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Transition de phase pour le modèle de Kac
en dimension deux

By Thierry Bodineau

Université Paris 7, URA 1321

Mathématiques - Case 7012

2 Place Jussieu, 75251 Paris Cedex 05

(1.XII.97)

Abstract. We establish the phase diagram of the anisotropic local mean field model, called type A
Kac model. This enables us to solve a conjecture made by Kac [14].

Dans cet article, on établit le diagramme de phase pour le modèle de champ moyen local

anisotrope, dit modèle de Kac de type A. On résout ainsi une conjecture faite par Kac [14].

1 Introduction

Pour étudier de façon rigoureuse certains problèmes de transition de phase et en particulier
pour justifier la théorie de van der Waals de la transition liquide vapeur, Kac a introduit
un modèle de champ moyen local [14]. La méthode employée par Kac consiste à étudier les

propriétés de ce modèle à l'aide de l'opérateur de .-transfert associé. En effet, des quantités
comme l'énergie libre ou la longueur de corrélation sont liées au spectre de cet opérateur;
la connaissance du spectre permet donc de retrouver les propriétés physiques du système.
Comme l'ont montré Brunaud et Helffer [4], une telle approche fournit une caractérisation
complète du cas unidimensionnel (cf aussi Bodineau [2]). Cependant l'étude du spectre de

cet opérateur dans le cas des dimensions supérieures est beaucoup plus difficile. Nous

renvoyons le lecteur au cours de Helffer [10] où différents résultats sur les opérateurs en grandes
dimensions sont détaillés.
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Pour généraliser le travail de Kac aux dimensions supérieures, Lebowitz et Penrose [17]
ont développé des méthodes qui s'affranchissent de l'opérateur de transfert. Cependant leur
étude ne reste valable que dans la limite de champ moyen et ne donne pas d'information
précise quand la portée des interactions est finie.

Ces dernières années des approches probabilistes inspirées par la démarche de Lebowitz
et Penrose ont permis une bonne compréhension du modèle de champ moyen local. En
particulier l'existence d'une transition de phase en dimension supérieure ou égale à 2 a été

prouvée par Cassandro, Presutti [7] et Bovier, Zahradnik [3] (cf aussi [1]).

Dans cet article, on s'intéresse à une des variantes du modèle de champ moyen appelée
par Kac modèle de type A (cf [14]). Dans ce modèle, à 2 dimensions, les interactions sont
anisotropes : elles sont à longue portée sur l'axe horyzontal et au plus proche voisin sur
l'axe vertical. Kac a conjecturé qu'une transition de phase apparaît pour toute température
inférieure à une température critique, dès que le paramètre de champ moyen est suffisamment
petit. La méthode de preuve utilisait le formalisme de l'opérateur de transfert; Kac avait
aussi conjecturé que la transition de phase était équivalente à la dégénérescence asymptotique
de la première valeur propre de l'opérateur de transfert. Cependant une preuve directe de

la transition de phase à l'aide de l'opérateur de transfert semble être difficile.

Nous procédons de façon différente en adaptant les méthodes probabilistes développées

par Cassandro et Presutti [7] dans le cas d'interactions isotropes. Une fois la transition de

phase établie, nous en déduisons un contrôle du splitting et prouvons ainsi la conjecture de

Kac (concernant le splitting) pour certaines valeurs de la température. Cette méthode peut
fournir des résultats de transition de phase pour toute dimension supérieure ou égale à 2,

cependant nous préférons nous restreindre au cas bi-dimensionnel afin de faire le lien avec le

travail de Kac et les méthodes analytiques qu'il avait envisagé. L'intérêt de cette approche
est de fournir un exemple explicite où la méthode de Peierls donne des propriétés spectrales
d'opérateurs en grande dimension. En effet, l'intuition, issue du formalisme de l'opérateur
de transfert, permet de prédire que le comportement asymptotique de certains opérateurs du

