methods obtained from Numerov’s method and from the sixth order
Runge-Kutta-type methods because they integrate exactly more exponential functions. We
note also, that the new method is very simple compared with the hybrid exponentially fitted
methods [3, 20, 24]. We have applied the new method to the resonance problem (which arises
from the one-dimensional Schrodinger equation) with two different types of potential. We
note, as in [35], that the resonance problem is one of the most difficult to solve of all the
problems based on the radial Schrédinger equation because it has highly oscillatory solutions,
especially for large resonances (see section 5). We have also applied the new method to the
bound-states problem. Based on the method developed in the present paper and on the
method of Simos [24] a new variable-step procedure is developed for the numerical solution
of the coupled differential equations arising from the Schrodinger equation.

The basic theory of the expomentially-fitted methods has been described in [35].
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2 The New Method

Consider the family of methods:

- 2
Yngl = Yn+1 — ah ( A yn+l)

:ljn—l =Yn-1— CLh (yn - yn 1)
gn = Yn = bh?(?:;-{-l - 2Jn +Y yn—- )

ﬁn =Yn — Ch2(y::+l - 21 U i yn— )
Yn+l — QJT? + Yn—1 = h (bOJn-H + len. £3 bOJn l) (21)
where, for example, y/,; = f(:z:n+1)yn+1 With Zny1 = 2, + h and f(zne) = (0 +1)/22,, +
V(l'ntl) ~ k*. Similarly, Unr1 = f(@nt1)¥ns1s Une1 = f(@n1)¥nors Un = f(@n)¥n, U =
f(mn)“y_n :

We have chosen to consider this family of methods because it has five free parameters. So,
we will construct a method which integrate more exponential functions than the Numerov-
type exponentially fitted methods [7, 16-19] and the Runge-Kutta-type methods proposed by
Cash, Raptis and Simos [2,3,24]. When one solves the Schrodinger’s equation numerically,
it follows from [6,7,19,21] that the exact integration of the exponential functions (1.3) with
m as large as possible is an important property for a numerical method. The new family of
methods (2.1) has only five free parameters while the Runge-Kutta-type methods of Cash,
Raptis and Simos [3, 20, 24] have at least eleven free parameters, making the derivation of
suitable methods very difficult.

We require that the family of methods (2.1) should integrate exactly any linear combi-
nation of the functions:

{1, z, exp(xvz), zexp(Fvz), 2 exp(tvz), z° exp(tvz), 2 exp(£vz)}. (2.2)

To construct a method of the form (2.1) which integrates exactly the functions (2.2), we
require that the method (2.1) integrates exactly (see previous section):

{1, z, exp(Fvoz), exp(Eviz), exp(Lvoz), exp(Lvsz), exp(tvgz)} (2.3

and then put:
g =0 = Uy = Uz =iy = ¥, (2.4)

Demanding that (2.1) integrates (2.3) exactly, we obtain the following system of equations
for by, b1, a, b and c

2 cosh(w) — 2 = 2w? cosh(w) by + w? by + 2w [1 — cosh(w)] b; ¢
+4w® [l — cosh(w)] by cb +4w®[1 — cosh(w)]b; cba (2.5)
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Based on (2.5) and on a computer algebra program (an analogous program for ex-
plicit four-step methods has been developed in [38]) we can determine the coefficients
bo, b1, ba, a, b and ¢ via the following algorithm:

(1) We introduce the environment linalg of the computer-algebra manipulation package
Maple.

(2) We calculate the determinants of matrices of denoninators and numerators for each
of the quantities bg, b1, by ¢, bycband by cba

(3) We define the derivatives of the above determinants in order to avoid formulae of the
form 2, i.e. we apply the L® Hospital’s rule.

0
(4) We apply the relation (2.4).

(5) We define the coefficients of the method.

(6) We define the Taylor series expansions of the coefficients of the method.

The explicit expressions of the coefficients of the new method are given in the Appendix.

