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Chern—Simons Solitons and a Nonlinear Elliptic
Equation

Yisong Yang”
Department of Applied Mathematics and Physics
Polytechnic University

Brooklyn, New York 11201, USA

(12.1I1.98)

Abstract

We prove an existence theorem for the following quasilinear elliptic equation
p g p q
N
(1—e*)Au =|Vul?e* — A(1 — e*)’e" + 47 »_ 6y,
i=1

over the full plane subject to the boundary condition that u — 0 as |z| — oo,
where A > 0 is a physical parameter and ¢, is the Dirac distribution concen-
trated at the point p. The solutions of the equation are vortex-like multi-solitons
arising in a unified relativistic self-dual Chern-Simons theory.

1 Introduction

It is well known that relativistic self-dual Chern-Simons models [7, 8, 9, 10, 13, 15]
appear in quantum field theory as approximations of the physically important anyon
models which have applications in high-temperature superconductivity and quan-
tized Hall effect. The Chern—Simons solitons behave like dually (electrically and
magnetically) charged particles [1, 12, 16, 21, 22] which are absent in the classical
(2 + 1)-dimensional Yang-Mills theory. Self-duality [2] singles out a unique situation
in which multi-solitons exist to saturate various quantized energy levels as in the
Abelian Higgs model [11]. However, unless the model is nonrelativistic, the nonlinear
governing equations are always nonintegrable and one has to pursue their solutions
by functional analysis [4, 5, 17, 18, 19]. Since these solutions are absolute energy min-
imizers, they are relevant in quantum theory in sense of perturbative constructions.

*This work was supported partially by the National Science Foundation under grant DMS-
9596041
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Here we study a more general, unified, Chern-Simons model [3] for which the exis-
tence problem was previously solved [20] only in the category of radially symmetric
solutions in the framework of [6] but the problem of existence of multi-solitons has
been left open due to the nonlinearity involved in the governing elliptic equation. The
aim of this paper is to solve this problem: we will prove, by a globally convergent
(constructive) method, the existence of multi-solitons in the general Chern-Simons
model originally proposed in [3].

The rest of the paper is outlined as follows. In the next section we introduce the
Chern-Simons equations to be studied and state the results for the existence of multi-
sloitons. In Section 3 we reduce the Chern-Simons equations into two equivalent
nonlinear elliptic equations, quasilinear and semilinear, respectively, and state the
results for the existence of solutions for these PDE’s. In Section 4 we provide proofs.
In Section 5 we return to the Chern-Simons equations again and calculate the energy
of a multi-soliton solution. In Section 6 we show that the solutions of the Chern-
Simons equations obtained earlier may be used to get multi-soliton solutions of the
general self-dual Abelian Higgs equations, also found in [3].

2 Multi-solitons

We use ¢ to denote a complex scalar field and and 4 = (A, A;) a vector field, both
defined over the full plane, R%. The relativistic self-dual Chern-Simons equations to
be solved are

Di¢ = iD»o, (21)

(1~ 18P)Fe = i(Di6Ds6 — Di6D:6) + 501~ 6 I6’ (2:2)

where D¢ = 0;¢0 +14;¢ (j = 1,2) are the gauge-covariant derivatives, i = v =1,
and Fi, = 9, As — 0 A, is the curvature tensor or magnetic field. We will look for an
N-soliton solution of the above system so that ¢ vanishes exactly at the arbitrarily
prescribed points py, po, - - -, py € R and

16l =1, (1=16°)(ID1gl + |D2gl) — 0

as || — oo due to the standard finite energy requirement. The integer N in fact
corresponds to the homotopy class of the solution in the framework of a well defined
topological classification [11].

By (2.1), we may rewrite (2.2) in the form

. 1 1282
(1= 161*)Fiz = = D1gl* = [Dog + SA(L = [61°)*[ @1, (2:3)
On the other hand, with the notation

8=%(81—i82), a=A1+iA2,
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we can put (2.1) into the form
2i0¢p =a¢p or a=2idln¢. (2.4)

Consequently, away from the zeros of ¢, the curvature Fi, becomes
- - - _ , 1
Fis = —i(0a — 0G) = —2(00In¢ + d0In ¢) = =200 1n |¢|” = —§Aln 6]

The equation (2.1) implies that, locally, up to a vanishing factor, ¢ is analytic in
the variable z = z! — iz? (see [11]). Hence there are finitely many zeros of ¢, say
p1,p2, -, pn in R?2 = C.