type Schrödinger sur un réseau de dimension d peut se déduire de résultats sur des systèmes
de spins classiques sur un réseau de dimension d+1. Cette intuition, déjà présente dans
[9], a été précisée plus récemment par B. Helffer [11], [12] dans le cas d > 2 : à l'aide des

estimations infra-rouge en dimension d + 1 > 3, on déduit un contrôle de l'écart entre les

deux premières valeurs propres pour certains opérateurs de Schrödinger quand la dimension
du réseau est d. Cependant, la véritable correspondance avec les systèmes classiques s'avère
délicate à réaliser rigoureusement (cf [9] p. 233). Dans le cas particulier du modèle de type A,
nous retrouvons des difficultés similaires à celles qui apparaissent dans la preuve de Fröhlich
[9] quand on passe de l'opérateur à un système de spins avec interactions non isotropes. A
l'aide d'une procédure de renormalisation, nous parvenons à contrôler ces problèmes ce qui
permet d'obtenir un contrôle de l'écart entre les deux premières valeurs propres.

Pour conclure, précisons que l'étude de la transition de phase pour d'autres types de

potentiels, par exemple quand les interactions sont de même nature dans les 2 directions,
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peut se faire en adaptant les méthodes développées par [7], [3]. Par contre il n'y a pas
d'équivalent en ce qui concerne l'opérateur de transfert qui lui dépend de la structure du
potentiel.

Ce papier est structuré de la façon suivante; dans une première partie nous décrivons le

modèle et les résultats obtenus, puis dans une seconde partie nous prouvons partiellement la
conjecture de Kac sur le splitting. La fin du texte est consacrée à la preuve de la transition
de phase à l'aide de l'argument de Peierls. La troisième partie décrit les étapes nécessaires

pour obtenir l'estimée de Peierls. Ces différentes étapes seront prouvées dans la quatrième
et la cinquième partie où un argument emprunté à [7] joue un rôle essentiel.

Remerciements : Je voudrais remercier tout particulièrement B. Helffer qui m'a beaucoup
aidé dans la réalisation de ce travail par de nombreuses discussions et une relecture attentive.
Je souhaite aussi remercier E. Presutti pour m'avoir expliqué les résultats de [7].

Je remercie aussi la CEE qui a partiellement soutenu cette recherche par le programme
TMR - Network Postdoctoral training programme in partial differential equations and
application in quantum mechanics-.

2 Description du modèle

Le modèle considéré est constitué de spins modélisés par une famille de variables aléatoires

{S,}iez;2 à valeurs dans { — 1,1}. Soit J une fonction paire, positive, lipschitzienne vérifiant

In J(r) dr — 2. On définit alors la famille de potentiels de Kac {J7} indexés par le paramètre
7 > 0 par

Vr G IR, J7(r) jJ(yr). (2.1)

Cette définition généralise les hypothèses considérées par Kac; nous reviendrons par la suite

sur le choix particulier fait par Kac.

Soit 7 > 0 un paramètre fixé. On définit le potentiel ferromagnétique Jy sur TA2 x 2Z2

par

I7(k, l, k', /') J7(k - k')J(l, l'), (2.2)

avec

J(l,l')=5li,Al-(6u,+x+5^,-1).

Soit V un sous-ensemble fini de TZ2; l'Hamiltonien de la configuration Sv {S{}i^v
appartenant à { — 1,1}V avec conditions au bord Sv s'écrit

HvASv\Sv.) =-\ Y. J-y(r,s)SrSs- £ Iy(r,s)SrSs. (2.3)
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Pour tout paramètre ß positif, on définit une mesure de probabilité sur { — 1, \}v associée à

cet Hamiltonien

1

Zß~(V)Pß,7,v(Sv\Sv) -rj—77-^exr>(-ßHvn(Sv\SVc)),

où Zßtl(V) est une constante de normalisation. Les mesures {ßp,-y,v}v s'appellent des

spécifications locales, elles permettent de définir les mesures de Gibbs sur { — 1,1}Z On dit
que ßßn est une mesure de Gibbs si elle satisfait les équations de Dobrushin-Landford-Ruelle

W C ZZd, Hßn(ßßny(-\SVc)) ßßt-y(-).