If w=1i¢, then the method (2.1) is exact for any linear combination of the functions:

{1, z, sin(oz), cos(dz), xsin(oz), zcos(pz), xsin(pz),
22cos(¢z), 23sin(¢z), 23cos(px)}, zsin(¢x), zicos(px)}. (2.6)

The local truncation error of the new method is given by:

LTB(R) = W[5 (DO))(@) — 515 (DD)W)(&) + g Bees (D) (0)(2) w2
_4268222?;;15200 (D)W@) w™ - 966632251)222560000 (DO (y)(@) w®
+642671244922820267267;)9736132272%160000000 (PP w) () w?
v 1583344163728442448330372800000 (OO w)(=) ™
- 504691jggéﬁggggégooooooo (D) )(z)w™

) i 10126122é§é22:§§3§é§?20000000 (D) (w)(=) wH2.7)
+.212648573223;:;;1:8?:2200000000 (DF)w)e) v + 1_977%?6 (DE)w)(z) w®
et 08 e (DO)(p)(e) '+ ke (D)) @) w1 4 e (D)) (2)
_214223748;322322223'172272000000 (D) )(=)w? - % (D) (w)(@)w”
- 10670163282989422388000 (D)) ) w + 1113097;62321041600 (D) (w)(w) ™.
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3 Stability Analysis

If we apply the method (2.1) to the scalar test equation y” = —s°y, we obtain the difference
equation

A(H?)yns1 = 2B(H?)yn + A(H?) =0 (3.1)
where

AHH =1+ H?bg+ H by c—2H b, cb+2HB by abe
1
B(H2)=l—§szl+H4b,c—2H6b,cb+2Hsb,abc (3.2)

and H = sh.
The stability polynomial of the difference equation (3.1) is given by

C(t; H*) = A(H*)t* — 2B(HH)t + A(H?). (3.3)
We have the following definitions:

Definition 1 [13] A symmetric two-step method with stability polynomial given by (3.3) is
said to have a non-zero interval of periodicity (0, HZ) if, for all H* € (0, HF), the roots of
the stability polynomial satisfy

t; = e®H) ¢, = =9(H) (3.4)

b

where 8 is a real function of H = sh.
Definition 2 [13] A method is said to be P-stable if its interval of periodicity is (0,00).

Definition 3 A method is said to be almost P-stable if its interval of periodicity is (0,00) -5,
where S is a set of distinct points.

Remark 1 A symmetric two-step method with stability polynomial given by (3.3) has an
interval of periodicity (0, H3) if, for all H? € (0, HZ), A(H?) £ B(H?) > 0.

In our stability analysis s = v. For the method derived in section 2 we find that:
A(H?)-B(H?) > 0forall H2 € (0,00) and A(H?)+B(H?) > 0forall H> € (0,00)—{H?:
H =sqm, ¢=1,2,...}. Thus, the method is almost P-stable.

For comparison purposes in the Table 1 we list the properties of the two-step exponentially
fitted method introduced in this paper, together with the corresponding properties of some
two-step exponentially fitted methods presented previously in the literature. We note that
all the methods are implicit.



Simos

Method | A O. I Int. Per. | Integr. Expon. Func. J
Numerov’s method 4 (0,6) 1, z,z°% %, o 2°

Derived by Raptis and Allison [19] 4 (0,00) — S m={, p=3
Derived by Ixaru and Rizea (7] 4 (0,00) — S m=1, p=1
Derived by Raptis [16] 4 (0,00) = S m=2, p=0
Derived by Raptis and Cash [20]* 6 (0,00) = S =0, p=5
Derived by Cash, Raptis and Simos [3]* 6 (0,00) — S m=1, p=3§
Derived by Simos [24]* 6 (0,00) = S mi=2. p=A
Derived by Simos [35] 4 (0,00) = S m=3, p=0
New Method 4 (0,0) = S mi=4, g=1

Table 1: Properties of some two-step exponentially-fitted methods. S = {H?: H = sqm,q =
1,2,...}. The quantities m and p are defined by (3). A.O. is the algebraic order of the
method. Int. Per. is the interval of periodicity of the method. *= hybrid two-step method

The new method is of algebraic order four and have the same interval of periodicity as the
other well known exponentially-fitted methods listed in Table 1. However, the new method
integrate exactly more functions of the form (1.3) than all the other methods developed
in the literature. The crucial concern when solving the Schrédinger equation is that the
numerical method should integrate exactly the functions (1.3) with m as large as possible,
as shown by (7] and [21].

