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On the Surface Spectrum in Dimension Two
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and Stanislav Molchanov

Department of Mathematics, University of North Carolina,
Charlotte, NC 28223, USA

(13.XII.97)

A bstract. We study spectral properties of the discrete Laplacian H^ on the half space Z+ ZxZ+
with a random boundary condition tp(n, — 1) Vu(n)ip(n,0). Here, Vu(n) are independent and

identically distributed random variables on a probability space (Q,,ZF,P). We show that outside
the interval [—4,4] (the spectrum of the Dirichlet Laplacian) the spectrum of Hu is P-a.s. dense

pure point.

1 Introduction

This paper is a part of the program introduced in [JMP]. This program is concerned with
spectral and scattering theory of the discrete Laplacian on a half-space with a random
boundary condition. We refer the reader to [JMP] for the history of the problem and
additional information. In this section we define the model, review some of the known
results and state theorems which will be proven in this paper. At the end of the section we

will sketch some of the main ideas involved in the proofs of our theorems.

Let d > 1 be given and let Z^.+1 Zd x Z+, where Z+ {0,1,...}. We denote the points
in Z^+1 by (n,x), n £ Zd, x £ Z+. Let (Q,ZF,P) be a probability space and Va, cj £ Cl, a
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random process on Zd such that Vu(n) are independent and identically distributed random
variables with density p(x). We denote by V the support of the probability measure p(x)dx.
Let Hw be the discrete Laplacian on /2(Z++1) with the boundary condition tp(n, -1)
K,(n)t/>(n,0). If K, 0, this operator reduces to the Dirichlet Laplacian which we denote
by Bq- The operator Hu acts as

(Huil>)(n,x)
E|n-n'|++|x-x'|=i i>(n', x') if x > 0,

i>(n, 1) + E|n-»'|+=i ^(n- °) + WV(n, 0) if x 0,

where |n|+ £|=i ln;l- Note that operator Hu can be viewed as the random Schrödinger
operator

HU H0 + Va, (1.1)

where the random potential Vu acts only along the boundary <9Z^+1 Zd. For many
purposes, it is convenient to adopt this point of view and we will do so in the sequel. Since
Ho is bounded, the operator Hw is properly defined as a self-adjoint operator on /2(Z++1).

It follows from the standard argument (see Section 9.1 of [CFKS] for basic notions
concerning random Schrödinger operators) that there are deterministic sets E, Epp, Eac and Esc

such that P-a.s, er(Bw) E, o^H^) Epp, oac(Hu) Eac, osc(Hu) Esc. Obviously,
E Epp U Eoc U Esc. We will use the usual notation Ec Eac U T,sc, Es Epp U Esc. The set
E can be explicitly computed (see [JMP], and for detailed proof [JL]). Let

S(V) ÌE + a + -: E £ [-2d, 2d], a G V and |o| > l| (1.2)

Note that S(V) is a closed set and that <S(V) 0 if and only if V C (-1,1). Recall that
o(Ho) [-2(d+l),2(d+l)\. Then

E <r(tf0)US(V). (1.3)

Note also that whenever V n (R \ [—1,1]) 7= 0, the set E has parts lying outside tj(Ho).

The first natural question concerning the spectral theory of Hu is what is the structure
of the sets Epp, Eac. Eac. We briefly summarize the known results.

1) For arbitrary boundary potential V, cr(Ho) C oac(Ha + V). Therefore, o(H0) C E„c. This
result is proven in [JL],
2) In [JL] it is also shown that Es C {E : |B| > 2(d + 1)}. In other words, the spectrum of
Hu on o(Ho) is P-a.s. purely absolutely continuous. For this last result to hold, we do not
need that the random variables Vu(n) are identically distributed - it suffices that they have

densities. We emphasize that these results are random - there are examples of potentials
V (which even satisfy lim^^oo V(n) — 0) such that H0 A V has eigenvalues embedded in
a(Ho) [MW],
3) Under some additional technical assumptions on the distribution function p(x) (e.g. it
suffices that p is compactly supported and in L°°(R)), there exists Ec > 2(d + 1), which
depends on p only, such that

Ecn{£: |Bj > Bc} 0.
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In other words, P-a.s. the spectrum of Bw is pure point outside the interval [—EC,EC]. It is

also known that the corresponding eigenfunctions decays exponentially. Similar results hold
in the "large disorder regime" - for any e > 0 there exists 5(e) such that if ||p||oo > o(e) then
(1.3) holds with Ec 2(d+l)+e. The corresponding eigenfunctions also decay exponentially.
These results are proven in [AM] and [G]. For some related results see [BS].

In this paper, we are interested in improving the results of 3) in d 1. We will make the

following assumptions concerning the random potential Vw.

(HI) The topological boundary of V is a discrete set and p £ L°°(R).
Our main result is

Theorem 1.1 Let d 1 and assume that (HI) holds. Then

Ecn{£: \E\ >4} 0.

In other words, P-a.s. the spectrum of Hu outside the interval [—4,4] is pure point.

Remark 1. Our estimates give some control of the decay of the eigenfunctions of Hw. It
follows from our arguments that P-a.s. the eigenfunctions corresponding to the eigenvalues
outside [—4,4] decay as

\Ì>sAn,x)\ < CE,u,kexp(-7B|i|)(l + |n|)-*, (1.4)

for any k > 0. We expect that the estimate (1.4) is not optimal, and that the eigenfunctions
decay exponentially in the n-variable. To establish such decay near the edges ±4 appears to
be a difficult technical problem.
Remark 2. The condition that topological boundary of V is a discrete set is needed for
technical reasons and in some cases it could be relaxed. For example, if the Lebesgue measure
of V is infinite, the result holds under the assumption that int(V) i=- 0.

Combining 2) above with Theorem 1.1 we obtain a complete description of the sets Eac,

Epp, Esc. We always have

Eae [-4,4], Esc 0.

If V C [-1,1] then Epp 0, otherwise (recall (1.3))

Epp E\(-4,4) 5(V)\(-4,4).

Similar results are proven in some cases where the boundary potential V is almost periodic
[JM1], [KP].

Let us briefly relate Theorem 1.1 to the discussion of the surface states presented in

[JMP]. For any boundary potential V we define the surface spectrum of the operator Ho + V

as the closure of the set of energies E for which the equation (Bo + V)u(n,x) Eu(n,x)
has a non-zero solution which satisfies

x:(i-r>ir*i>(n,s)i2<c»,
neZ<< x>0
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for some k > 0. Roughly, the surface spectrum consists of the energies whose corresponding
generalized eigenfunctions have some decay in the i-variable. We denote the surface
spectrum by asurf(Ho + V). One can show (see [JMP]) that cr(B0 + V)\o(H0) C cjsurf(H0 + V).
An absolutely continuous surface spectrum exists if V is a constant or a periodic function
and maxn|V(n)| > 1. In this case, the generalized eigenfunctions are localized in the
redirection and propagate along the boundary. Theorem 1.1 asserts that if d 1 and the
constant boundary condition is replaced with a random boundary condition, then all
propagating surface states with energies outside [—4,4] are localized by the random fluctuations
of the boundary. This is physically the most interesting consequence of Theorem 1.1. An
interesting open question is whether there are any surface states with energies inside cr(Ho).
This problem remains to be investigated in the future.

In the rest of this section we sketch some of the basic ideas involved in the proof of
Theorem 1.1.

The first idea concerns dimension reduction ([AM], [G], [JMP]). Roughly speaking,
"integrating" the i-variable we will reduce the 2-dimensional spectral problem to an 1-dimensional
problem which will depend non-linearly on the spectral parameter E. This reduction could
be done in any dimension. For the latter applications, we will describe and prove this result
in the general setting.

