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1 Introduction

The new field of quantum computing has developed spectacularly since its origin a few years
ago. Quantum logic gates have been formulated and elementary quantum logic considered
for several physical candidates for a future quantum computer. [1, 2, 3, 4] Quantum error
correction theory to compensate decoherence has also been extensively formulated in the past
two years. [5] Paradoxically, so far only one quantum algorithm (Shor’s) is known which can
be potentially used on a future quantum computer (to factor huge numbers in polynomially
increasing time—as opposed to exponentially increasing time which is believed to be required
by a classical computer). [6] The search for possible algorithms faces difficulties in handling
quantum logic due to its particular properties.

Both classical and quantum logics can have a probabilistic semantics, i.e., can be shown
equivalent to a Kolmogorovian [7] and a quantum probability [8] theory, respectively. A
simple mapping from the propositions of the logics to the interval [0,1] suffices. The problem
with quantum logic—as opposed to classical—is that so obtained quantum probability cannot
be used even for the simplest experiments. Quantum logic is a small algebraic core of the
full probabilistic descriptions of a quantum measurement, i.e., the Hilbert space probability
theory. In order to handle a superposition of states, which are the starting point of any
quantum computer, the computer cannot be given the present quantum (orthomodular) logic.
It can be shown that only a variety of quantum logic (quantum logic with new additional
independent axioms) can be used for a description of even the simplest superposition of
states if we want that a mapping from an obtained final proposition to the interval [0,1] be
direct and represent a calculated result of the computer. On this mapping rather complicated
conditions (read off from the Hilbert space structure) must be imposed although just recently
a significant advance has been made when M. P. Solér proved that an orthomodular form
that has an infinite orthonormal sequence is a Hilbert space. [9, 10, 11] The reason for that
is that within standard formulations of quantum logics additional axioms become rather
complicated even for automated theorem proving [12] and that the problem of inferring
new theorems has not been properly solved. In particular it was not clear whether modus
ponens was adequately defined in various systems and whether the implications it used were
appropriate.

In this paper, in Sec. 3 we show that binary orthologic with the modus ponens rule
added to it is distributive when the implication used is classical and orthomodular when the
implication is quantum. We then analyze the standard approach and show that the properties
of logics are strongly dependent on the kind of valuation one uses in order to model a logic
by a lattice. In particular, we show that the modus ponens rule in the standard approach
does not structurally determine a logic. Therefore in Sec. 2 we investigate the properties
of structures obtained from the standard quantum logics (using two of Kalmbach’s systems
as examples) by means of the unary valuation. In particular, we consider the algebra A of
all true formulas of the logic. The algebra is a subalgebra of the algebra F = (F°,—~,V) of
formulas of the logic. We investigate mapping of A to ortholattice OL—we call this mapping
an algebraic mapping—by means of valuation v which turns the operations =,V into +, U.
We obtain a collection of expressions ¢ in OL all of which have the form ¢ = 1. Because of
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our former result according to which the orthomodularity in an ortholattice can be expressed
asa—b=1 = a<b[l3]andevenasa=b=a+ b=1 = a=0b[14], it is interesting
to see into which equations axioms of the logic map. In quantum logic—whose models
are orthomodular lattices—the former condition imposed on the operation of implication is
known as the Birkhoff-von Neumann’s requirement: - A — B < v(A) < v(B) which
should hold for every valuation on a model. As opposed to classical logic, the quantum
implication is not unique—G. Kalmbach has shown that there are five implications that
satisfy the Birkhoff-von Neumann’s requirement [15]—but one would expect that, due to
the latter requirement, the afore-mentioned algebraic mapping preserves the weight of the
axioms and theorems. However, we find out that the mapping of the axioms of any standard
quantum logic is a proper non-orthomodular variety of an ortholattice. In this variety.
algebraic mappings of all but one axiom turn out to be satisfied in all ortholattices. The
axiom in question is however not the orthomodularity axiom one uses in the proof of the
completeness. The algebraic mapping of the orthomodularity axiom turns out to be satisfied
in any ortholattice. In Sec. 3 we then show that the variety is equivalent to another non-
orthomodular variety based on the Kotas biconditional property.

