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On the Surface Spectrum in Dimension Two

By Vojkan Jaksié

Department of Mathematics and Statistics, University of Ottawa,
Ottawa, ON, K1N 6N5, Canada

and Stanislav Molchanov

Department of Mathematics, University of North Carolina,
Charlotte, NC 28223, USA

(13.XII.97)

Abstract. We study spectral properties of the discrete Laplacian H,, on the half space Z2 = Zx Z,
with a random boundary condition ¥ (n,—1) = V,(n)¥(n,0). Here, V,(n) are independent and
identically distributed random variables on a probability space (2, F, P). We show that outside
the interval [—4,4] (the spectrum of the Dirichlet Laplacian) the spectrum of H,, is P-a.s. dense
pure point.

1 Introduction

This paper is a part of the program introduced in [JMP]. This program is concerned with
spectral and scattering theory of the discrete Laplacian on a half-space with a random
boundary condition. We refer the reader to [JMP] for the history of the problem and
additional information. In this section we define the model, review some of the known
results and state theorems which will be proven in this paper. At the end of the section we
will sketch some of the main ideas involved in the proofs of our theorems.

Let d > 1 be given and let Z4+! = Z4 x Z_, where Z, = {0,1,...}. We denote the points
in Z4*! by (n,z), n € Z¢% z € Z.. Let (Q,F, P) be a probability space and V,,, w € Q, a
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random process on Z¢ such that V,,(n) are independent and identically distributed random
variables with density p(z). We denote by V' the support of the probability measure p(z)dz.
Let H, be the discrete Laplacian on [*(Z%') with the boundary condition (n,—1) =
V,(n)(n,0). If V,, = 0, this operator reduces to the Dirichlet Laplacian which we denote
by Hy. The operator H, acts as

E|"'J-—7"l"'|-¢--|’-|:E-—:lt"]=l d’(n’, x’) if T > 0,

Bl mpse = { (1, 1) + Spnoroms $(1,0) + Vo (n)(n, 0) if =0,

where [n], = $7_, |n;|. Note that operator H,, can be viewed as the random Schrodinger
operator
H,=Hy+V,, (L)

where the random potential V,, acts only along the boundary 8Z4*' = Z9¢. For many
purposes, it is convenient to adopt this point of view and we will do so in the sequel. Since
Hy is bounded, the operator H,, is properly defined as a self-adjoint operator on [?(Z%!).

It follows from the standard argument (see Section 9.1 of [CFKS] for basic notions con-
cerning random Schrodinger operators) that there are deterministic sets £, £,,, £, and Z,,
such that P-as., o(H,) = I, 0p(Hy) = Zpp, 0ac(Hy) = Bacy 0sc(Hy) = Bge. Obviously,
T =Y UZecUX,. We will use the usual notation L, = X, UL, B, = 8,, UE,.. The set
¥ can be explicitly computed (see [JMP], and for detailed proof [JL]). Let

S(V)E{E+a+é: E€[-2d,2d], a €V and [a|21}4 (1.2)

Note that S(V) is a closed set and that S(V) = 0 if and only if V C (—1,1). Recall that
o(Hoy) =[-2(d+1),2(d +1)]. Then

5 = o(Ho) US(V). (1.3)
Note also that whenever VN (R \ [—1,1]) # 0, the set £ has parts lying outside o(Hjy).

The first natural question concerning the spectral theory of H, is what is the structure
of the sets £,,, Lac, Lac. We briefly summarize the known results.
1) For arbitrary boundary potential V', o(Hy) C d4c(Ho+ V). Therefore, o(Hy) C Z4e. This
result is proven in [JL].
2) In [JL] it is also shown that £, C {E : |E| > 2(d + 1)}. In other words, the spectrum of
H, on o(H,) is P-a.s. purely absolutely continuous. For this last result to hold, we do not
need that the random variables V,,(n) are identically distributed — it suffices that they have
densities. We emphasize that these results are random — there are examples of potentials
V (which even satisfy limjnj—o V(n) = 0) such that Hy + V has eigenvalues embedded in
o(Ho) [MW].
3) Under some additional technical assumptions on the distribution function p(z) (e.g. it
suffices that p is compactly supported and in L*(R)), there exists E, > 2(d + 1), which
depends on p only, such that

S.N{E: |E|> E)}=0.
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In other words, P-a.s. the spectrum of H,, is pure point outside the interval [—E,, E.]. It is
also known that the corresponding eigenfunctions decays exponentially. Similar results hold
in the “large disorder regime” — for any € > 0 there exists d(¢) such that if ||p|| > &(¢) then
(1.3) holds with E, = 2(d+1)+¢. The corresponding eigenfunctions also decay exponentially.
These results are proven in [AM] and [G]. For some related results see [BS].

In this paper, we are interested in improving the results of 3) in d = 1. We will make the
following assumptions concerning the random potential V,,.
(H1) The topological boundary of V is a discrete set and p € L*(R)).
Our main result is

Theorem 1.1 Let d =1 and assume that (H1) holds. Then
E.N{E: |E|>4}=0.

In other words, P-a.s. the spectrum of H, outside the interval [—4,4] is pure point.

Remark 1. Our estimates give some control of the decay of the eigenfunctions of H,. It
follows from our arguments that P-a.s. the eigenfunctions corresponding to the eigenvalues
outside [—4,4] decay as

¥Ew(n,2)| < Crwrexp(—7elz])(1 + In)) 7", (1.4)

for any k > 0. We expect that the estimate (1.4) is not optimal, and that the eigenfunctions
decay exponentially in the n-variable. To establish such decay near the edges +4 appears to
be a difficult technical problem.

Remark 2. The condition that topological boundary of V is a discrete set is needed for
technical reasons and in some cases it could be relaxed. For example, if the Lebesgue measure
of V is infinite, the result holds under the assumption that int(V) # 0.

Combining 2) above with Theorem 1.1 we obtain a complete description of the sets T,
Epp, Lsc. We always have
Eac = [_41415 Zsc == m

If V C [-1,1] then X,, = 0, otherwise (recall (1.3))
T =2\ (—4,4) =S(V)\ (—4,4).

Similar results are proven in some cases where the boundary potential V' is almost periodic
[IM1], [KP].

Let us briefly relate Theorem 1.1 to the discussion of the surface states presented in
[JMP]. For any boundary potential V' we define the surface spectrum of the operator Hy+V
as the closure of the set of energies E for which the equation (Hy + V)u(n,z) = Eu(n,z)
has a non-zero solution which satisfies

Y (L + )™ 3 uln,@)]? < oo,

nezd 3220
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for some k£ > 0. Roughly, the surface spectrum consists of the energies whose corresponding
generalized eigenfunctions have some decay in the z-variable. We denote the surface spec-
trum by o4y f(Ho + V). One can show (see [JMP]) that o(Ho+ V) \ o(Ho) C osurg(Ho + V).
An absolutely continuous surface spectrum exists if V' is a constant or a periodic function
and max, |V (n)| > 1. In this case, the generalized eigenfunctions are localized in the z-
direction and propagate along the boundary. Theorem 1.1 asserts that if d = 1 and the
constant boundary condition is replaced with a random boundary condition, then all prop-
agating surface states with energies outside [—4, 4] are localized by the random fluctuations
of the boundary. This is physically the most interesting consequence of Theorem 1.1. An
interesting open question is whether there are any surface states with energies inside o (Hjp).
This problem remains to be investigated in the future.

In the rest of this section we sketch some of the basic ideas involved in the proof of
Theorem 1.1.

The first idea concerns dimension reduction ([AM], [G], [JMP]). Roughly speaking, “inte-
grating” the z-variable we will reduce the 2-dimensional spectral problem to an 1-dimensional
problem which will depend non-linearly on the spectral parameter E. This reduction could
be done in any dimension. For the latter applications, we will describe and prove this result
in the general setting.