Let X be an open interval on the energy axis such that I n cr(H0) 0. Let T
R/27rZ be the circle and Td the d-dimensional torus. We denote the points in Td by
(p (cj)x,..., cpfj, and by dep the usual Lebesgue measure. In the sequel we use a shorthand
$(4>) 2 Efe=i cos 4>k- Let X(cp, E) be the solution of the quadratic equation

x^ + x(hr)+m=E'
such that \\(tf>,E)\ < 1. Let

"j(4>,E) \(4>,E)+ *(</>), j(n,E)= I e-m*j(J>,E)dd.. (1.5)

We will prove in Section 2 that there are constants C and 7, which depend only on the
distance of I from cx(H0), such that for E £l,

|i(n,B)|<Cexp(-7|n|+).

Let ho(E) be the operator on l2(Zd) defined by

(h0(E)i>)(n) Y i(n - k' EMk)- (1-6)
k€Zd

We define one parameter family of random operators on l2(Zd) by

K(E) ho(E) + Vu, E£ T. (1.7)

Our argument will be based on the following variant of Simon-Wolff theorem [SW]. Let m
be the Lebesgue measure on R.
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Theorem 1.2 If for a.e. (E,u) £ I x Q, with respect to the product measure m® P,

lim||(/iw(B)-B-iC)-1<50|| <oo, (1.8)

then Lnl
We will prove this theorem in Section 2.

In comparison with the usual theory of random Schrödinger operators, there are two
essential difficulties in studying the quantity \\(hu(E) — E — iC)_1^o||- The first is that h0(E)
is a long-range Laplacian, and the second is that h0(E) depends on energy. These difficulties
are successfully resolved in the high energy or large coupling regime adopting the techniques
of the multiscale analysis and the method of Aizenman-Molchanov [G], [AM]. Of course,
in general these results cannot be improved without major new insights into the theory of
random Schrödinger operators.

The case d 1 is however special. In this case, the operators hu(E) act on l2(Z), and
there was a hope that the results of 3) could be improved using some of the techniques specific
to the theory of one-dimensional Schrödinger operators. As a first part of this program, we
have investigated in [JM] the long-range, one-dimensional random Schrödinger operators of
the form hu h0 + Vu(n), where K,(n) is as in (1.1), and ho is a translation invariant
self-adjoint operator with some off-diagonal decay. The simplification is that ha now does

not depend on E,
(M)(») Ei(n-*W(*)-

kez

Note that again the spectrum of hu and its pp,sc,ac component are P-a.s. deterministic
sets. Furthermore, P-a.s. a(hu) cr(ho) + V.

Before stating a theorem from [JM] which will concern us here, we set some hypothesis
on ho'-

(H2) There is S > 0 such that Vn, |i(n)| < C(\ + Ini)-8-*.
(H3) The function j(<j>) T,nj(n) exp(in^) is even, real and strictly monotone on [0,7r].
The following result was proven in [JM].

Theorem 1.3 Assume that Hypotheses (H2) and (H3) hold and that int(V) / 0. Then for
a.e. (E,ui) £ R x Q, with respect to the product measure m® P,

lim||(/iw-B-iC)-1Jo|| < oo. (1.9)

In particular, P-a.s. the operators h„ have pure point spectrum.

The techniques used in the proof of this theorem will play the central role in the proof of
Theorem 1.1. For this reason we briefly review some of the basic steps of the argument.

The proof of Theorem 1.3 is based on a geometric approach to localization in d 1

which goes back to [SS], [KMP], [M], [Ml], [GJMS]. The principal idea is to show that a
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particle with given energy E0 has to tunnel through an infinite sequence of "barriers" to
reach infinity. This idea is formalized as follows. Let B0 be a given point in a (ho) + V, and
1 a small open interval around E0. Using the structure of the random potential Vu(n), one
constructs P-a.s. a sequence of intervals (barriers) Ik(w) C Z, with centers ck(u>) and of
width Zfc(w), such that ck(u) -+ ±00 and lk(tv) —> 00 as k —¥ ±00, and such that

lna(/i4(w))=0, (1.10)

for all k. Here, hik>u) is the restriction of hw to Ik(w) with the Dirichlet boundary condition.
For barriers to be effective in preventing tunneling, we need that they are sufficiently long,
namely that #Ik(w) > cu\k\, and they are not too far apart, namely that |cfc(w)| < a^1, for
some positive constants cu and au. Once such a geometric configuration of the barriers is

given, the random parameter u> is fixed, and plays no further role. Thus, we drop subscript u>

for the rest of this paragraph. Let Ak be the intervals between Ik and Ik+X, Mk IkUAkUlk+x
and hiuk the restriction of h to Mk with the Dirichlet boundary condition. One now constructs
an iterative expansion of the resolvent (h — E)~l in terms of the resolvents (h,Mk — E)~l and
(hik — EY1. At this point one encounters an analog of the "small divisor problem". The
contributions from (hrk — E)~l are small due to (1.10). Since we do not have any control
on the potential within A^'s, we need an apriory estimate on (/iMfc — B)_1 which will make
use of the fact that the intervals Mk are not too long. Such an estimate is obtained by
randomization of the energy E within interval I. The end result is that for typical E £ I
with respect to the Lebesgue measure, the size of the terms (hMk — E)~l is compensated by
(hjk — B)~\ and this will ultimately yield the estimate (1.8). We remark that although the
ideas of the argument are intuitive and transparent, the technical details are involved.

There are two basic mechanism which can yield Relation (1.10). The first is that within
intervals Ik(ui) the absolute value of the potential is sufficiently large. This argument is

applicable for example in the case where the Lebesgue measure of V is infinite. In this case,
the proof is somewhat simpler and we do not need Hypothesis (H3) for Theorem 1.3 to
hold. In more general situations, however, to verify (1.10) we had to construct long periodic
approximations VP]UI of the random potential Vu such that E0 is in the spectral gap of the

operator ho + VPtU. Since ho is long range, this construction is involved and technical. It is

precisely in this construction that Hypothesis (H3) enters the game. We refer the reader to
Sections 5 and 6 of [JM] for details of the argument.

In this paper we will use the techniques developed in [JM] to show that under the
assumptions of Theorem 1.1 Theorem 1.2 holds. Note that for fixed E £ [—4,4], j(cj>,E) is

real, even, analytic and strictly monotone on [0, n] so will adopt the strategy of the proof of
Theorem 1.3. The main difficulty is that if ho depends on E, the randomization of energy
used to get an apriory estimate on {hyik — B)_1 is not possible any more. We replace this
step in the argument with a construction to which we will refer as a probabilistic reduction.
More precisely, we will make suitable partitions of the probability space fi which will fix
the positions of the "barrier" intervals Ik (the intervals for which an analog of (1.10) holds).
Within these partitions the random variables Vu(n) will be independent but not identically
distributed. For fixed E the apriory estimate on (hMk(E) — B)_1 will be obtained within
the partitions with the help of a Wegner type result already used in [AM]. [Ml]. For this
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reason we need that p £ L°°(R), an additional condition which played no role in [JM]. The
rest of the argument will follow closely [JM].

We have attempted to give complete proofs, except for the results which are verbatim
the same as in [JM].

Acknowledgments We are grateful to Y. Last, L. Pastur, and B. Simon for useful discussions.

The research of the first author was supported in part by NSERC and of the second

by NSF. Part of this work was done during the visit of the second author to University of
Ottawa which was supported by NSERC.

2 Dimension reduction

In this section we prove Theorem 1.2.

Let V : Zd 1-4 R be an arbitrary potential. We denote by the same letter the induced

multiplication operator on /2(Z^.+1) which acts as follows: (Vip)(n,x) 0 if x > 0 and

(Vip)(n, 0) V(n)ip(n, 0). Let H - H0 A V where H0 is a Dirichlet Laplacian on Zd++1- We
recall that the points in Zd+1 are denoted by n (n,x), n £ Zd,x £ Z+. Let

R(m,n;z) (6m,(H-z)-16n).