2 Standard Quantum Logic: Modus Ponenses Are Interchange-
able

In this section we approach the problem of finding an efficient modus ponens rule as the
rule of inference for quantum logic by analyzing two systems of [16] which employ two dif-
ferent modus ponenses formulated by means of two different implications, a quantum and a
classical, respectively. We first eliminate non-independent axioms and in particular an ax-
iom (KA1l below) which has the form of the orthomodularity property on an orthomodular
lattice except that the identity stands for the equality. Here we stress that axioms reflect
a kind of valuation cn a model of the logic. So, identity H A = B between propositions
from the logic does not mean equality of their valuations v(A) = v(B) on the model (or-
thomodular lattice). Next we look at the structure we obtain by an algebraic mapping of
the axioms of Kalmbach’s two systems into an ortholattice. The structure turns out to be
non-orthomodular as shown below. Also all the axioms of one of the two systems are derived
within other. Hence the kind of implication one used would be irrelevant, if one did not use
them to establish a lattice model of a considered logic. This is complemented by our result
in Sec. 3 which shows that both the modus ponens rule (corresponding itself to the chosen
binary valuation) and the operations of implication (which also correspond to the chosen
valuation) structurally determine the logics we construct using them.

Propositions we use are based on elementary propositions po, p1, p2, ... and the following
primitive connectives: — (negation) and V (disjunction). The set of propositions is defined
formally as follows:

p; is a proposition for 7 =0,1,2,...
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- A is a proposition iff A is a proposition.
AV B is a proposition iff A and B are propositions.

The conjunction is introduced by the following definition:

Definition 2.1. AAB % —(=4V -B).

Our metalanguage consists of axioms and rules from the object language as elementary
metapropositions and of compound metapropositions built up by means of the following
metaconnectives: ~ (not), & (and), V (or ), = (if..., then), and & (iff), with the usual
classical meaning.

The operation of implication is one of the following:

Definition 2.2.

A-yB ¥ -AvB (classical)
A= B ¥ -AV(AAB) (Sasaki)
A=, B ¥ BV (-AA-B) (Dishkant)
A—>3B ¥ ((mAAB)V(=AA-B))V(AA(=AV B)) (Kalmbach)
A—¢B ¥ ((AAB)V(~AAB))V ((~AV B) A—-B) (non-tollens)
A-sB ¥ (AAB)V(~AAB))V (=AA-B) (relevance)

Identity is defined as follows:

Definition 2.3. A=B < (AAB)V (=AA-B)

We also define = and —; for the lattice algebra using the analogs of their logic definitions.
The following two lemmas are well-known. [17]

Lemma 2.4. The following holds in any quantum (orthomodular) logic:
A=B = AeB ¥ (49, B)A (B —; A) i=1,...,5
Lemma 2.5. The following holds in any classical (distributive) logic:

A=B = A< B ¥ (45, B)A (B —; A) i=0,...,5
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Connectives bind from weakest to strongest in the order —, <>, =, V, A, and =, with
similar bindings for the lattice algebra analogs.

Let us first consider the [ollowing system KO with a “classical” (using A —¢ B) modus
ponens rule. [16]

Axioms.
KA. FA=A
KA2. FA=B 2 (B=C -5 A=C)
KA3. FA=B—yA=-B
KA4. FA=B 3, ANC=BAC
KAS. FAAB=BAA
KAS6. FAA(BAC)=(AAB)AC
KAT. FAA(AVB)= A
KAS. F-ANA=(-ANA)AB
KA9. FA=--A

KA1o0. F-(AVB)=-AA-B
KA11. FAV(-AAN(AVB))=AVB
KAl12. +(A=B)=(B=A4)
KA13. FA=DB —(A—¢B)

Rule of Inference.

