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How Quantales Emerge by Introducing
Induction within the Operational Approach

By Haroun Amira, Bob Coecke and Isar Stubbe

Foundations of Exact Sciences (FUND), Department of Mathematics,
Free University of Brussels, Pleinlaan 2, B-1050 Brussels

(22.1,98)

Abstract. We formally introduce and study a notion of ’soft induction’ on entities with an oper-
ationally motivated logico-algebraic description, and in particular the derived notions of ’induced
state transition’ and ’induced property transition’. We study the meaningful collections of these
soft inductions which all have a quantale structure due to the introduction of temporal compo-
sition and arbitrary choice on the level of these state transitions and the corresponding property
transitions.

1 Introduction

The essential physical concepts that lie at the base of this paper are the notion of a property
according to the Geneva school operational approach [2, 10, 13] and the idea that measure-
ments on an entity provoke a real change of the state of the system [3], i.e., a change of
its ’actual’ properties (2, 10, 13]. Within this conceptual context, we introduce the notion
of an ’induction’, and in particular of ’soft inductions’. For other aspects related to these
inductions we refer to [5, 7]. The essential mathematical object that emerges when these soft
inductions are introduced are quantales, originally introduced in the late thirties in order to
translate ring-theoretical ideas to lattices. The name quantale itself has been introduced by
Mulvey in [11] where he studied them in relation to C*-algebras in order to build a construc-
tive base for quantum mechanics. For an explicit definition we refer to the third appendix
at the end of this paper. In a second appendix we study maps on a state space and their
join preserving extensions. In a first appendix we give some basic categorical notions.
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Let us consider an entity =. If we consider a 'particular realization of this entity’” we shall
refer to it as ’a particular Z’ [10]. It can be physically argued that = is described by a complete
meet semi-lattice £, if we identify properties as equivalence classes of so called 'definite
experimental projects’ [10, 13]. Given a particular =, we can determine all of its actual
properties, i.e., those properties for which a corresponding definite experimental project, if
performed, would give yes with certainty, and their meet will be called the strongest actual
property of this particular =. We denote by T the set of all the strongest actual properties
of Z. The collection ¥ generates the lattice £, i.e., Va€ L:a=V{p € X | p < a}, and it
is an axiom of the Geneva school operational approach that ¥ are exactly the atoms of L,
denoted as A(L). Now following (8, 9]:

Definition 1 A morphism from a complete atomistic lattice L, into a complete atomistic
lattice Lo is a map f : Ly — L, which satisfies (1) YA C L) : f(VA) = Vf(A); (2)
fLA(Ly)) C A(Ly) U{0}. A closure space is a set X together with a closure operator C :
P(X) = P(X): (1)VAC X :ACC(A); (2) ACB=C(A) CC(B); (3) C(C(A4)) =C(A).
The closure is called Ty (or ’simple’) if ({) C(0) = 0 and Vo € T : C(z) = {z}. A subset
F C X is called closed if C(F) = F, and we denote the collection of all closed subsets by
F(X). A morphism from a closure space (X,Cy) into a closure space (Xo,Cs) is a partially
defined map f: X1\ K — X, defined on the complement of some K C X, (called kernel of
f), which satisfies for every A C Xy: f(C1(A)\ K) CC(f(A\ K)).

Denote T1SPACE for the category of T}-closure spaces and their morphisms and CALAT
for the complete atomistic lattices.

Theorem 1 T ,SPACE s categorically equivalent with CALAT.

Proofs can be found in [8, 9]. When starting from a lattice of properties £ that is axiomatized
to be atomistic, we obtain, via the categorical equivalence, a Tj-closure space, the points of
which are exactly the strongest actual properties of £, called states, and the closure space is
then called state space, denoted by (£,C). The underlying set ¥ will be called state set. The
isomorphism of lattices p : £ — F(X) is a Cartan map [14]: it sends every property a € £
to the F' € F(X) that contains exactly those states that make the property actual. Working
'dually’, i.e., starting from a state set ¥, then imposing on ¥ a Tj-closure C with class of
closed subsets F(X), thus obtaining a lattice of properties through the map F — VF for
F € F(X), can be interpreted as adding an ’operational resolution’ to the set £ by means of
the closure C: for any T' C ¥ we have that C(7") is the smallest subset of £ for which there
is a property, namely VC(T'), such that exactly those states in C(T) have this property.

2 Soft induction

Definition 2 We talk about an induction in case of an erternally imposed change of a
particular entity. This change might modify the collection of actual properties of Z, i.e., its
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state, as well as the whole collection of properties, i.e., = itself; in the case that = is preserved
with certainty we speak of a soft induction, otherwise of a hard induction.

We denote the collection of soft inductions on = by £(Z). Preservation of = implies on
the formal level that the state space (£,C) is not altered. Thus, the setup induces a ’state
transition’ in . We observe that there exist two operations on collections of elements of

EE):

e Finite composition of inductions: for ey, es, ...,e, € £(Z) we have that e,0...0e30e; €
£(Z) is the induction consisting of first performing e;, then ey, then ... until e,;

e Arbitrary choice of induction: for {e;}; C £(Z) we have that Vv,e; € £(Z) is the
induction consisting of performing one of the e;, chosen in any possible way.

For an induction e € £(Z), we denote ¥, for the set of all states that may result when
performing e, i.e., that are not excluded by the performed procedure. This set X, will be
called ’set of outcome states’ for the induction e. Note that any e € £(=Z) can be performed
on any s € L.

Proposition 1 We have that L, . e, C Xe, and Ly,e, = U; e, .

The inclusion is not necessarily an equality since the last performed induction e, can only
have states in X, _ .. .ce, as possible initial states such that some states in £., might become
excluded as outcome state for e, o ... o e; and thus, not contained in X, o oe,. Remark that
defining the arbitrary choice of of induction by a join in stead of a meet is due to the fact
that we consider those outcome states that are not excluded; a meet would only be relevant
if we consider certain outcome states.

