Zeitschrift: Helvetica Physica Acta

Band: 71 (1998)

Heft: 6

Artikel: On p-sparse Schrédinger operators with quasiperiodic potentials
Autor: Damanik, David

DOl: https://doi.org/10.5169/seals-117128

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-117128
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Helv. Phys. Acta 71 (1998) 667 — 674
)018-0238/98/060667-08 $ 1.50+0.20/0 -
© Birkhiuser Verlag, Basel, 1998 I Helvetica Physica Acta

On p-sparse Schrodinger operators with quasiperiodic
potentials

By David Damanik

Fachbereich Mathematik

Johann Wolfgang Goethe-Universitat
50054 Frankfurt/Main

Germany

(12.VI.98)

Abstract. We apply a decomposition approach of Guille-Biel to p-sparse Schrédinger operators
with quasiperiodic potentials. A general extension principle is presented. Applications include
axtensions of results for the almost Mathieu operator and Fibonacci-type operators.

1 Introduction

[n a recent paper [6], Guille-Biel introduced the notion of a p-sparse Schrédinger opera-
tor, which provides a generalization of the standard one-dimensional discrete Schrodinger
operator

(Hu)(n) = u(n + 1) + u(n — 1) + V(n)u(n), (1.1)

namely, the following higher order difference operator

(Hpu)(n) = u(n + p) + u(n — p) + V(n)u(n), (1.2)

where p € N, and V is a bounded, real-valued potential. She proposed an approach how
to study spectral properties of the operator H, and particularly studied the case where V
depends on a parameter w from a probability space 2 such that the family {V,, }.eq is ergodic
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with respect to the shift operator. This approach is based on a decomposition of H, into
an orthogonal sum such that the fiber operators are standard operators corresponding to
the case p = 1. This decomposition approach was applied to the cases where V' is periodic,
of Anderson type, or coming from a substitution sequence. Some of the results for these
classes of potentials could be extended to suitable p-sparse versions. Furthermore, it was
conjectured in [6] that this approach should also be applicable to quasiperiodic V.

Our aim is to show that this is indeed the case and, moreover, there is a general exten-
sion principle. In fact, this extension is rather straightforward once it is realized that the
potentials of the fiber oprators retain the quasiperiodic form. We will therefore study oper-
ators of the form

(Hy>*u)(n) = u(n + p) + u(n — p) + Af(na + w)u(n) L)

in [*(Z), where f is a real-valued, bounded, measurable, 1-periodic function, A € R, a € (0, 1)

irrational and w € 0 =T =R/Z = [0, 1).

Primary and best studied examples are the almost Mathieu operator and the Fibonacci
operator, corresponding to p = 1 and f(:) = cos(27(-)), resp. f(-) = Xu—an)(- modl)
(and, usually, a = 3@2:1) Many results have been obtained for these operators. The very
nice review articles by Last [21], Jitomirskaya [11] and Sit6 [27] give an excellent overview.
Without attempting to summarize the results obtained so far, let us remark that in the al-
most Mathieu case the spectral properties of H?’a'w depend on the modulus of the coupling
constant A. For |A| < 2 one has absolutely continuous spectrum (possibly along with some
singular continuous spectrum), whereas, for |A| > 2 one has sometimes pure point spec-
trum, sometimes purely singular continuous spectrum, but always zero-dimensional spectral
measures (22, 12, 13]. At the self-dual point |[A\| = 2, Gordon et al. have proven singular
continuity of the spectral measures [8] for a.e. a,w. For the Fibonacci operator, on the
other hand, the spectral properties do not depend qualitatively on the coupling constant.
Suté [25, 26), Bellissard et al. [2] and Kaminaga [16] have shown that, for every A # 0, the
spectral measures are purely singular continuous (again, for a.e. w). Quantitatively, how-
ever, some results do depend on A, for example the polynomial upper bound for the norms
of the transfer matrices corresponding to energies from the spectrum, as proven by lochum
et al. [9, 10], the lower bound for the Hausdorff dimensionality of the spectral measures, as
proven by Jitomirskaya and Last [12, 13] (see also [3]), or the upper bound for the Hausdorff
dimension of the spectrum, as proven by Raymond [24]. Furthermore, there are results on
the Lebesgue measure of the spectrum in both cases, which is |[4—2|A|| in the almost Mathieu
case (for a.e. a) [19, 20, 14] and zero in the Fibonacci case [2, 26].