Le problème consiste à déterminer le diagramme de phase du système: pour 7 petit mais
non nul, on veut savoir si il existe plusieurs mesures de Gibbs. On introduit la température
critique ßc= \-

Théorème 1 Pour tout ß supérieur à ßc, il existe un paramètre strictement positif jß tel

que pour tout 7 inférieur à jß le modèle de Kac présente une transition de phase, c'est-à-dire
qu'il existe au moins deux mesures de Gibbs extrémales distinctes.

La preuve s'inspire des idées développées par Cassandro et Presutti [7].

Nous décrivons maintenant le cas particulier J(r) exp(—|r|) considéré par Kac. Dans

son cours [14], Kac a montré que ce modèle peut être étudié à l'aide de l'opérateur de

transfert

Ä"<M' exp(~7ç(z))exp(7AM)exp(-^79(z)),

1 7 M M hß
Vx G IRM, jq(x) - tanh(^) £ x2 - £ logcosh (d-f(xk + xk+x)),

1 l k=i k=l ' Z

on fera la convention xm+i %\-

Dans la limite où 7 tend vers 0, le comportement du système ne dépend que du potentiel

M 1 [ß
?(x) zZ ~Axl - i°gcosh (y if(xk + Xk+i)).

k=iq v z

On retrouve la valeur critique ßc= \ donnée dans l'introduction. En effet, pour ß > ßc, la
fonction

x -+ -x2 - logcosh (\J2ßx)
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possède deux minima, tandis que si ß < ßc cette fonction est alors strictement convexe.

Kac avait envisagé la démonstration du théorème 1 comme la conséquence d'une conjecture

sur les valeurs propres de l'opérateur de transfert K^M\

Conjecture de Kac : Pour tout ß supérieur à ßc, il existe un paramètre strictement positif
7/3 tel que pour tout 7 inférieur à 7/3 on ait

A»2(7. M)hm —-——- 1,
M-+00 /Lil (7, M)

où Mi(7, M) et ß2(~f, M) sont les deux premières valeurs propres de K^M\

Nous procédons différemment et prouvons à l'aide du théorème 1 le résultat suivant

Théorème 2 Soit {7n}n une suite dans (0,1] tendant vers 0. Il existe B, un sous-ensemble
de ]ßc, oo[ dont le complémentaire dans ]ßc, oo[ est au plus dénombrable tel que pour tout ß
dans B et tout n supérieur à une constante nß ne dépendant que de ß, on ait

M2(7n,M)
hm —-. — 1.

M->c° ßx(yn, M)

En fait Kac avait même prédit [15] que l'écart p.2(jn, M) — p,x(jn,M) tendait
exponentiellement vite vers 0 quand M tend vers l'infini. La méthode utilisée dans ce papier ne

permet pas d'estimer cet écart.

3 Conjecture de Kac

Cette section est consacrée à la preuve du théorème 2. Dans toute cette preuve, 7 désigne
un élément de la suite {yn}n€N-

Pour tous entiers positifs N et M, on note A/v,m le rectangle à TV colonnes et M lignes
inclus dans ZZ2. On considère £tß,7,AWM la mesure de Gibbs sur Am,m avec conditions
périodiques au bord. On définit aussi la mesure de Gibbs ßß (resp M/3,7) obtenue par
limite thermodynamique des mesures piß Aw N avec conditions + (resp —) au bord (cf Ellis
[8]p.l58).

On souhaite maintenant prouver que
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Par compacité, on peut extraire des sous suites convergeant vers une mesure de Gibbs
invariante par translation. Il suffit donc de prouver l'unicité de cette limite. On fixe 7 et on
suppose que ß est régulier, nous reviendrons sur cette hypothèse par la suite. Dans ce cas,
le résultat de Pfister [18] (théorème 4) (voir aussi [8] p. 133 théorème IV.8.2) est applicable
et toute mesure de Gibbs invariante par translation est combinaison linéaire de pA et iû
Par symétrie de M/3,t,aw m i on sa^ I116

VN,MelN, M0,7,a*.a,(So) O.