Here is our main existence result for multi-soliton solutions of the Chern—-Simons
equations (2.1), (2.2).

Theorem 2.1. For given the points py,ps,---,pn € R, the system (2.1), (2.2) has
a solution (¢, A) so that ¢ vanishes precisely at py,ps,---,pny and the- solution is
characterized by the topological asymptotic property

91 = 1+ O(e™BO=Ikl), (1~ 9)(|D1g| + | Do) = Ofe™YDU-),

as |z| — oo, where € is any number lying in the interval (0,1). Moreover, the energy
of the solution s quantized and is proportional to the number of zeros of ¢, N.

3 Reduction to PDE’s

We note that, if ¢ is written locally as ¢ = e”+1 where o and w are real-valued
functions, then (2.4) implies the useful relations

Dip = (9+D)- (%“3 - 26 = 20(30), (3.1)
Dot = i{8—Bjp— i(%‘b = %?)é — (3.2)

Introduce now the real variable v = In |¢|*>. From (3.1) and (3.2), we have
5 . g g 1
D19 + | Dag* = 4]6[*(|00]* + [9a]*) = 5€”|VU{2- (3.3)

Substituting (3.3) into (2.3), we arrive at the following quasilinear elliptic governing
equation

N
(1-e*)Au—e*|Vul? = —A(1—e")’e" +47> 6, inR? (3.4)
Jj=1

where J, is the Dirac distribution concentrated at the point p € R? and the unknown
u is subject to the boundary condition u(z) — 0 as |z| — oo.
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The second-order scalar equation (3.4) and the first-order system (2.1), (2.2) are
equivalent. In fact, if u solves (3.4), then define the complex scalar function @ by

1 L . &
¢(z) =exp | zu(z) +1)_arg(z —p;) ). 2z=a'—iz* (3.5)
4 =1

and the vector field A by (2.4). It can be examined [11] that (¢, A) is a smooth
solution of the system (2.1), (2.2). Hence we may focus on (3.4).

Theorem 3.1. For any N > 0 and the prescribed points py,ps,---,py € R?, the
equation (3.4) has a negative solution that vanishes at infinity according to the rate

lu| + |1 — e*||Vu| = O(eV2A0-9)l=ly,

where € 1s an arbitrary constant lying in the interval (0,1). Moreover, there holds the
quantized integral

A [h:,(l —e")%e* = 4mN.

In order to solve (3.4), we consider a new dependent variable w defined by
w=F(u)=1+u-—ce" (3.6)

Then, formally, the equation (3.4) is transformed into the following semilinear equa-
tion .
Aw = —A(1 — e®®))2eCW™) 4 4r Z(SP;' z € R? (3.7)
=1

subject to the same boundary condition, w(z) — 0 as |z| — oo, where G is the
inverse function of F: G(w) = F~'(w). Clearly, both F and G are 1-1 from the
interval (—oo, 0] to itself. Consequently, in the category of negative solutions, (3.4)
and (3.7) are equivalent. We are to find a negative solution of the boundary value
problem: w solves (3.7) and fulfills the condition w(z) — 0 as |z| — co.

Theorem 3.2. For any A > 0 and prescribed points py.ps,- -, py € R?, the equation
(3.7) has a negative solution that vanishes at infinity according to the rate

w(z)| + |Vuw(z)| = O~V -9y,

where ¢ is an arbitrary constant lying in the interval (0,1). Moreover, there holds the
quantized integral
)\[ (1 — eCw))2eCW) = gy N
R® '

We shall first prove Theorem 3.2 in detail and then derive the corresponding
implications stated in Theorem 3.1 and Theorem 2.1.
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4 Existence proofs