We will be able to derive results for the p-sparse versions of almost Mathieu and Fibonacci-
type operators from the results mentioned above by employing Guille-Biel’s decomposition
approach.

The organization of this article is as follows. In Section 2, we present the relevant part
of the decomposition theory and prove the general extension principle. Applications of this
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principle are then given in Sections 3 and 4. Finally, Section 5 contains some concluding
remarks.

2 Decomposition of the operator and the extension
principle

Let p be fixed throughout this section and let H, be a p-sparse Schrodinger operator. Define
for i € {0,...,p — 1} the following subspaces of [*(Z),

Ki = lin{empr: : m € Z},

where {€,, }mez is the canonical orthonormal basis of (%(Z), i.e. €, (n) = 8,,.. The following
properties are obvious.

e The X, are mutually orthogonal.
o [*(Z) is their orthogonal direct sum: [*(Z) = @2, K.
e For every i, {*(Z) is isometrically isomorphic to K;.

o For every i, K; reduces H,, and therefore, H, = @?=, H,:, where H,; = H,x,.

Define the operators H,; by
(Hpiu)(n) = u(n +1) +u(n — 1) + Vpi(n)u(n), (2.1)

where V, ;(n) = V(np+1). It is now straighforward to show that ﬁ[p,i and H,; are unitarily
equivalent, for a proof see [6]. We have thus obtained a representation of H, as an orthog-
onal sum of standard discrete one-dimensional Schrodinger operators. If the potential V is
such that the fiber potentials V,; yield operators H,; which are well studied already, this
decomposition enables us to derive results for H,.

Let us remark that we have presented a deterministic version of Guille-Biel’s decomposi-
tion. Of course, p-sparse Schrodinger operators fit into the framework of random operators,
but if the p = 1 case is studied well enough, we obtain results for the general case by point-
wise extension (i.e. separately for every w). We will illustrate this below.

Let now a quasiperiodic operator of the form (1.3) be given. We are going to state the
extension principle in Theorem 1 below. This principle extends properties of H; which hold
(at least) for a.e. w to the higher order operators H,, where the set of a’s for which the
property holds has to be changed. Let us say that a property P is called stable under direct
sums iff for every pair of selfadjoint operators A;, A, the following holds:

A, and Aj satisfy P = A, @ A, satisfies P.



670 Damanik

Think, for example, of P — o.(-) =0, ¢ € {pp, sc, ac}.
Theorem 1 Let P be a property which is stable under direct sums. Then, for every A € R,
the following holds. Let Sy C R be such that

a € Sy = H;"™* has the property P for a.e. w. (2.2)

Then,
pa €S\, = H;\'““" has the property P for a.e. w. (2.3)

If P holds everywhere, rather than almost everywhere, in (2.2), then the same is true in

(2.3).

Proof. Fix A € R and let pa € S\. The potentials of the fiber operators Hr')\.'f’w introduced
above are given by

Aa,w _ . _ )
Voi7¥(n) = Af((np 4+ 1)a + w) = Af(n(pa) + (o +w)).
By assumption, for every i € {0,...,p — 1}, H:,’f'“’ satisfies P for a.e. (resp., every) w .

Thus, for a.e. (resp., every) w, the property P is satisfied by all H;\,’,-“'“’, 1 €40,...,p—1}.
Stability of P now implies that for those w

p-1 3
oW
@ Hp’i
1=0
satisfies P, concluding the proof. O

Remark. The proof is so simple because it was easily seen that the fiber operators are
also quasiperiodic. The situation is less simple in the case where the potential is generated
by a substitution, compare [6].

3 Extensions of Fibonacci-type results

In this section, we consider operators of the form
(H**u)(n) = u(n + p) + u(n — p) + Axs(na + w mod 1)u(n), (3.1)
where J is a half-open interval in T = R/Z.

Some results require certain number theoretical properties of . We refer the reader to
the monographs by Lang [18] and Khintchine [15] for the necessary background.