If Im2 t^ 0 and m is fixed, these matrix elements satisfy the equation

fi(m, (n, x + 1); z) A R(m, (n, x - 1);z) A E|n-n'|+=i #(m, (n1, x); z)

Smn + zR(m, (n,x);z),

if x > 0, and

(2.1)

R(m,(n,l);z)+ Y R(m,(n',0;z) + (V(n) - z)R(m,(n,0);z) ômn, (2.2)
|n-n'|+=l

if x 0. If m (m,0) is a point on the boundary, Equation (2.1) can be "integrated". This
is most conveniently done in the Fourier representation associated to the variable n. Let Td
and $(cp) be as in (1.5). We define a unitary map F : l2(Zd++1) >-> L2(Td) ® /2(Z+) by the
formula

(FrpM,x) i>(4>,x) -^j-2 Ydtf (».x)einA

In the new representation, Equations (2.1) and (2.2) become (recall that m (m, 0)),

P(m, (tp, x A 1);z) + R(m, (é,x - 1);z) + ($($) - z)R(m, (<f>, x);z) 0, (2.3)

R(m, (f>, l);z) + (*(0) - z)R(m, (<j>, 0); z) + VR(m, (é, 0); z) em(<p), (2.4)

where em(cf>) F(6mn) (27r)_d/2exp(im •</>). It follows from Equation (2.3) that for x > 0,

B(m, (<j>, x); z) B(m, (ê, 0); z)\(è, z)x, (2.5)
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where \(<p,z) is the solution of the quadratic equation

X(*,z) + J±-)+m z,

which satisfies \\(cj>,z)\ < 1. Note that for any fixed cp, \(cp,z) is an analytic function
in the second variable on the region C \o(Ho). Substituting (2.5) into (2.4) we get that
P(m, (cp, 0); z) satisfies the equation

P(m, (cp, 0); z)(\(cp, z) + $(0)) + VR(m, (cp, 0); z) - zR(m, (cp, 0); z) em(<P). (2.6)

In the sequel we will use the shorthand

K(m, n; z) R((m, 0), (n, 0);z) (5{m,Q),(H - z)"1^)). (2.7)

Let

j(é, z) \(<P, z) + $(0), j(n. z) / e~in *j(cp. z)d<p. (2.8)

Let m and z be fixed. Applying P_1 to (2.6) we get that Vn,

Yj(n - k,z)n(m,k;z) + (V(n) - z)Tl(m,n;z) 6mn. (2.9)
A:

For any z £ C \ cr(H0) we set

(ho(z)iP)(n) YJ(n-k,z)iP(k).
k

Note that h(z) is a bounded operator on l2(Zd). Moreover, if z is real then h(z) is self-adjoint.
We set h(z) h0(z) + V. It follows from (2.9) that if Imz / 0 then z <£ h(z) and

(Sm,(h(z) - z)-l6n) =TZ(m,n;z). (2.10)

We will need

Lemma 2.1 Let n £ Zd and E 0 cr(Ha) be given. Then

lim \\(h(E + iÇ)-E- iÇ)_1<U < oo,

if and only if
lim||(/i(B)-B-2C)"15n|| <oo.

Proof: Note first that

\\(h(E AiQ-E- K)-l\\ < 1/C, \\(h(E) -E- iQ-l\\ < I/O

The second inequality is obvious, and the first follows from (2.7) and (2.10). It now follows
from the resolvent identity that

\\(h(E AiO-E- iO'XW < \\(h(E) -E- iQ-XW (1 + 1MB + »'0 - ho(E)\\/Q

\\(h(E) -E- i()~lSn\\ < \\(h(E + iQ-E- lO-'SnW (1 + \\h0(E + i() - h0(E)\\/O



Jaklic and Molchanov 637

These inequalities combined with the simple estimate

\\h0(E + zC) - ho(E)\\ sup \X(é, E + iO- \(<P, E)\ 0(0
4,£Td

yield the lemma. O

Remark. Since

(<W). (H-E- iO'Xnß)) (Sm, (h(E AiQ-E- K)'Hn),

we have that for a.e. E with respect to the Lebesgue measure the limit

ïimKôm^^E + iQ-E-iO-'Sn)],

exists and is finite. Arguing as in the proof of Lemma 2.1 one can easily show that for a.e.

BSR,
limsup|(Jm,(/i(£) -B-i0-1<5n)| < oo.

C-»o

This observation will be used latter.

We are now ready for
Proof of Theorem 1.2: Let rin be the cyclic subspace of Z2(Z++1) generated by the vector
(5(n0) and the operator Hw. It is easy to show that Hn is the same as the cyclic subspace
generated by H0 and <5(n,o). Furthermore, the linear span of Unez%n is dense in /2(Z++1).
These two simple facts are proven in [JL]. The Simon-Wolff theorem yields that for a given

open interval X, Ec n X 0 if for any n £ Zd and for a.e. (E, uj) £ X® fi with respect to the

product measure m ® P we have that

\ixxi\\(Hw-E-iO-lS(n,o)\\2 \ixxi Y |Bw((n,0),k;B + ?C)|2<oo. (2.11)
C->o C->o j.,kez^+1

Since the family of operators Hu is ergodic with respect to the usual shift operators on fi
(see e.g. Section 9.1 in [CFKS]), it suffices to establish (2.11) in the case n (0,0). The

analysis of this section applied to V Vu yields that

Y |B.((0,0),k,£-MC)|2 7^TdY/d\^((0,0),(cP,Oy,E + iC)\2\X(é,z)\2^dcP
zd+i Vn) x>0(2T)dxt

'Bw((0,0),(^,0);B + iC)[

kezi
|2

2n)d h(2n)dJTd l-\\(cP,E + i(~)\2

Since Xno(Ho) 0 there are positive constants cx and c2 such that for cp £ Td, E £ X and

0 < C < 1,

^^(l-IA^P + zOI2)-1^^.

Thus, (2.11) holds if and only if

lim—i^ /" |A.((O,O),(0,O);JE + iOr^ lini $: |7U0,fc;£ + »C)|2<oo.
k€Zd
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Finally, it follows from Lemma 2.1 that the second limit is finite if and only if

lim \\(hu(E) -E- iQ'^oW < oo. (2.12)

We conclude that if for a.e. (E, uf) £ I®fi with respect to m<g>P Relation (2.12) holds then
Ec n X 0. Theorem 1.2 follows. D

We finish this section by collecting a few facts concerning the function j(n,E) which
we will use in the sequel. Note that if n (nx,...,nA, and n (\nx\,..., |n<j|) then
j(n, E) j(n, E). We also have the following estimate:

Proposition 2.2 Let E $ o(H0) be given. Then there are constants Ce and ^F such that

\j(n,E)\<CEexp(-a(E)\n\+).

These constants can be chosen as follows. LetjE be such that'jEA-fË1 — (l-^l- 2)/2d. Then

a(E) =lxijE, CE (2n)d\E\/2. (2.13)

Remark. The estimates (2.13) are crude, but they will suffice for our purposes.
Proof: We denote the points in Cd by z (zx,z2,.. zf). Let $ : Cd M- C U {oo} be defined
by

k=l V Z>"

and let A(z, E) be the solution of the equation

X^ + zm^T)+^ E'

such that |A(z,P)| < 1. Parameterization zk exp(icpk) and (2.8) yield that

j(n, E) (-i)d jrd z"""1 [A(z, E) + *(z)] dz, (2.14)

where Td {z : V/c, \zk\ 1}, and z~n_1 n^nk_1. Without loss of generality we can
assume that nk > 0. Let <S7 {z : \zk\ £ (1,7)}- If

Vze57, \$(z)-E)\>2, (2.15)

then the function A(z, E) is holomorphic in 5T in each variable separately, and continuous
and bounded on <S7. It is a simple exercise to show that if Je satisfies je+Je1 (\E\ — 2)/2d,
then (2.15) holds, and that on the boundary of <S7£ we have an estimate

|A(z,£)| + |$(z)|<|P|/2.