Let Z be an open interval on the energy axis such that Z N o(Hy) = 0. Let T =
R/27Z be the circle and T¢ the d-dimensional torus. We denote the points in T¢ by
¢ = (¢1,...,0q4), and by d¢ the usual Lebesgue measure. In the sequel we use a shorthand
®(p) = 2%¢_, cos ¢x. Let A(¢, E) be the solution of the quadratic equation

Ao, E) + +&(¢) = E,

J
A(¢, E)
such that [A(¢, E)| < 1. Let

~

i(# E) =A@ E)+2(¢),  j(nE)=[ e}, E)do. (1.5)

We will prove in Section 2 that there are constants C' and <y, which depend only on the
distance of Z from o(Hj), such that for E € T,

5(n, E)| < Cexp(=vlnly).
Let ho(E) be the operator on (?(Z?) defined by

(ho(B)¥)(n) = 3_ j(n -k, E)p(k). (1.6)

kezd
We define one parameter family of random operators on [2(Z?) by
h,(E) = ho(E) + V,, Fel. (1.7)

Our argument will be based on the following variant of Simon-Wolff theorem [SW]. Let m
be the Lebesgue measure on R.
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Theorem 1.2 If for a.e. (E,w) € T x Q with respect to the product measure m ® P,
lim [|(hu(E) — E — i) "1 6o|| < oo, (1.8)

then . NI = 0.

We will prove this theorem in Section 2.

In comparison with the usual theory of random Schrodinger operators, there are two
essential difficulties in studying the quantity ||(h,(E) — E —i()8||. The first is that ho(E)
is a long-range Laplacian, and the second is that ho(F) depends on energy. These difficulties
are successfully resolved in the high energy or large coupling regime adopting the techniques
of the multiscale analysis and the method of Aizenman-Molchanov [G], [AM]. Of course,
in general these results cannot be improved without major new insights into the theory of
random Schrodinger operators.

The case d = 1 is however special. In this case, the operators h,(E) act on [*(Z), and
there was a hope that the results of 3) could be improved using some of the techniques specific
to the theory of one-dimensional Schriodinger operators. As a first part of this program, we
have investigated in [JM] the long-range, one-dimensional random Schrédinger operators of
the form h, = hg + V,,(n), where V,,(n) is as in (1.1), and hg is a translation invariant
self-adjoint operator with some off-diagonal decay. The simplification is that hy now does

not depend on FE,
(ho)(n) = >_ j(n —

keZ

Note that again the spectrum of h, and its pp, sc,ac component are P-a.s. deterministic
sets. Furthermore, P-a.s. o(h,) = a(ho) + V.

Before stating a theorem from [JM] which will concern us here, we set some hypothesis
on h()
(H2) There is § > 0 such that Vn, |j(n)| < C(1 + |n|)~879.
(H3) The function 7(¢) = %, j(n) exp(ing) is even, real and strictly monotone on [0, 7).
The following result was proven in [JM].

Theorem 1.3 Assume that Hypotheses (H2) and (H3) hold and that int(V) # 0. Then for
e. (E,w) € R x Q with respect to the product measure m ® P,

lim || (R ~ B ~ i¢) o] < oo. (1.9)

In particular, P-a.s. the operators h,, have pure point spectrum.

The techniques used in the proof of this theorem will play the central role in the proof of
Theorem 1.1. For this reason we briefly review some of the basic steps of the argument.

The proof of Theorem 1.3 is based on a geometric approach to localization in d = 1
which goes back to [SS], [KMP], [M], [M1], [GIMS]. The principal idea is to show that a
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particle with given energy E, has to tunnel through an infinite sequence of “barriers” to
reach infinity. This idea is formalized as follows. Let Ej be a given point in o(hq) + V, and
T a small open interval around E,. Using the structure of the random potential V,,(n), one
constructs P-a.s. a sequence of intervals (barriers) Iy(w) C Z, with centers ¢;(w) and of
width l;(w), such that ¢x(w) — +o0 and Iy (w) — co as k — %00, and such that

INo(hyw) =0, (1.10)

for all k. Here, hy, (. is the restriction of h, to Iy(w) with the Dirichlet boundary condition.
For barriers to be effective in preventing tunneling, we need that they are sufficiently long,
namely that #/(w) > c,|k|, and they are not too far apart, namely that |cx(w)| < al*!, for
some positive constants ¢, and a,. Once such a geometric configuration of the barriers is
given, the random parameter w is fixed, and plays no further role. Thus, we drop subscript w
for the rest of this paragraph. Let Ay be the intervals between I and 41, My = LiUARUI41
and hpy, the restriction of h to M with the Dirichlet boundary condition. One now constructs
an iterative expansion of the resolvent (h — E)~! in terms of the resolvents (hy, — E)~! and
(hr, — E)~*. At this point one encounters an analog of the “small divisor problem”. The
contributions from (h;, — E)~! are small due to (1.10). Since we do not have any control
on the potential within Ay’s, we need an apriory estimate on (hp,, — £)~! which will make
use of the fact that the intervals M, are not too long. Such an estimate is obtained by
randomization of the energy F within interval Z. The end result is that for typical £ € T
with respect to the Lebesgue measure, the size of the terms (ha, — E)~! is compensated by
(h1, — E)™', and this will ultimately yield the estimate (1.8). We remark that although the
ideas of the argument are intuitive and transparent, the technical details are involved.

There are two basic mechanism which can yield Relation (1.10). The first is that within
intervals I;(w) the absolute value of the potential is sufficiently large. This argument is
applicable for example in the case where the Lebesgue measure of V is infinite. In this case,
the proof is somewhat simpler and we do not need Hypothesis (H3) for Theorem 1.3 to
hold. In more general situations, however, to verify (1.10) we had to construct long periodic
approximations V,,, of the random potential V,, such that Ej is in the spectral gap of the
operator hg + V, . Since hy is long range, this construction is involved and technical. It is
precisely in this construction that Hypothesis (H3) enters the game. We refer the reader to
Sections 5 and 6 of [JM] for details of the argument.

In this paper we will use the techniques developed in [JM] to show that under the as-
sumptions of Theorem 1.1 Theorem 1.2 holds. Note that for fixed E ¢ [—4,4], (¢, E) is
real, even, analytic and strictly monotone on [0, 7] so will adopt the strategy of the proof of
Theorem 1.3. The main difficulty is that if hy depends on E, the randomization of energy
used to get an apriory estimate on (hp, — E)™! is not possible any more. We replace this
step in the argument with a construction to which we will refer as a probabilistic reduction.
More precisely, we will make suitable partitions of the probability space £ which will fix
the positions of the “barrier” intervals I}, (the intervals for which an analog of (1.10) holds).
Within these partitions the random variables V,,(n) will be independent but not identically
distributed. For fixed E the apriory estimate on (hy, (E) — E)~! will be obtained within
the partitions with the help of a Wegner type result already used in [AM], [M1]. For this
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reason we need that p € L*(R), an additional condition which played no role in [JM]. The
rest of the argument will follow closely [JM].

We have attempted to give complete proofs, except for the results which are verbatim
the same as in [JM].

Acknowledgments We are grateful to Y. Last, L. Pastur, and B. Simon for useful discus-
sions. The research of the first author was supported in part by NSERC and of the second
by NSF. Part of this work was done during the visit of the second author to University of
Ottawa which was supported by NSERC.

2 Dimension reduction

In this section we prove Theorem 1.2.