KMPO. FA & FA—¢yB = +B

KO0 is characterized by the class of orthomodular lattices in the sense that - A & v(A) =
1 (the unary valuation). In this section we shall look at the role of the orthomodular law in
the unary valuation, using system KO as a convenient formalization for our purpose.

System KO has redundant axioms. Axiom KA1 is obviously redundant, being derivable
from KA2, KA9, KA12, KA13, and KMPO.

Less obvious is a main result of this section, which is that KA1l is redundant. This is
somewhat surprising, since the resemblance between KA1l and a “proper” orthomodular
axiom at first suggests it might be essential.
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Theorem 2.6. Aziom KA1l s deriwvable from KA1-KA10, KA12-KA13, and KMPO.

Proof. Fko A or just F A will mean “A is a theorem of K0.” In our proofs we will sometimes
not mention possible use of KA2, KA12, KA13, or KMPO0. These, together with KA3, KA4,
KA9, and KA10, allow us to prove, by induction on formula length, an analog to equality in
lattice algebra, so that from - A = B we may infer - _A__ = __B__. Using this equality
metatheorem, the equality analogs provided by KAl, KA2 and KA12, and the obvious
ortholattice analogs KA5-KA9, it is easy to see how to prove any other ortholattice analog
in a manner paralleling an ortholattice proof. We will say that any theorem constructed in
this manner is proved “by ortholattice analogy.” Of course ortholattice analogs can include
only theorems of KO of the form - A = B.

From KA8 we have - ~AAA = (WAAA)A(-BAB) and - "BAB = (nBAB)A(—ANA).
Using KAS to connect the right-hand sides we conclude H ~A A A = =B A B. This theorem

together with the equality metatheorem above allow us to define constants 0 ' AAA and

1 8

We define - A< BY rAvB=B.

(i) We have the law of excluded middle - A v = A which follows from KA1, KA13, and
ICA5. This can be restated as - 1.

(ii) By ortholattice analogy we have that - A < B,ie. H AVB = B, impliesk- AAB= A
(conjoin A to both sides and apply KAT).

(iii) - AV (mAA (AV B)) < AV B follows by ortholattice analogy: in - "AA(AV B) <
AV B, place A in a disjunction on both sides.

(iv) F 2(AVB)V(AV (-AA(AV B))) =1 is proved as follows. By DeMorgan’s laws
we have

F-AA(AV B)=-(AV~-(AV B)).

By commutativity of disjunction we have
F-(AVB)VA= AV -(AVB).

The disjunction of these yields
F(~(AVB)VA)V(-AA(AVB))=1

and associativity of disjunction gives us the result.

(v) FromF A < Band - ~BV A =1 we can infer - A = B, proved as follows. From
the first hypothesis: by definition of < and DeMorgan’s laws, we have - ~A A -B = —B; by
(ii) we have - A A B = A. The disjunction of both sides yields - (A = B) = AV —~B. From
this and the second hypothesis we obtain - (A = B) = 1. Using KA12, KA13, and KMPO,
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we detach excluded middle (i) to obtain the result.

(vi) F AV (mAA (AV B)) = AV B follows immediately from (iii), (iv), and (v). This is
axiom KA1l, the desired result. O

Looking closer at KAll, we find another surprise: its mapping has nothing to do with
the orthomodular law.

Theorem 2.7. The mapping for KA11,
aU(at*N(aUb)=aUb=1

is true in all ortholattices.

Proof. In a manner exactly analogous to sections (iii) and (iv) of the previous proof, we
obtain for ortholattices

aU(atN(aUb)) <auUb
and
(eUb)tu(aU(atn(aub))) =1

By analogy to section (v) of the previous proof, but omitting the final detachment of excluded
middle, we obtain that

a<band b*Ua=1impliecsa=b=1

in all ortholattices. The desired result follows immediately from these. O

Given this result, it is natural to ask whether the orthomodular law is needed at all in
the algebra underlying K0. The answer is in the following theorem.