Par conséquent toute mesure limite ßßn est nécessairement égale à \(ßß~ + Pß-,) et est donc
unique.

Revenons maintenant sur l'hypothèse faite sur ß, on dit que ß est régulier si la pression

1 \
f(ß)=limi — log\ £ exp(-ßHAN^(SA\A))

est derivable en ß. D'après [18], on sait que à 7 fixé il existe au plus un nombre dénombrable
de ß non réguliers. On note B l'intersection pour tout n des ß réguliers associés à ßßlln-
Dans la suite de la preuve, on suppose que ß appartient à B.

L'existence de la limite ßßa étant établie, la corrélation entre les spins aux sites (0, 0) et
(l, 0) pour la mesure obtenue à partir de ßß,7)\N M s'écrit

Pß,7(SoSi) lim lim pß,lANM(S0St). (3.1)
m—*oo yv—+00

En utilisant l'opérateur de Kac, on vérifie facilement que

Pi(l,M)
iV->00
Umu,.,w(SoS,) S: [^AÀ K (3-2)^ W7,M)

où les Cj sont des constantes dépendant uniquement des vecteurs propres de K^ et pas du
paramètre /. En remarquant que

on déduit donc de (3.2) que

Um M7,A„.M(SoS|) < (j^-^y) ¦ (3-3)

Raisonnons par l'absurde et supposons que

cß2(l,M)liminf—;—— < c < 1.
M->oo ßx(y,M)
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Le passage à la limite thermodynamique (3.1) impliquerait alors

ßßn(S0Si) < ë~l,

c'est-à-dire

lim ßß^(SoSi) 0.
£-*oo

En utilisant le fait que M/3,7 \(ß~ßa + ßß,-,), on obtiendrait

lim n$7{S0S,) 0.
/—>oo M''

Montrons qu'un tel résultat conduirait à une contradiction. Le théorème 1 permet
d'affirmer que pour tout ß supérieur à ßc et 7 suffisamment petit

Pt-y(So) > 0. (3.4)

Le système étant ferromagnétique, l'inégalité FKG (cf. Ellis [8], p. 143) implique

/i£7(S„S«) > K^So)]2 > 0. (3.5)

La relation (3.4) implique que le dernier terme est strictement positif. On obtiendrait alors

une contradiction, ceci permet de conclure que

hm —;—7-7 1.
M->oo /Ui (7, M)

4 Preuve du théorème 1

Nous prouvons maintenant le théorème 1 pour des potentiels du type de ceux décrits dans

l'introduction. La démonstration est divisée en plusieurs étapes, le point central consiste
à considérer le système à une échelle différente, dite échelle mésoscopique, afin de pouvoir
appliquer l'argument de Peierls. En effet, on ne peut pas se contenter de se restreindre aux
interactions aux plus proches voisins car dans le cas du modèle de Kac, l'interaction entre
2 sites est de l'ordre de 7 : l'application naïve de l'argument de Peierls ne suffirait pas à

montrer qu'il y a bien transition de phase au delà de la température critique. Il faut donc
utiliser une procédure de renormalisation et transposer l'argument de Peierls à des blocs de

spins définis à une échelle mésoscopique.
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4.1 Potentiels de portée finie

On commence par se ramener au cas d'interactions de portée finie. Supposons que le
théorème 1 soit valable dans le cas d'interactions de portée finie et étendons le au cas
d'interactions de portée infinie.

Soit R une constante positive, on introduit J^ le potentiel de portée finie déduit de J7
par troncature

J*(A, l, k', Z') 7J(7(fe - fc'))i{|*-*'|<ii7-'} J(l, l').