Let V : Z% — R be an arbitrary potential. We denote by the same letter the induced
multiplication operator on [?(Z4*!) which acts as follows: (V4)(n,z) = 0if z > 0 and
(V) (n,0) = V(n)y(n,0). Let H = Hy+ V where Hy is a Dirichlet Laplacian on Z4™. We
recall that the points in Z4*! are denoted by n = (n,z), n € Z% z € Z,. Let

R(m,n;z2) = (6m, (H — 2)7'6n).
If Imz # 0 and m is fixed, these matrix elements satisfy the equation

R(m, (n,z+1);2) + R(m, (n,z — 1); 2) + Zjp—n| =1 R(m, (n', 1); 2) -
= 0mn + zR(m, (n, 2); 2), 1)

if z >0, and

R(m,(n,1);2)+ > R(m,(n',0;z)+ (V(n) — z)R(m, (n,0); 2) = émn, (2.2)

[n—n'|+=1

if z = 0. If m = (m,0) is a point on the boundary, Equation (2.1) can be “integrated”. This
is most conveniently done in the Fourier representation associated to the variable n. Let T¢
and ®(¢) be as in (1.5). We define a unitary map F : I*(Z¢!) — L*(T?) ® (*(Z") by the

f la
ormu 1

(F)(6,3) = P($,2) = m=g7 2 ¥(n,z)e™?.

(2m)#? 7

In the new representation, Equations (2.1) and (2.2) become (recall that m = (m, 0)),
R(m, (¢, 7 +1); 2) + R(m, (8,2 — 1); 2) + (®(¢) — 2)R(m, (4,2);2) =0,  (2.3)
R(m, (¢,1); 2) + (&(¢) — 2) R(m, (4,0); 2) + VR(m, (4,0); 2) = em(9), (24)
where e (@) = F(mn) = (27)"42 exp(im- ¢). It follows from Equation (2.3) that for z > 0,
R(m, (¢,2);2) = R(m, (¢,0); 2)A($, 2)", (2.5)
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where A(¢, z) is the solution of the quadratic equation

’\(¢'1 Z) + + (I)(QS) =2z,

1
A(¢, z)

which satisfies |A(¢,z)| < 1. Note that for any fixed ¢, A(¢,2) is an analytic function
in the second variable on the region C\ o(Hy). Substituting (2.5) into (2.4) we get that
R(m, (¢, 0); z) satisfies the equation

R(m, (4,0); 2)(A(¢, 2) + B(4)) + VR(m, (4,0); 2) — zR(m, ($,0);2) = em(¢).  (2.6)

In the sequel we will use the shorthand

R(m,n; z) = R((m,0), (n,0); 2) = (6m0), (H — 2) " bn0))- (2.7)
Let
j(6.2) =X$,2) + 09),  j(n,2) = [ e (g, 2)dp. (28)
Let m and z be fixed. Applying F~! to (2.6) we get that Vn,
> j(n—k,z2)R(m,k; z) + (V(n) — 2)R(m,n; 2) = bmn. (2.9)
k

For any z € C\ o(Hj) we set

(ho => j(n—k,2)y(k).
k

Note that h(z) is a bounded operator on [(Z¢%). Moreover, if z is real then h(z) is self-adjoint.
We set h(z) = ho(z) + V. It follows from (2.9) that if Imz 3 O then z ¢ h(z) and

(6, (R(2) — 2)718,) = R(m,n; 2). (2.10)
We will need

Lemma 2.1 Let n € Z¢ and E ¢ o(Hy) be given. Then
lim [[(R(E + () = E - i¢) 7 4n| < oo,

if and only if
lim [|(h(E) — B — i¢) ™ 6al| < oco.

Proof: Note first that

I(h(E+i¢) = E—iQ) M <1/¢,  |I(h(B) - E—¢)7Y < 1/¢.

The second inequality is obvious, and the first follows from (2.7) and (2.10). It now follows
from the resolvent identity that

I(R(E +4¢) = E—i¢)7nll < NI(A(E) = B —i¢)7énll (1 + [|Ra(E +iC) — ho(E)I/C)
I(h(E) = E =) all < N(R(E +iC) — E —iC) ™ dnll (1 + |ho(E +iC) — ho(E)1/C) .-

A
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These inequalities combined with the simple estimate

llho(E + iC) — ho(E)|| = R |A(¢, E +i¢) — A(¢, E)| = O(C)
€
yield the lemma. O
Remark. Since

(O(my, (H = E = i¢)6n0)) = (6m, (R(E +C) — E — i¢) 715y,

we have that for a.e. £ with respect to the Lebesgue measure the limit
. . _ _ . .__1
}1_r+r(1) |(6m, (R(E + () — E —i¢) ™ 6,)],

exists and is finite. Arguing as in the proof of Lemma 2.1 one can easily show that for a.e.
EeR,
limsup | (6, (R(E) — E — i¢)716,)| < oo.

¢—0
This observation will be used latter.

We are now ready for
Proof of Theorem 1.2: Let H, be the cyclic subspace of I?(Z%+') generated by the vector
8(n,0) and the operator H,. It is easy to show that H, is the same as the cyclic subspace
generated by Hy and 6(n0). Furthermore, the linear span of U,czH, is dense in [?(Z4+!).
These two simple facts are proven in [JL]. The Simon-Wolff theorem yields that for a given
open interval Z, £, NZ = @ if for any n € Z¢ and for a.e. (E,w) € T® N with respect to the
product measure m ® P we have that

lim |(Ho - = i) Mol = lim 5 |Ru((n,0, K E+i)f <co.  (211)

d+1
keZ:

Since the family of operators H, is ergodic with respect to the usual shift operators on 2
(see e.g. Section 9.1 in [CFKS]), it suffices to establish (2.11) in the case n = (0,0). The
analysis of this section applied to V =V, yields that

Y IR(0,0)k,E+ i) = dz/ Ru((0,0), (9,0); E +i0)|" IA(8, 2)*dg

d+1 >0
keZ z

L [£ul(0,0),(4,0): B + i)
~ (2m)d Jre 1 —|A(¢, E+iQ)|?

Since T No(H,) = 0 there are positive constants ¢, and ¢; such that for ¢ € T¢, E € T and
0<¢<l,
a<(l-MeE+iQ)") 7 <

Thus, (2.11) holds if and only if

o gw o [ Ru(0,0), (8,05 E+4Q)[ do = lim T [Ru(0,k: B +i0)[" < oo.

kezd
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Finally, it follows from Lemma 2.1 that the second limit is finite if and only if
: Ayl
%1_1}1(1) |(ho(E) — E — ()" do|| < 0. (2.12)

We conclude that if for a.e. (£, w) € TQQ with respect to m® P Relation (2.12) holds then
.NZ=0. Theorem 1.2 follows. O

We finish this section by collecting a few facts concerning the function j(n, E) which
we will use in the sequel. Note that if n = (ny,...,n4), and 2 = (Jny],...,|ng|) then
j(n, E) = j(n, E). We also have the following estimate:

Proposition 2.2 Let E € 0(H,) be given. Then there are constants Cg and vg such that
i(n, E)| < Crpexp(—a(E)|n|4).
These constants can be chosen as follows. Let vg be such that yg+v5' = (|E|—2)/2d. Then

a(E)=Inyg, Cg=(27)%E|/2. (2.13)

Remark. The estimates (2.13) are crude, but they will suffice for our purposes.
Proof: We denote the points in C¢ by z = (z1, 22, ..., 24). Let & : C? = CU{co} be defined
by
i 1
(z) =) (zk + —) :
k=1 Zk
and let A(z, E) be the solution of the equation

1

Az, E) + Nz, E)

+ &(z) = E,
such that |A(z, E)| < 1. Parameterization z; = exp(i¢%x) and (2.8) yield that

j(n, B) = (—i)¢ [r 2" Az, E) + 8(2)] dz, (2.14)

where 7¢ = {z : Vk,|z| = 1}, and 27" = []z;™ . Without loss of generality we can
assume that n; > 0. Let S, = {z : |z| € (1,7)}. If

Vz € S,, |®(z) — E)| > 2, (2l

then the function A(z, E) is holomorphic in &, in each variable separately, and continuous
and bounded on S. It is a simple exercise to show that if vz satisfies yg+75' = (|E|—2)/2d,
then (2.15) holds, and that on the boundary of S,, we have an estimate

A(z, B)| +|2(2)| < |E]/2.

