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Splitting solitons on a torus

R. J. Cova
Departamento de Fisica FEC, Uniwersidad del Zulia,
Apartado 15382, Maracaibo 4005-A, Venezuela

(2.VII.98)
Abstract

New CP!-soliton behaviour on a flat torus is reported. Defined by
the Weierstrass elliptic function and numerically evolved from rest,
one has topological charge-two solitons that initially show either the
expected two energy lumps or, notably, four. In the former case, each
soliton splits up in two lumps which eventually get back together; they
keep splitting up and reuniting as time progresses.

1 Introduction

The CP! model in (2+1) dimensions appears as a low dimensional
analogue of non-abelian gauge field theories in four dimensional space-
time. This analogy relies on common properties like conformal invari-
ance, existence of topological solitons, hidden symmetry and asymp-
totic freedom. Amongst various applications, CP! models have been
used in the study of the quantum Hall effect and high-7, superconduc-
tivity. In differential geometry, the soliton-solutions of C P! models
are known as harmonic maps, a rich industry of research on its own.

The classical (2+0)-dimensional CP* or non-linear O(3) model on
the extended plane Ry U {oco} ~ Sy, where the soliton solutions are
harmonic maps S5 — S3, has been amply discussed in the literature
[1,2]. In (2+1) dimensions the model is not integrable, and the study
of its dynamics is done with the aid of numerical simulations. Due to
the conformal invariance of the theory on the plane, the O(3) solitons
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are unstable in the sense that they change their size under any small
perturbation, either explicit or introduced by the discretisation pro-
cedure. It can make the solitons shrink indefinitely and, when their
width is comparable to the lattice spacing, the numerical code breaks
down [3]. However, such instability can be cured by the addition of
two extra terms to the lagragian [4]. The first one resembles the term
introduced by Skyrme in his nuclear model in four dimensional space-
time [5], and the second one is a potential term. The fields of the
planar Skyrme model (skyrmions) produce stable lumps which repel
each other when started off from rest [4, 6].

In a recent paper [7] we considered both the pure and modified
C P! schemes imposing periodic boundary conditions, which amounts
to defining the system on a torus 75. The corresponding soliton con-
figurations are harmonic maps T — S3. We found (using the Weier-
strass’ o(z) function to define the solitons) that in contradistinction
with the familiar theory on S5, the toroidal model: e has no analyt-
ical single-soliton solution [this is because elliptic functions, in terms
of which the toroidal solitons must be expressed, are at least of the
second order; or, in the language of differential geometry, because
genus(torus)=1]; e needs only a Skyrme term to stabilise the solitons
(thus the lagrangian retains its O(3) invariance: on S, the latter is
broken by the additional potential term); e does not require a damp-
ing set-up for the numerical simulation (a radiation-absorbing device
is implemented for the model evolved on the compactified plane in
order to prevent the reflection of kinetic waves from the boundaries);
e has perfectly static skyrmions when their initial speed vy is zero.
This holds for any value of the Skyrme term 6;, although the lumps
are unstable when 6; < 7 x 107°, approximately. (As already pointed
out, on S; the skyrmions move away from each other when vy = 0.);
possesses no critical velocity below which the skyrmions scatter back-
to-back in head-on collisions. They always scatter at right angles
provided vy # 0. Also, on T, the skyrmions scatter any number of
times (multi-scattering), as they keep encountering each other in the
periodic grid.