2.1 State transitions

State transition is the concept of 'going from one state to another’. We will now interpret
and formalize what soft induction means in relation to this concept of state transition. To
every induction e € £(Z), we can associate an atomic map € : £ = P(E) : s — é(s),
where for s € £, €'(s) C £, C I is exactly the set of outcome states when performing the
induction e on E in state s. We write £'(Z) for the collection of these atomic maps. Noting
that (P(X), C,N,U) is a complete atomistic lattice with atoms X, and using the material
from the second appendix, we can develop a 1-1 correspondence between these atomic maps
¢ : ¥ — P(Z) and the atomically generated maps € : P(E) = P(Z) : T — &(T) = U{€'(¢) |
t € N T}. We then have that é : P(X) — P(X) preserves unions. This preservation of
unions has the following significance: whenever we consider more than one possible initial
state (for example due to a lack of knowledge on the initial state) the set of possible outcome
states for an induction on this entity consist of the union of the outcome state sets for the
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possible initial states. Remark that since ker(é') = 0 (every e € £(Z) preserves = and thus
assures an outcome state in X}, we also have that VI' € P(Z) : é(T) = 0 & T = 0. We
denote £(Z) = {€ | e € £(Z)} and an element of £(Z) is called ’state transition’. Next,

considering the map ~: £(Z) — () : e + &, we define two operations on &(Z):

éyo0é; =T(ex0ey) (2.1)
Viéi =~(Vz‘8i) (22)

Note the importance of the fact that Ve € £(Z) : dom(é) = cod(é) = P(X), for eq.(2.1). We
can interpret that: (i) Finite composition of inductions corresponds to composition of maps;
(ii) Arbitrary choice of inductions corresponds to the join of maps relative to the pointwise
ordering of these maps, i.e., VI' € P(X) : (V;&)(T) = U;(&(T)). Adopting the notation
& : c‘f(E) x E(Z) = E(Z) : (€1, 67) — €,&éy = €5 0 €, we have that:

Proposition 2 (£(2),V, &) is a unitary quantale.

Proof: (o) for any &,,&,,&; € £(Z) we have that both &,&é, and V,&; are in E(Z): this can
easily be seen when considering eq.(2.1), eq.(2.2) and taking into account that £(Z) is closed
under the operations arbitrary choice and finite composition; (i) (& (%), V) is a complete join
semi-lattice, because in £(=) all arbitrary choices exist and eq.(2.2); (ii) by definition we have
that & is an associative product; (iii) the identity map id : P(£) — P(Z) : T — T is the
unit element of £(Z), due to the trivial induction ”doing nothing”; (iv) the first distribution
law is proved as follows: for all &;,é € £(Z), we have that (V;é;)&é = &0 (Vi&;) = V;(€0§;) =
Vi(€;&€) and the second distribution law can be shown analogouslye

We formulate two conditions that apply on maps f : P(£) — P(Z):

o AS, stands for V{T;}; C P(X) : f(U,T;) = U f(T7)
o ASpstands for VI e P(2) : f(T) =0T =10

Now we use these two conditions to define the following set:
e Ryu(E) ={f:P(E) - P(X) | f meets ASy, f meets ASp}

We call an f € Ry (Z) a 'carrier of state transition’. From the above we know that there
are two evident operations on Ry ,(X), namely composition of maps, denoted by o, where
we will also adopt the notation f&g = go f, and the map V;f; (for {f;}; C Ry (X)) that
consists of choosing one of the maps {f;}; in any possible way and applying it, which means
that V;f; is the join of the maps {f;}; relative to their pointwise ordering.

Proposition 3 (Ryy(Z),V, &) is a unitary quantale and ((Z), V, &) is a unitary subquan-
tale of (Rou(X), V, &).
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Proof: Let i : £(Z) — Rpu(X) : € — & be the set-wise inclusion, then we have that (i)
’L(é2 o él) = Z.(~(€2 o 81)) = ~(€2 o 61) = ég o él, and (ll) 'E(Vzél_) = i('(V,—e,-)) = Viéi. AISO,
quite evidently, 7 : £(Z) — R u(X) identifies the identities of £(Z) and Ry, (Z). Hence, the
set-wise inclusion is a unitary quantale morphism, which proves our claime

We can summarize the results in this section as:

EE) = E'E)=E(E) = Ryu(D) (2.3)

and we can read from left to right that: (i) the investigation of a soft induction e € £(E)
gives us an atomic map € : & — P(Z) with empty kernel; (ii) we have a 1-1 correspondence
with atomically generated maps é : P(L) — P(Z) that are U-preserving and é(T) = 0 <
T = (; (iii) denoting these conditions by AS, and ASp and considering the set of all maps
f:P(X) — P(X) that meet ASy and AS,, we obtain an inclusion of unitary quantales: the
inclusion tells us which carriers of state transition are in fact state transitions of =, i.e., for
which carriers of state transition we have a soft induction setup available in £(Z).