Interchanging the domain of integration in (2.14) we derive the proposition. O
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3 Preliminaries

3.1 Path expansions and all that

In this section we collect a few technical results from [JM] concerning the operators h(E) =
ho(E) + V on [*(Z), where ho(E) is given by (1.6), E is a fixed point outside [—4,4], and V
is an arbitrary potential. For the proofs we refer the reader to Section 2 of [JM].

A path T connecting n and m is any sequence of sites 7 = (g, t1, . . . ) such that iy = n,
i = TN. The length of this path is I’TI = k. To the path T we associate a sequence i T—
7 = (b1, ..., bx), where

by = (t0,%1), by = (41,92), - . -, b = (dg—1,%k).

We write s € 7 if s is one of the sites of the path 7, and b = (s,t) € 7, if b is one of its bonds.
We use the shorthand j(b) = j(s —t; F), and

R(n,m;z) = (6, (M(E) — 2)"16m).

Let
jo(E) = > i(n, B)|.

n

Proposition 3.1 If Imz > jo(E) then

Jnm
Rinms) == -2 |

Hz—V ] [HJ ] (3.1)

SET beT

where the sum is over all paths connecting n and m. For each € > 0 the series converges
uniformly in the half-plane Imz > j(E) + €.

A similar result holds if the system is restricted to a box. Let I C Z be an arbitrary set,
and let hD (E) be the operator ho(E) restricted to I with the Dirichlet boundary condition.
This operator is obtained by removing the couplings between the points in [ and Z \ I, and
acts on [2(I) according to the formula

(hg (E)¥)(n) = 3 j(n —m, E)p(m). (3.2)

mel

Remark. For latter applications, we remark that if E > 4 then h?(E) < E and if £ < —4
then hP (E) > E.

We define the operator h;(E) on [2(I) by the formula h;(E) = hY(E) + V. We will refer to
hi(E) as the restriction of h(E) = ho(E) + V to I with the Dirichlet boundary condition.
For n,m € I we set R;(n,m;z) = (0n, (h1(E) — 2)"16,). Then

Rf(n,m;z)=—-———>:[ﬂ ) ] [Ha ] (3.3)

z T se'r ben,
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where the sum is over all paths which connect n and m and belong to I. If n or m Z I we
set Rr(n,m;z) =0.

Notation. In the sequel, we will use the shorthand (n) = (1 + n?)'/2.

Proposition 3.2 Let ! be a positive integer and I an open interval such that TN[—4,4] = 0.

Assume that
}i‘:rét;_dist{E,a(h;(E))} =430

Then there is a constant Cy,, which depends on § and [ only, such that

sup |R;(n,m; E)| < Csi{n —m)~".
EeI

Remark. The decay of matrix elements R;(n, m; F) is probably exponential, but the above
weaker result will suffice in our applications.

We will also need
Proposition 3.3 Let! be a positive integer and I an open interval such that ITN[—4,4] = (.

Let I C Z be such that for some 6 > 0

P 10(m) = Bl = jo(E) + 6.

Then
sup [R;(n,m; )| < Cs{n — m)_’,
EET

where Cs; depends on § and ! only. Furthermore, there is a constant C; which depenis on |
only, such that for § > 1, Cs; < C)/6.
Proposition 3.4 Let I, be a sequence of finite intervals such that I, T Z as £ — oo, and let

E be such that V¢, E & o(he(E)). Then, Vn € Z,

lim [|(h(E) — E — i¢) 6| < liminf | (h,(E) — E)™'6a|
The final technical result we need is
Proposition 3.5 Let Ey € [—4,4] be given. Then

lim sup ||k;(E) — h;(Eo)|| = 0.

E—FEs 1c7
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Since this last proposition was not discussed in [JM], we sketch its proof.
Proof: It follows from Lemma 5.2 in [JM] (see also [Ka], Section 1.4.3 and Lemma 7.1 in
[SS]) that
sup | (E) — hy(Bo)ll < 3 li(n, E) — §(n, Eo)|.
ez neZ
Note that

5(n,E) = 5(n, Bo) = [ e™™[\(6, B) = (9, Eo)lds.
If n # 0, integrating by parts twice we arrive at the estimate
li(n, E) = j(n, Eo)| < O(|E ~ Eol)/n’.

The result follows. O

3.2 Apriori estimates

The results of the previous section have to be complemented with an appropriate version of
Kolmogorov's lemma (Proposition 2.4 in [JM]) for technique of [JM] to work. We however
cannot randomize energies F if hy depends on E, and this part of the argument will be
distinctly different from the one in [JM]. The technical results which will be used instead of
Proposition 2.4 of [JM] are described in this section.

Let Hy be a symmetric matrix (operatkor)y on RY, and let &,...,&y be independent
random variables on the probability space (§2, F, P). We define random operators H, by the
formula N

H, = Ho+ > &(w)(d;,)d:.
. i=1
We denote by hgﬁ) the matrix elements of Hy in the basis {4;}. We make the following
hypotheses:
(A1) For any k, A} # 0, and for any k and I, AQR{Y — (hY)2 £ 0.
(A2) The random variables & (w) have densities p; which are uniformly bounded, i.e. for
some ¢ > 0 and all %, ||pi]|e < ©.

We remark that Hypothesis (Al) is automatically satisfied if Hy > 0 or Hy < 0 (and
this will be the case in our applications, recall the remark after (3.2)). We also remark that
without loss of generality we can take for our probability space © = R™. Then F is the
Borel o-algebra on RY, dP = [Ipi(z;)dz;, and if w = (zy,...,zx) then &(w) = z;,. We
denote E(f) = [ f(w)dP(w).

The first observation we need is
Lemma 3.6 Assume that Hypothesis (A2) holds. Then 0 € o(H,)) P-a.s.

Remark. For this lemma to hold we only need that the random variables ¢; have densities.
Proof: Tt suffices to show that detH,, # 0 P-a.s. This can be shown by induction as follows.



642 Jaksi¢ and Molchanov

Statement is obvious if N = 1. If N > 1, expanding the determinant with respect to the
last row we can write

detH, = ény(w)R(w) + D(w).

Here, R(w) is the determinant of the matrix obtained from H, by removing the last row
and the last column. By induction hypothesis, R(w) # 0 P-a.s., and detH, = 0 implies
én(w) — D(w)/R(w) = 0. Since &€y and R/D are independent random variables,

P{w:detH, =0} <supP{w: &y(w) =a} =0. O
a€ER

From this lemma it follows that H;! exists P-a.s. We denote R, (k,l) = (dx, H;'6;). The
principal result of this section is

Theorem 3.7 Assume that Hypothesis (A1) and (A2) hold. Let 0 < s < 1 be given. Then
for any k and [,

E (|R.(k,1)I") < C(s,0),

where the constant C(s,c) depends on s and o only.

Remark 1. The proof of this result is outlined in [M1]. For reader convenience, we present
a detailed proof below.

Remark 2. For latter applications, it is critical that this theorem holds for random variables
which are not necessarily identically distributed.

We will make use of the following consequence of Theorem 3.7.

Corollary 3.8 Assume that Hypothesis (Al) and (A2) hold. Then for any k and [,

P{w : |Ru(k,1)| > M} < C(o)/M, (3.4)
Plw: i |Ry(k, 5)|* > M} < C(o)N/M'*, (3.5)
g=1

where the constant C (o) depends on ¢ only.