4 Numerical Illustrations

In this section some numerical results to illustrate the efficiency of our new method are
presented. We consider the numerical integration of the Schrodinger equation:

y'(z) = (W(x) - E)y(z) (4.1)
in the well-known case where the potential V (z) is the Woods-Saxon potential
ug (¥
Viz) = Vylz) = = 4.2
() (=) (14+2) [a(l+2)% &3

with z = exp[(z — Xg)/a],up0 = —=50,a = 0.6 and Xy = 7.0. In order to solve this problem
numerically we need to approximate the true (infinite) interval of integration [0,00) by a
finite interval. For the purpose of our numerical illustration we take the domain of integration
as 0 < z < 15. We consider (4.1) in a rather large domain of energies, i.e., E € [1,1000]. The
problems we consider are (i) the so-called resonance problem and (ii) the so-called bound-
states problem.
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4.1 The Resonance Problem
4.1.1 Woods-Saxon Potential

In the case of positive energies E = k? the potential dies away faster than the term I(I+1)/z?
and equation (1.1) effectively reduces to

—)y(z) =0, (4.3)

for z greater than some value X.

The above equation has linearly independent solutions kzj,(kz) and kan(kz), where
Jilkz),ni(kz) are the spherical Bessel and Neumann functions respectively. Thus the
solution of equation (1) has (when z — 0) the asymptotic form

y(z) ~ Akzj(kx) — Bkan(kz)
~ AC[sin(kx — 7l/2) + tan & cos(kz — wl/2)] (4.4)

where §; is the phase shift that may be calculated from the formula

y(z2)S (1) — y(1)S(x2)

y(z1)C(z2) — y(z2)C(21) (4.5)

tan é; =

for z; and xo distinct points on the asymptotic region (for which we have that z; is the
right hand end point of the interval of integration and zo = z; — h, h is the stepsize) with
S(z) = kzji(kz) and Cz) = kxn(kz).

Since the problem is treated as an initial-value problem, one needs yo and y; before
starting a two-step method. From the initial condition, yo = 0. It can be shown that, for
values of z close to the origin, the solution behaves like y(z) ~ cz'*! as @ — 0, where c is an
independent constant. In view of this we take y; = h'*1 [2,21]. With these starting values
we evaluate at z; of the asymptotic region the phase shift §; and the normalization factor C
from the above relations.

For positive energies one has the so-called resonance problem. This problem consists
either of finding the phase shift §(E) = é or finding those E, for E € [1,1000], at which é
equals 7/2. We actually solve the latter problem, known as “the resonance problem” when
the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(z) ~ cos[VEz] for large z.



Simos 9

The domain of numerical integration is [0, 15].

In our numerical illustration we find the positive eigenenergies or resonances by the
following six methods:

Method MI: Numerov’s method

Method MII: Derived by Ixaru and Rizea [7]

Method MIII: Derived by Raptis and Cash [20]
Method MIV: Derived by Cash, Raptis and Simos [3]
Method MV: Derived by Simos [24]

Method MVI: Derived by Simos [35]

Method MVII: New exponential - fitted method

The numerical results obtained for the seven methods were compared with the analytic
solution of the Woods-Saxon potential resonance problem, rounded to six decimal places.
Table 2 shows the absolute errors of the eigenenergies in 10~7 units and the CPU time
required for the calculation for different choices of constant stepsize, which are shown in

column 2. The empty areas indicate that the corresponding absolute errors are larger than
1.

The resonance h MI MII MIII
53.5888719 1/2
1/4 328432(0.022)
1/8 456721(0.040) 9875(0.045)

1/16  2283232(0.080)  8109(0.080) 109(0.090)
341.4958743  1/2

1/4

1/8 375432(0.045)

1/16 284209(0.085)  25418(0.090)
089.7019159  1/2

1/4

1/8

1/16 2978039(0.080) 661239(0.095)

Table 2: Absolute errors (Real time of computation), in 1077 units (in seconds), of the
resonances calculated by the six algorithms MI-MVTI for the resonance problem with the
Woods-Saxon potential. The empty areas indicate that the error is greater than 1.