2.2 Property transitions

In this section, we explore induction in relation to the properties of =. To every induction
e € £(Z) we can associate an atomic map & : ¥ — F(X) : s — €&'(s), where for s € T,
é'(s) C C(X,) C X is the smallest C-closed subset of ¥ in which all of the outcome states lie.
Remembering that F(X) 2 £ by means of the map V : F(£) — L : F — VF, where L stands
for the property lattice, we see that V(€'(s)) is in fact the property that characterizes the
smallest distinguishable set of states that contains all the outcome states of the induction
e € E£(Z) performed on Z in state s. We write £'(Z) for the collection of these atomic
maps. Noting that (F(X),C,N,V) is a complete atomistic lattice, with atoms I, we can
again develop a 1-1 correspondence between the atomic maps € : £ — F(Z) : s — €&'(s)
and the atomically generated maps € : F(£) — F(X) : F— V{e'(s) | s € ENF}. We
then have that these maps preserve the F(X)-V. The significance of this is the following:
Whenever we consider more than one property as a possible initial one, i.e., the strongest
property about which we are certain before the induction is the join of a given collection,
then we have to consider all possible property transitions for all properties in this collection,
so the smallest property about which we are certain after the induction is the join of their
images. We also have that VF € F(X) : é(F) =0 & F = 0, since ker(e') = (. We denote
E(Z) = {&| e € £(Z)} and call an element of £(Z) a ’property transition’. Next, considering
the map ~: £(Z) = £(Z) : e — &, again we have the evident definitions for operations on
E(Z) by:

€706 =_(€2 o 61)

Vi€; z‘(\/iei) (25)

Again, it can be interpreted that the finite composition of inductions corresponds to (finite)
composition of maps and that the arbitrary choice of inductions corresponds to the join of
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maps relative to their pointwise ordering, i.e., VF € F(Z) : (V;&)(F) = V;(&(F)), where
this time in the right hand side of the equation the join refers to the F(X)-join. Adopting
the notation & : £(Z) x £(Z) — £(Z) : (€1, &) — &,&E; = &, 0&;, we clearly have in analogy
to Proposition 2:

Proposition 4 (£(2),V, &) is a unitary quantale.

Analogously to the section state transitions, we now formulate two conditions that apply on
maps f: F(X) - F(Z):

e AP, stands for V{F;}; C F(Z) : f(ViF;) = Vi f(F)

o APy standsforVE € F(Z): f(F)=0& F=10

Next, we use these conditions to define the following set:
o Sov(Z)={f:F(Z) > F(X) | f meets AP, f meets AP}

We call an f € S (X) a ’carrier of property transition’. Sp.(X) is equipped with the
operations finite composition of maps, with f&g = g o f as its notation, and the map V;, f;
for {fi}: C Sp.v(E), i.e., the join of maps relative to their pointwise ordering. We we have
in analogy to Proposition 3:

Proposition 5 (£(Z),V, &) is a unitary subquantale of (Spv(X), V, &).

The results of this section can be summarized as:

EE) = EE)=EE) o Su(D) (2.6)

and again, we can read from left to right: (i) a soft induction e € £(Z) gives rise to an
atomic map & : ¥ — F(Z) with empty kernel; (ii) there is a 1-1 correspondence with
atomically generated maps € : F(X) — F(X) that preserve V and meet the condition
e(F) =0 & F = 0; (iii) the carriers of property transition are defined as maps that meet
the two conditions AP, and APy, and the inclusion £(Z) < Sp v (X) then says which of the
carriers of property transition are in fact property transitions of =.

2.3 From state transitions to property transitions

From Theorem 1 it follows that a closure C imposed on ¥, and axiomatized to be T ; yields a
complete atomistic lattice (F(X), C,N, V) with atoms £, and F(X) = £ by means of the map
p: L= F(E):a—- {s€Z|s<a}. Wecan interpret the introduction of C as the presence
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of an operational resolution': For any S C I, we have that C(S) is the smallest operationally
distinguishable set of states that contains S, i.e., there is a property that is actual for exactly
those states that are in C(S). We will now investigate how such an operational resolution
links the ideas of state transitions and property transitions. Introducing such an operational
resolution can be done on the level of the atomic maps (i.e., £'(Z) and &£'(Z)), on the level
of atomically generated maps (i.e., £(Z) and £(Z)) and on the level of the carriers. We
will first investigate how Spy(X) can be obtained from Roy(Z). Vf € Rypu(X), define
for 1 F(E) = F(E) : F = C(f(F)). Referring to the notation just above, we have the
following:

Lemma 1 dom(f,) = cod(fpr) = F(E) and fpr (F) =0 & F = 0.

Proof: The first equation is true by definition. f,(F) =0 < C(f(F))=0< f(F)=0 <
F = (e

One could think that Vf € Rg(X) : for € Spv(E) but this is manifestly not the case since
in general an f,, does not preserve the F(Z)-join:

Lemma 2 We have:

W € FE)  [GF) =Vl F)

)
VT € P(Z) : f(C(T)) € C((T))

Proof: (i) Vif(F;) = Vifp(F;) is always true: the inclusion C is easy to see: U;f(F;) C
U,C(f(F3)) = CUf(F)) C C(UC(f(F))) = Vif(F) C Vifp(F;). The converse inclu-
sion D requires not much more: Vi : f(F;) C U;f(F;) = Vi : C(f(F;)) C C(U;f(F})) =
UC(f(F)) € CUif(F)) = CUC(F(F)) C© CUf(F)) = Vifpe(Fi) © Vif(F). (ii)
Vif(F;) C for(ViE) is always true: U;F; C C(U;F;) = f(UiF;) C f(C(U;F;)) (we use that
any f € Rpu(Z) is isotone on P(X), since it preserves U) = C(f(U;F;)) C C(f(C(U;F)))=
C(Uif(F3)) C C(f(C(UiFY))) = Vif(Fi) C fpr(ViF;). (iii) Now we ha,ve V{F:}; € F(T) :
fr(ViF) C ViF(F) & MEY € F(O) : C(CUR) € CUF(R)] & V(E): C
F(S) : CHCUE)) C CUGR)] & ME) C F(E) : [CUE) € CUUR)] o
VI € P(Z) : f(C(T)) C C(f(T))]. In the last step we use on the one hand ( ) that
V{F;}; C F(¥) : U;F; € P(X), and on the other hand (=) that VI e P(Z) : T =U{t |t €
T} =U{C(t) | t € T} (we use that C is T}, which implies that C(t) = {t})e

It is easy to give a counterexample for VT' € P(Z) : f(C(T) CC(f(T)). Consider f : P(X) —
P(X) that maps (a) @ — @; (b) T +— {s} for all subsets of T € P(X) \ F(L) and a certain
s€ X;and (¢c) S+— Eforall S € P(X)\ {P(T),0}. Then we have that f € Ry (X) since
it preserves U and meets f(X) =0 < X =0, but f(C(T)) = L and C(f(T)) = {s}.