Soit ß fixé supérieur à ßc, on choisit R suffisamment grand tel que, pour 7 petit, on ait

0 > K > ßc -.£(*,06z><(M,o.o) yc 4

D'après le théorème 1, il se produit une transition de phase pour la mesure de Gibbs
associée à Jy. Par l'inégalité ferromagnétique GKS (cf Ellis [8] p.147), on en déduit qu'il y
a aussi une transition de phase pour la mesure de Gibbs associée à J-,.

Montrons maintenant le théorème 1 dans le cas d'un potentiel de portée finie, c'est à
dire avec J à support compact et Lipschitzienne. On peut, sans restriction, choisir [—1,1]
comme support de J; la preuve serait identique pour tout support du type [—R, R].

4.2 Echelle mésoscopique

Dans cette partie, on introduit de nouvelles notations correspondant à des quantités de

l'échelle mésoscopique.

Soit £ un entier tel que 1 <C £ <C 7-1.

Définition 1 Pour tout x de la forme x (i£,j) avec i,j deux entiers. On note x le

rectangle de ZZ2 défini par

x {(k,k')\ -ì<k-i£<i;k' j}.

L'aimantation moyenne du rectangle x est alors

aî lJlSr-
c r£x

L'échelle mésoscopique ne fait intervenir que les moyennes locales de l'aimantation o~x.

Dans toute la suite, les variables S représenteront des spins à valeurs ±1, les variables o
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représenteront l'aimantation moyenne à valeurs discrètes dans [—1,1] et m correspondra à

l'aimantation moyenne quand £ tend vers l'infini, m prendra donc des valeurs continues dans

[-1,1].

On réalise un pavage de ZZ2 avec des rectangles du type x. Cette procédure de renormalisation

va permettre de réécrire les spécifications locales en termes de l'aimantation moyenne
ax de chaque rectangle.

La première étape consiste à réécrire l'Hamiltonien. La fonction J étant Lipschitzienne,
il existe une constante Ci telle que, pour tous x, y, s et r de ZZ2 avec r appartenant à x et s

appartenant à y
\I7(r,s)-I7(x,y)\<crfl

Pour tout sous-ensemble fini V de ZZ2 réunion de rectangles x, la relation ci-dessus conduit
à

\Hv,7(Sv\Sv°) + eT £ I7(x,y)axo-y + f £ I7(x,y)oxoy\ < cxN(V)j£2, (4.1)
x,ycv xcv,acvc

où N(V) est le nombre de rectangles dans V.

L'inégalité précédente permet de comparer l'Hamiltonien avec des quantités de l'échelle

mésoscopique, il ne reste plus qu'à analyser le comportement de chaque ax quand £ tend vers
l'infini. Le fait de moyenner un grand nombre de variables aléatoires impose d'introduire
l'entropie. Soit o G [—1,1] tel que £q~ appartienne à ZZ, un calcul explicite donne

où Pi est la probabilité produit ®i(\6x + |<5_i) sur {-1,1}^. On peut alors définir l'entropie,
notée / (cf [8] p. 38)

Vm G [-1,1], I(m) lim lim -rlogP* - Y]5r G [m - e.rn + e]
e-toe-Kx> £ y£ ~rj

En utilisant la formule de Stirling, on montre classiquement que / s'écrit

Vm G [-1,1], I(m) -±^ log(l + m) + -^ log(l - m);

on obtient aussi l'équivalent suivant

Pt [)E_Sr ^j= exp (-£I(a) + £0(^)

Comme on le verra par la suite (cf (4.6)), il est naturel de considérer une énergie

mésoscopique définie par

EvAwWv) —z Yl iIj(x,y)oiCry - Y, ei^x^^sOy+Y,!3'11^*)' (4-2)
^ î,yCV SCVJCV' xCV
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out ê-y est un nouveau paramètre caractéristique du système. Le seul paramètre
intervenant dans l'expression ci dessus est le produit £7. En remarquant que

£ eiy(x,y)4= £ £jJ(êl(i-i'))J(j,j')<rl
xCV,y («j)eV;(»'<J')

on obtient alors la relation

Y eiy(x, y)ol E (E UiJ(l<yi)) a2 £ jTa2, (4.3)
ïcv,5 ïcv \iez I xcv

avec

Vr>0, jT= 2Y,rJ(r\i\).