Proof: Relation (3.4) follows from Chebyshev’s inequality. To prove (3.5), we note first that
if {x;}Y_, is a positive sequence and 0 < s < 1, then

=1

N N y
2152 (Z zj) : (3.6)
j=1 '

Thus, if X;(w) = |Ru(k, 5|,
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N
< P{w: ZXk(w)lfz By M1/4}

1 N
< 347 2 BUX(w)Y?)
M1/4 ; J

< C(o)N/MY4,
In the first estimate we have used (3.6) and in the second Chebyshev’s inequality. O
The rest of this section is devoted to the proof of Theorem 3.7.
Let k and ! be given. We set
HY) = Hy+ T i(w) (8, )6 = Hy — €k (w) (8, -) 0k,
H® = Ho + Tipng &i(w) (65, )8: = Ho — E(w) 0k, )0k — E(w) (61, )61

Lemma 3.9 Assume that Hypotheses (Al) and (A2) hold. Then 0 ¢ o(H) and 0 ¢
o(HFD) P-a.s.

Proof: Using induction with respect to /N one argues in the same way as in the proof of
Lemma 3.6. O

In the sequel we will consider separately the cases k = [ and & # [. The first case is
simpler since an argument based on the rank one perturbation theory suffices. The second
case requires an argument based on the rank two perturbation theory.

Case 1: k= 1.
Let R, (i,7) be the matrix elements of [H*)]~!, The identity
Hy' = [HE = =6 (W) HG (6, )o] [HP) 7,
leads to the formula _
Rulk, k)
1+ & (w)Ru(k, k)
Since &(w) and R, (k, k) are independent random variables,

Ry(k, k) =

E (|Ru(k, k)|° <sup/ pr(z

teR |z — t|s

Since 0 < s < 1 and ||px[|c < o, decomposing fg = fi—1¢11) + JR\-1,t41)> We easily estimate
E(|Ro(k,k)I°) < 1+20/(1-s).

This concludes the Case 1.
Case 2: k # 1.
Let R,(i,) be the matrix elements of [H*!]~1, The identity

H' — [HEDN™ = —&(w) H (66, )] [HED]™ = &(w)HS (61, )60 [HED],
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yields that for any 1, 7,
R,(i,3) = Ru(i,7) — &(w)Ru(, k) Ru(k, §) — &(w)Ru (6, D Ru (L, 7).

Substituting : = k,7 = k and ¢ = k, 5 = { in this relation, we get after simple algebra

Ru(k, k) [1 + &(w) Ru(k, K)] + Ru(k, D&(w) Ru(L k) = Ru(k k),

Rulh )& (@) RO D) + Ru(k D) [L+ G RLD] = Rukp. O

The random variables & (w) and &(w) are independent from the random variables R, (k, k),
R,(1,1) and R,(k,1), and it is a simple exercise to show that

(1 + &k (@) Ru(k, k)1 + &(W) R (L]) = &(W)a(w) Ru(k, 1) #0 P —aus.

This relation and Equations (3.7) yield that

Rk, ) ~
(1 + &Rl D)1 + () Rl D) — Eelw)(@) Rl 12

We have used that R, (k,1) = R.(l, k). Let
A, = R, (k, k)R, (1,1) — R, (k,1)2.

Ry, (k1) =

We will prove below that )
A,#0 P-a.s. (3.8)

Assuming this, we finish the proof of Theorem 3.7.
If (3.8) holds, then

Rl = @) + Bl D782 @) + Rulk, K178 = Rk IP/A3

Thus, we have a bound

|al®
/11@ kD[ dP(w <ai‘i£ﬁf AT A ]

We proceed to estimate the left-hand side of this inequality. Let a, b, ¢ be fixed. Without
loss of generality we can assume that a # 0. We introduce new random variables ‘fk(w) =
E(w) + b, &(w) = &(w) + ¢ Clearly, & and & are independent random variables whose
densities satisfy ||pi|lco < o, ||Pk|| < 0. We introduce the following sets:

O = {w:&(w) <a/2, §(w) < a/2},
Q= {w: &) >a/2}, Q={w:&w)>a/2}.
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Clearly, 2, UQ, U Q3 = . We now have

|a|* 5

~ — dP(w
h ER e T

(4/(3a))" P(1)

(4/(3a))’ min{1, a®/4}
(4/3)°.

IAIA

Furthermore,
al? 5
|a] P

fﬂ"—’ €k (w)&(w) — a?]* W) = /11\[-0/20/2] /Ixy C12|3pl()

la|® .
[R\[—a/z o2 Ja P4V [R |y — az/mppl(y)dy
< 2[1+20/(1-53).

The estimation of [, is analogous to that of [, . Thus, we arrive at the estimate

E (|Ru(kOI) = [ |R(k,DI dP(w) < (4/8)" + 2+ (1 +20/(1 - 5)),

It remains to prove (3.8). If N =2, A, = det(Hp)™! # 0 (recall (A1)). If N > 2, we will
use that

Mkk(w) Mu(u))

= = ~ Mgk ((JJ) 2
K3 ¥ o — 2 — —_—
Bolky ) detH, ' ACY) detH,’ R (k1) (detHaJ

where M;;(w) is the cofactor of the element h;;(w) of the matrix H*! (all matrices are
computed in the standard basis {§;}). Thus, A, # 0 P-as. if

My (w)My(w) — My (w)> #0 P —a.s.

Let 7 # k,l. M(w) is the determinant of the matrix obtained from H, by removing the
k-th row and column. Expanding this determinant with respect to the row which contains
., we get that

M (w) = & (w )Mkk( ) + Epr(w).

The random variable &, (w) is independent of Mkk (w) and Exx(w). Note also that M} (w)
is the determinant of the matrix obtained from H, by removing the k-th and the r-th row
and column. Similarly, we have that

My(w) = &M () + Eu(w)
2
My(w)? = [&w)M W)+ Ex(w)] .
Here Ml(ll)(w) is the determinant of the matrix obtained from H,, by removing the I-th and

the r-th row and columns, and Ml(kl)(w) is the determinant of the matrix obtained from H,
by removing the I-th row, the k-th column, and the r-th row and column. Then

M (w)Mu(w) = Mi(w)? = & (w)*a(w) + & (w)b(w) + c(w),
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where
1 1 1
a(w) = M (W) MP (W) — MY (w)*

and &, (w) is independent of a(w), b(w) and ¢(w). If
a(w) #0 P-a.s., (3.9)

then
P{w: A, =0} <supP{w: & (w)a+&(w)b+c=0} =0.
a,b,e
a#0

To establish (3.9), we pick r' # r,[, k, expand the determinants My, M; and M. with
respect to the r’-row of the matrix H,, and continue inductively. The algorithm terminates
after N — 2 steps, and in the last step we get that

ME P (@M D (W) — ME D (w)? = RQRD — (A2,

which is different from zero by Hypothesis (Al).

4 The main theorem

Let ho(E) be given by (1.6) and V,, be a random potential on Z such that V,,(n) are indepen-
dent, but not necessarily identically distributed random variables on some probability space
(Q, F, P). We assume that each random variable V,,(n) has density p,(z). Furthermore, we
assume
(A) There exist o > 0 such that Vn, ||ps]le < 0.
Let

ho(E) = hy(E) + V,(n).

This operator is in general different from h,(E) defined by (1.7).

We will freely use the notation of the previous sections. In this section we prove

Theorem 4.1 Let a > 2 be an integer and I = (c,d) an interval such that Z N [—4,4] = (.
Assume that (A) holds and that there ezists an integer N > 0 such that, Yn > 0, the intervals

:t[aN‘H'l. + 1 aN+n+1 _ 1]
contain sub-intervals I, of the length li, > n such that P-a.s.

inf dist{B, 0(hs, ,(E)} = 8 > 0. (4.1)

Then for a.e. (B ,w) € I x Q) with respect to the measure m ® P, and for any n € Z,

lim || (ho(E) — E — i¢)~15, ]| < oo. (4.2)

¢—0
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Remark. We emphasize that the intervals I, are deterministic.

Given the results of the previous section, the proof of Theorem 4.1 reduces to translating
ine by line the arguments of Section 3 in [JM]. To see how this translation is carried out,
we will reproduce here a part of the argument.