10n this idea of an operational resolution is elaborated in [7].
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Corollary 1 For f € Ryy(X), we have that f,r € Spv(Z) if and only if f meets the
condition YT € P(Z) : f(C(T) C C(f(T)). For such an f we then have that f,.(ViF;) =

Vifpr(Fi) = th(F:)
For f: P(X) = P(2):

e AS, stands for VI € P(X) : f(C(T) CC(f(T))

How should this condition AS, be interpreted in the presence of AS, and ASy? We have the
following equivalences: —AS, < [3T € P(Z),3z € X : (a) z € C(f(T)); (b) z € f(C(T))] &
3T € P(X),3z € X:(a) 3 Fy € F(X) such that f(T) C Fo,z & Fo;(b) I y € L such
that VF' € F(X) with T C F, y € F and z € f(y)] <[there exists a state y, not in a
certain 7' € P(X), but nevertheless indistinguishable from the states in 7', the image of
which through f, i.e., f(y), contains a state z that is distinguishable from f(7’)]. Hence we
have:

Proposition 6 Ve € £(Z) : € meets the condition AS,.
We define the following subset of Rp ,(X):
e Ryu(X) ={f € Rou(E) | f meets AS.,}

Of course, Ry ,(¥) inherits the operations V and & from Ry y(X).

Proposition 7 (Rj,(Z), V, &) is a unitary subgquantale of (Ryu(X), V, &) and EE),V, &)
is a unitary subquantale of (Ry ,(X),V, &).

Proof: An obvious consequence of Proposition 7e

Proposition 8 The map F,r : Ry (Z) = Sov(X) : f = for is a unitary quantale mor-
phism.

Proof: (o) By Lemma 1 and Lemma 2, we have that Vf € Ry ,(¥) : fpr € Spv(X); (i) Since
we have that F,, : [id: P(X) = P(2) : T — T~ [id|xs) : F(E) = F(Z) : F — F|, we see
that - maps the unit of R ,(X) to the unit of Sy (X); (ii) for any f, g € Rj ,(¥) and any
F € F(Z), we have that (f o g),-(F) = C(f(g9(F))) and that (fpr 0 gpr)(F) = C(f(C(g(F))),
hence we need to show that VF € F(X) : C(f(g(F))) = C(f(C(g(F))). The proof of C is
evident, using the fact that, since any f € R; ,(¥) preserves unions of elements of P(X), such
an f isisotone. To prove D, it is sufficient that VT' € P(X) : f(C(T)) C C(f(T)), which is true
Vf € Ry ,(E); (iil) VS € Ry, (E), VF € F(Z) we have that (Vi fi)pr(F) = Vi(fipr(F)): on the
one hand we have that (Vifi)pr(F) = C((Vlf,)(F)) = C(Vz(fl(F))) = V:(f,(F)) = C(U,f,(F))
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and on the other that (V;fipr)(F) = Vi(fipr(F)) = Vi(C(fi(F))) = C(Ui(C(fi(F)))), the

equality of which can be verified analogously to the proof of Lemma 2e

AS, is the condition by which we select elements of Ry ,(X) to form the unitary subquantale
Ry u(X) (cfr. Proposition 7). According to Corollary 1 we have that AS, is exactly the
condition that ensures that R ,(X) is the domain for the (set-wise) map Fy, : - = Spv(Z).
It is clear from the proofs that the core of this matter is in fact that, if you have a set of maps
f:P(X) = P(X) that preserve U, and by applying Fy, : f — fpr you want to obtain a set
of maps f,, : F(£) — F(X) that preserve V, then the largest possible domain of F), is the
set of maps f: P(X) — P(X) that preserve U and meet the condition AS,. In Proposition 8
it is then shown that the set-wise map Fy, : R ,(X) = Spv(X¥) is in fact a unitary quantale
homomorphism. In part (ii) of the proof of Proposition 8, it is apparent that it is again AS,
that plays a crucial role: it is a sufficient condition for Fy,, : Ry ,(£) — Spv(X) to preserve
finite composition. But here, we can also show necessity:

Proposition 9 AS, is a necessary condition for . : Ry ((X) — Spv(X) to preserve finite
composition.

Proof: [V £, g € Rou(E),¥ F € F(T) : (fyr 0 gr)(F) = (f 0 9)pr(F)] = [V f € Rou(S) ;
Vg € Reo(D),¥ F € F(), CHCa(M)) = CUgFN)] = IV | € Rau(S) + ¥ g €
Rou(Z),Y F € F(X), f(C(g(F))) C C(f(g(F)))]- Now, because of the arbitrariness of
F € F(X) and g € Rypu(Z), we have that {T | T € ’P( )} C{g(F) | F e F(¥),g9 €
Rpu(E)} for any T C X, consider for all t € T the maps g; : P(£) = P(Z) that map (a)
0 — 0and (b) S+~ t,¥V S € P(X)\ {0}; hence it can be verified that Vv, g: € Rp(X)
and that for any F € F(Z)\ {0}, we have that (Ve g)(F) = T. Hence we conclude that
[V f € Rou(D) -VTGP( ), F(C(T)) CC(f(T))]e

Again, the core of Proposition 9 can be seen as: If you have a set of maps f : P(Z) — P(%)
equipped with the operations arbitrary choice and finite composition, and by application of

or o [~ fpr you want to obtain a set of maps f,, : F(X) — F(Z), equipped with the
operation finite composition, in such a way that finite composition is preserved by Fj,, then
the largest possible domain of F), is the set of maps f : P(X) = P(X) that meet AS,,
equipped with the arbitrary choice and the finite composition.