The performance of the different methods is dependent on the choice of the fitting pa-
rameter v. For the purpose of obtaining our numerical results it is appropriate to choose v
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The resonance h MIV MV MVI MVII
53.5388719 1/2 112345(0.023) 256432(0.005)  345(0.005)
1/4  40326(0.030) 8923(0.046) 12324(0.010) 23(0.010)
1/8 987(0.060) 93(0.095) 632(0.022) 1(0.020)
1/16 12(0.110) 3(0.190) 9(0.041) 0(0.040)
341.4958743 1/2 812(0.005)

1/4  543941(0.028) 23568(0.046) 148769(0.010)  78(0.010)
1/8  9318(0.055)  871(0.095)  5011(0.023)  4(0.020)

1/16  372(0.110) 13(0.190) 159(0.042) 0(0.040)
989.7010159  1/2 2456(0.005)
1/4 765901(0.046) 995647(0.010)  236(0.010)
1/8  45678(0.060)  3561(0.095)  15848(0.022)  7(0.020)
1/16  6813(0.115) 53(0.190) 64(0.041) 1(0.040)

Table 2: continued
in the way suggested by Ixaru and Rizea [7]. That is, we choose:

(4.6)

o= | (50— E)'?  for 2 € [0,6.5]
T (=B} for z € (6.5, 15)

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to which
the results obtained depend on these values see 7, pp. 25].

4.1.2 Modified Woods-Saxon Potential

In Table 3 some results obtained with another potential in (4.1) are shown. This potential
1s

Viz) = Vw(z) + = (4.7)

where Vy is the Woods-Saxon potential (4.2). For the purpose of our numerical experiments
we use the same parameters as in [7], i.e. D = 20, | = 2.

Since V(z) is singular at the origin, we use the special strategy of [7]. We start the
integration from a point ¢ > 0 and the initial values y(e) and y(e + h) for the integration
scheme are obtained using a perturbative method (see [6]). As in [7] we use the value € = §

for our numerical experiments.

For the purpose of obtaining our numerical results it is appropriate to choose € in the
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The resonance h MI MII MIII
61.482588 1/2
1/4

1/8 82345(0.050)

1/16 253692(0.090)  3244(0.090)  275(0.102)
173.075711  1/2

1/4

1/8 234768(0.045)  93426(0.050)

1/16 41986(0.090)  2925(0.100)
352.682070  1/2

1/4

1/8 456578(0.050)

1/16 203007(0.090)  63550(0.105)
1002.768393  1/2

1/4

1/8

1/16

Table 3: Absolute errors (Real time of computation), in 107 units (in seconds), of the
positive eigenvalues calculated by the six algorithms MI-MVI for the resonance problem with
the modified Woods-Saxon potential. The empty areas indicate that the error is greater than
1.

way suggested by Ixaru and Rizea [7]. That is, we choose:

Il’.(.ﬂ)ﬁtﬂf)l for z € [e, a1]
ﬂ;—‘l for z € (a1, a9
V(ag) for z € (ag, a3]

V (15) for = € (a3, 15].

For the choice of the values a;,i = 1(1)3 see for details [7].

4.2 The Bound-States Problem

For negative energies we solve the so-called bound-states problem, i.e., with the boundary
conditions

y(0) = 0,
y(z) ~ exp(—V —Exz) for large z.

In order to solve this problem numerically we use a strategy which has been proposed by
Cooley [5] and has been improved by Blatt [1]. This strategy involves integrating forward
from the point z = 0, backward from the point x;, = 15 and matching up the solution at some
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The resonance h MIV MV MVI MVII

61.482588 1/2 867892(0.025) 1123439(0.006)  19(0.005)
1/4  97459(0.025) 4561(0.050) 13452(0.011) 0(0.011)
1/8 945(0.050) 35(0.100) 794(0.026) 0(0.025)
1/16 11(0.120) 1(0.200) 0(0.052) 0(0.050)

173.075711 1/2 105(0.003)
1/4 435671(0.030) 11234(0.050) 173217(0.012) 8(0.011)
1/8 3451(0.060) 96(0.100) 631(0.027) 0(0.025)
1/16 115(0.115) 8(0.200) 32(0.051) 0(0.050)

352.682070 1/2 1134(0.005)

1/4  989763(0.030) 90785(0.050)  565482(0.013)  95(0.011)
1/8  5464(0.060)  428(0.100) 7944(0.026) 2(0.025)

1/16  856(0.120) 11(0.200) 501(0.051) 0(0.050)
1002.768393  1/2 4326(0.006)
1/4 456327(0.050)  789437(0.012)  114(0.011)
1/8 1238(0.100)  31623(0.027)  7(0.025)
1/16  80927(0.120)  25(0.200) 159(0.052) 0(0.050)

Table 3: continued

internal point in the range of integration. As initial conditions for the backward integration
we take (see [3]):

y(ap) = exp(—V —FEx;) and y(zp — h) = exp[-V —E(zp, — h)] , (4.8)
where h is the steplength of integration of the numerical method.