The first observation we will need is that (4.1) and Proposition 3.2 yield that for any
positive integer [, £ € 7 and p,q € Ii,,

|R1snw(p, @ E)| < Csilp—a)7", (4.3)

where Cj,; does not depend on E, I;, and w. In this technical sense the intervals /., are
the intuitive “barriers” discussed in the introduction.

To simplify the notation, we will prove (4.2) only in the case n = 0. This is the case that
we will use latter.

We begin by introducing several sequences of intervals. Let I,’s be as in the theorem,
I, = [an, bs), and let I, = |a, — by|+1. Let My = [a—1,b1]. For n > 0, we set M,, = [an, bny1],
and for n < 0, M,, = [an—1,bn). Let Ag = [b_1,a;]. For n > 0, we set A, = [bn, an+1], and
for n < 0, A, = [ba-1, an). Note that for n > 0,

Mn = InUAnUIn+1. (44)
A similar relation for n < 0

Notation. In the sequel we will drop subscript w whenever there is no danger of confusion.
Thus, we write h(E) for h,(E) etc.

We denote by hyy, (E) the restriction of h(E) to M, with the Dirichlet boundary condi-
tion. Let Ry, (E) = (has, (E) — E)! be the resolvent of hyy, (E) and Ry, (p, ¢; E) its matrix
elements. We first collect some apriori estimates on Ry, (E). Let

.’E1(11) = Qp, 33512) = by, 171(13) = Qn+1, 17514) = bn+1'

Recall that (z) = (1 4+ z2)'/2. We denote by L, the number of points in M,, L, = #M,.

Proposition 4.2 Let E € Z, v > 0 and ! > 0 be fized. Then for every € > 0 there is a
measurable set Q(e) C Q such that:

1. P(Q2\ Q) =0.

2. For each w € Q(e) there is a positive integer n, . such that for |n| > n,. the following
estimates hold:

max |Ru, (2 +p,29 + ¢, B)| < e(n)*(p)* ()", (4.5)
1]
max 3 [Ra, (a0 + 5, B)| < La(n) i+ p) i+, (46)
! qEMn
max |Rp,(p,¢; E)| < e(p—q)~" (4.7)

lp—q|>in/2
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Given Theorem 3.7 and Corollary 3.8, the proof of (4.5) and (4.6) reduces to a simple
application of Borel-Cantelli lemma. Note that Hypothesis (A) and the remark after (3.2)
imply that all conditions of Theorem 3.7 are satisfied. The estimate (4.7) follows from
Proposition 3.2.

Note that n, . is not specified uniquely. To avoid some ambiguities, for given ¢ > 0 and
w € Q(e) we define n, . as the smallest positive integer such that (4.5)-(4.7) hold for all
] 2 Flues

Proposition 4.2 gives information on the matrix elements of R, starting with a suffi-
ciently large index n which depends on w. To circumvent some difficulties which arise from
this w-dependence, we introduce the sets

k
Qe = |J{w: weQ(e) and n, . = j}.

Since Rnln(s t; E) are measurable functions of w, the sets Q“ are measurable. Clearly, if
i > k then Qk,; C Q” Furthermore, it follows from Proposition 4.2 that for each ¢ > 0,
UDOQk < is of full measure in 1. Note that some of the sets O  might be empty. However,
for each € > 0 there is k() > 0 such that Q. # 0 if k > k(¢). Let C, be the constant from
Proposition 3.3 and let (recall that Z = (c, d))

L = max{|c|, |d|} + jo(E) + Ci/e.
For given k£ and ¢, we introduce an auxiliary potential Vi . by the formula

Vio(n) = L ifne M, |s| <k,
R Vi) ifne My, |s| > k.

The reasons for introducing this auxiliary potential are the following:
a) If w € Qi and V is replaced by V. then the inequalities (4.5) and (4.6) hold for ali n.
b) If |n| < k then it follows from Proposition 2.3 and the choice of L that the inequality
(4.7) holds for all p, q € I,.
Let

nlil<e
We denote by hgr(E) the operator ho(E) + Vi . restricted to J, with the Dirichlet boundary
condition. We will prove below the following result.

Proposition 4.3 Let E € I be given. Then there exists €9 > 0 such that for k > k(g),
w € Qpey, and i € UE__ M,

2
limsup > | i» (hereo(E) — E)16n)

{00 nEJt
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Let us show how Relation (4.2) (for n = 0) follows from this proposition. Denote for the
moment by Ry ., the resolvent of the operator ho(E)+ Vi ,. It then follows from Propositions
3.4 and 4.3 that for w € Qi ., and i € U*__, M,

lm 3 R (i3 B + i€)* < Cr ke, < 0. (4.8)
neZ

Furthermore, it follows from the resolvent identity that

RO, E+iC) = Reeo(0,m E+iC)+ S (L= V(E)R(0,4; E + i¢) Re ey (i, n; E + i€).

1€M3 ,|S|Sk

Note that for a given w,
limsup |R(0,1; E + i¢)| < oo,
¢—0
for a.e. E € R (recall the remark after the proof of Lemma 2.1). Thus, for a.e. E € T and
a.e we Qk,m
[R(0,m E+iQ)* < Cpuw Y. |Rke(ini E+iQ)[.

i€M,,|s|<k
This inequality and (4.8) yield Relation (4.2) for n = 0.

The proof of Proposition 4.3 follows closely the proof of Proposition 3.3 in [JM]. We just
sketch the main steps.
Notation. In the sequel we will drop the subscripts k£ and €. For example, we write
Ri(n,m; z) for the matrix elements of the resolvent (hex(E) — 2)7!, etc.

We will discuss Proposition 4.3 only in the case where : = 0. A similar argument applies
to the other values of i.

Let £ > 0 be given. Let us recall the construction of the iterative expansion of the matrix
resolvent element R,(0,n; 2) with respect to Ry,. Let 7 be any path in the expansion (3.1)
which connects 0 and n, 7 = (0,ny,ns,...,n%,n). To such a path we associate a sequence
of bonds (by,...,b) and a sequence of blocks (M, ..., M,,) in the following way. Let ny,
be the first of the n;’s which is not in the block My. Then let b = (ng,—1,nk,). We denote
the block to which ng, belongs by M;,. Let ny, be the first of the n;’s, for { > k;, which is
not in M,,, and let b, = (ng,—1,nx,). We denote the block to which ny, belongs by M,. If
nk, € My N M, then, by definition, k; = min{s, t} if s,¢ > 0, and k, = max{s,t} if s,t < 0.
We now continue inductively. It is helpful to invoke the following picture. The path 7 starts
in the block Mj, and wanders for some time within this block. It then leaves M, and jumps
to a different block Mj,. In the bond b, we record the site ng,—; € My at which the path
takes off, and the site ny, € M,, at which it lands. The path now wanders through M,, and
then jumps to M,,, etc. The last bond b = (nk,_,,n,) corresponds to the last entry into
the block M, = M,, which contains n. Since neighboring blocks intersect, the paths can
land at the site which belongs simultaneously to two blocks; in this case, by definition, we
say that the path landed in the block which is closer to 0. Clearly, the sequences {b;} and
{M,,} are not uniquely determined by the path 7: great many paths 7 will determine the
same sequences of blocks. Note that {b;}, however, uniquely determines {M,,}. Let B be
the set of all sequences of bonds 7, = {b;} obtained in the above way.
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Regrouping the elements in the expansion (3.1) we get

RE(Ov n; Z) = 60n/(v(0) - Z) i Z R.M'o(oank]_—l; z)j(nkl—l - nkl)Rl\/f,l (nk“nkg—l;z) LR
TbEB

oo By, (s My-15 2)J (Ray -1 — Ry) Ragy, (M 13 2).
At this point, of course, this relation holds only for Imz > j,(£). However, if z is arbitrary
and the series on the right hand side converges absolutely then its sum is R,(0,n;z). To
show this, for z € C we define

RE(O) n; Z) = 60"/(V(0) - Z) + Z RMO (01 My —13 z)j(nkl—l - nh)RM” (nku Mky—1; z) 7%
‘TbEB

oo B, (gy_yy y—15 2) 3 (Mg -1 — M) R, (1 125 2). (4.9)

whenever the sum converges absolutely. We then have

Proposition 4.4 If z € C and if R¢(0, n; 2) is defined for alln € Jy, then z € o(he(z)) and
Ri(0,m; 2) = Re(0, n; 2).