Interchanging the domain of integration in (2.14) we derive the proposition. Ü
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3 Preliminaries

3.1 Path expansions and all that

In this section we collect a few technical results from [JM] concerning the operators h(E)
h0(E) + V on /2(Z), where h0(E) is given by (1.6), £ is a fixed point outside [-4,4], and V
is an arbitrary potential. For the proofs we refer the reader to Section 2 of [JM].

A path t connecting n and m is any sequence of sites t (io,ix,.. -ik) such that i0 n,
ik rn. The length of this path is |r| k. To the path r we associate a sequence of bonds

rb (bx,...,bk), where

bi (io,ii), bx (ii,i2),. --,bk (ik-X,ik).

We write s £ r if s is one of the sites of the path t, and b (s, t) £ r^ if b is one of its bonds.
We use the shorthand j(b) j(s — t; E), and

Let

Tl(n, m; z) (<*„, (h(E) - z)-l5m).

3o(E) Y\j(^E)\.

Proposition 3.1 Iflxxiz > jo(E) then

Tl(n, m; z) —-
V(n) -E n V(s) n m

bin
(3.1)

where the sum is over all paths connecting n and m. For each e > 0 the series converges
uniformly in the half-plane lxxiz > jo(E) + e.

A similar result holds if the system is restricted to a box. Let 7 C Z be an arbitrary set,
and let ho(E) be the operator ha(E) restricted to I with the Dirichlet boundary condition.
This operator is obtained by removing the couplings between the points in I and Z \ /, and

acts on I2(I) according to the formula

{h°(E)1>)(n)=Y,J(n-m,E)il;(m)
me/

(3.2)

Remark. For latter applications, we remark that if E > 4 then ho(E) < E and if E < — 4

then hg(E) > E.
We define the operator hi(E) on I2(I) by the formula h^E) h$(E) A V. We will refer to

hj(E) as the restriction of h(E) ho(E) + V to / with the Dirichlet boundary condition.
For n, m £ I we set Tlj(n, m; z) (<$„, (hr(E) - z)_1<5m). Then

7li{n,m\z) — -
V(n) E n z - V(s)

(3.3)
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where the sum is over all paths which connect n and m and belong to I. If n ox ml I we
set 7Zj(n,m;z) 0.

Notation. In the sequel, we will use the shorthand (n) (1 + n2)1/2.

Proposition 3.2 Let I be a positive integer andX an open interval such that Jn[—4,4] 0.

Assume that
inf dist{E, a(hj(E))} 5 > 0.
EaTL

Then there is a constant Cs,i, which depends on S and I only, such that

sup \lZj(n,m; E)\ < Cn(n - m)~l.
Edi

Remark. The decay of matrix elements 7Zj(n, m; E) is probably exponential, but the above
weaker result will suffice in our applications.

We will also need

Proposition 3.3 Let I be a positive integer andX an open interval such that In[—4,1] 0.

Let I C Z be such that for some 6 > 0

inf \v(n) - E\ jo(E) + S.

Then
sup \TZj(n,m;E)\ < Csi(n — m)~l,
Eex

where Csj depends on 5 and I only. Furthermore, there is a constant Ci which depenis on I

only, such that for S > 1, Cj,/ < Ci/S.

Proposition 3.4 Let It be a sequence of finite intervals such that I(.\Z as I -+ oo, md let
E be such that W, E £ o(h,(E)). Then, Vn e Z,

lim \\(h(E) -E- iCrXW < liminf \\(hIt(E) - E)-lSn\\.
Ç—*0 c—>oo

The final technical result we need is

Proposition 3.5 Let E0 & [—4,4] be given. Then

lim sup IIM-E)- hi(Eo)\\ 0.
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Since this last proposition was not discussed in [JM], we sketch its proof.
Proof: It follows from Lemma 5.2 in [JM] (see also [Ka], Section 1.4.3 and Lemma 7.1 in
[SS]) that

sup \\hj(E) - hj(E0)\\ < Y \J(n, E) - j(n, E0)\.
'cz nSZ

Note that
j(n,E)-j(n,E0) f e-in^X(é, E) - X(é, E0)}dcp.

Jt
If n ^ 0, integrating by parts twice we arrive at the estimate

\j(n, E) - j(n,E0)\ < 0(\E - E0\)/n2.

The result follows. O

3.2 Apriori estimates

The results of the previous section have to be complemented with an appropriate version of
Kolmogorov's lemma (Proposition 2.4 in [JM]) for technique of [JM] to work. We however
cannot randomize energies E if ho depends on E, and this part of the argument will be

distinctly different from the one in [JM]. The technical results which will be used instead of
Proposition 2.4 of [JM] are described in this section.

Let Hq be a symmetric matrix (operator) on Rw, and let £i,...,£jy be independent
random variables on the probability space (fi, ZF, P). We define random operators H^ by the
formula

Hu H0 + YU")(Si,-)Si.
t=i

We denote by hkl the matrix elements of Ha in the basis {5,}. We make the following
hypotheses:

(Al) For any k, hfk ^ 0, and for any k and I, h^h\°] - (hfl)2 ± 0.

(A2) The random variables £i(u>) have densities Pi which are uniformly bounded, i.e. for
some cr > 0 and all i, \\pi\\œ < <*¦

We remark that Hypothesis (Al) is automatically satisfied if Ho > 0 or Ho < 0 (and
this will be the case in our applications, recall the remark after (3.2)). We also remark that
without loss of generality we can take for our probability space fi RN. Then T is the
Borei (T-algebra on RN, dP X\pi(xi)dxi, and if u (xx,...,xN) then &(w) a:*. We

denote E(/) f f(u)dP(w).

The first observation we need is

Lemma 3.6 Assume that Hypothesis (A2) holds. Then 0 0 o(Hw) P-a.s.

Remark. For this lemma to hold we only need that the random variables & have densities.

Proof: It suffices to show that deti^, ^ 0 P-a.s. This can be shown by induction as follows.
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Statement is obvious if N 1. If N > 1, expanding the determinant with respect to the
last row we can write

detPT^ Çn(uj)R(uj) + D(u).

Here, R(u>) is the determinant of the matrix obtained from Hu by removing the last row
and the last column. By induction hypothesis, R(tA) ^ 0 P-a.s, and det/fw 0 implies
£n(w) — D(lü)/R(w) 0. Since £# and R/D are independent random variables,

P{u> : detHw 0} < supP{w : ÇN(w) a} 0. G

From this lemma it follows that PTj1 exists P-a.s. We denote Rw(k,l) (5k,H~l6\). The
principal result of this section is

Theorem 3.7 Assume that Hypothesis (Al) and (A2) hold. Let 0 < s < 1 be given. Then

for any k and I,

E(\Rw(k,l)\s)<C(s,a),
where the constant C(s,o) depends on s and o only.

Remark 1. The proof of this result is outlined in [Ml]. For reader convenience, we present
a detailed proof below.
Remark 2. For latter applications, it is critical that this theorem holds for random variables
which are not necessarily identically distributed.
We will make use of the following consequence of Theorem 3.7.

Corollary 3.8 Assume that Hypothesis (Al) and (A2) hold. Then for any k and I,

P{u : \R^(k, 1)\>M}< C(o)/M, (3.4)

A'

P{w : Y \R»{k,j)\2 >M}< C(o)N/Ml'\ (3.5)

where the constant C(a) depends on a only.

Proof: Relation (3.4) follows from Chebyshev's inequality. To prove (3.5), we note first that
if {^}^=1 is a positive sequence and 0 < s < 1, then

N N Y
£*$>£*; • (3-6)
j=i \j=i

Thus, ifXj(uj) \Rw(k,j)\,

N {» V*
P{W:£X»2>M} P{w: \YXM2) >M1/4}
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< P{u>:YXk(^l2>M'li}
3=1

< TT^YnxM1'2)
MV4.=1

< C(a)N/Ml/\

In the first estimate we have used (3.6) and in the second Chebyshev's inequality. 0

The rest of this section is devoted to the proof of Theorem 3.7.