The true solutions to the Woods-Saxen bound-states problem were obtained correct to
nine decimal places using the analytic solution and the numerical results obtained for the
six methods mentioned above were compared to this true solution. In Table 4 we present
the absolute errors of the eigenenergies in 10~ units and the CPU time required for the
calculation for different choices of constant stepsize, which are shown in column 2. The
empty areas indicate that the corresponding absolute errors are larger than 1.

5 Error Estimation

It is known from the literature (see for example [20] and references therein) that there are
many methods for the estimation of the local truncation error (LTE) in the integration of
systems of initial-value problems. We note that the LTE is based on the algebraic order of
the method.

Our local error estimation technique is based on an embedded pair of integration methods
and on the fact that when the local truncation error is of higher algebraic order then the
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The resonance h MI MII MIII
-49.457788728 1/2 43544(0.013) 323(0.013) 45(0.020)
1/4 3423(0.025) 68(0.025) 8(0.040)

~41.232607772 1/2 65667443(0.015) 445331(0.017) 54663(0.023)
1/4 4876771(0.030)  66789(0.033)  8767(0.043)

~26.873448015  1/2 544551(0.015)  76758(0.020)
1/4 23439(0.030)  9421(0.040)
~8.676081670 1,2 5456779(0.014) 656447(0.022)
1/4 323451(0.028)  43545(0.043)

Table 4: Absolute errors (Real time of computation), in 10™° units (in seconds), of the
eigenvalues calculated by the six algorithms MI-MVT for the bound-states problem with the
Woods-Saxon potential. The empty areas indicate that the error is greater than 1.

The resonance h MIV MV MVI MVII
-49.457788728 1/2  11(0.015) 1(0.024) 7(0.008)  0(0.007
1/4 0(0.030) 0(0.048) 0(0.016) 0(0.015

-41.232607772 1/2 6548(0.015) 767(0.024)  2347(0.008) 1(0.007

)

)

)

1/4 785(0.030)  86(0.048)  213(0.017)  0(0.015)
-26.873448915 1/2 8789(0.015) 989(0.024)  3326(0.009) 2(0.007)
1/4  946(0.030)  66(0.048)  451(0.018)  0(0.015)
-8.676081670 1/2 82338(0.015) 5663(0.024) 32659(0.009) 8(0.007)
1/4 5456(0.030) 438(0.048)  1487(0.018) 0(0.015)

Table 4: continued

approximation of the solution for the problems which have a periodic or oscillating solution
is better. The new error control procedure is, also, based on the fact that when a method
exactly integrates functions of the form (1.3) with m and p as large as possible then the
approximation of the solution for the problems which have a periodic or oscillating solution
is more efficient and accurate.

Denoting the solution obtained with higher algebraic order method as y/., and the
solution obtained with lower algebraic order method as y., ;, we have the following definition

Definition 4 We define the local truncation error estimate in the lower order solution
yL. | by the quantity
LT.E =]y = Y | - (5.1)

Under the assumption that when h is sufficiently small, the local truncation error in
y,ﬁ_l can be neglected compared with that in yZ g

We assume that the solution y[f,, is obtained using and the solution y%,, is obtained
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using the present method.

In our variable-step procedure the solution yn+1 i.e. the solution with high algebraic
order, is obtained using the method of Simos [24], and the solution y%,,, i.e. the solution
with low algebraic order, is obtained using the present method.

If the local truncation error is bounded by acc and the step size of the integration used
for the nth step length is h,, the estimated step size for the (n + 1)st step, which will give
a local truncation error bounded by acc, must be

| ) ace \ 1/
L= ”'(L.T.E) ’

where ¢ is the algebraic order.

Following [20], we have considered all step changes to halving and doubling. Thus, based
on the procedure developed in [20], the step control procedure which we introduce for the
Local Truncation Error is

If LT.B < goe, Bayy=2hy
If 100 acc > LT.E > acc, hpy1 = hy (5.3)

hr
If LT.E > 100 ace, hpyy = 5 and repeat the step. (5.4)

It is known that the local error estimate is obtained to the lower order solution. This is
applied, also, in our case.