There are two difficulties with (3.7). The first one is that, although (3.7) has a
variational principle (see the functional I defined by (4.8)), the function G is only
meaningful on the half line (—oo, 0] and any minimization sequence has to stay within
such a constraint. The second one is that, although (3.7) has a convenient superso-
lution, it has been elusive to obtain a comparable subsolution, which obstructs the
method of monotone iterations. In our proof, we combine the favorable aspects of
these two features to obtain a proof which may be described as follows. We begin
by using the supersolution to start an iterative sequence {v,} so that each v, stays
within our required constraint range. We then use the variational structure to control
the sequence {v,} from below. Finally, we take limit to arrive at a solution.
To proceed, we use the background functions

N N
wo=—> In(l+]zc—p;|™%), go=4> (1+|z—p)? (4.1)
j=1 j=1
and the substitution w = wo + v to recast (3.7) into the form
Koy = _/\(1 _ eG(wu+v))2€G(wo+v) + go. (4‘2)

By the definition of wg, we need to find a solution of (4.2) that vanishes at infinity.
To solve (4.2), we consider the iterative scheme over R* defined by

(B — K)vpy = —M1 —eflootm))2eCluotan) _ gy, 4 g, (4.3)
Upny1 — 0 as|z|]—> 00, n=0,1,2---, (4.4)
Vg = —Wo, (4'5)

where the constant K is so large that K > 2)\. We will show that (4.3)—(4.5) give us
an approximation sequence that goes to an exact solution of (4.2) as n — co.

Step 1. The scheme described in (4.3)-(4.5) defines a monotone sequence {v,} in
the space W22(R?) which satisfies the property

—Wg =Ug > Uy >Ug > "> Uy > . (4.6)

We use the notation r = |z|. First note that vy = —wp =0(r~2) near infinity. So
vo € L2(R?). On the other hand, since G(0) = 0, v, satisfies

(A — K)oy = Ko+ go-
By L*-theory for elliptic equations, we see that v; € W22(R®). In particular, v; = 0

at infinity. Besides, since v, satisfies

N
(A — K)U(] = —I('UO + 9o —471'Ztspj,

Jj=1



578 Yang

we have (A — K)(v; — v9) > 0. By the maximum principle and v, — vy — 0 as
|z| = oo, we have v; — vy < 0.

In general, we assume that vy > v; > -+ > v, v1, -+, v, € W?%(R?), and we
consider v,4,. To show that 'un+1 € W22(R?), it suffices to see that the right-hand
side of (4.3) belongs to L*(R?). Since G(wo + v,) < 0, we need only to show that
(1 — eClwotva))2 ¢ L2(R%). Of course, we have only to check what happens at infinity.
To this end, we observe the finite limit

;- G(s)\2
lirgl_ (——i———l = — lil’é’l_ 2(1 — %G (5) = -2 (4.7)
which suggests that, away from a local region, (1 — e%(®Wo+v))2 ~ 4y 4+ v, € L?(R?)
as expected.
Define the function P(s) = —A(1 — e9))2e%) s < 0. Then (4.7) says that
P'(07) = 2. Besides, for s < 0, we have

P'(s) = 22260 — \(1 — €80))eB() < 2

because G(s) < 0. Hence we have in general P'(s) < 2\, s € (—o0,0]. Therefore
we obtain (A — K)(vne1 — vn) = Plwo + vn) — Plwy + vp—y) — K(vp — vp—1) =
(P'(§) — K)(vn — vp—1) > 0 by K > 2X and v,_; > v,, where £ lies between wy + v,
and wy + v,_1- Thus the maximum principle gives us v, > vn41.

Since it is hard to obtain a suitable subsolution to bound {v,} from below, we
turn to a method using energy estimates.