In the present work we study periodic C P! configurations started
off from rest and defined through the Weierstrass’ elliptic function
©(z). Being of order two, it naturally defines a soliton in the topolog-
ical charge two sector.
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2 Periodic skyrmion model

Our model is given by the lagrangian density
|0;W|? — 2|0, W|? |0, W|?
5o T 80 2)4
(1+[W]?) (1+[W]?)
z = = + 1y € To, which is the pure CP! model plus an additional

Skyrme, 6;-term (6; € R"). The complex field W obeys the periodic
boundary condition

Wz + (m+in)L] = W(z), Vi, (2)

= (oW =10 W), (1)

where m,n = 0,1,2,... and L is the size of a square torus. The static
solitons (skyrmions) are elliptic functions which may be written as

W = Ap(z —a) + b, Aabe Z, (3)

©(z) being the elliptic function of Weierstrass. Within a fundamental
cell of length L, p possesses the expansion [8]

pz) =22+ 6 + &2+ .+ 62924, EeR (4)

This function is of the second order, hence (3) represents solitons of

topological index 2. (In general, the product of n p’s will give solitons

of even topological number 2n.). Note that (3) is an approximate

solution of the model (1), except in the pure C P! limit (;=0) where

it exactly solves the corresponding static field equation. Therefore, we

expect our solitons to evolve only for a non-zero Skyrme parameter.
In reference [7] we computed the periodic solitons through

K
o(z—a
W:Haz—bj ZG’J j;bj’ (5)

employing a subroutine that numerlcally calculates o(z) [the parame-
ters entering equation (5) are defined independently of those entering
equation (3)]. Now, via the formula below [8], in this paper we use
the same subroutine to compute gp(z):

2
plz) = ~ 35 Inlo (2)], )

where the Laurent expansion for ¢ reads

oo .
= Zqz““, c; € R. (7)

677



678

3 Basic numerical procedure

We treat configurations of the form (3) as the initial conditions for
our time evolution, studied numerically. Our simulations run in the
¢-formulation of the model, whose field equation follows from the la-
grangian density (1) with the help of the stereographic projection

¢1 + i
1—¢3
where the real scalar field q—g = (¢1, P2, ¢P3) satisfies b.6 = 1.
We compute the series (7) up to the fifth term, the coeflicients c;
being in our case negligibly small for 7 > 6. We employ the fourth-
order Runge-Kutta method and approximate the spatial derivatives by
finite differences. The laplacian is evaluated using the standard nine-
point formula and, to further check our results, a 13-point recipe is also
utilised. Our results showed unsensitiveness to either method. The
discrete model evolves on a 200 x 200 periodic lattice (n; = n, = 200)
with spatial and time steps dz=4Jy=0.02 and §t=0.005, respectively.
The size of our fundamental, toroidal network is L = n, x dz = 4.
Unavoidable round-off errors gradually shift the fields away from

the constraint {5 93 = 1. So we rescale q‘; — qf‘;/ ﬁ every few itera-
tions. Each time, , Just before the rescaling operation, we evaluate the
quantity p = d) gb — 1 at each lattice point. Treating the maximum
of the absolute value of ;4 as a measure of the numerical errors, we
find that max|u| ~ 10~%. This magnitude is useful as a guide to de-
termine how reliable a given numerical result is. Usage of an unsound
numerical procedure in the Runge-Kutta evolution shows itself as a
rapid growth of max|u|; this also occurs, for instance, in the O(3) limit
(1 = 0) when the unstable lumps of energy become infinitely spiky.

W = (8)

4 Splitting lumps
The static energy density associated with the field (3) reads

lple = )l ~ o) ~ (L)
= e pee—aree 0 O

E = €(1 + 461¢),

where the identity

dp(z — a)

(=1 =4p(z - a)lp(z —a)* - *(L/2), (10)
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has been used [8]. The parameter A is related to the size of the solitons,
b determines their mutual separation and a merely shifts the solution
on the torus. Without loss of generality, we may take the values of
these parameters according to numerical convenience. Let us take A=1
and a=(2.025, 2.05) throughout. Now, for b=0 we have W = p(z—a),
whose energy density gives two indistinguishable lumps on top of each
other, as depicted in figure 1 (top-left). The value b=1 gives two
lumps separated along the ordinates [figure 1 (top-right)], whereas
b=-1 positions them along the abscissas. A pure imaginary b places
our extended structures on a diagonal bisecting the toroidal grid. For
b with non-zero real and imaginary parts the lumps are situated in an
arbitrary diagonal of the cell. These set-ups are true regardless of 6,
which we have put equal to 0.001.