Let k and I be given. We set

H^ HQ + Ei^k &M(ft, -)Si HU- 6b(w)&, -)Sk,

flW> Ha + Zitk,iti(")(Si, -)S, Ha- &(«)(**, -)ök - 6(«)(*,, •)*«•

Lemma 3.9 Assume i/iai Hypotheses (Al) and (A2) /loW. Then 0 $• cr(H^) and 0 ^
a(H,(,w») P-a.s.

Proof: Using induction with respect to N one argues in the same way as in the proof of
Lemma 3.6.

In the sequel we will consider separately the cases k I and k ^ I. The first case is

simpler since an argument based on the rank one perturbation theory suffices. The second

case requires an argument based on the rank two perturbation theory.

Case 1: k I.

Let Rw(i,j) be the matrix elements of IH^]'1. The identity

HZ1 - IH^}-1 -&M1C1 l(Sk, -)Sk} [PT«]-\

leads to the formula

P (fc fc)
^(fc'fc)

Since fjt(w) and /?„(&,/:) are independent random variables,

(|Jk(M)D < sup f j-^—nPk(x)dx.
(SR-/R \X - t\°t€R

Since 0 < s < 1 and ||pfc||oo < c> decomposing /R Jjt_lit+1] +/R\[t-i,t+i]> we easily estimate

E(|i^(fc,fc)|ä) <l + 2cr/(l-s).

This concludes the Case 1.

Case 2: fc ^ I.

Let R\,(i,j) be the matrix elements of [üf($*,')]~1. The identity



644 Jaksic and Molchanov

yields that for any i,j,

Ru(i,fl R»(iJ) - Çk(uJ)Ru(i,k)FL(k,j) - ç»Pc(M)-MU)-

Substituting i — k,j k and i k,j I ixi this relation, we get after simple algebra

Ru(k,k)[l + &(u)Éa{k,k)]+Ru(k,l)à(u)Ru(l,k) ÌL(fc,fc),

Ru(k,k)Çk(w)R(k,l) + Ru(k,l)[l+^l(u)RiJ(l,l)] R„(k,l).
(3-7)

The random variables £k(u>) and Çt(w) are independent from the random variables P^fc, fc),

Ru(l, I) and Ru(k, I), and it is a simple exercise to show that

(1 + &(«)&,(*, fc))(l + ti(u)Ru,(l, I) - &(w)6MA»(*. I)2 + 0 P - a.s.

This relation and Equations (3.7) yield that

£> /f. a Rw(k,l)

(i + &(w)Âù,(*>*))(i + 6(w)Jft(i,0)-&M6(w)Âu)(*,02"

We have used that Rv(k,l) Pw(£,fc). Let

Au Rw(k,k)Rw(l,l)-R^,(k,l)2.

We will prove below that
Aw^0 P-a.s. (3.8)

Assuming this, we finish the proof of Theorem 3.7.

If (3.8) holds, then

R(kl)- /Ufc.Q/4.,
(&(w) + P.(/,0/A.)tôH + R\,(k,k)/Au) - K(k,l)2/Al'

Thus, we have a bound

/ |Pw(fc,Z)|sdPH< sup [tt—t-,—777TT-, c ^rdP(tü).
Jn a,b,c€RJXi \((k(uj) + b)(^,(uj) + c)-a2\s y

We proceed to estimate the left-hand side of this inequality. Let a, b, c be fixed. Without
loss of generality we can assume that a ^ 0. We introduce new random variables £k(ui)
Çk(u>) A b, Çi(u>) c;i(u>) + c. Clearly, Çk and Ç; are independent random variables whose

densities satisfy ||pi||oo < <?, \\Pk\\ < o- We introduce the following sets:

fi! {co : êk(w) < a/2, 6(w) < a/2},

fi2 {w : êfc(w) > a/2}, fi3 {w : |,(w) > a/2}.
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Clearly, fii U Cl2 U Q,3 fi. We now have

L ic Jf\ 2TsdP^ * (4/(3a))sP(fir)
yni I6fe(w)6(w) - o2|«

< (4/(3a))smin{l,a2/4}
< (4/3)s.

Furthermore,

f J^ AP(w) /" pfc(x)d:r. / |fl|'
pi(y)dy

r \a\s f 1

- / j-77Pk(x)dx / ì —-r-pt(y)dy
ÌR\[-a/2,a/2] [l|s ./R |j/ - Ü2 jX\s

< 2' [1 A 2(7/(1 - *)].

The estimation of /n is analogous to that of /n Thus, we arrive at the estimate

E (\Ru(k, 01s) / |Pw(fc, Of dP(u) < (4/3)s + 2<+1(l + 2a/(l - s)),
Jn

It remains to prove (3.8). If N 2, Aw det(P0)_1 # 0 (recall (Al)). If N > 2, we will
use that

Mu(w) Çr(w)Af^(w) + Äu(w)

detPf^ ' u,v ' y detPw' v,/ \ det#<

where Mij(u>) is the cofactor of the element h,j(ti>) of the matrix P^''' (all matrices are
computed in the standard basis {Si}). Thus, Aw / 0 P-a.s. if

Mkk(u)Mu(w) - Mlk(w)2 ^ 0 P-a.s.

Let r / k,l. Mkk(ui) is the determinant of the matrix obtained from Hw by removing the
fc-th row and column. Expanding this determinant with respect to the row which contains
£r, we get that

Mkk(w) fr(w)Aifcfc -

The random variable fr(w) is independent of Mkk\w) and Ekk(cj). Note also that Mkk'(u)
is the determinant of the matrix obtained from Hu by removing the fc-th and the r-th row
and column. Similarly, we have that

Mu(u) c-rMM^H + PuM

m„h2 [^hm^m + p^h]2.

Here M„ (u>) is the determinant of the matrix obtained from Hu by removing the l-th and

the r-th row and columns, and M\1'(ui) is the determinant of the matrix obtained from Hu
by removing the l-th row, the fc-th column, and the r-th row and column. Then

Mkk(u)Mu(uj) - Mlk(w)2 £r(w)2a(w) + ÇT{u,)b{u) + c(u>),
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where

a(u,) Miï(uJ)MÏ)(Lo)-Miï)(u)2

and Çr(u) is independent of a(u>), b(uj) and c(u>). If

a(w)/0 P-a.s., (3.9)

then
P{w : Aw 0} < supP{w : Çr(w)2a + £r(w)6 + c 0} 0.

a.b.C

To establish (3.9), we pick r' / r,I,fc, expand the determinants A/^, Af;; and Mn with
respect to the r'-row of the matrix Hu, and continue inductively. The algorithm terminates
after N — 2 steps, and in the last step we get that

Mr2)MMT2)M - Mt2)H2 4M?' - (C)2,

which is different from zero by Hypothesis (Al).

4 The main theorem

Let ho(E) be given by (1.6) and Vu be a random potential on Z such that Vu(n) are independent,

but not necessarily identically distributed random variables on some probability space
(Ù,,ZF,P). We assume that each random variable Vu(n) has density pn(x). Furthermore, we
assume

(A) There exist a > 0 such that Vn, ||pn||oo < cr-

Let
hu(E) ha(E) + Vu(n).

This operator is in general different from hu(E) defined by (1.7).

We will freely use the notation of the previous sections. In this section we prove

Theorem 4.1 Let a > 2 be an integer and X (c, d) an interval such that X n [-4,4] 0.

Assume that (A) holds and that there exists an integer N > 0 such that, Vn > 0, the intervals

±laN+n + l,aN+n+1-l],

contain sub-intervals I±n of the length l±n > n such that P-a.s.

inf dist{P, o(hI±,n,w(P)} 5 > 0. (4.1)

Then for a.e. (E, uf) £ X x fi with respect to the measure m® P, and for any n £ Z,

lim||(/iw(P)-P-zC)-1on||<oo. (4.2)
c-*o
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Remark. We emphasize that the intervals I±n are deterministic.
3iven the results of the previous section, the proof of Theorem 4.1 reduces to translating
ine by line the arguments of Section 3 in [JM]. To see how this translation is carried out,
we will reproduce here a part of the argument.