The following series of Corollaries can be obtained.
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Corollary 1 If A # 0, then, for every p € N, « irrational and w € €, G‘aC(H;’)\'“'W) = 0.

Proof. By Kotani [17] and Last-Simon [23], absence of absolutely continuous spectrum holds
for all fiber operators. Since absence of absolutely continuous spectrum is stable under direct
sums, the assertion follows from Theorem 1. O

Corollary 2 Let (a,) be the coefficients in the continued fraction erpansion of pa. If
limsupa, > 4, then, for cvery A € R, crpp(Hz’,\""““) = holds for a.e. w € Q.

Proof. By Kaminaga [16] (see also [5]), the assumptions of Theorem 1 are satisfied. O

Remarks.

1. The last two corollaries can be generalized to the case where J is a finite union of
half-open intervals. The potential can even take different values on these intervals. In
the assumption of Corollary 2 the condition has to be changed to limsupa, > 4xthe
number of intervals, compare [5].

2. We see that, as a rule, quasiperiodic potentials taking finitely many values seem to
yield purely singular continuous spectrum. No exception to this rule is known yet.
That is, it is still open if there exist p, J, A, a,w such that ap,,(Hz;\‘c"“’) # 0.

Corollary 3 IfJ = [1—pa,l), then, for every A € R, app(Hl’)\"*’“) = () holds for a.e. w € Q.

Proof. Again by [16], the assumptions of Theorem 1 are satisfied. O

Corollary 4 If J = [1 — pa,l), then, for every A # 0,w € Q, U(Hi)\*“’“’) has Lebesgue

measure zero.

Proof. Bellissard et al. have shown that if the length of the interval J coincides with the

A aw

(irrational) rotation number «, then, for every A # 0,w € Q, o( H;"™"™) has Lebesgue measure
zero [2]. This is clearly a property which is stable under direct sums. By assumption, the
length condition is obeyed by the fiber operators. Thus, Theorem 1 can be applied. 0

4 Extensions of almost Mathieu results

[n this section, we shall apply Theorem 1 to the case f(-) = cos(27(+)). We therefore consider
the operators

(H;L’,\‘“'“’u)(n) =u(n+p)+uln —p)+ Acos(2r(na + w))u(n). (4.1)

The following series of Corollaries can be obtained.
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vorollary 5 If || > 2, then, for every p € N, a trrational and w € Q, JQC(H;‘J\'“-W) =33

Proof. An already classical result gives absence of absolutely continuous spectrum for the
fiber operators almost everywhere in Q, see, e.g., [L1] for references. Again, the result by
Last-Simon [23] extends this to all w. Apply Theorem 1. O

Corollary 6 If [\ < 2, then app(H;‘""'“) = for every p,a and w.

Proof. The assertion follows from [4] and Theorem 1. 0

Another general result on the absence of eigenvalues is given in
Corollary 7 If pa is a Liouville number, then a,,(H»**) =0 for every A, w.

Proof. Avron and Simon [1] proved absence of eigenvalues in the case p = 1 by verifying
Gordon’s condition [7] for Liouville frequencies. Theorem 1 then yields the result. 0

Remark. The results contained in Corollaries 5 and 7 provide explicit examples with purely
singular continuous spectrum.

Corollary 8 If |A| = 2, then, for every p and a.e. a,w, the spectrum of HM Y is purel;
Y P )
singular continuous and has Lebesgue measure zero.

Proof. Apply Theorem 1 together with (8, 20]. 0

5 Concluding remarks

We have seen how the extension principle stated in Theorem 1 provides a mechanism for
producing results for p-sparse operators from results in the standard case which hold (at
least) almost everywhere. This is particularly nice because the spectral theoretical machin-
ery is much more developed for the classical case p = 1. It is far from obvious how to obtain
results of the type presented in Sections 3 and 4 directly, that is, by applying higher order
methods to H, instead of considering the decomposition introduced by Guille-Biel.

The list of applications we have presented serves rather as an illustration of the useful-
ness and applicabilty of Guille-Biel’s decomposition along with the extension principle and
we have by no means aimed at completeness. In particular the set of almost Mathieu results
in the literature provides much more possibilities to formulate further Corollaries for p-sparse
versions, but this would be quite pointless.
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