Now we will investigate how this map £}, acts on the atomic maps and the atomically
generated maps related to the inductions on =. We have the obvious definitions:

Fp:E'(E) = EE): [€:ZoPE):s—&(s)—
(€ : = F(Z) : s €,.(s) =C(E(s))]
Fp E(Z) = E(E): [E:PE)=PE): T e
[€pr : F(E) = F(Z) : F = &, (F) = C(e(F))]

Starting from an & € £'(Z), one can construct an element of £(Z) in two ways: (a) first one
applies Fy, : £ (2) = £t (Z) and then one constructs the atomically generated map according
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to the obtained ¢, € E'(Z); or (b) first one makes the atomically generated map according
to & € £'(Z), and then one applies F,, : £(Z) — £(Z) on the obtained é € E(Z). One easily
verifies that (a) = (b), i.e., when considering &3, : F(£) = F(Z) : F = V{&,(s) | s €
FNZ}=CU{C(@(s)) |s€ FNE}) and & : F(Z) = F(Z) : F = C(E(F)) = C(V{&(s) |
s€ FNZ}) =C(U{é(s) | s € FNE}) we have &, =&

pr

Theorem 2 F,. : £(Z) — £(B) is a unitary quantale morphism.

Proof: This is shown from the fact that, due to both unitary quantale inclusions i : £ (Z) =
Rpu(E) and i : E(Z) = Sp (D), Fpr : E(Z) — E(Z) is the restriction of the unitary quantale
morphism Fp, : Ry ,(Z) = Sp,v(X) to the unitary quantale E(Z)e

The results of this section can be summarized in a schematic overview, in which all squares

commute: _ _
E'E) = £EB) <= S&Su i)

£(E) T Fpr T Fpr T Fpr (2.7)
EE) & £E) o RjuD) < Ry

From this scheme we can read that the map F),, provides a duality between the sets {f :
P(E) = P() | f meets ASy, ASy, AS.} and {f : F(X) — F(X) | f meets APy, AP}.
Further we see that these sets include respectively state transitions and property transitions,
sets that are Fp.-dual too.

2.4 A remark on the carriers

We will extend the above scheme by adding structures that emerge as purely mathematical
generalizations of the entity-related quantales above. Then, a "backwards reading” of the
resulting scheme provides an analysis of the conditions AS,, ASy, AS. and AP, APy. We
will use the following notations that combine the notations of the previous sections where V
will now refer to the join of the considered collection:

e Ay stands for VI € dom(f) : f(T) =0 T =0;

o Ay stands for V{T;}; C dom(f) : f(ViT;) = Vi f(T3);

e A, stands for VI' € dom(f) : f(C(T) CC(f(T));
and consider the following collections of maps:

o RY(Z)={f:P(X) = P(X) | f meets Ay, f meets A.};
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o Rpu(2) ={f:P(E) = P(X) | f meets Ay, f meets Ay, f meets A,}.
o Sy(Z)=A{f:F(E) = F(Z)| f meets Ay};
o Sov(E)={f:F(E) > F()| f meets Ay, f meets Ay}.

All these sets can be equipped with V;f; and f&g. We have:

Proposition 10 The above sets, equipped with V and & are unitary quantales and all set-
wise inclusions are unitary quantale inclusions.

Much as how we linked R ,(2) and Sp,v(X) in the section 2.3 by means of the map Fp, :
[~ for (cfr. Proposition 8), we can link the larger quantales that we have just introduced.
We will do this by means of the same map F,, : f — f,,. We can immediately remark that
from Proposition 9 it is clear that A, is a necessary condition on the domain of the map F,
for it to preserve &. From Proposition 8 it is then clear that A, is the exact condition on an
[ that is V-preserving to yield an f,, that is V-preserving.

Proposition 11 The map F : [f : P(E) = P(Z)] — [fpr : F(E) = F(E)], with for (F) =
C(f(F)), yields the following commuting square of unitary quantale homomorphisms:

Rou(E) = RL(E)
Jr Fpr l Fpr

Sov(E) = Sv(E)

3 Hard induction

The dual conditions ASp and AP, on atomically generated maps are equivalent with saying
that the respective atomic maps have an empty kernel (cfr. Proposition 19). In this section
we will investigate how ASy and APy can be dropped, enabling us to say something more
about state transitions and property transitions when we also consider hard inductions (see
Definition 2). Essentially, one can consider two kinds of hard inductions that still seem
relevant within the development of this paper: (i) those that essentially behave as soft
inductions for every possible initial state, but are such that an occasional change of state
space (i.e., vanishing of the entity) is not excluded (for example, an induction device with
a non-zero probability for absorption of the entity); (ii) those that preserve the state space
for some initial states, but not for others (an example of such an induction is a preparation
procedure through ’filtering’). We denote the collection of hard inductions on = by ®(=).
Since a hard induction is performed on Z, the description of it can still be done via atomic
maps. However, for a hard induction ¢ € ®(=Z) we are no longer certain that = is preserved:
the outcome state set £, can still be understood as containing those states that may result
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when performing ¢ on =, but we can no longer say that one of the states in X, will result. In
particular, if £, = {s} for some ¢ € ®(=) and some s € £, then we can only say that: If =
is preserved by ¢ then after the performance of ¢ we will find = in state s. In fact, the only
hard induction of which we can say with certainty what will result after the performance,
is the ¢ € ®(Z) with £, = 0: the performance of ¢ on = implies non-preservation of =.
We denote it throughout this paper by ¢p. As on £(Z), there are the operations finite
composition of inductions and arbitrary choice of induction on ®(Z) for which we will use
the same notations.