Theorem 2.8. (i) The algebraic mappings for KA1, KA3, KA5-KA13, and KMPO are true
or sound in all ortholattices. (1i) The algebraic mappings for KA2 and KA4 do not hold in
all ortholattices.

Proof. KMPO: This rule is sound in all ortholattices. [16]

KA1, KA5-KA10, KA12: Each theorem has an obvious equational analog in ortholat-
tices. Since a = b implies a = b = 1 in all ortholattices (if a = b, thena=b=5b=b=1),
we obtain the desired result. For example, for KA5 we have the analog aUb = bU a, from
which we deduce its mapping a Ub = bU a = 1, which is true in all ortholattices.
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KA3, KA13: We use the fact that a < b implies a*Ub = 1 in all ortholattices (if aUb = b,
then at UaUb=at Ub). For KA13,anb<band a*Nbt <a*,soa=b<atUbd.

KA11l: Theorem 2.7.

KA2, KA4: Each of their mappings

(a=btu(anc=bne)=1

violates the non-orthomodular ortholattice of Fig. 1 with the assignment a =z, b=2,c=y
showing that they do not hold in all ortholattices.

Figure 1: Ortholattice violated by mappings of KA2, KA4

g

Finally, we ask whether the full strength of the orthomodular law is embodied in the
algebraic semantics for system K0. The answer is no.

Definition 2.9. We define a weakly orthomodular (WOM) lattice as an ortholattice
extended with the following two laws:

W1. (a=btU(anc=bnec) =1

Because these are the mappings of KA4 and KA2, and since all other mappings of KO are
true or sound in ortholattices, WOM lattice algebra is sufficient to model K0O. (Later we
shall show W2 is redundant; see Theorem 2.14 below.)

Theorem 2.10. (i) Every orthomodular lattice is a WOM lattice. (ii) Every WOM lattice
is an ortholattice.

Proof. (i) W1 and W2 are true in every orthomodular lattice. See the proofs of the KA4
and KA2 mappings in Ref. [16]. (ii) By definition. O
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However, no theorem of WOM lattice algebra is as strong as the orthomodular law, as
shown by the following theorem. This shows that KO can be modeled by an algebra strictly
weaker than orthomodular lattice algebra.

Theorem 2.11. (i) There exist WOM lattices that are not orthomodular. (ii) There exist
ortholattices that are not WOM lattices.

Proof. (i) The non-orthomodular ortholattice O6 (Fig. 2) is not violated by W1 and W2.
(ii) Theorem 2.8(ii).

Y zt

Figure 2: Ortholattice O6

Theorem 2.12. No collection of theorems of orthomodular lattices of the form
t=1

(wheret is a term, such as aUa’ ), when added to an ortholattice, determines an orthomodular
lattice.

Proof. By completeness of K0 [16], any theorem of orthomodular lattices of the form ¢ = 1
is provable from the mappings of the axioms and inference rule of KO. Thus WOM lattice
algebra, which is strictly weaker than orthomodular lattice algebra by Theorem 2.11 (i), is
sufficient to prove any such theorem. O

Indeed, WOM lattice algebra is equivalent to ortholattice algebra extended with all ortho-
modular lattice theorems of the form ¢ = 1 [where ¢ is a term such as aU(a*N(aUb)) = aUb)].

Kalmbach defines another system, which we shall call K1, with a modus ponens rule
using the implication A —3 B. K1 is defined as KO minus KMPO, plus the following axioms
and inference rule: [16]

Axioms.

KA15. F (A —3 B) = (A = B)
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Rule of Inference.

KMP3. FA & FA—-3;B = F+B

Kalmbach shows that KA14, KA15, and KMP3 can be derived in KO, and also that
KMPO can be derived in K1. Thus K0 and K1 are logically equivalent, and the above results
apply to K1 as well as KO. We mention that KA1, KA11, and KA15 are redundant in K1.