Step 2. We formulate the energy functional

fh{_|w|2+ ZA(1 = eSlunto)ys +ggv}, ve WW(RY).  (48)

It may be shown formally that (4.2) is the variational equation of (4.8). However, due
to the fact that G is only defined for wy + v < 0 and the inconvenient nonlinearity
present, it is difficult to minimize (4.8) directly. Here we consider the values of I over

the sequence {v,} instead.
We can establish the following monotonicity property

< I(vy) < -+ < I(vg) < I(vy) < 0. (4.9)

We have already shown that (1 — e®wo+»))2 ¢ [2(R?). Hence the finiteness of
I(v,) follows. Next, multiplying (4.3) by v,4+1 — v, and integrating by parts, we have

’/hz{’vvn%—llz - V’Un+1 ' vrun +F K(Un—r-l — 'Un)z}

= A /hz(vn-%-l — Un)(l _ eG(wo+vn))2€G(wo+vn) _ jl;z 90(”n+1 _ 'Un)- (4.10)

We consider the function

1 1
U(s) = Z)\(l = gFlwatalyh EKSQ, wo + s < 0.
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It can be examined that ¥(s) is concave down: ¥”(s) < 0. Hence
U(sg) < U(sy) + U'(s1)(s2 — 1), 81 # Sa. (4.11)

Inserting s2 = vp41, S1 = U, into (4.11), we get

A A K
it g hetaal (1= golrtinl)t 5 (g1 — Un)?

—A(1 — eClwotea))2eClwotun)(y, 1), (4.12)

Using (4.10), (4.12), and [Vuptr - Vog| < 2 Vuapa|? + 3 Vua|?, we get

1 1
L {5190l = ST + K(ons = v0)?)

& /‘;2 eG(wo+vn+1)]4 _ [1 _ eG(wo+vn)]4)
+_/|;2 (it = /I; 90(Vn41 = Un),
or, in other words,
I(v) + 5 fk (Uns1 — vn)? < I(vn), (4.13)

which proves the inequality (4.9).

Step 8. We now estimate the sequence {/(v,)} from below. In particular, we
obtain W!2-boundedness of the sequence {uv,}.
Using (3.6), we have w = 1 + G(w) — ™), Therefore

1—efW) (1 —e¥) =e¥ — e = ef(w— G(w)) =ef(1 - ™) >0, w<0,

where & lies between w and G(w). Hence, the above leads us to the following useful

comparison,
0<1-e*<1-e®™ w<o. (4.14)

On the other hand, for the function
n(w) = (1 -e)? 4w, w<o,
it can be checked that 7'(w) < 0 when w € (G™'(—1n2),0] and 7(0) = 0. Hence
nw)>0 or (1-efN2>w|, we[G(-1n2),0]. (4.15)
Moreover, in view of (4.14), we have

(1—eftNd > (1 —eCN2(1 —e¥)2 > —(1-€e")?, w< G =1In2). (4.16)

,M._.
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Besides, it is straightforward to show that

w
|1 —e¥| > - L |Iw|’ Yw. (4.17)

As a consequence of (4.14)-(4.17), we obtain for the function wy +v < 0,

/ (1 _ eG(wg+v))4 — (/ +f )(1 _eG(wo+v))4
R? wo+v<G=Y(=1n2) JG-1(=In2)<wotv<0/

1
> - (1 —evot¥)? 4 f (wo +v)?
4 Jwo+v<G-1(~1n2) G~1(—1n2)<wo+v<0

2

1 I’LU()+'U|2 1/ v
o _ >~ /. -Cy, (4.18
= 4/#;2 (1+ Jwo+v)2 = 8 /R (1 + [wo| + w2 (e

by noting that wg decay like r~2 at infinity and a simple interpolation technique.
Let || - ||, denote the standard LP norm over R". We recall the following well
known Nirenberg-Gagliardo interpolation inequality in R™:

1D7ull, < ClID™ullllully™,

where j, m are integers so that 0 < 7 < m and ¢ satisfies

1 ] 1 1
_=_‘_7_+t(__ﬁ)+(1_t)_’
p m r o n q

A <a<l,

m

and C > 0 is a constant depending only on j, m,n,p, q,t. The useful special case for
usiswhenn=2,j=0,m=1,p=4,7r=2,9=2. Hence t = 1/2 and we have

lulls < ClIVull3llullz. (4.19)

We will use (4.18) and (4.19) to obtain a desired lower estimate for the sequence
{I(v,)}. In this following, we denote by C' any positive constant which may assume
different values at different places.