The proof is the same as in [JM]. In the sequel, we will apply this proposition in the case
z=F€R.

At this point one proceeds to prove the following statement. Let E € T be given. Then
there exists g > 0 such that for k > k(eg) and w € Q.,, the formal series (4.9) converges
absolutely and

z |Re(0,m; E)|* < C < o0

meJ;
where the constant C' depends only on Cj; in (4.3) (in particular C' does not depend on £).
Proposition 4.3 then follows from Proposition 4.4.

Let us consider a typical term in the formal expansion (4.9):
Ry, (ks> P13 B)J (ni—1 — 1) R, (g My 15 E).
We fix ¢ > 0 and k& > k(¢), and proceed to obtain a suitable estimate on
Ry, (Mie;_y s g1 E)J (-1 — ngy).-

We now use (4.4) and the path expansion of Section 3 to decompose Ry, . in such a way
that the estimate (4.3) could be taken into the account. The rest of the arguments is virtually
identical to the arguments in [JM] and we leave details as an exercise for the reader. We
note that since j(n, E) is decaying exponentially, the estimates of [JM] could be substantially
improved. Also, the argument of [JM] (see the remarks at the end of Section 3 in [JM]) yields

the estimate
sup |(do, (ho(E) — E —i()710,)| < Cugx(1 + |n|)7%.

0<(¢<1
for any k > 0. This estimate and Simon-Wolff theorem [SW] will yield the decay of eigen-
functions described in Remark 1 after Theorem 1.1. We expect that this result is not optimal,
and we will not discuss it any further.



Jaksié¢ and Molchanov 651

5 Probabilistic reduction

In this section we construct a partition of the probability space (@2, F, P) associated with the
model (1.1). This partition, combined with the results of the Section 2 and some additional
technical results described in Section 6, will allow us to reduce the proof of Theorem 1.2 to
Theorem 4.1.

We first recall the structure of (2, F, P) (for details see e.g. [CFKS]). Without loss of
generality we may assume that

fl= RZ = XzR.
Each w € © can be identified with the real sequence {w;}:cz. The o-algebra F is generated

by cylinder sets {w : w;, € By,...,w;, € B,}, where By,..., B, are Borel subsets of R. If
du = p(z)dz, the probability measure P is given by P = xzu.

Let J; and J, be two given disjoint open intervals and let 5 = R\ (/7 U J,). We will
assume that for i = 0,1, 2,

pi = fj p(z)dz > 0.

1

Clearly, po + p1 +p2 = 1. To each w € 2 we associate a sequence s(w) = {s;} of 0’s, 1’s and

2’s as follows:
0 ifw; € Jo,
S = 1 if w; € Jl,
2 it w; € ._72.

The sequence s(w) is the skeleton of the event w. We denote by S the set {s(w) : w € Q}.
Let 7 be the o-algebra on S generated by the cylinder sets, and 7 a measure defined by
m = Xzb, where b{0} = po, b{1} = p1 and b{2} = p,. Note that if T : Q@ — S is defined
by T'(w) = s(w), then T is a measurable transformation and for any measurable set F' C S,
P(T~Y(F)) = n(F).

For any s € S let Q; = {w : s(w) = s}. Each Q, is a measurable subset of Q, Q;,NQy =0
if s # s and Q = U,es8,. We remark that for any s, P(€,) = 0. Note that each , has the
form

Qs = xiEth:Si'
Let s be given, and let 4 be a probability measure on R with the density

p(z) = p;lp(z)x 7, (2),
(in the sequel x4 stands for the characteristic function of the set A). Note that
12?0 < llpllco/ min{po, p1, p2}- (5.1)
Let P, be a probability measure on 2 defined by

P, = iz,
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Note that the measure u'¥) is supported on Js, and that P; is supported on 2,. In this way
we obtain, for each s € §, a new probability space (2, F, Py). Note also that

P(A/s) = P,(A),

is the usual conditional probability of event A given s.

Lemma 5.1 For any A € F, the function P(A/-) : § — R is m-measurable, and

= fs P(A/s)dr(s).
Proof: If A is a cylinder set, the proof reduces to a simple computation. The general case
follows by limiting argument. O

We will also make use of

Lemma 5.2 Let C C T x Q be a measurable set and

Cg={w: (E,w) €C}. (5.2)
Then f(E,s) = P(Cg/s) is a measurable function on T ® S.
Proof: If C = B x A then the previous lemma yields that P(Cg/s) = xp(E)P(A/s) is a
measurable function on Z x §. The general case follows by limiting argument. O

The stage is now set for our probabilistic reduction. Let Z be an open interval such that
ZN[-4,4 =0 and

C={(F,w)eTxN: }%|l(hw(E) — E —i{) 14| < o0}
It is not difficult to show that for fixed ¢ the function ||(h,(E) — E —i{)~'dy|| is measurable
on Z x . Therefore, the set C is measurable. According to Theorem 1.2, Theorem 1.1 holds

if m ® P measure of the set C is equal to |Z|, the length of the interval Z. Let Cg be given
by (5.2). Lemmas 5.1 and 5.2 together with Fubini’'s theorem yield that

deE®dP=/IP(CE)dE /dEf P(Cr/s)dn (s fd;rr /PCE/S

and finally, that
de@dP - [ dw(s)deeadP,
C S C

We summarize:

Theorem 5.3 Theorem 1.2 holds if for w-almost all s and for a.e. (E,w) € T ® Q with
respect to m @ Py we have that

lim |(hu (E) = E = i¢) ™" do| < o0.

(-0



Jak3i¢ and Molchanov 653

For the obvious reasons, we will refer to this result as the probabilistic reduction.

We finish this section with a probabilistic estimate which will allow us to construct long
periodic approximations of the random potential V,,.

Proposition 5.4 Let p > 0 and a be given integers such that pra > 1 and p,a > 1. Then
7-a.s. there exists an integer n(s) such that the intervals

+[(pa)™*" 4 1, (pa)~)F+t — 1], n >0,
contain sub-intervals 11, of the length dnp such that

. = 1 ifi€ Ii,, 1 =0 modp,
Tl 2 ifi€ i, %0 modp.

Proof: Let pa = b. For any positive n let
I = [(0" +8(k — 1)pn +1,b" + 8(k — 1/2)pn + 1], 1% =W

n

where 1 < k < [b(b™ — 1)/8np] — 1 and [] is the greatest integer part. Let
Anp={s: s;=1ifi e I¥), i=0modp, and s; = 2if i € I!), i % 0modp}.

Let r = min{p;, p2}. One easily shows that m(A,x) > r®". Let B, be the event that no
A, x take place, B, = S\ (UrAnx). It follows that

7(B,) < (1 - Tsnp)[b(b"—l)/Snp]—l _ 0(2—(ra)")'

If ra > 1, ¥, 7(Bn) < co and Borel-Cantelli lemma yields that w-a.s. only finitely many
events B, take place. O

6 Periodic approximations and gaps

In this section we collect a few additional results from [JM] which will be used in the next
section to verify the hypothesis of Theorem 4.1.

Let p > 0 be a positive integer, € > 0 a positive parameter, and V, ,, a periodic potential
of the form

(6.1)

_ | e ifn=0modp,
V”’(”)‘{o if n # 0 mod p.