The first observation we will need is that (4.1) and Proposition 3.2 yield that for any
positive integer l, E £ X and p, q £ I±n,

\Ri±n,Up,q;E)\<c6Ap-q)-1, (4.3)

where Csj does not depend on E, I±n and u>. In this technical sense the intervals I±n are
the intuitive "barriers" discussed in the introduction.

To simplify the notation, we will prove (4.2) only in the case n 0. This is the case that
we will use latter.

We begin by introducing several sequences of intervals. Let /„'s be as in the theorem,
In [a„, bn\, and let l„ \an — 6n|-l-l. Let Af0 [a_i, &i]. For n > 0, we set Mn [an, bn+x],

and for n < 0, M„ [a„_i,6„]. Let A0 [6_i,Oi]. For n > 0, we set An [6„,an+i], and

for n < 0, An [6n_i, an]. Note that for n > 0,

Mn In U An U 4+1- (4.4)

A similar relation for n < 0

Notation. In the sequel we will drop subscript to whenever there is no danger of confusion.

Thus, we write h(E) for hu(E) etc.

We denote by hM„(E) the restriction of h(E) to M„ with the Dirichlet boundary condition.

Let P.vf„(P) (h,Mn(E) — E)~x be the resolvent of h\fn(E) and RMn(P< <?; E) its matrix
elements. We first collect some apriori estimates on Rm„(E). Let

(i) _ a (2) _ L (3) (4) b

Recall that (x) — (1 + a;2)1/2. We denote by Ln the number of points in Mn, Ln — #Mn.

Proposition 4.2 Let E £ X 7 > 0 and I > 0 be fixed. Then for every e > 0 there is a

measurable set Û(e) C fi such that:
1. P(fi\fi(<0) =0.
2. For each w £ fi(e) there is a positive integer nUtS such that for \n\ > nWj£ the following
estimates hold:

xnax\RMn(x^+p,x^+q;E)\ < e(n)1^(j>)1+^q)1^, (4.5)

max£ \RMn(x®+p,q;E)\2 < L4n(n)^1+^(j,)^1^, (4.6)
' q€M„

max \RIn(p,q;E)\ < e(p-q)-'. (4.7)
|p-«|>ln/2
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Given Theorem 3.7 and Corollary 3.8, the proof of (4.5) and (4.6) reduces to a simple
application of Borei-Cantelli lemma. Note that Hypothesis (A) and the remark after (3.2)
imply that all conditions of Theorem 3.7 are satisfied. The estimate (4.7) follows from
Proposition 3.2.

Note that nWi£ is not specified uniquely. To avoid some ambiguities, for given e > 0 and
u) £ Û(e) we define nw,£ as the smallest positive integer such that (4.5)-(4.7) hold for all

Proposition 4.2 gives information on the matrix elements of Rm„ starting with a
sufficiently large index n which depends on w. To circumvent some difficulties which arise from
this w-dependence, we introduce the sets

it

Öfc,e U {w : u) £ fi(e) and nu,£ j}.
3=0

Since RMn(s,t;E) are measurable functions of w, the sets fifc,£ are measurable. Clearly, if
i > k then Ù.ktC C fiii£ Furthermore, it follows from Proposition 4.2 that for each e > 0,

Ufc>ofifc,£ is of full measure in fi. Note that some of the sets Qkt£ might be empty. However,
for each e > 0 there is k(e) > 0 such that Üki£ ^ 0 if fc > k(e). Let C; be the constant from
Proposition 3.3 and let (recall that I (c,d))

L ma.x{\c\,\d\} + jo(E) + Q/e.

For given fc and e, we introduce an auxiliary potential Vkt£ by the formula

_ j L if ne M„ \s\ < fc,
kA ' ~ \ V(n) iin£Ms, \s\ > fc.

The reasons for introducing this auxiliary potential are the following:
a) If u e fifc,e and V is replaced by VkiC then the inequalities (4.5) and (4.6) hold for all n.
b) If |n| < fc then it follows from Proposition 2.3 and the choice of L that the inequality
(4.7) holds for all p, q £ In.
Let

Je= [J Mr
m<t

We denote by h(.k.e(E) the operator ho(E) AVkfi restricted to Jt with the Dirichlet boundary
condition. We will prove below the following result.

Proposition 4.3 Let E £ X be given. Then there exists eo > 0 such that for k > k(eo),
w e fifc,£0, andi € Uks=-kMs,

¦ |2

limsup Y \(Si,(hi,k,c0(E) --E)"1^) < °°-
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Let us show how Relation (4.2) (for n 0) follows from this proposition. Denote for the
moment by Rk,so the resolvent of the operator ho(E) + Vk.eo. It then follows from Propositions
3.4 and 4.3 that for to € fit,eo and i £ Uj__AAf5,

lim Y \Rk,eo(h n;E + i()\2 < CE.iXco < oo. (4.8)
ndZ

Furthermore, it follows from the resolvent identity that

P(0, n; E + iQ P,,£o(0, n; E + i() A Y (L ~ ^(0)^(0, »I E + K)Rk,C0(h n: E + iQ.
i€M,,\s\<k

Note that for a given to,

limsup|P(0, i;E + iQ\ < oo,

for a.e. E £ R (recall the remark after the proof of Lemma 2.1). Thus, for a.e. E £ I and
a.e. w e Ük>eo

\R(0,n;E + i<:)\2 <CE.W Y \Rk,eo(hn;E + x;)\2.
i<EM,,\s\<k

This inequality and (4.8) yield Relation (4.2) for n 0.

The proof of Proposition 4.3 follows closely the proof of Proposition 3.3 in [JM]. We just
sketch the main steps.
Notation. In the sequel we will drop the subscripts fc and e. For example, we write
Ri(n,m; z) for the matrix elements of the resolvent (h(.k€(E) — z)_1, etc.

We will discuss Proposition 4.3 only in the case where i 0. A similar argument applies
to the other values of i.

Let I > 0 be given. Let us recall the construction of the iterative expansion of the matrix
resolvent element Rp(0,n;z) with respect to Rm,- Let r be any path in the expansion (3.1)
which connects 0 and n, r (0,nx,n2,... ,nk,n). To such a path we associate a sequence
of bonds (b\,...,bi) and a sequence of blocks (Af,,,..., Af,,) in the following way. Let nk,
be the first of the nj's which is not in the block M0. Then let òi (n^-i,^,). We denote
the block to which nk, belongs by Afsi. Let nk2 be the first of the n;'s, for I > kx, which is

not in Af3l, and let 62 (^fc2—1 j^^2)¦ We denote the block to which nk2 belongs by Af,2. If
nk2 € Ms n Aft then, by definition, fc2 min{s, t} if s, t > 0, and k2 max{s, t} if s, t < 0.

We now continue inductively. It is helpful to invoke the following picture. The path r starts
in the block Afo, and wanders for some time within this block. It then leaves Af0 and jumps
to a different block Af,,. In the bond bx we record the site nk,-X £ M0 at which the path
takes off, and the site nkl £ MSi at which it lands. The path now wanders through Af,, and

then jumps to Mn, etc. The last bond 6; (nkl_,,nkl) corresponds to the last entry into
the block Af,, Afno which contains n. Since neighboring blocks intersect, the paths can
land at the site which belongs simultaneously to two blocks; in this case, by definition, we

say that the path landed in the block which is closer to 0. Clearly, the sequences {bi} and

{Af,,} are not uniquely determined by the path r: great many paths r will determine the

same sequences of blocks. Note that {bi}, however, uniquely determines {AfSi}. Let B be

the set of all sequences of bonds rb {6J obtained in the above way.
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Regrouping the elements in the expansion (3.1) we get

Re(0,n;z) S0n/(V(0) - z) + Y PMo(0,nkl-X;z)j(nkl-X - nkl)RMtl (nkl, nfcj_i; z)...
TbeB

¦ ¦ ¦ AW,,., (nkl_„nkl-x; z)j(nkl-X - nkt)RMno (nkl,n; z).