The mapping for KA14 is not a theorem of ortholattice algebra. In particular the mapping
for KA14

CLJ'Ub—);:, (a—>3 (a—);;b)):l

violates the non-orthomodular ortholattice of Fig. 3 with the assignment a = y, b = w.?

(The mapping for KA14 is of course true in all WOM lattices.)

1
4 m—!—
y yt
I z—L
0

Figure 3: Ortholattice violated by mapping of KA14

The mapping for KA15 is true in all ortholattices: from a* Nb < b, a*t Nb+ < at it
follows that (a*Nb)U(a*Nbt) < atUb; this and aN(atUb) < atUb imply a =3 b < at Ub.
Thus (@ —3 b)* U (at Ub) = 1. Since KMP3 follows from KMPO applied twice to KA15,
and KMPO is sound in all ortholattices, KMP3 is also sound in all ortholattices.

Given our result that the orthomodular law is needed only for KA2 and KA4 in the
algebra for system KO0, we next show that it can be eliminated from one of them. We define
a new system, K0', as consisting of KA3-KA10, KA12, KA13, and KMPO, along with two
axioms

Axioms.
KA2a. FAvC=BvC)=(CvVA=CVB)
KA2b. FAVC=BVC)=(-(-AA-C)=-~(-BA-C))

3The authors are grateful to William McCune, Argonne National Lab, Argonne IL, for finding this lattice,
using the matrix-finding program MACE (http://www.mcs.anl.gov/home/mccune/ar/ortholattice/).
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The mappings of all axioms of K0’, with the exception of KA4, are true in all ortholattices.
Thus KA4 alone contains the essential non-ortholattice character of the algebraic semantics
for K0’, and by the next theorem, also for KO.

Theorem 2.13. Systems K0 and K0' are logically equivalent.

Proof. The proofs of KA2a and KA2b in system KO are straightforward. The derivation of
KO0 from K0 is more involved.

(i) From KA4 and KMPO we have that - A = B implies- AANC = BAC.

(ii) From (i), KA2a, KA2b, KA3, KA13, and KMPO, we have that - A = B implies both
FAvC=BvCand+-CVA=CVBE.

(iii) The law
FA=B & +B=C = FA=C

is derived as follows. From - A = B, (i), and (ii), we obtain - (AAC)V (-B A =C) =
(BAC)V (-BA-C)ie. F(AAC)V (mBA-C)=(B=C). From this, - B =C, KA12,
KA13, and KMPQ, we obtain - (AA C) V (=B A —C). From - A = B, KA3, KMPO, (i),
and (ii) we obtain - (A =C) = (AAC)V (=B A =C). From these two, KA12, KA13, and
KMPO0, we obtain - A = C.

(iv) KA1 follows from (iii), KA9, KA12, KA13, and KMPO.

(v) We can use (iii) in place of KA2 in the work of Theorem 2.6 to construct proofs by
“ortholattice analogy.” In particular, we can prove KA1l.

(vi) Having KA11 available as an analog to the orthomodular law, we can further con-
struct proofs by “orthomodular lattice analogy.” In particular we can prove the analog of
the algebra mapping for KA2,

F(A=B -y (B=C—-o¢cA=0))=1
by analogy to the proof in Ref. [16].

(vii) We prove I 1 as in Theorem 2.6. Detaching it from (vi), we derive KA2. 0

Theorem 2.14. Aziom W2 for WOM lattices is redundant.

Proof. W2 is the mapping for KA2. By analogy to the proof of Theorem 2.13 [through step
(vi)] in ortholattices, we can prove W2 from W1 (the mapping for KA4). O

WOM lattices are characterized by a somewhat simpler law, as the following theorem
shows.
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Theorem 2.15. An ortholattice in which the following law
WRI1. a=b=11impliesaUc=bUc=1

holds is a WOM lattice and vice-versa.