Our numerical simulations show that the skyrmions are stable.
Their stability is reflected on the left-hand side of the nether half
of figure 1, which shows the evolution of the maximum value of the
system’s total energy density (Epnqz) for 5=0,1. In the O(3) limit the
lumps are no longer stable, as can be appreciated from the bottom-
right graph of figure 1. In this case, as expected, the solitons remain
static with the passing of time.

But in the stable, Skyrme situation, the lumps evolve in novel fash-
ion. Let us first consider the configuration when the extended entities
are on top of each other at ¢t = 0. As time elapses, the system splits
in four equal lumps, each progressing towards its nearest lattice cor-
ner. There they meet and coalesce, for all corners are nothing but the
same point. Then the solitons split up once more and the ‘fractional-
skyrmions’ make their way back to the centre of the nett, in a cycle
that repeats itself indefinitely. The foregoing event is illustrated in the
superior half of figure 2, with the trajectory of the four energy peaks in
the z — y plane. The accompanying 3-D picture captures the moment
when the skyrmion quartet, having concurred at the corners and split
afresh, begin to motion towards the centre of the network. Worthy of
remark is that the trajectory in question resembles the usual head-on
collision course and subsequent 90° scattering of two solitons [9], in
spite of ours being energy chunks with no initial velocity. Also, we
have thoroughly verified that the topological number is 2 all along
the numerical evolution, which suggests that each ‘fractional soliton’
carries a topological charge of 1/2. This behaviour contrasts with the
one on Sy, where two lumps on top of each other were found to move
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away from one another, two evolving lumps in mutual repulsion [4].

A more involved trajectory occurs for two initially well-separated
skyrmions. In the bottom-left plot of figure 2, the labels a — g indicate
the itinerary of one of the entities (call the corresponding symmetrical
points o’ — ¢g'). At t = 0 a full lump is at point a but it soon halves
under the numerical simulation. One of its fractional offspring moves
foillowing curve b, whereas its counterpart proceeds in the opposite
sense. At z = 0 = 4 they get back together into one full structure,
which runs vertically up before separating anew. One of these com-
ponents cruises along c and, at site d, reunites back with its peer
travelling from the left. Before dividing itself according to curve e,
the skyrmion is seen to shift towards the centre, as one can tell from
the small leg connecting curves d-e (the full lump started at o’ under-
goes a similar process). The bottom-right diagram of figure 2 exhibits
the skyrmions heading centrewards from d and d’. Thence our system
continues through f — g — h and returns to its ¢ = 0 coordinates. Ob-
serve that at g a half-soliton from lump a undistinguishably coalesces
with a half-soliton from lump a’, so actually we do not know which
bit is ascending (descending) along h (h'). We terminated our simu-
lations when a like cycle was about to commence, as evidenced by the
small vertical lines emerging from a,a’. Our p-solitons undergo both
repulsive and attractive forces.

Our research has been constraint to systems with zero inital speed.
Important mathematical aspects of C'P! solitons given by equation
(3) [the O(3) case only] have been recently analysed in [10] using
the geodesic approximation. Consistently, the presence of four energy
peaks rather than two is therein observed as well.

It is important to note that our results hold for any initial data
with vg=0. As remarked earlier, they do not depend qualitatively on
the values of A, a, b in equation (3). Nor do our results depend on the
torus being square or non-square. For instance, the occurrence of four
peaks in the charge-two topological sector (a notable outcome of the
present work) is unaltered. In effect, the four peaks arise due to the
symmetry of the energy density under p — —p [see equation (9) for
b = 0] and the fact that gp is even. What square periodic boundary
conditions (the so-called lemnistcatic case in pure mathematics) do is
to greatly simplify the computations and lead to the relatively simple
Laurent expansion (7).