At this point, of course, this relation holds only for Imz > jo(E). However, if z is arbitrary
and the series on the right hand side converges absolutely then its sum is Re(0,n;z). To
show this, for z £ C we define

7v.*(0,n;z) SOn/(V(0) - z) + Y RM0(0,nk,-X;z)j(nki-X - nk,)RMsi(nki,nk2-X;z)...
T6Eß

-ÄM,,.1K.i,'Hri;«)iK-i -nkl)RMno(nkl,n;z). (4.9)

whenever the sum converges absolutely. We then have

Proposition 4.4 If z £ C and ifTZ>(0,n;z) is defined for all n £ J/, then z g o(h((z)) and
Rt(0,n;z) Kt(0,n;z).

The proof is the same as in [JM]. In the sequel, we will apply this proposition in the case

z E £ R.

At this point one proceeds to prove the following statement. Let E £ I be given. Then
there exists e0 > 0 such that for fc > fc(e0) and to £ Ö,k,£o, the formal series (4.9) converges
absolutely and

Y \R-e(0,m;E)\2 <C < oo
meJf

where the constant C depends only on Csj in (4.3) (in particular C does not depend on I).
Proposition 4.3 then follows from Proposition 4.4.

Let us consider a typical term in the formal expansion (4.9):

RM,i_l(nki_l,nki-i;E)j(nki-i - nkx)RM,x(nki,nkt+l-X, E).

We fix e > 0 and fc > k(e), and proceed to obtain a suitable estimate on

PM,i_,(nk,-„nkx-X;E)j(nkx-X - nk.).

We now use (4.4) and the path expansion of Section 3 to decompose Rm,
_

in such a way
that the estimate (4.3) could be taken into the account. The rest of the arguments is virtually
identical to the arguments in [JM] and we leave details as an exercise for the reader. We
note that since j(n, E) is decaying exponentially, the estimates of [JM] could be substantially
improved. Also, the argument of [JM] (see the remarks at the end of Section 3 in [JM]) yields
the estimate

sup \(S0, (K(E) -E- iQ-l5n)\ < a,£,,(l + |n|)-fc.
o<c<i

for any fc > 0. This estimate and Simon-Wolff theorem [SW] will yield the decay of
eigenfunctions described in Remark 1 after Theorem 1.1. We expect that this result is not optimal,
and we will not discuss it any further.
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5 Probabilistic reduction

In this section we construct a partition of the probability space (fi, ZF, P) associated with the
model (1.1). This partition, combined with the results of the Section 2 and some additional
technical results described in Section 6, will allow us to reduce the proof of Theorem 1.2 to
Theorem 4.1.

We first recall the structure of (fl,ZF, P) (for details see e.g. [CFKS]). Without loss of
generality we may assume that

n Rz xzR.

Each a; e fi can be identified with the real sequence {tOi}iez- The u-algebra T is generated
by cylinder sets {to : wt-, e Bx,... ,u>in £ Bn}, where Bx,..., Bn arc Borei subsets of R. If
dp p(x)dx, the probability measure P is given by P xz/z.

Let Jx and J2 be two given disjoint open intervals and let Jo R \ (Ji U Ji)- We will
assume that for i 0,1, 2,

Pi= p(x)dx > 0.
JJ,

Clearly, p0 + Pi + P2 1- To each to £ fi we associate a sequence s(u) {si} of 0's, l's and
2's as follows:

f 0 ifwjS Jo,

s, < 1 if Ui € J\,
\2 ifwi e J2.

The sequence s(to) is the skeleton of the event to. We denote by S the set {s(to) : to £ fi}.
Let T be the u-algebra on S generated by the cylinder sets, and tt a measure defined by
tt — xz6, where 6{0} Po, b{\} px and 6{2} p2. Note that if T : fi >-> 5 is defined

by T(to) s(w), then T is a measurable transformation and for any measurable set F C S,

P(T-\F))= 77(F).

For any s £ S let fi, {to : s(to) s}. Each fi, is a measurable subset of fi, fi,nfi,' 0

if s 7^ s' and fi Usesfi,. We remark that for any s, P(fi,) 0. Note that each fi, has the
form

fi, Xi^zJs,-

Let s be given, and let ß^' be a probability measure on R with the density

P{i)(x) =pl1p(x)xj,x(x),

(in the sequel xa stands for the characteristic function of the set A). Note that

||p(i)||oo<IW|oo/min{po,Pi,P2}. (5.1)

Let P, be a probability measure on fi defined by

Ps xieZM(i).
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Note that the measure /jy' is supported on Jai and that P, is supported on fi,. In this way
we obtain, for each s € S, a new probability space (Q.,ZF,PS). Note also that

P(A/s) P,(A),

is the usual conditional probability of event A given s.

Lemma 5.1 For any A £ ZF, the function P(A/-) : S i-> R is tx-measurable, and

P(A) J P(A/s)dir(s).

Proof: If A is a cylinder set, the proof reduces to a simple computation. The general case
follows by limiting argument. O

We will also make use of

Lemma 5.2 Let C C X x fi be a measurable set and

CE {to: (E,to)£C}. (5.2)

Then f(E, s) P(CE/s) is a measurable function onX® S.

Proof: If C B x A then the previous lemma yields that P(CE/s) xb(E)P(A/s) is a

measurable function on X x <S. The general case follows by limiting argument.

The stage is now set for our probabilistic reduction. Let X be an open interval such that
In [-4,4] =0 and

C {(E,u>) £ X x fi : lim \\(hw(E) -E- iQ^ooW < oo}.

It is not difficult to show that for fixed Ç the function ||(/iw(.E) — E — iC)_1<5o|| is measurable
on Xx fi. Therefore, the set C is measurable. According to Theorem 1.2, Theorem 1.1 holds
if m ® P measure of the set C is equal to \X\, the length of the interval X. Let CE be given
by (5.2). Lemmas 5.1 and 5.2 together with Fubini's theorem yield that

j dE®dP j P(CE)dE j' dE j P(CE/s)dTr(s) j dTr(s) J P(CE/s)dE,

f dE®dP= j dTx(s) f dE® dPs.

Jc Jx

and finally, that

We summarize:

Theorem 5.3 Theorem 1.2 holds if for n-almost all s and for a.e. (E,u) £ X ® fi with

respect to m® P, we have that

lim||(nu,(P)-P-îC)-1<5o|| <oo.
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For the obvious reasons, we will refer to this result as the probabilistic reduction.

We finish this section with a probabilistic estimate which will allow us to construct long
periodic approximations of the random potential Vu.

Proposition 5.4 Let p > 0 and a be given integers such that pxa > 1 and p2a > 1. Then

--a.s. there exists an integer n(s) such that the intervals

±l(pa)n^+n + 1, (pa)n^+n+l - 1], n > 0,

contain sub-intervals I±n of the length \np such that

_ J 1 if i £ I±n, i 0 mod p,
' {2 if i £ I±n, i ^ 0 mod p.

Proof: Let pa b. For any positive n let

/<*> l(bn + 8(fc - l)pn +1,6" + 8(fc - \/2)pn + 1], 7« /«,
where 1 < fc < [6(ön — l)/8np) - 1 and [•] is the greatest integer part. Let

An.k {s : S{ lift € /±„, i s Omodp, and s; 2if i £ I±„, i ^ Omodp}.

Let r min{p1,p2}- One easily shows that ir(An,k) > r8np. Let Bn be the event that no
An.k take place. Bn S \ (UkAnik). It follows that

71-(P„) < (1 - r8»pxWi"-l)/8np]-l _ 0(2-(ra|»)

If ra > 1, T,nn(Bn) < oo and Borei-Cantelli lemma yields that 7r-a.s. only finitely many
events Bn take place. Ü

6 Periodic approximations and gaps

In this section we collect a few additional results from [JM] which will be used in the next
section to verify the hypothesis of Theorem 4.1.