By (4.19) and the Schwarz inequality, we see that for any £ > 0 there holds

’ /!;2 gov

< lgollazallvlla < Clvlla

C
< ellvlla+ Vel +C
1 C
< elvllo+ SIVolE + 5. (4.20)
Inserting (4.18) and (4.20) into (4.8), we have the lower bound
1 5 A v? C
B buid - SR s | .
10)2 3 foIVoP + 35 foo Tmay o ~ <Ml = 5 = (421)
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To proceed, we further apply (4.19) to write down the estimate
ol = ( foo ot (14 fd + o))
R* 1+ |wp| + |v]
v?  J 4
C J (1 + o] + [0])? @ vt )

’U2

(1 + |wol + |v])?

IA

INA

C(llvllz + llvllzlVollz + 1) /hz

2

< o+ o{(fo rrgam) FITE+L) @)

Combining (4.21) and (4.22), we arrive at
2

vlls < 0{1 + [ Qvu|2+( i 2)} (4.23)

1+ |wol| + |v])

Substituting (4.23) into (4.21), we obtain
1
lolls < €{2(0) +ellells + 5 +1}. (4.24)

From (4.24), we immediately deduce the lower bound

1) > Cilloll g, = G (4.25)

where Cy,Cy > 0 are uniform constants.

Step 4. We can now achieve convergence of the sequence {v,} to a solution of the
governing equation (4.2) that vanishes at infinity.

In fact, applying the inequalities (4.9) and (4.25) with v = v, (n = 1,2,--), we
see that {v,} is a bounded sequence in W12(R?), which must be weakly convergent
to some w € W1H2(R?) because of the monotonicity property (4.6). Moreover, when
we recall that the sequence {v,} comes from (4.3), namely

(A — K)v, =Plwg+vp-1) — Kvp1+9, n=12---,

and |P'(s)| < 3], the L*-theory for elliptic equations gives us W2-weak convergence
of the sequence {v, } whose limit w of course is a weak solution of the original equation
(4.2). Since we are in two dimensions, any W?2?(R?) function vanishes at infinity.

Step 5. Put w = wy + v. Then w solves (3.7) and w =0 at r = oco.

Step 6. We now obtain the expected decay estimates near infinity.
Linearizing (3.7) around w = 0 near infinity, we have Aw = 2Aw. Hence, we may

use a suitable comparison function to show that w(z) =0(e~V2\1-9)lzl) a5 |z| — co.
Furthermore, differentiating (4.2), we see that V' = 9,v satisfies the equation

AV = P'(wy + v)V + P'(wo + v)(0;wo) + 0;90-
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Hence a similar argument as before gives us V' € W22(R?). In particular, V = 0 at
r = 0. Set W = 0w with w = wg +v. We see that W =0 at r = co as well.

Differentiating (3.7), we obtain, away from a local region, the equation AW =
P'(w)W. Since P(w) — 2X as w — 0, we see that W satisfies the same exponential
decay estimate as that for w.

Step 7. We finally derive the quantized integral.
To avoid confusion with singularities, we work on the regular version of the equa-
tion, (4.2). By the definition of gy given in (4.1), we easily see that

[hz go =47 N. (4.26)

On the other hand, from 8wy =O(r~?) at infinity and d;v = d;w — d;w,, we have
d;v =0(r~3) at infinity (j = 1,2). Hence

dv
/h AU—'}H& " pgﬁds—o
Integrating (4.2) and appling the above result, we obtained from (4.26) the quan-
tized integral

/\f G(w 2 G _ /\/ G(wo+v )2€G(wg+v) = 47 N.

The proof of Theorem 3.2 is complete.

Since the obtained solution w is negative, we can use u = G(w) to get a solution
of (3.4) which enjoys the decay estimate stated in Theorem 3.1. In fact, by (3.6), we
have

u(l+ef™) =w; (1-e")(Gu) =dw, j=1,2

where £(u) — 0 as u — 0, which yield the expected result. The quantized integral is
a direct consequence of the result for (3.7). Hence Theorem 3.1 follows.