In the third case of the above procedure (i.e. hnpyy = "") the required values of y are
determined using high order interpolation formulae (see for details [31] pp. 397-400).

6 Coupled Differential Equations

In this section we present some numerical results to illustrate the performance of the new
variable-step method. We consider the numerical integration of the coupled differential
equations arising from the Schrédinger equation.

There are many problems in theoretical physics, atomic physics, physical chemistry, quan-
tum chemistry and chemical physics which can be transformed to the solution of coupled
differential equations of the Schrodinger type. On of the most important problems of the
above category is the collision of an atom with a homonuclear diatomic molecule. In our
example the collison is taken place such that vibration excitation and chemical reaction can
be ignored (see for details and relevant theory in [32-33] and references therein).

The close-coupling differential equations of the Schrodinger type may be written in the

form
d? o Li(li+1)

T Ve = thym (61)
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for1<i< Nandm #i

We have investigated the case in which all channels are open. So we have the following
boundary conditions (see for details [32]):

Yij = Qatx=0 (62)

o\ 1/2
Yij =~ “.i.’ltj(l(k‘,‘.‘lf)(s,'j + (%?—) -Kijkixnli(kix) ((}3)

£
where j;(z) and n;() are the spherical Bessel and Neumann functions, respectively. We note
here that since the methods presented in this paper have much larger intervals of periodicity
(the property which must have a method to avoid instabilities) than the Numerov’s method,
the method of Hajj et. al. [36], the method of Cash and Raptis [2] and other finite difference
methods, we can use the present methods to problems involving closed channels.

Based on the detailed analysis developed in [32] and defining a matrix K’ and diagonal

matrices M, N by:
1/2
. A.'i
I\,fj = (ZJ-) K

Miy = ki (k)6
Ni; = kiany, (hiw )i

we find that the asymptotic condition (6.3) may be written as:

y ~M + NK' (6.4)

One of the most well-known methods for the numerical solution of the coupled differential
equations arising from the Schrédinger equation is the Iterative Numerov method of Allison

[32].

A real problem in theoretical physics, atomic physics, quantum chemistry and molecular
physics which can be transformed to close-coupling differential equations of the Schrodinger
type is the rotational excitation of a diatomic molecule by neutral particle impact. Denoting,
as in [32], the entrance channel by the quantum numbers (j,1), the exit channels by (5',1'),
and the total angular momentum by J = j + [ = 3"+ I', we find that

d? I+

T3 Fhy - —]J}zf = ZZ <JUTIV 5T > () (6.5)
J” lll
where
2p
kji; = 2 [E+—{J G+1) -5+ 1} (6.6)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the moment
of inertia of the rotator, and p is the reduced mass of the system.
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Following the analysis of [32], the potential ¥V may be written as

V (@, kyik;5) = Vo(@) Polkyiikys) + Vala) Palkyikys), (6.7)
and the coupling matrix element is given by

< FU TV 51T >= 8ppburVole) + (T, 51" T)Vel) (6.8)

where the fo coefficients can be obtained from formulas given by Bernstein et al. [33] and
k;; is a unit vector parallel to the wave vector k;/; and P;, 1 = 0, 2 are Legendre polynomials
(see for details [33]). The boundary conditions may then be written as (see [32])

yﬁf(m) =0atza=0 (6.9)

1/2
: k,‘
yﬁf(m) ~ 6jjf6111 eXI)[—i(linjm - 1/21’/1')] - (Z‘") SJ(j[,J’-’:’) (‘,Xp[?',(.l\".jljﬁj — l/?l,'fl’)] (610) ’

]
where the scattering S matrix is related to the K matrix of (6.3) by the relation

S = (I +iK)(I-iK)™ (6.11)

The calculation of the cross sections for rotational excitation of molecular hydrogen by
impact of various heavy particles requires the existance of the numerical method for step-
by-step integration from the initial value to matching points.