We set hep, = ho(E) + Ve p.

The operator ho(F) in the Fourier representation acts as the operator of multiplication
by the function j(¢, E) = A(@, E) + 2 cos ¢, which, for fixed E, is even, analytic and strictly
monotone on the interval [0,7]. Thus, Hypothesis (H) of Section 4 in [JM] is satisfied. We
will use the shorthand ey ,(E) = j(k7/p, E). Theorem 4.1 of [JM] applied to h.,(E) states
the following.
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Theorem 6.1 Let |E| > 4 be given and assume that (6;,602) C o(ho(E)). Then there exist
€0(E) > 0 and po(E) > 0 such that for 0 < e < &y(E), p> po(E), and ex,(E) € (6y,65),

U(ha,p(E)) N (ek,p(E), Ek.p(E) + 6e,k,p(E)) = @,
for some 6, ,(E) > 0.
We will also need a technical result from [JM] (Proposition 5.1) which asserts that the
conciusions of Theorem 6.1 are essentially unaffected by Dirichlet decoupling. Let again
|E| > 4 be given, and let V;, be a periodic potential with the period p. Let hy(E) = ho(E)+V,.

For any positive integer L let hJ(E) be the restriction of h,y(E) to the interval [—2pL, 2pL]
with the Dirichlet boundary condition. We then have

Proposition 6.2 Let (a,b) be an interval such that 0 &€ (a,b) and o(h,(E))N(a,b) = 0. Let
€ >0 and ¢ > 0 be given small numbers. Then there exists finitely many points ry, ... 7y,
in (a+€,b— €) and a positive number L. 5 such that for L > L.,

a(hf(E)) N(a+e¢b—e¢)C Uf;'f[rl — 6,1 + 4.

The points r; and the numbers L.s and k.5 depend only on €, 6 and E. Furthermore,
SUPgsq ke,s < ke < 00, where k. depends only on € and E.

We will also make use of the following technical results.

Lemma 6.3 Assume that Hypothesis (H1) hold. Let Ey € S(V) \ [—4,4] be given. Then
there is ¢y € [—m, ] and ag € V such that

3 (0, Eo) + ag = Eq. (6.2)

Furthermore, there is a discrete set B C R\ [—4,4] such that if Ey ¢ B then ay and ¢,
can be chosen so that ay is an intertor point of V and that j(¢o, Ey) is an interior point of

O'(ho(Eo))

Remark. This lemma is the only place where we use Hypothesis (H1).
Proof: (¢, Ep) is the solution of the equation

A(¢, Bo) + 1/, Eo) + 2 cos ¢ = Ey, (6.3)

which satisfies |A(¢, Fp)| < 1. If Ey € S(V), then (recall (1.2)) there exists ¢y € [—m, 7] and
ag €V, |ag| > 1, such that ag + 1/ag + 2cos ¢y = Ey. It now follows from (6.3) that

ap + 1/ag = A(¢o, Eo) + 1/ (o, Eo).

Since the function z + 1/z is strictly monotone on [1,00), we have that ag = 1/A(¢y, Ey).
Substituting back in (6.3) we derive (6.2).
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To prove the second part part of the lemma, note first that the function 5(¢5, Ey) has two
extreme points, at ¢ = 0 and ¢ = w. Clearly, by wiggling ¢y and a¢ in (6.2) a little, one
can always achieve that ag is an interior point of V and that 7 (¢, Ey) is an interior point of
o(ho(Eo)) except possibly in singular cases where ag € 8V and ¢o = 0 or 7. Let

B={E:j0,E)+a=E or j(r,E) +a=E for some a € 8V}. (6.4)

Since j(0, E) and j(m, E) are analytic functions on C\ [—4, 4] and the set 8V is discrete, we
derive that B is a discrete set as well. O

7 Proof of Theorem 1.1

Let B be given by (6.4), and let Ey be such that |Ey| > 4, Ey € S(V), and Ey ¢ B. We
will show that there exist an open interval Zy 3 Ej such that for ae. (F,w) € Zy x Q with

respect to m ® P,
lim || (ho(E) — E — i¢) ™ 0| < oo. (7.1)

(=0

It then follows from Theorem 1.2 that £, NZy, = 0. Since B is a discrete set, Theorem 1.1
follows.

It follows from Lemma 6.3 that there exist ag € V and ¢y such that }'(gbo, Ey) + ap = E,.
Furthermore, ag and ¢q can be chosen so that ag belongs to the interior of V and j’(q‘bo, Ey)
to the interior of o(ho(Ep)). Let 6 > 0 be such that (ag — 8, a9+ 6) € V, and 6,, 8, such that
7(¢o, Eo) € (61,602) C o(ho(Ep)). Choose g9 > 0 and py > 0 such that Theorem 6.1 holds.
Pick p > po and k such that

|7(k /p, Eo) = 5(¢o, Eo)| < 6/4,

and that kr/p € (61,62). Choose € > 0 such that € < min{eo,8/4}, and let V;, be the
periodic potential (6.1). We now use Proposition 6.2: For any € > 0 and § > 0 we can find
Les(Eo) such that for L > L s(Ep) the spectrum of the operator k7 (Ep) (the restriction of
ho(Ey) + Vep to [—2pL, 2pL] with the Dirichlet boundary condition) satisfies

o(hL,(Eo)) N (a+€,b—€) C Uil — &,y + 4],

where a = 7(km/p, Eo), b = j(k7/p, Ey) + 8¢ . p(Eo). Choose now ¢, § and zo € (—6/4,6/4)
st. 2o+ Ey—ag € (a+e€,b—¢€), 20+ Eg—ap & U:c;'f [ri — 8,7+ 6]. This is certainly possible
since supssg kes < ke < 00. It follows that

i ; L _
L>I}¢r,l¢;f(Eo) dist{o(h, ,(Eo)) + ao — o, Eo} > 0.

Furthermore, it follows from Proposition 3.5 that

< L L .
Jim sup|lhzy(E) = hey(Eo)| = 0.
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A simple perturbation argument (see Lemma 5.3 in [JM]) yields that there exist an open
interval Zy 3 Ep and v > 0 such that for any £ € Zp and z € (ag — 9 — v, a0 — 79 + 7),

. . L _
L>£?6f(go)diSt{o(h€-p(E)) +z,E} =a>0,

where a does not depend on E and z. This result can be rephrased as follows: There exist
a > 0 such that for any L > L. s(Eo) and any potential V on I = [-2pL, 2pL] which satisfies

Vir)ey = (ap—-zo+e—7v,a0—Zo+e+7) if n =10 mod p,
V(n) € 7 (a0 — 2o —v,a0 — To +7) if n Z 0 mod p,

I

we have that
E‘Qi dist{o(h;(E)),E} =a > 0. (7.2)

We of course can choose v such that J; N J, = 0. From the construction, ay — z, and
ap — To + € belong to (ag — 0/2,a¢ + 6/2). Thus,

= -/.71 p(z)dz > 0, P2 = sz p(z)dz > 0.

Also, by possibly reducing -, we may assume that pp =1—p; — p> > 0.

We are now ready to apply the probabilistic reduction of Section 5. Let s € S be an event
for which the conclusions of Proposition 5.4 hold. According to Theorem 5.3 to establish
(7.1) it suffices to show that for each such s, the relation

lim[(hu(B) - £ = i) 6o] < oo,

holds for a.e. (F,w) € Iy x 2 with respect to the measure m ® P,. We are now in position
to use Theorem 4.1. Consider the random Schrédinger operator ho(E) + V,, on (Q, F, P,).
It follows from (5.1) that Hypothesis (A) of Theorem 4.1 is satisfied. Estimate (7.2), Propo-
sition 5.4 and translation invariance yield that all the other conditions of Theorem 4.1 are
satisfied, and the result follows.
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