Let p > 0 be a positive integer, e > 0 a positive parameter, and VCiP a periodic potential
of the form

e if n 0 modp,^» {o ifn^Omodp. (61)

We set n£iP h0(E) + V£.p.

The operator ha(E) in the Fourier representation acts as the operator of multiplication
by the function j(cp, E) X(cp, E) + 2 cos cp, which, for fixed E, is even, analytic and strictly
monotone on the interval [0,7r]. Thus, Hypothesis (H) of Section 4 in [JM] is satisfied. We

will use the shorthand ektP(E) j(kTx/p,E). Theorem 4.1 of [JM] applied to hCiP(E) states
the following.
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Theorem 6.1 Let \E\ > 4 be given and assume that (6X,92) C o(h0(E)). Then there exist
e0(E) > 0 and p0(E) > 0 such that for 0 < e < e0(E), p > p0(E), and ek.p(E) £ (9X,82),

o(h£.p(E)) n (ek.p(E),ek.p(E) + 6£,k,p(E)) - 0,

for some S£.P(E) > 0.

We will also need a technical result from [JM] (Proposition 5.1) which asserts that the
conclusions of Theorem 6.1 are essentially unaffected by Dirichlet decoupling. Let again
|P| > 4 be given, and let Vp be a periodic potential with the period p. Let hp(E) h0(E)+Vp.
For any positive integer L let hp(E) be the restriction of hp(E) to the interval [—2pL, 2pL]
with the Dirichlet boundary condition. We then have

Proposition 6.2 Let (a,b) be an interval such thatO # (a,b) and o(hp(E))n(a.b) 0. Let
e > 0 and 6 > 0 be given small numbers. Then there exists finitely many points rx,...,rkti
in (a + e,b — e) and a positive number L£j such that for L > L£j,

a(h%(E)) r\(a + e,b-e)C U&[r, - 6,r, + 6].

The points r; and the numbers Lej and ktj depend only on e, ô and E. Furthermore,
suP,5>o^,<5 ^ ke < oo, where ke depends only on e and E.

We will also make use of the following technical results.

Lemma 6.3 Assume that Hypothesis (HI) hold. Let Ea £ S(V) \ [—4,4] be given. Then
there is cp0 € [—tt, tt] and ao G V such that

](cPo,Eo)+a0 Eo- (6.2)

Furthermore, there is a discrete set B C R \ [—4,4] such that if E0 & B then a0 and cpn

can be chosen so that ao is an interior point ofV and that j(cpa, Eq) is an interior point of
o(ho(E0)).

Remark. This lemma is the only place where we use Hypothesis (HI).
Proof: X(cp, Eo) is the solution of the equation

X(é, Ea) + l/X(cp, Ea) + 2 cos <f> EQ, (6.3)

which satisfies \X(cp, E0)\ < 1. If Po £ S(V), then (recall (1.2)) there exists éo £ [-t,t] and

a0 £ V, \ao\ > 1, such that ao + 1/ao + 2coscp0 Po- It now follows from (6.3) that

a0 + l/a0 X(<p0, Eo) + 1/X(<p0, E0).

Since the function x + 1/x is strictly monotone on [l,oo), we have that a0 l/X(cp0,Eo).
Substituting back in (6.3) we derive (6.2).
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To prove the second part part of the lemma, note first that the function j(cp, Eo) has two
extreme points, at cp 0 and cp tx. Clearly, by wiggling cp0 and ao in (6.2) a little, one

can always achieve that ao is an interior point of V and that j(tpo, Eo) is an interior point of
o(ho(Eo)) except possibly in singular cases where a0 £ dV and cp0 0 or tx. Let

B {E : 'j(0, E) + a E or j(tx, E) + a E for some a £ dV}. (6.4)

Since j(0, E) and j(ir, E) are analytic functions on C \ [—4,4] and the set dV is discrete, we
derive that B is a discrete set as well. D

7 Proof of Theorem 1.1

Let B be given by (6.4). and let P0 be such that |P0| > 4, E0 £ S(V), and E0 0 B. We

will show that there exist an open interval 2o 3 Po such that for ajg. (E,to) £ Xa x fi with
respect to m ® P,

lim \\(hu(E) - E - iQ-HoW < oo. (7-1)

It then follows from Theorem 1.2 that Ec flZo 0. Since B is a discrete set, Theorem 1.1

follows.

It follows from Lemma 6.3 that there exist ao € V and cpQ such that j(cpo, Eo) A ao Eq.

Furthermore, ao and cp0 can be chosen so that ao belongs to the interior of V and j(cpo,E0)
to the interior of o(ho(Eo))- Let 9 > 0 be such that (ao — 9, ao A 9) £ V, and 9X,92 such that
j(cpo,E0) £ (9X,92) C o(ho(E0)). Choose e0 > 0 and p0 > 0 such that Theorem 6.1 holds.
Pick p > Po and fc such that

\j(kTx/p,E0)-j(cP0,Ea)\<9/4,

and that kix/p £ (9X,92). Choose e > 0 such that e < xxiixi{eo,9/4}, and let V£iP be the
periodic potential (6.1). We now use Proposition 6.2: For any e > 0 and 5 > 0 we can find
L£is(E0) such that for L > Lcj(E0) the spectrum of the operator hLp(EQ) (the restriction of
ho(Ea) + K.p to [—2pL, 2pL] with the Dirichlet boundary condition) satisfies

a(h^(EQ)) n(a + e,b-e)c uflftr, -6,r, + 6],

where a j(kix/p,E0), b j(kTx/p,E0) A 5£>kj(Eo). Choose now e, 5 and x0 £ (-9/4,8/4)
s.t. .To + Ea — a0 £ (a + e,b — e), x0 A Ea — a0 0 Uji'^ri — 6, ri + S]. This is certainly possible
since supä>0 k(j < fce < oo. It follows that

inf dist{a(h% (E0)) + a0 - x0, E0} > 0.
L>Le,6(Eo)

Furthermore, it follows from Proposition 3.5 that

lim sup |

E-iEo lyQ
Jimjup||n£yP)-n£yP0)|| 0.
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A simple perturbation argument (see Lemma 5.3 in [JM]) yields that there exist an open
interval X0 3 E0 and 7 > 0 such that for any E £ Xo and x £ (a0 — x0 - 7, a0 - x0 + 7),

inf' dist{c(h^(E)) + x, E} a > 0,
L>Lt,$[Eo)

where a does not depend on E and x. This result can be rephrased as follows: There exist
a > 0 such that for any L > Le>$(Eo) and any potential V on I [—2pL, 2pL] which satisfies

V(n) e Ji (a0-x0Ae-y,a0-x0Ae + -y) ifnsOmodp,
V(n) £ J2 (a0 - xo - 7, a0 - x0 + 7) if n pÉ 0 mod p,

we have that
inf dist{o(hi(E)), E} a > 0. (7.2)

We of course can choose 7 such that Jx n J2 — 0. From the construction. a0 — x0 and
a0 - xa+ e belong to (a0 — 9/2, a0 + Ö/2). Thus,

Pi / p(a:)dx > 0, P2 / p(x)dx > 0.
•/.7i JJ2

Also, by possibly reducing 7, we may assume that po 1 — Pi — p2 > 0.

We are now ready to apply the probabilistic reduction of Section 5. Let s £ S be an event
for which the conclusions of Proposition 5.4 hold. According to Theorem 5.3 to establish
(7.1) it suffices to show that for each such s, the relation

lim||(/iu,(P)-P-iC)-1<50|| <oo,

holds for a.e. (E,w) £ Xo x fi with respect to the measure m® P,. We are now in position
to use Theorem 4.1. Consider the random Schrödinger operator ho(E) + Vu on (fi, ZF, P,).
It follows from (5.1) that Hypothesis (A) of Theorem 4.1 is satisfied. Estimate (7.2), Proposition

5.4 and translation invariance yield that all the other conditions of Theorem 4.1 are
satisfied, and the result follows.
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