In our numerical test we choose the S matrix which is calculated using the following
parameters

2
o =1000.0, £ =2351, E=11,
h= 1
1 1
V'[)(I) = m = 2;6’ I/g(.’lf) = 02283V0(.L)

As is described in [32], we take J=6 and consider excitation of the rotator from the
J = 0 state to levels up to j' = 2,4 and 6 giving sets of four, nine and sixteen coupled
differential equations, respectively. Following Bernstein [34] and Allison [32] a reduction
of the interval [0,00) to [0, z¢] is obtained. The wavefunctions are then vanished in this
region and consequently the boundary condition (6.9) may be written as

Y7 (z0) =0 (6.12)

For the numerical solution of this problem we have used (i) the well known Iterative
Numerov method of Allison [32], (ii) the variable-step method of Raptis and Cash [17], (iii)
the variable step method of Simos [37] and (iv) the new embedded variable-step method.
In Table 5 we present the real time of computation required by the methods mentioned
above to calculate the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled
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Method | N [hmax I RTCW
Iterative Numerov [32] 4 10.014 | 3.25

9 10.014 | 23.51
16 | 0.014 | 99.15
Variable-step Method of Raptis and Cash [20] | 4 | 0.056 | 1.65
9 | 0.056 | 8.68
16 | 0.056 | 45.21
Variable-step Method of Simos [37] 4 10.112 | 1.43
9 |0.112 | 8.22
16 | 0.112 | 40.13
New Variable-step method 4 10448 | 0.26
9 | 0.448 | 1.00
16 | 0.448 | 5.28

Table 5: RTC (Real time of computation (in seconds)) to calculate | S |? for the variable-step
methods (i)-(iv). acc = 107%. hmax is the maximum stepsize

differential equations. In Table 3 N indicates the number of equations of the set of coupled
differential equations.

The variable step method developed in this paper is more efficient than other well known
finite difference ones.

All computations were carried out on an IBM PC-AT compatible Pentium using double
precision arithmetic (16 significant digits precision).

7 Conclusion

The method proposed in this paper is much more accurate than the Numerov-type methods
of Raptis and Allison [19], Ixaru and Rizea [7] and Raptis [16]. We note also that the
new method require the same amount of work as the Numerov-type methods of Raptis and
Allison [19], Ixaru and Rizea [7] and Raptis [16] and less work than the Runge-Kutta-type
hybrid methods of Raptis and Cash [20].

The crucial concern when solving the Schrodinger equation is that the numerical method
should integrate exactly the functions (1.3) with m as large as possible, as shown by [7] and
[21].

The new method integrate exactly more functions of the form (1.3) than the hybrid
methods of Raptis and Cash [20] and Cash, Raptis and Simos [3], Simos [24].
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As predicted by the analysis, method MVII is the most accurate of all the methods for
the problems tested. We note here that this method is much more simpler compared with
the Runge-Kutta type exponentially fitted methods of Raptis and Cash [20], Cash, Raptis
and Simos (3], and Simos [24]

Based on the exponentially-fitted methods obtained above and the exponentially-fitted
method of Simos [24], a variable-step exponentially-fitted method is introduced. Numerical
results indicate that the new variable-step method is much more efficient than other well
known methods in the literature for the numerical solution of the coupled equations arising
from the Schrodinger equation.
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Appendix

The explicit expressions of the coefficients of the new method are given below.
bo = (12w?cosh(4 w) + 544 w®sinh(2 w) — 24 w? cosh(3 w) — 16 w3 sinh(4 w)

+128 w* cosh(2w) — 300 w? + 2856 w sinh(2w) — 2856 sinh(w) w + 204 w sinh(4 w)
~3072 cosh(3w) — 96 w3 sinh(3w) — 4w* cosh(4 w) + 10752 cosh(2 w) + 13440
—736sinh(w) w® — 21504 cosh(w) — 88 w* cosh(3 w) — 1224w sinh(3 w)

4384 cosh(4w) — 96 w? cosh(2 w) + 408 w? cosh(w) — 380 w? + 344 w? cosh(w))/
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(86 w® cosh(w) — 276 w® sinh(w) — 36 w® sinh(3w) — 210w sinh(2 w) — 22 w® cosh(3 w)
—15w®sinh(4 w) + 120w cosh(2w) — w® cosh(4 w) + 32 w® cosh(2 w)

+90 w3 sinh(3w) — 15w* cosh(4 w) + 210 sinh(w) w® — 6w®sinh(4 w)

+204 w® sinh(2w) + 30 w* cosh(3 w) — 95w’ + 375 w? — 510 w* cosh(w))

by = — (24 w? cosh(4 w) + 1088 w® sinh(2w) + 384 cosh(5 w) — 48 w? cosh(3 w)

