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ç-Deformed Fock Space and Statistical Properties
of Quons

By M.Daoud, Y.Hassouni

Faculté des Sciences, Département de Physique, Laboratoire de Physique Théorique (LPT-
ICAC) Av. ibn Battota, B.P.1014-Rabat-Morocco

(13.11.97)

Abstract. The ç-deformed Fock space is contructed starting from a proposed ç-deformed exterior
algebra. This construction leads to the introduction of the oscillator algebra corresponding to quons.
The quantum distribution of these particles is given. We discuss the Bose-Einstein condensation in
D-dimensional and we analyse the Sommerfeld expansion near low temperature. Finally, we give
the coherence factor and the correlation function

1 Introduction

The concept of quantized universal envolopping algebras (quantum algebras) has been the
object of numerous developments in mathematics and physics. Most of these quantum
algebras can be realized in terms of ç-deformed bosons [l]-[8] and different types of them
has been defined through the algebra generated by {l,a,a+,N} and the structure function
<3>(x) satisfying the relations:

la,N]=a, la+,N] -a+
a+a <E>(iV) IN], aa+ $(jV + 1) [N + 1].

{ '

where $(x) is an analytic function with $(0) 0 and N the number operator. The structure
function is given by

*(*) ££y (1.2)
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We note that these particles are called quons (we shall deal here with this deformation
scheme; that may be clarified after). The case of the deformed oscillator with q being a
root of unity is qualitatively different from the case of q is real or complex. In the first
case the Hilbert space is finite dimensional, while in the latter the Fock space is an infinite
dimensional Hilbert space. If we consider q a k-txi root of unity (k is a natural number
and k > 0), this implies n 0,...,k — 1 and quons interpolate between fermions k 2

and bosons k -+ oo (n is the number of particles on a given quantum state). The quons
are supposed to obey a generalized Pauli exclusion principle according to which no more
than (A; — 1) particles can live in the same quantum state. Moroever the introduction
of the g-deformed oscillator has been the object of investigation [10]-[21] of the statistical
thermodynamical properties corresponding to these class of particles. In this context, we note
that the phenomenon of Bose-Einstein condensation of deformed bosons has been studied
by several authors[10, 13, 14, 16, 20, 21, 22]. Most of preceding works concern the deformed
bosons with a real or complex deformation parameter and not offer an adequate intermediate
formulation among Fermi-Dirac and Bose-Einstein statistics.

The present work is devoted to the construction of the deformed Fock space starting from
the ç-deformation of the exterior algebra on a given Hilbert space. This Fock space will be

constructed for a generic q. The case of g is a root of unity is discussed. This mathematical
structure allows as to compute, in a special way, the partition function. We will give also
the quantum distribution corresponding to the introduced Fock space. Another important
result consists on the study of the Bose-Einstein condensation for such particles considered
as non relativistic or ultra-relativistic objects. Moroever, we analyse the low temperature
behaviour (Sommerfeld formula). We end this work by giving the derivation of the coherence
function of order two and the correlation function. We will attract the attention on the fact
that the latters reflect some quantum effects arising from the deformation formalism.

2 Fock space from ç-deformation of exterior algebra

Let us start by recalling the construction of Fock space from anti-symmetric and symmetric
algebra corresponding to fermions and bosons, respectively. So, we consider a Hilbert space
{H;(.,.)} and its n-fold tensor power .f7nwhich, in physical terms, is the n-particle space.
This Hilbert space is viewed in this context as L2(RD. dDx).The direct sum

F(H)=®Z0Hn (2.1)

is called the Fock space over H(H° C) The elements of F(H) can be represented by
sequences {tp (tp°,..., tpn)tpn £ H}. We denote by Dn the set of decomposable vectors

Dn {h®f2®...®fn,f, £H) (2.2)

Recall that /,- £ H;i 1, ...,n are nothing but one differencial forms which correspond
to the quantum state of z-th particle: then the exterior product and symmetric product are
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respectively given by:

/.A/, -^(/i®/i-/,-®/0 (2.3)

/iV/i ^(/,®/j + /j®/i) (2.4)

A simple and natural generalization of is:

v7^täfj -%(/<& fi+ Qfi® ft) (2-5)

where ç an arbitrary complex number. The first remark to do is that the anti-symmetry
and the symmetry of the the classical products given by Eqs (2.3), (2.4) are broken. By H2

we denote the vector space generated by the set {/jÀ/;, i,j 1,..., n}. It is clear that when

q — 1 or — 1, we obtain H\ or H2 corresponding to the well known classical limits (algebras
generated by Eqs (2.3), (2.4)).
Before going to construct the higher order, we define the overlapping between the two
operations ® and A as follows:

(/*®/i)Â/* -^(fl®fJ®fk + qf®fk®f]+q2fk®f®f}qf]®f) (2.6)

fkHfiQfi) ¦^(fi®f]®fk + qf]®f®fk + q2fj®fk®fqfj®f,) (2.7)

We rewrite the above formulae in a compact simple form:

(/i®/2)Â/3 -^(E + qP23 + q2P23Px2)(fx®f2)®f3 (2.8)

/sÄ(/a®/s) -^77(E + qPi2 + q2P23Pi2)(fi®f2)®f3 (2.9)
Vo

Now, we can write the deformed product of three one forms. A simple computation leads

to the following expression:

(/lÄ/2)Ä/3 Q(3)(/l®/2®/3) (2.10)

where the operator Q(3) is given by

_1_
0(8) -J^(E + qPi2 + qP23 + q2Pi23 + q2P32i + q3Pi3) (2.11)

In the above equation, the operators "P's" are related to elements of the permutation
group S3. It is easy to verify that the new product A is associative. Thus, the space Hq
is generated by the set {fi/\fjÂfk',i,j,k 1, ...,n}. This realization can be extended to an
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arbitrary order p. Indeed Hq^ is generated by: {/„À/,2...Â/Ip; ix, ...,ip 1, ...,n}. The Fock

space Fq(H) is defined, by analogy with the classical limit, to be the direct sum of all H?

F9(H) ®« off," (2.12)

Following this mathematical construction, one can introduce the multi-particles wave
functions. So, let us denote by Dq the set:

Dnq={fi'Af2A...Àfn,f,£H} (2.13)

which clearly reduces to D" and Dn_ when q 1 and —1, respectively. D\ and D" correspond
to n-forms which are n-fold symmetric and totally anti-symmetric under the exchange of
indices i and j (i,j l,...,n). Then, D" and D" are associated to bosonic and fermionic
Fock space, respectively. At this point we have a sufficient background for building the
wavefunctions. So, we consider a collection of n identical D-dimensional particles. Let xt
denote the coordinates of the i-th particle. The state of this system is characterized by the
wave function

V(xi,x2,...,xn) (fi/\f2/\..-Àfn)(xi,x2, ...,xn) (2.14)

Here also, we can express $ in terms of the one particle functions fi(xf) by help of the
operator

Qn -j-f Y 1miP)P (2.15)
V"- pgs„

where Sn is the permutation group and the integers m(P) appearing in Eq (2.15) are obtained
by computation of the minimal number of transpositions generated by the permutation P.

The operator Qn reduces to the Symmetric operators S and the anti-symmetric one A,
if one takes respectively the values 1 or —1 for the parameter q. We note finally that in the
case where all f, are identical to a function f (all particles exist on the same quantum state),
the wave function expressed by Eq (2.14) reads as

1 n

<S!(xx,x2,...,xn) -y1Y[lJ}(fiÀf2À.../\fn)(xx,x2,....xn) (2.16)
V n- j=2

where the deformed number [j] is given by 2. In analogy with the classical case (undeformed
Fock space), we introduce the creation and annihilation operators characterized through
their action:

a+ : Dnq -> D,n+1//a+/Ä/Ä...Ä/ /Ä/...Ä/ (2.17)

a:Dnq^Dnq-lllafZ\f\...Af N/Ä...Ä/ (2.18)

with aD° 0.

Using Eqs (2.17), (2.18), one easily checks that a and a+ satisfy the commutation
relations:

la,N]=a, la\N} -a+
aah — qa^ a 1
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So, starting from the g-deformation of the exterior algebra, we have proved that this Fock

space is associated to quons satisfying the relations Eqs (2.19). Another interesting point is

the case where ç is /c-th root of unity. It is clear from Eq (2.14) that when g e * the wave
function describing states of k particles or more vanishes. The Fock space are truncated and

restricted to states |n > with n < k — 1. That is in agreement with the generalized Pauli
principle discussed in the introduction.

3 Partition function and quantum distribution

The Hamiltonian for an ideal g-gas is given by:

H YH^ Hx (Ex-p)Nx (3.1)
A

In Eq (3.1) ,ß is the chemical potentiel while E\ and Nx are kinetic energy of a ç-bosons
(quons) and the number operator for ç-bosons, in the A—mode, respectively, then the q-
deformed analogue of the bose factor for the A-mode is:

(fx)q ^tr(e-t"alax) (3.2)

where Z tr e~0H) is the partition function and ß (kßT)'1 the reciprocal temperature
(kß is the Boltzman constant). At this step, it is important to distinguish among q complex
||ç|j ^ 1 and ||g|| 1. In the first case, the g-bosons are not new particles. However, in the
second case, the associate Fock space is finite dimensional, then for g £ C the partition
function:

Z ILt^—;> V ß(Ex-ß) (3.3)« 1 - e i
is independent of the deformation parameter g. The bose factor (f\)q reads as:

(h)q (l-e~")tr(e-^lNx}) (3.4)

It is immediate to verify that this quantity converges for ||g||(e~^M. As a result we obtain:

(h)q ^rq (3.5)

which, in the boundary situations where g 1 or — 1; we recover the ordinary Bose and
Fermi distributions, respectively.
For g e(~>, the partition function is calculated by taking into account of the generalized
Pauli exclusion principle. We have then:

1 - e-vk
(3.6)

1 - t-r]
K '

A

k-1
Zx Y e~vnx

nx=0
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The expression Eq (3.6) extends the well-known Fermi and Bose function partition for k 2

and k —> oo, respectively. Having determined the partition function, we can derived the
occupation number

(/a), \ Y ["Ale-™ (3.7)

The above equation leads to:

<*>• « e^ ^
This is the distribution of the quantum gas obeying the relation commutation Eq (2.19) and

generalized exclusion Pauli Principle. Here also, Taking k 2 and k —> oo, one obtains,
respectively, the Fermi and Bose distribution. It clearly shows that for q £ C or g c"?
our g-gas is described by the same quantum distribution (f\)q playing a central role in the
derivation of the thermodynamical functions. The distribution (fx)q can be developped in
an integer series. We obtain the expression:

oo

(fx)q Ye"l{j+1)1J (3-9)
3=0

which reduces when g +1 and q — 1 respectively) to the expansions YfjLx e~V3 for
ordinary bosons and T.'jLi e~m(—)J+1 for ordinary fermions.

4 Bose-Einstein Condensation

As in the usual approach, we enclose the system in a large D-dimensional volume V(D)
and the energy spectrum of quons is considered as a continuum. Thus, (fx)q is replaced by
the factor f(e) with e ry~lpa where a 1 or 2 correspond to the ultra-relativistic or
non-relativistic ç-gas respectively with 7_1 1 or^.
The density p(D) N(D)/V(D) of N(D) quons enclosed in the volumeV(D) is given by:

p(D) N0(D)JD/a_i (4.1)

where

In Eq (4.1), Jo/ _x
is an integral of type

Js / esf(e)de (4.3)
Jo

which, by using the development (3.9), gets

Js T(s + l)(kBT)s+1cr(s + l)q (4.4)
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where
°° e-Wj+i)^ + 1), E7-TTÜTT?J- *>-! (-15)

Ü + l)«+r

In Eq (4.4), T is the Euler integral of the second type. In (4.2), g is the degree of spin
degeneracy.
Analogously to the case of ordinary bosons, we examine the condensation of a system of
quons (relativistic or ultra-relayivistic) in D-dimension by taking ß 0. Then, the bose

temperature below for which we obtain a Bose condensation phenomenon is given by;

i p(D) i y/D
B{ ' kB \Na(D)T(D/a)oa(Dlcx)) l ' ;

where
00 ni

MD/a) YjJ^ (4-7)

The Bose-Einstein condensation is present in our deformed system if the series (4.7) is

convergent.
It is well known that in the classical case (i.e ç —> 1), the Bose-Einstein condensation takes

place only when D/a > 1 However, in the deformed case the Bose-Einstein condensation

occurs for g £ C when |g| < 1 and for all quons corresponding to q e-*i independently of
the ratio D/a

5 Generalized Sommerfeld expansion

In the this section, we study some low temperature properties of statistical system of quons.
Especially, we derive the generalized Sommerfeld expansion of the deformed quantum
distribution near the zero temperature. This expansion is very useful in the analysis of the low

temperature behaviour of thermodynamic functions.
In order to develop the quantum distribution of quons at zero absolute, we have to consider

integrals of types

r g(£) j. ,^i)Ja eJ(^r=-qde (51)

where g(e) is a test function. Here we would like to note, near the zero absolute, that the
chemical potential ß is larger than zero.
The change of variables z ß(e — ß) in (5.1) leads to:

7 ri /* g(ß-ß-lz)dg + ß-i r Ét±£lAdz (5.2)
Jo e"z — q Jo ez — q

and by using the following identity:

e z — q ez — q l
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the Eq (5.2) becomes then:

/=-q-^ [0ßg(ß-ß-iz)dz-q-2ß-> r i^f^dz+^ r ^±^i<
Jo Jo ez — q

1 Jo e2 — g

Finally by setting ßß —» oo in the second integral of the above equation, we have

-9(pKh),
v=o P[

where

rß °° a^UiA
/ - -q~l / 9(e)dß A Y 9-~(kBTY+lr(p + l)s(p + l)q (5.5)

00 «7+1 + (-)P+la-U+l)

j=0 g(j + 1)p+i

In Eq (5.6), g(p) is the p-th derivative of the test function g(e) with the respect to the

energy e. We note that:

So, we obtain the expansion:

f(e) -q~lH(ß -e) + Y ooS{p){ß ~ e)
(kBTy+1T(p + l)s(p + l)q (5.8)

p=o P-

where i/(x) is the Heaviside function and 5(p) is the p-th derivative of the Dirac function
5. This generalizes the Sommerfeld expansion of the Fermi distribution near to the zero
absolute. We note that the above expansion is not invariant under the change T into -T:
odd integer powers of the temperature occurs in Eq(5.8) In the classical case q —1, the
expansion given by Eq (5.8) should reduce to the well known Sommerfeld development for
Fermi gas near T=0:

IO-n-h„T\2n o2n-l _ l

The B'ns are the Bernouilli numbers.
In Eq (5.9), only the even integer powers of the temperature occurs contrarely to the
deformed case.

6 The coherence and correlation functions

Firstly, we would like to recall that in the case of non deformed bosons, the coherence
function g'2' of order two associated to the radiation field takes values g'2' 0 for radiation
field considered as fermions, t^2' 1 for a coherent monomode radiation (calculated by
employing coherent states) and <?'2' 2 for a chaotic monomode radiation. The deformation
of the coherence function has been recently investigated [15]-[22]. here we want to discuss
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from the results obtained in the above sections the implication of g-deformation on </2'.

The radiation field is described by the Hamiltonian:

H Y^xNx (6.1)
A

The quantum distribution corresponding to A mode is given by Eqs(3.5), (3.8) where n is

taken to be equal to hu>x ¦

The coherence function </2' is defined by:

(2) < a+a+aa >
(g 2)

< a+a >2

where a and a+ are the annihilation and creation operator for the A—th mode. The notation
< X > in Eq (6.2) means the mean statistical value Z~ltr(e~BH)X for an operator X defined

on the Fock space. Using the commutation relations, Eqs (2.19), (6.2) can be developed as:

/,, < (a+a)2 > ,„ „.9{2)= ; '2 -g-'<a+a>-1 6.3
< a+a >2

A direct calculation of different values in (6.3) yields:

gW (l + q)£zj (6.4)

with convergence condition |g| < e"/2 (this result is valid also for g £ C and |g| 1).
The deformed g'2' depends on the parameter q and presents a dépendance of the energy and

temperature. When ç —1, we recover the fermionic behaviour (i.e g^ 0), for ç 0, we
have g'2' 1 (coherent phase) and for g 1 we have g^ 2 corresponding to the chaotic
monomode radiation.
On other hand, by using an analogue procedure as in the non deformed case [23] and the
relation commutations given by (2.19), we can prove that the correlation between two quons
separated by the distance r is:

V(r)=qA(r) (6.5)

whereA(r) is a positive function depending on q. In the classical limit V(r) =FgA(r). The
situation V(r) > 0 corresponds to bosons and traduce a strong correlation between particles.
The condition V(r) < 0 implies a weak correlation between fermions in agreement with the
exclusion Pauli principle. We point out that the correlation V(r) vanishes for a classical gas.
In general (deformation case), the quantity V(r) has the same sign as the parameter q. So,
when —1 < q < 0 there exhibits a repulsive quantum interaction among particles. The
situation where g^ < 1, which may be interesting for describing antibunching effects of the

light field (arising from the "non classical" nature of radiation field [24], can be understood
in our formulation with — 1 < q < 0. in this case the photons of field radiation have a some
quasi-fermionic behaviour. For g=0, the correlation V(r) 0 and the correlation function
of order two g^ takes the value 1. It is interesting to note that when g1-2'1 1, the radiation
field is completely coherent and V(r) 0 corresponds to the absence of quantum effects in
the system.
Finally, for 0 < ç < 1, the radiation field can be represented by quons with a bosonic
behaviour and becomes chaotic for g=l (the function V(r) is positive and we have an important
quantum interaction among photons).
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7 Conclusion

In this work we have proposed a consistent deformation of the Fock space This deformation
has been based on a development of a rigourous framework allowing the introduction of a
deformed wedge product. The latter constitutes the main goals of the generalization of the
universal strucures of any fock space defined by:

F(H) ®ZoH"

To construct the bosonic and fermionic statistical operators, one has to apply the
symmetric and anti-symmetric operator on F(H), respectively. The deformed Wedge product
introduced in this work allows the unification of these two statistics. In fact for a particular
values of the deformation parameter g one can recover the classical ones. Moroever, by using
this mathematical construction of the g-deformed Fock space leading to the description of

quons and thus we discussed their statistical properties. In fact, the Bose-Einstein condensation

has been discussed in D-dimension. We have also derived the generalized Sommerfeld
expansion of the deformed quantum distribution. Another result in this paper concerns the
correlation function g^ for a deformed gas of photons. The values of this function become
continuous in the deformation case.
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