La somme de Riemann qui définit jT converge quand t tend vers 0

lim jT 2 dr J(r) 4.
•r-xrT Jn v ;

En utilisant (4.3) et l'identité ci dessous

-oxoy -(crx - 0A2 - -(ct2 + of), (4.4)

on peut réécrire l'énergie (4.2) sous la forme

EV:T(av\oVc) - £ £I7(x,y)(ox-oy)2 + - £ £I7(x, y)(ax - oy)2 (4.5)
x,yCV l ÎCV,SCVC

+ Y: (ß-lI(°x) - \jrdi) - Cv(avc).
XCV V '

Le terme CV(cvc) ^HxcvT.ycv= ^i(x-y)a^ ne contient que des termes de bord et
disparaîtra dans l'expression de la mesure de Gibbs conditionnelle (4.6). A part ce terme de

bord, la formule (4.5) se compose de 2 types de termes : des termes quadratiques d'interaction
et des termes correspondant au potentiel fßtT

Vm G [-1,1], fß,T(m) ß-'Hm) - l-jTm2.

Si ß > ßc, la fonction fßtT possède deux minima symétriques distincts Am.ßiT pour tout r
suffisamment petit. Quand r tend vers 0, le minimum mpiT tend vers le minimum de fß0
noté mß.

Nous sommes maintenant en mesure d'écrire une version mésoscopique des spécifications
locales. On définit {Sv => ov} comme l'ensemble des configurations Sv dont la moyenne sur
chaque rectangle x est ox. En utilisant (4.5). on peut écrire la mesure de Gibbs conditionnelle
sur V, sachant que les conditions au bord Sv sont compatibles avec oyc

/rc^^iic \ exp(-ßeEVir(avWv<)) R*
M/3,7 v\ls =*¦ <M\Sv) ~ ; a0J?—;—j T7 (4.6)

¦ Eavexp(-ß£Ev,r(<^vWvA)

eXj>(lN(V)(e(y,T) + oft¥)))ì
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où la fonction e tend vers 0 quand 7 et t tendent vers 0. Le second terme d'erreur tend vers
0 quand £ tend vers l'infini. Par la suite, le paramètre t sera proche de 0, ce qui imposera
une condition entre £ et 7.

On peut maintenant énoncer un théorème qui donne un contrôle de (4.6) quand £ tend
vers l'infini.

Théorème 3 Soit V une réunion de rectangles x et A un sous-ensemble fermé de l'ensemble
des configurations {my {mx}xey | Vï C V, mx G [—1,1]}. Alors pour toute configuration

extérieure ave

log Y exp(—ß£EvT(&vWvc)) ] Aß£ inf £VT(my|cry
oveA

'
I mv€A

< £N(V)e(£),

où l'infimum est pris pour des configurations my à valeurs continues. On note N(V) le

nombre de rectangles x dans V et la fonction e(£) tend vers 0 quand £ tend vers l'infini (le

paramètre r restant fixé). La fonction e est indépendante de A et de ov-

Preuve : On procède en 2 étapes.

Etape 1 : Pour la borne inférieure, on a

Y exp(-ß£EVT(o-v\o-Vc))) >-ß£ inf EvT(ov\aVc).
7~ïa l <rv&A '

"v€A /
On souhaite maintenant passer des blocs de spins discrets aux blocs de spins continus.
L'erreur est de l'ordre de j sur chaque x. En utilisant le fait que fßtT est uniformément
continue sur [—1,1], on en déduit que

log | Y exp(-/^PyT(ffy|CTyc)) >-ß£ inf Py T(mv leryc) - £N(V)e(£).