-32w?sinh(4w) 4 256 w? cosh(2w) — 600 w? + 5712w sinh(2w) — 5712 sinh(w) w
+408 w sinh(4 w) + 11136 cosh(3w) — 192w sinh(3w) — 8 w? cosh(4 w)
—24576 cosh(2w) — 21504 — 1472 sinh(w) w® 4+ 37632 cosh(w) — 176 w* cosh(3 w)
—2448 wsinh(3w) — 3072 cosh(4 w) — 192 w? cosh(2 w) + 816 w” cosh(w) — 760 w*
+688 w? cosh(w))/(86 w® cosh(w) — 276 w® sinh( ) — 36 w®sinh(3w) — 210 w®sinh(2 w)
—22wS cosh(3w) — 15w® sinh(4w) + 120 w* cosh(2 w) — w® cosh(4 w)
+32 w5 cosh(2w) + 90 w® sinh(3w) — 15w cosh(4 w) + 210 sinh(w) w®
—6w®sinh(4 w) + 204w sinh(2w) + 30 w? cosh(3w) — 95w’ + 375 w*
—510w? cosh(w))
¢ = (3w cosh(4w) — 135sinh(4w) — 1890 sinh(2 w) + 66 w* cosh(3 w)

+1890 sinh(w) + 285 w3 — 204 w?sinh(2w) + 276 w” sinh(w) + 6 w? sinh(4 w)
+78w cosh(3 w) + 312w cosh(2w) + 975w — 1326 w cosh(w) + 36 w*sinh(3 w)
—39w cosh(4w) — 96 w3 cosh(2w) — 258 w® cosh(w) + 810sinh(3w))/(12 w® cosh(4 w)
+544 w sinh(2w) + 192 w cosh(5 w) — 24 w® cosh(3w) — 16 w? sinh(4 w)
+128 w® cosh(2 w) — 300 w® + 2856 w? sinh(2w) — 2856 w? sinh(w) + 204 w? sinh(4 w)
+5568 w cosh(3 w) — 96 w? sinh(3w) — 4 w® cosh(4 w) — 12288 w cosh(2 w) — 10752 w
—736sinh(w) w? + 18816 w cosh(w) — 88 w® cosh(3 w) — 1224 w? sinh(3 w)

~1536 w cosh(4 w) — 96 w* cosh(2 w) + 408 w? cosh(w) — 380 w® + 344 w® cosh(w))

= (95w® + 120 w cosh(2 w) — 15w cosh(4w) + 375w + w® cosh(4 w)

—86 w? cosh(w) — 32 w? cosh(2w) + 22 w? cosh(3w) + 210sinh(w) — 15sinh(4 w)
+90 sinh(3w) + 30 w cosh(3w) — 210sinh(2w) — 510 w cosh(w))/(—3 w® cosh(4 w)
+135w?sinh(4 w) + 1890 w? sinh(2 w) — 66 w® cosh(3w) — 1890 w” sinh(w) — 285 w®
+204w? sinh(2w) — 276 sinh(w) w* — 6 w* sinh(4 w) — 78 w® cosh(3 w)

—312w* cosh(2w) — 975 w? + 1326 w® cosh(w) — 36 w* sinh(3 w) + 39 w® cosh(4 w)
+96 w® cosh(2w) + 258 w® cosh(w) — 810 w? sinh(3 w))

a = (—=32w®cosh(2w) + w3 cosh(4 w) + 95w® — 92 w? sinh(w) — 2 w?sinh(4 w)

—12w?sinh(3w) + 22w cosh(3 w) — 306 w cosh(w) + 126 sinh(w) + 54 sinh(3 w)
+18 w cosh(3w) — 9w cosh(4 w) + 72w cosh(2w) — 9sinh(4 w) — 126 sinh(2 w)
+68 w? sinh(2w) — 86 w® cosh(w) + 225 w)/(—380 w® — 480 w® cosh(2 w)

60 w3 cosh(4 w) — 1500 w® — 4 w® cosh(4 w) + 344 w® cosh(w) + 128 w® cosh(2 w)
— 88w cosh(3w) — 840 w? sinh(w) + 60 w? sinh(4 w) — 360 w? sinh(3 w)
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—120w? cosh(3 w) + 840 w” sinh(2 w) + 2040 w® cosh(w)).

As before, the formulae for a, b, ¢, bo, by are subject to heavy cancellations for small values

of w = vh and so instead we use the following series expansions for the coefficients of the
method:
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