Proof. This law follows directly from W1 (we obtain the U version of W1 using DeMorgan'’s
laws and the mapping for KA3, and use the mapping of KMPO to finally obtain the law).
Conversely, using this law in the role of KA4, we construct an ortholattice proof analogous
to that for Theorem 2.13 through step (vi), except that in step (vi) we follow the proof for
the mapping of KA4 rather than KA2 in Ref. [16], to obtain W1. O

WOM lattices are also characterized by a “weaker-looking” but equivalent law.

Theorem 2.16. An ortholattice in which the following law
WR1'. a=b=1impliesaUc=bUc>a

holds is a WOM lattice and vice-versa.

Proof. This law follows immediately from WR1. Conversely, using this law twice we obtain
that @ = b = 1 impliessaUb < aUc¢ = bU c. WRI follows from this and the following
equation, true in all ortholattices, whose proof we leave to the reader:

(aub)U(aUc=buc) =1 O

By a similar proof we can also show that
W1’ (a=brU(aUc=bUc)>a

can replace W1.

3 Binary Orthologic: Modus Ponens Rule Determines Logics

In this section we use binary orthologic, as an efficient formulation of implicational logic,
in order to formulate the appropriate modus ponens rule. We then show that this modus
ponens rule turns orthologic into quantum logic. Thereupon we show that binding quantum
bi-implication to the quantum identity gives an orthologic which is weaker than quantum
logic and which is contained in the logic we obtained in the previous section.

Binary logics from the references [18], [19], [14] and [13] are the logics of all pairs A+ B
that in an associated standard logic S would satisfy ks A —; B for : = 0,...,5. Quantum
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(classical) logic is characterized by the class of orthomodular (distributive) lattices in the
sense that A = B < wv(A) < v(B) for all valuations v on all orthomodular (distributive)
lattices. By means of this characterization quantum implications determine quantum logic
and the classical implication classical logic, in the following way:

Theorem 3.1 (Pavicié¢, 1987). An orthologic in which
FA—; B & AFB

holds is a classical logic for © = 0 and a quantum logic for i = 1,...,5. Here, = A means
Cv-CFEA.

We also have a corresponding result for lattices:

Theorem 3.2 (Pavicié¢, 1993). An ortholattice in which
a—+b =1 =4 a<b

holds is a distributive lattice for i = 0 and an orthomodular lattice for i =1,...,5.

Theorem 3.1 enables us to axiomatize classical and quantum logic in the following way:

Axioms.
Al. AF--A
A2. —AFA
A3. AFAVEB
Ad. B-AvVEB
AS5. BFAV-A

Rules of Inference.

R1. AFB = =-BF-A
R2. AFB & B+FC = AFC
R3. AFC & BFRC — AVBFC

R4(i). +A—»B = AFB
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Here the system A1-A5+ R1-R3 is orthologic (OL), also called minimal quantum logic.
OL + R4(7) is quantum logic (QL) for i =1,...,5 and classical logic (CL) for i = 0.

In the previous section we have shown that the traditional forms of modus ponens rule
for implications —; for i = 0,3 (KMP0, KMP3) can be derived within an orthologic. The
following theorem shows that this is also valid for the other implications.

Theorem 3.3. Modus ponens rules of the form

MP (i). A & +A-B = FB

hold in any OL for anyi=0,...,5.

Proof. The proof is trivial. So, we only sketch it for ¢ = 0,1, 2.
1. =0 FA = -B+HAA-B = -AVB+B = F+B
fe=] FA = —-(AAB)FAA-(AANB) = -AV(AAB)FB = F+B

i=2 FA = FAVB = -BF(AVB)A-B = BV(-AA-B)FB O

Thus traditional modus ponens rules do not characterize logics structurally. Loosely
speaking this is so because modus ponens rule cannot take care of a proposition to the left
of ‘+’. As the following lemma shows, we also cannot use the object language modus ponens
usually called lattice theoretic modus ponens [20] instead of the above traditional rules.
Lemma 3.4. Any OL with lattice theoretic modus ponens

MP(3). AAN(A—; B)F B

is QL for ¢ =1,2,4,5 and CL for i = 0,3. On the other hand, MP(i), i = 0,3, is satisfied
in CL and MP(i), 1 =1,2,4,5 in QL.