Etape 2 : Pour la borne supérieure, il suffit de majorer par le nombre £N(V) de configurations
mésoscopiques

Y exp(-ß£EVT(ov\ovA) <£N{v)exp(-ß£ inf PyT(my|cv«))-
*veA

' mveA

Ceci donne le résultat.

4.3 Procédure de renormalisation

Dans cette partie, nous définissons la notion de contours à l'échelle mésoscopique. Nous
montrons ensuite que la transition de phase (théorème 1) peut s'obtenir à l'aide d'une inégalité
sur la probabilité des contours.
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Soit L > 0 une constante qui sera fixée ultérieurement. On définit le cube Co par
2£2n[—L7-1, Z,7-1[x[-L, L[. On partitionne ZZ2 en blocs C, chacun étant déduit de C0 par
translation. Pour tout paramètre 6 > 0, on introduit une autre partition de ZZ2 à l'aide des
blocs Cs déduits par translation du bloc Cq ZZ2 n [—<57_1,<S7-1[x{0}. Afin de se ramener
à un système de "spins", on associe à chaque bloc C un label n(C); on constitue ainsi des
blocs de spins. Soit Ç > 0 un paramètre qui sera fixé ultérieurement. On définit

On remarque que les paramètres r et £ n'interviennent pas dans la définition des blocs de

spins.

Pour ß supérieur à ßc, le problème de la transition de phase se réduit, comme dans

l'argument de Peierls, à démontrer une brisure de symétrie dès que 7 est inférieur à une
certaine constante 70, c'est-à-dire que pour tout 7 < 70, il existe une mesure de Gibbs ßt
telle que

4,7({n(Co) < 0}) < \, (4.7)

le bloc Co et son label dépendent des paramètres L, £ et 5 qui seront ajustés par la suite. Si

cette mesure était unique alors un argument de symétrie permettrait d'affirmer que

ßl7(v(C0) 1) ßt7(v(C0) -1).

Il y aurait donc une contradiction. Pour prouver le théorème 1, il suffit donc de démontrer
(4.7).

La démonstration de (4.7) fait appel à la notion de contours.

Définition 2 Un bloc C est dit correct si t?(C) est non nul et a la même valeur pour
tous les blocs adjacents. Un contour est alors un ensemble (maximal) connexe de blocs
du complémentaire de l'ensemble des blocs corrects.

Un contour est donc un ensemble de blocs avec des labels déterminés.

Soit A un sous-ensemble fini de ZZ on note Ma 7)a la mesure de Gibbs sur A avec des

conditions au bord de label 1 notées S+. Une configuration S,\ appartient à l'ensemble
{^(Co) < 0} si cette configuration produit un contour T entourant Co

mLa(MCo) < o}) < y>LA(n- (4.8)

La notation F 3 0 signifie que l'on somme sur tous les contours T entourant Co- Il suffit
donc d'obtenir une majoration uniforme pour tout A de la probabilité d'avoir un contour F.
Nous allons prouver que
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Lemme 1 II existe des constantes strictement positives c,yo,Ç,6 et L telles que, pour tout
contour F inclus dans un sous-ensemble A de ZZ2 et pour tout 7 < 70, on ait

MjlTlA(T) < exp(~|r|),

où \F\ est le nombre de blocs C inclus dans F.

En appliquant ce lemme à l'inégalité (4.8), on montre par un argument combinatoire (cf
[7]) que pour 7 suffisamment petit l'inégalité (4.7) est vérifiée. Ce lemme sera prouvé dans
la section suivante.

5 Inégalité de Peierls (lemme 1)

5.1 Réduction à un principe variationnel

Dans cette section, nous montrons comment réduire à un principe variationnel l'inégalité du
lemme 1. La première étape consiste, à l'aide d'un conditionnement, à se ramener à évaluer

un événement localisé autour du contour T. Les paramètres Ç, t, S et L seront fixés au cours
de la preuve.