Proposition 12 We have that Yy, 6. 00, C Ly, and By, = UiD;.

The second equation of this proposition reveals a subtlety of hard induction as we formalize
it here, i.e., fitting it in the scheme/perspective of soft induction: for any ¢ € ®(Z) we
cannot distinguish between ¢ and ¢ V ¢p, since gy, = Z,UE,, = E,U0 = E,. At first
sight it may seem that we can consider any soft induction e € £(Z) as ’a hard induction for
which non-preservation of = is excluded’. However, if this were true, then considered as a
hard induction, e would be indistinguishable from e V ¢p, which is a ’true’ hard induction
in the sense that we cannot exclude non-preservation of =. All this goes to show that soft
induction and hard induction should be understood as 'complementary’ notions, which makes
it in some sense remarkable that it seems to be possible to fit both of them within the same
formal scheme.

3.1 State and property transitions, the Fj,-duality

To every hard induction ¢ € ®(Z) we associate two atomic maps ¢’ : £ — P(X) : s —= ¢'(s)
where for s € I, @'(s) is exactly the set of outcome states, i.e., if = is preserved then the
outcome state is an element of @'(s), and ¢’ : £ — P(X) : s — @'(s) where for s € L,
@'(s) is the smallest C-closed subset that contains ¢'(s). The kernels of these atomic maps
are equal and contain exactly those s € ¥ for which it is certain that if ¢ is performed
on = in state s then = is not preserved. Remark that it is emphatically not true that if
ker(@') = ker(¢') = 0 then ¢ preserves =, it only implies that for no s E ¥ it is certain that
= is not preserved. We will denote & (Z) = {¢' | ¢ € ®(Z)} and ¥'(E) = {@' | ¢ € ()}
It is then clear that we have, like before, the map:

Fp : ¥'(Z) 5 ¥(Z) : ¢ = @, T = F(T) 15 C(F(s)))

Using the material of the second appendix, we consider the atomically generated maps
@:P(E) = P(X): THU{ ()]teT}andqa f(E)—+f-(2) F—vVv{@(z)|z€F}
Then we denote ®(Z) = {@ | ¢' € ¥'(Z)} and &(Z) = {@ | @ € ¥'(Z)}, and again we have
the (set-wise) map:

Fp:®(2) =2 ®E): ¢ [@pr: FIE) = F(E) : F = C(@(F))]
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for which it can easily be verified that we obtain the following commuting square:

~I'F1p1r LFpr

() = PE)
If we define ({51&(,52 =~((,91&(p2), V@i =~(Vi(,01'), 99_1&(,0_2 Z_(Qf)l&(,ag) and V;@; Z_(Vz'¢i) we have
the analogues of Propositions 2 and 4:

—_—

Proposition 13 (®(E),V, &) and (®(Z),V, &) are unitary quantales and Fp, : ®(2) —
Q(Z) : @ — @pr 1s a unitary quantale morphism.

Remark that although in both cases, the unit is due to the trivial induction ”doing nothing”,
it is still possible that = is 'destroyed’ when 'performing’ the unitary hard induction. Along
the lines of the previous section it can be verified that we obtain the following commutative
diagram:

P(E) = PE) = S(T)

7
®(E) T Fpr 1 E T Fpr (3.1)
W 3
PE) = B3 o RYI) = RuI)

3.2 Soft induction versus hard induction

It was already pointed out that a soft induction e € £(=Z) cannot simply be considered as ’a
hard induction that certainly preserves ='. It was indicated that the only way to interpret
a soft induction e within the framework of hard inductions, is by considering e V ¢p. This
comes down to 'giving up the certainty’ that e preserves =. Here we will briefly formalize this
idea. For reasons of formal simplicity we will work on the level of the carriers of transition.
We introduce the following notation:

o Ax stands for {T € dom(f) | f(T)=0} =K

Proposition 14 If f : P(Z) — P(X) meets Ay, Ax then K € P(Z) : K ={T € P(T) |
T C K} and if it meets Ay, A, As then 3K € F(2) - K ={T € P(X) | T C K}. If
f:F(E) = F(Z) meets Ay, Ax then 1K € F(Z) : K={Fe F(X) | F C K}

Proof: Resp. (i) Set K = UK, (ii) Considering K = UK, we have f(C(K)) C C(f(K)) =0,
hence C(K) = K by uniqueness of K; (iii) Set K = VKe
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The above propositions show that it is permitted to write Agx instead of Ax. Remark
that A is a generalization of the condition Ay (concerning maps that meet A, and A.).
Evidently, R (X) € Ry (X) and Sk v(E) € Sy(X), and of course the operations V and &
are inherited.

Proposition 15 YK € F(X) we have (Ry (£),V), resp. (Sgv(E),V), is a complete join
subsemilattice of (R (X)), V), resp. (Sv(X), V).

Proof: We need to show that V respects the condition Ag: For {fi}; € Ry ,(X) : {T €
PE) | (Vifi)(T) =0} ={T € P(T) | Vi: fi(T) =0} =n{T € P(E) | fi(T) =0} = Ko

In general, R ,(Z) is not a subquantale of R{,(Z), let alone a unitary subquantale of Ry, (X).
This is due to the fact that & does not preserve the condition Ax unless K = (). Also note
that Ry ,(X) does not contain the unit element unless K = (), for the unit element has
K = 0. However, we have that VK € F(I) we have F,, : Ry (8) = Skv(E) is a
morphism of complete join semi-lattices with as a limiting case that Fy, : Rj ,(Z) — Spv(X)
is a unitary quantale morphism. Essentially, we conclude this section by stating that the
formal correspondence expressed in the fact that Ry (Z) — Rj ,(2) : f = fV ¢@p, resp.,
Sov(Z) = Spv(E) : f — fV @p, are unitary quantale isomorphisms has no physical
counterpart on the level of £ and ®, resp., £ and ®, that yields a commuting diagram
when the above stated isomorphisms are combined with eq.(2.3) & eq.(2.6) (or eq.(2.7)) and

eq.(3.1).