Proof. To prove that R4(7) holds in OL + MP(¢), i = 0,1, 2,4, 5 we make use of
X1. AFB = AACFBAC [Def. 2.1, A1-A5,R1-R3)
We infer the conclusion A - B of R4(i) from the premise - A —; B of R4(i):
-AVAFA-;B [premise of R4(7)]
AFAANA—=; B [X1,Def. 2.1,A1-A5,R1-R3]

A+ B [MP(:),R2]
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Theorem 3.2 yields the ¢ = 3 case straightforwardly. The proof that MP(7) holds in
OL + R4(z) (or CL for 1=3) is straightforward and we omit it. E.g., MP(1) is a well-known
orthomodularity axiom [19]. O

However, in the binary logic we can straightforwardly construct the appropriate modus
ponens rule in the following way.

In an associated standard logic S of our binary logic all elementary propositions have
the form g A —; B for i = 0,...,5. So, MP(i) from Theorem 3.3 would read g A —;
B & ts(A—;B)—;(C—;D) = tgs C—;D. This modus ponens rule turns out to
be the proper one because it structures logics so as to make an orthologic a quantum logic
fori=1,...,5 and a classical logic for i = 0, as the following theorem shows.

Theorem 3.5. An orthologic in which the following modus ponens rule
MPRJ(i). AFB & A—-;BFC —; D = CrFD

holds is a quantum logic fori=1,...,5 and a classical logic for i = 0 and vice versa.

Proof. By choosing B = A we obtain HC —; D = CF D and the claim follows
by Theorem 3.1. As for the vice versa part, from the first premise, - 4 —; B follows
by Theorem 3.1. From this, = C' —; D follows from the second premise. By applying
Theorem 3.1 again we obtain the conclusion C - D. O

We again see that the interaction between ‘—;’, ¢ = 1,...,5 and ‘+’ plays a particular role
in any orthomodular logic. When there is no such connection in a system then the system is
not orthomodular as, e.g., the systems elaborated in the previous section. However, we can
still unify all five implications by adding the {ollowing rules of inference to OL thus forming
what we are going to call weak quantum logic (WQL).

Rules of Inference.
WR4a(i). FA-—;B = FAVC—+BVC OES T
WRA4b (7). FA&; B =1 FA=RB i=1,...,5

Theorem 3.6. WQL (i.e., the system A1-A5+ R1-R3 + WR4a + WR4b) is a non-trivial
variety of orthologic which is not orthomodular.

Proof. We show the proof only for i = 1. The cases i = 2,...,5 one proves analogously. The
non-triviality of the varieties also follows from the next theorem and the results of Sec. 2.
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WR4a violates the non-orthomodular ortholattice of Fig. 1 with the assignment a = 2+,
b =y*, and ¢ = zt. Then the premise =A V (A A B) is equal to 1, while the consequence is
equal to zt.

WR4b violates the non-orthomodular ortholattice of Fig. 1 with the assignment a = z*,
b = y*. Then the premises =A V (A A B) and =B V (A A B) are both equal to 1, while the

consequence is equal to z+.

On the other hand, non-orthomodular ortholattice O6 (Fig. 2) is not violated by mappings
of the either rule. O

In WQL we can derive the logical equivalent of WR1 (see Theorem 2.15) and therefore
all the axioms of KO as the following theorem shows (see Definition 2.9 and Theorems 2.14
and 2.15).

Theorem 3.7. Rule
WRLI1. FA=B = FAvC=BvVvC
holds in WQL and vice versa: OL in which WRL1 holds is WQL.