Cova



Cova

Initial configuration for b=0 Initial configuration for b=1
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Figure 1: Energy density configurations at ¢t = 0 and the evolution of their
peaks. The bottom-right graph corresponds to #;=0, when the lumps are
unstable and shrink non-stoppingly.
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Case b=0 Total energy density at t=51
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Figure 2: Above: Trajectory of the skyrmions initially on top of each other.
They split up in four lumps heading to the corners where they coalesce and
break-off again, moving back to the centre of the lattice, as in the illustration
for t=51. Below: The initially separated skyrmions also divide each in two.
but transit more complicated paths; the labels a — h refer to one of the
‘half-lumps’. The t=30 picture is shortly after the fractional progeny have
reunited at d (and at its symmetrical point) and begun to travel centrewards.
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5 Concluding remarks

The CP! model in (2+1) dimensions is variegated. More so its stable,
skyrmionic version on 75, which in this work has been shown to possess
qualitatively different features as compared to the familiar model on
the compactified plane.

A particularity of our periodic solitons is that they have no ana-
lytic representative of degree one, limitation dictated by their elliptic
nature. In (2+0) dimensions, the C P! model on Sy is known to have
soliton solutions in all topological classes.

Another peculiarity of the toroidal model, one herein discovered,
is that the properties of the skyrmions depend on the elliptic function
used to define them. Thus, skyrmion fields expressed in terms of
o(z), equation (5), evolve differently than those expressed through
©(z), equation (3). In the former case, energy chunks started off from
rest stay still in their initial positions as time goes by. In the latter
case, the system splits up in four lumps that stroll the network acted
upon by repulsive-attractive forces. It is our concern to analyse the
solitons on T5 by employing alternative elliptic functions, and classify
the different characteristics exhibited (let us remind that on Ss no new
soliton traits arise from casting two-soliton configurations in different
ways, e.g., W = 22,272, (%—___—‘c‘%f:—g). Comparison of the various elliptic
solitons among themselves (and with the spherical lumps) should help
us understand better the mechanisms underlying the C P! dynamics.
This of course must include investigation on the appealing question of
collisions. On T5, the fields (5) have yielded -in the Skyrme case- the
outcome of always scattering off at 90° when impinged with a non-zero
initial speed [7]. On S», unsimilarly, the existence of a critical speed,
below which the skyrmions scatter at 180° to the initial direction of
motion, has long been a landmark of the planar model .

Finally, that the topological charge of our splitting system is very
well conserved (=2) as time progresses, invites speculation on whether
each ‘fractional-soliton’ carries a non-integer degree. Clearly, further
research on this matter is required.

683



684 Cova

Acknowledgements

I thank J. M. Speight and W. J. Zakrzewski for enlightening
conversations. Most of the work was carried out in the University
of Durham with the financial support of La Universidad del Zulia.

References

[1] Eichenherr H. (1976) Nucl. Phys. B146 215
[2] Perelomov A. M. (1981) Physica 4D 1

[3] Leese R. A., Peyrard M. and Zakrzewski W. J. (1990) Non-
linearity 3 387

[4] Leese R. A., Peyrard M. and Zakrzewski W. J. (1990) Non-
linearity 3 773

(5] Skyrme T. H. R. (1962) Nucl. Phys. 31 556

(6] Sutcliffe P. M. (1991) Nonlinearity 4 1109

(7) Cova R. J and Zakrzewski W. J. (1997) Nonlinearity 10 1305
[

8] Lawden D. F. (1989) Elliptic functions and applications
Springer Verlag, NY, USA

9] Cova R. J. (1995) Helv. Phys. Acta 8 282

[10] Speight J. M. (1997) Lump dynamics in the CP' model on
the torus, University of Texas at Austin preprint, Dept. of
Math, Austin, Texas, 78712, U.S.A. To appear in Comm.
Math. Phys



	Splitting solitons on a torus