4 Further aims

In this paper we intensively studied the collection of soft inductions £(Z) and we showed
that quantale structures emerge in a natural way due to temporal composition and arbitrary
choice of non-deterministic state transitions and the associated notion of a property transi-
tion. We also considered the case of hard inductions, but only relative to the scheme for soft
inductions developed in this paper. A more evolved scheme could be developed by taking
into account how the entity changes due to a hard induction. Attempts in this direction
can be found in [5, 7], and in particular we showed there how the concept of induction can
be seen as a starting point for the description of compound entities. Further papers on this
topic are in preparation.

Appendix 1: Categories

Here we provide only those definitions of category theory that we use in this paper. For
more details, see for example [1].

Definition 3 A category is a quadruple (Ob, Hom,id, o) consisting of:
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(1) A class Ob of objects;
(2) For each ordered pair (A, B) of objects a set Hom(A, B) of morphisms;
(8) For each object A a morphism idy € Hom(A, A);

(4) A composition law associating to each pair of morphisms f € Hom(A, B) and g €
Hom(B,C) a morphism go f € Hom(A, C) which is such that:

(4.1) Composition is associative;
(4.2) idpo f=f= foida for all f € Hom(A, B);

(4.3) the sets Hom(A, B) are pairwise disjoint.

In the first section of this paper we discuss not only the two categories CALAT and
T,SPACE, but also, and foremost, how they are related.

Definition 4 A functor from the category X to the category Y is a family of maps F which
associates to each object A in X an object FA in'Y, and to each morphism f € Hom(A, B)
a morphism F f € Hom(F A, FB), fulfilling:

{1} Fidy = idrp4 fOT‘ all A € Ob;
(2) F(go f) =Fgo Ff forall f € Hom(A, B),g € Hom(B,C).

A trivial example of a functor is the identity functor on a category X, denoted by idx. The
next step is to consider all functors between given categories X and Y as "objects”, and
then define a "morphism” between functors as:

Definition 5 A natural transformation from the functor F : X — Y to another functor
G : X = Y is a map 0 which assigns to each object A of X a morphism 04 € Hom(F A, GA)
in Y, such that for each f € Hom(A, B) in X we have that 0g o F'f = Gf 0 84.

In this paper, we use two functors: (1) F : T{SPACE — CALAT that associates to ev-
ery Ty-closure space (X,C) a complete atomistic lattice of closed subsets F(X) and works
functorial’ on morphisms; (2) A : CALAT — T,SPACE that associates to every com-
plete atomistic lattice the set of its atoms and an appropriate T-closure, with the obvious
extension to the morphisms.

Definition 6 We define F : X — Y to be the left adjoint of G : Y — X (and G 1is then
right adjoint to F'), written F' 4 G, if there exist natural transformations n : wdx — G o F
and e : F oG = idy such that eF o Fn = idF and Ge o nG = idG.

The above definition applies in the case that we consider F : T{SPACE — CALAT and
A : CALAT — T;SPACE. But also have that for each complete atomistic lattice £, that
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L = F(A(L)) in a natural way, and also, for each T}-closure space (X, C), that X = A(F(X))
in a natural way.

Definition 7 If, referring to Definition 6, n and € are natural isomorphisms, then F' and
G are said to define a categorical equivalence.

Appendix 2: Atomically generated maps

In this section, we elaborate on atomically generated maps, as introduced in [6]. However,
we will work in a more general fashion.

Proposition 16 Let £ be a poset with minimal element 0 and atoms X, let M be a complete
join semi-lattice. Given a map f': X — M, the map defined by f : L - M :a— V{f'(s) |
s € ,s < a}is: (1) isotone, (it) maps 0 on 0, and (ii1) is an extension of f' (i.e., fz = f').

Proof: Ja <b={s€X|s<a}C{seZ|s<b}={f(s)|]sel s}
{f'(s) lseﬁssb}:f(a)sﬂb,(n)f(O):v{f’(s)Isezsso}= = 0; (i)
VEeZ: f(t) =V{f'(s)|s€L,s <t} =V{f(t)} = f(t)e

Definition 8 Referring to Proposition 16, we say that f' : £ — M is an atomic map, and
that f : L — M is atomically generated by f'.

Note that in general an isotone extension of an atomic map need not be unique. However,
by uniqueness of joins, we have that there is a unique atomically generated map for each
given atomic map. Conversely, in the light of Proposition 16, part (iii), we have that each
atomically generated map is the extension of exactly one atomic map.

Proposition 17 Let L be a poset with minimal element 0 and atoms £, let M be a complete
join semi lattice. Then we have: f : L — M is an atomically generated map < Ya € L :

V{f(s)|s€Z,s <a} = f(a).
Proof: f is the atomically generated map with respect to f' = fise

In fact, for any isotone map f : £L — M, we have that Va € £ : V{f(s) | s € £,s < a} < f(a)
(since by isotonicity we have that s < a = f(s) < f(a)). The atomically generated maps
are then exactly those maps f : £ — M that saturate this inequality.

Proposition 18 Let L be a complete atomistic lattice, with atoms X, let M be a complete
join semi-lattice. Then we have: f : L — M is an atomically generated map & f: L - M
preserves joins of sets of the form {s € £ | s < a},Va € L.
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Proof: V{f(s)|s€ Z,s <a} = f(V{s € £ |s <a}) = f(a), making use of isotonicity of f
in the second equality, and atomicity of £ in the third. In the light of Proposition 17, this
proves our claime

Definition 9 For an atomic map f': £ — M, we define ker(f') = {s€ L | f'(s) =0} and
call this the kernel of f'.