Proof. - A —; B & FB—; A [premise,A1-A5 R1-R3]
FAVC —;BVC & FBVC—; AvC [WRA4a]
- AVC=BVC [WRA4b]

Conversely, by completeness of K0, the unary subset of QL can be proved in KO0. Since
WR4a and WR4b are unary laws of QL, they can be proved in K0O. We previously showed
WOM lattice algebra is sufficient to model KO; hence it is sufficient to model WR4a and
WRA4b, i.e. WR4a and WR4b are sound in all WOM lattices. O

An immediate consequence is:

Corrolary 3.8. WOM lattices are the models of WQL.

4 Conclusion

Our study shows that in order to construct a sound and efficient quantum logical system we
have to chose both the valuation (v) of propositions on a model and the form of the axioms
and rules of inference so as to correspond to the ordering relation on the model. So we
strengthen our previous result—according to which the Birkhoff-von Neumann’s requirement,
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1.e., the correspondence - A —; B < v(A) < v(B) alone turns an orthologic into a quantum
logic fori=1,...,5 and into a classical logic for i = 0—by showing that axioms and rules of
inference should also reflect this correspondence. In the standard approach this amounts to
saying that all propositions in a quantum logic with such a correspondence are of the form
A —; B and that rules of inference also deal only with such propositions. Thus, the modus
ponens rule takes the form (see Theorem 3.5)

MPR(i)). A+B & A—B+C—-D = CtD

which turns orthologic into quantum logic for 7 = 1,...,5 and into classical logic for ¢ = 0.

In contradistinction to these results for the binary logic, our study—in Sec. 2—of the
standard quantum logic under the unary valuation shows that the latter logic does not have
similar structural features. The theorems of the logic which have an “orthomodular form,”
with the object language identity = standing for the lattice equality, form a set F' of formulas
of propositions. This set serves for proving the completeness by means of the Lindenbaum-
Tarski algebra F/ =. However, as we proved by Theorem 2.12, the formulas of the logic
cannot be mapped directly to an ortholattice so as to form an orthomodular lattice and,
as we proved by Theorem 2.7, the algebraic mapping of the axiom KAll—which yields the
orthomodularity property of the model lattice within the completeness proof—is true in all
ortholattices. Hence unary logic lacks a direct correspondence between the object language
implication and the ordering in the lattice which models the logic; so, there is no point in
talking about Birkhoff-von Neumann’s requirement within such a logic except in an indirect
sense as explained below. There is no point also because for the completeness proof one
does not need the operation of implication at all. The identity, independently defined by
Definition 2.3, suffices for the completeness proof and the logic itself can be formulated with
the help of any implication, even the classical one.

In Sec. 2 we identify a nontrivial variety of orthologic in which one can obtain axioms
of Kalmbach’s system KO (or K1—the two systems are shown derivable within each other
and 5 axioms from the systems are shown redundant). In Sec. 3 we show that the variety is
equivalent to another nonorthomodular system (see Theorem 3.6) which we obtain by adding
the correspondence H A «<; B = +FA=B, i=1,...,5 (together with an implicational
property) to orthologic (note that the direction <« is valid in any orthologic). Hence, the so-
called Kotas biconditional property [17] (given by Lemma 2.4) is not necessarily a property
of an orthomodular system. Thus, already in our WQL a completeness proof based on =
[16] follows from the one based on «+ [21]. Also, Dishkant’s [21] (its propositional fragment)
and Kalmbach’s [16] systems are derivable within each other.

Comparing the above correspondence with our definitions of the orthomodularity [14]
FA& B & A4 B & A= B we see that one can embed quantum logic QL in
our weak quantum logic WQL by invoking Definition 2.9, Theorem 2.15, and Theorem 3.6.
In other words, a theorem of the form -+ A = B holds in WQL, iff A 4+ B holds in
QL (extended from WQL by adding the orthomodularity to it). This explains why one is
able to prove the completeness in the unary approach although the Birkhoff-von Neumann’s
requirement is rot directly fulfilled.
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