5 Quantized energy

Let u be the solution obtained in Theorem 3.1. Define the field configuration pair
(¢, A) by (3.5) and (2.4). Then (¢, A) is an N-vortex solution of (2.1), (2.2). It
can be checked that the asymptotic estimates obtained in Theorem 3.1 are enough
for calculation of various physical and topological quantities in the model. As an
illustration, we now calculate the energy of an /N-vortex solution.

Following [3], we write down the energy associated with (¢, A) as follows,

1 2 - BT 572
Je {50~ 18712 — i1D16 D33 — Da6 D)

(1 = [P (IDsaP + Do8) + V(1 =[RI8}, (1)
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Inserting (2.1), (2.2) into (5.1), we have

E o= A [ {1~ 1R+ 301~ [P)(IDigP + Do)}

- _- _ Lu)3 _ _ pu\2 u 2
= 2:131—%]h—u {(1—e")’Au - 3(1 — e*)%e"|Vul*}
— __1 / . __ Lu)3
2 hoag 0 ¥ TV
= A i lim (1 —e")3 (=0yudz' + Giudz?) (5.2)
2 j=1 p—0 8B, (p;) ’ .

where B,(p;) is the disk in R? centered at p; with radius p >0 (j =1,2,---, N) and
the path integrals are all taken counterclockwise. Note that the above is valid because
the path integral along a circle around infinity vanishes due to the exponential decay
estimate obtained in Theorem 3.1.

Since we can write u near x = p; in the form

w(z) = In|z —p;|® + fi(z), f; € C®(B,(p;)), j=1,2,---,N, (5.3)

where p > 0 is small, we get from inserting (5.3) into (5.2) that E = 2A7N as stated
in Theorem 2.1.

6 On a general Abelian Higgs model

The multi-soliton solution obtained earlier for the Chern-Simons model can con-
veniently be used to construct a solution for the general self-dual Abelian Higgs
equations discovered in [3]. To see this, we rewrite these equations as follows,

Di¢p = Dy, (6.1)
. ——r — 1
Fo = i(D1¢D2p — DapDid) + 5A(1 = [¢*)*. (6:2)
Although this system is similar to (2.1), (2.2), it is hard to approach it directly because

there is lack of a variational structure. Indeed, we may follow the same procedure as
that for the Chern-Simons system to transform (6.1), (6.2) into the elliptic equation

(1—e*)Au —e*|Vul? = =A1 —e*)? + 4r Z Op, (6.3)
J=1
over R?. Using the substitution (3.6) again, (6.3) becomes its equivalent form,

N
Aw = —A(1—- e+ 473" 5, (6.4)

i=1
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in the category of negative solutions. Thus, with (4.1) and w = wy+v, (6.4) becomes
Av = —\(1 — eFwotvhy2 L g0 (6.5)

Unlike (4.2), which is the variational equation of the energy functional (4.8), (6.5)
does not enjoy such a structure. Thus the energy method used earlier to control the
iterative sequence defined by (4.3)-(4.5) fails here. Nevertheless, we now show that
we can avoid such an approach by using a convenient subsolution of (6.5) obtained
for the Chern—-Simons equation.

In fact, let vcg be the solution of (4.2) satisfying wo+wvcs < 0. Since eG(wotves) < 1,
we have

Aves > —A(1 — efmotves))? 4 gy

which implies that ves is a subsolution of (6.5). As before, we already know that
—wp is a (distributional) supersolution of (6.5). Therefore we can slightly modify
the scheme (4.3)-(4.5) to get a solution, v, for (6.5), satisfying ves < v < —wp. In
particular, v = 0 at infinity. In this way the governing equation (6.4) or (6.3) is again
solved. Other details are omitted.

We remark that our procedure here works also for the classical Abelian Higgs
model solved previously by a direct variational method in [11]. Indeed, we may
use a topological solution [18] of the self-dual Chern-Simons equations [9, 10] as a
subsolution and a solution to the Abelian Higgs model is thus reproduced.

The discussion of this section suggests that the self-dual Abelian Higgs equations
may be regarded as been covered by the Chern—Simons equations, classical or general.
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