Proposition 19 Let £ be a peset with minimal element 0 and atoms ¥, let M be a complete
join semi-lattice. Then we have: there is a one-one correspondence between the atomic maps
f':E = M with ker(f') = 0 on the one hand, and atomically generated maps f : L — M
withVt € L: f(t) =0« t =0 on the other.

Proof: (—) Vt € £ we define f(t) = V{f'(s) | s € £,s < t}, then f(t) =0 {f'(s) | s €
E,8<t}={0}or {f'(s)|s€L,s<t}=0. Wehave: {f'(s)|s€E,s<t}={0} = Vse
Es<t:fl(s)=0eVse X s<t:s€ ker(f), but ker(f') = 0 by hypothesis, hence
this is impossible. On the other hand we have: {f'(s) |s € L, s <t} =0 & Ase L:s5<
t &t =0. («) Suppose that ker(f') # 0, then 3s € £ : s € ker(f') = f'(s) = 0= f(s)
(using that f' = fiz) = s = 0 (using the hypothesis that V¢t € L : f(t) =0 < t = 0), which
is impossible since 0 & e

Appendix 3: Quantales

We only give basic definitions. Detailed discussions can be found in [11, 15].

Definition 10 A quantale is a complete join semi-lattice (Q, V) equipped with an associaiive
product, & : Q x Q@ — Q, which satisfies Va,b; € Q: a&(Vv;b;) = Vi(akb;), (V;b;)&a =
Vi(b;&a). This quantale is called unitary if there exists a so-called unit element e € Q which
satisfies Va € @ : e&a = a = ake. It is called involutive if it 1s equipped with an involution
with an involution, t.e., with * : Q@ — @ : a — a* satisfying for all a,b,a; in Q: a™ = a,
(a&b)* = b*&a*, (Via;)* = Vial. Given two quantales @ and @', we call ¢ : Q@ — Q' a
quantale morphism if it preserves & and V; in the case of unitary quantales we also require
d(e) = €'; in the case of involutive quantales we require preservation of the involution.

Note that a morphism of quantales is a morphism of the underlying complete join semi-
lattices, however this does not imply that it is a morphism of the complete lattice: it can

still happen that @¢(A;a;) # Ai(P(as)).

Definition 11 An element a € Q of a quantale is said to be right-sided if a&bd < a for all
be Q. Similarly, a € Q) is said to be left-sided if b&ea < a for all b € Q.
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We denote R(Q) for the right-sided elements of a quantale @), and L(Q) for its left-sided
elements. It can easily be verified that R(Q) and L(Q) are quantales with respect to the
operations of the quantale Q.

Definition 12 A quantale Q will be said to be a Gelfand quantale if Q) s unitary, involutive,
and satisfies Va € R(Q) : a&a*&a = a.

The above condition is equivalent to Ya € L(Q) : a&a*&a = a since a € R(Q) < a* € L(Q).
The following property can also be found in [12].

Proposition 20 Lei (£,V, L) be a complete orthocomplemented join semi-lattice; let Q(L)
be the set of all \-preserving maps f : L — L. Then define a join V on Q(L) relative to the
pointwise order of the maps, and define a binary operation & as f&g = go f. Then we have
that (Q(L),V, &) is a Gelfand quantale.

The proof is based on the following definition for an involution * : Q(£) — Q(L): for
¢ € Q(L), for m € L, set ¢*(m) = [V{n € L | ¢(n) < m*}]*, where on the right hand
side of the equation the V and the L refer to the join and the orthocomplement of £. Any
Gelfand quantale @ that is isomorphic to a quantale (L) as in Proposition 20 is called
Hilbert quantale. Then, in [12], it is shown that these can be characterized:

Proposition 21 A Gelfand quantale Q, of which the subquantale of right-sided elements is
denoted by R(Q), is a Hilbert quantale if and only if the map p: Q@ — Q(R(Q)) : a — 7,
with 7, : R(Q) = R(Q) : b— a*&b, is an isomorphism of quantales.

In the proof (see [12]) it is stipulated that, for any complete orthocomplemented join semi-
lattice £, there is an isomorphism of complete orthocomplemented lattices: £ =2 R(Q(L)),
which yields an orthocomplement on R(Q(L)). Thus, for any Hilbert quantale (), an ortho-
complement can be defined on R(Q). Similar reasonings yield an orthocomplement on L(Q).
In connection to the quantales considered in this paper, it is clear that all this material applies
on Ry(X), since P(X) is a complete orthocomplemented lattice with VT € P(X) : T+ = \T.
Thus we have that Ry(Z) is a Hilbert quantale, which means that we can define an ortho-
complement on its elements. One then asks whether Rj () also is a Hilbert quantale.
If ves, this would mean that an orthocomplement can be stated explicitly for each of its
elements. Unfortunately, imposing condition Ay puts a spoke in the wheel: the quantale
Rpu(Z) is not even involutive! A counterexample would be the map f : P(X) — P(Z)
that maps (i) 0 — 0 and (ii) VT € P(Z) \ {0} : T — {s} for some s € £. Then we have:
fr{s}H) = [U{T | f(T) < {s}*+1}]* = £+ = 0. Since {s}+ # 0 we have that f* does not
meet Ay, hence f* & Ryy(X). An analogous reasoning holds for Sy, in the case that the
property lattice £ is axiomatized to be orthocomplemented: then Proposition 20 says that
Sy is a Hilbert quantale, but again imposing condition Ay prevents Spy from being a Hilbert
quantale.
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