Les interactions étant anisotropes, on introduit une distance sur ZZ2 dépendant de 7

dist7((i,i); O",;')) minfrl* - i'\, \j - j'\).

On définit la frontière ÓT d'un contour T comme la réunion des rectangles x dont la
distance à T est dans l'intervalle [L — 10, L]. De plus, on note f la réunion des rectangles x
dont la distance à F est inférieure à L — 10. Par définition de F, on sait que l'aimantation
moyenne dans une partie connexe de 3F est de signe constant et est proche de mß ou — mß.
On note alors Ser la réunion des configurations dans chaque partie connexe de la frontière
de T. On obtient Sgr en modifiant les configurations de Sar par l'application Sgp -+ —Saisi

la frontière du contour est constituée de blocs de label -1; si la frontière est de label 1, on
n'effectue pas de modifications. Cette application retourne les spins dans les parties connexes
de T où le label est -1.

On note {Sv =>• T} l'ensemble des configurations compatibles avec le contour T, c'est-à-
dire les configurations produisant des labels n identiques à ceux de F. On fixe des conditions
au bord de label 1 notées S+. Le contour F sépare V en 2 régions, l'extérieur (c'est-à-dire
la partie au contact avec Ve) sera noté Vx et l'intérieur V2.

Yl{sv^r)exp(-ßHvASv\S+)) YJ2 exp(-/?PTy1,7(Sy1|S+) - ßHV2,7(SvA)
Sy Sv-, Sv2

Es, Usv^t} exp(-ßHt)7(Sv\Sar)),
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où Sav correspond aux conditions fixées au bord de F par Sv, et Sy2. Les régions Vx et V2

sont ainsi découplées, on peut donc inverser le signe des spins de Sv2 si la partie commune
à Sv2 et Sar a un label de signe négatif. On note SV2 la configuration ainsi obtenue.

Elisen exp(-/?PTy,7(Sy|S+)) £X>P(-ßHVu7(SVl\S+) - ßHV2i7(SVi))
Sv 5vj Sv2

\P t au <q 10« ^Es^{sv^r}eM-ßHr,7(Sr\Sar))
2Jexp(-/?ffri7(Sr-|Sflr)) r

sf Lsfexp(-/5#ri7(òr|òar))

Comme Sar et 5y2 sont compatibles, on obtient

£l{Sv=>r)exp(-/3Py,7(Sy|S+)) < YeM-ßHv-,(Sv\S+))
Sv Sv

Es? 1{st^f) exp(-/JPr,7('S,rl'S'ar))

ESfexp(-/ÎPr,7(5f|5^))

Ceci permet de majorer la probabilité de réaliser F

M/3,7 ({^v => F} < sup !— ——-—
sar Estexp(-ßHt-t7(Sr\S*ar))

En utilisant l'approximation mésoscopique (4.6) et en appliquant le théorème 3, on vérifie

que

/ \ L2
W,T+A(r) < exp - /Winf inf Pf,T(m|a9r) - inf £fiT(m|^r) + — |r|e(7,r,£)), (5.1)

où |r| est le nombre de blocs dans F et l'infimum est pris pour des configurations aar
compatibles avec F. La fonction N(T), définie au théorème 3, est liée à |F| par la relation

at(d |r|—.
T

Il suffit donc de prouver qu'il existe c(C, L, S) strictement positif tel que l'inégalité suivante
est vérifiée quand r est inférieur à une constante tq

inf Er T(m|mar) - inf Pf.T(m|mar) > C^' ' Vl. (5-2)

uniformément en F et en mar (°n remplace cette fois aar par des configurations à valeurs

continues). On remarque que 7 et £ ne figurent pas dans (5.2). Les constantes Ç. 6 et L étant
fixées, il suffit alors de choisir 70, t et £ tels que

c(C 5, L) ^ r2
2

A l'aide de (5.2), on obtient alors le lemme 1

> L2e(j0,T,£).

L'inégalité (5.2) se déduit des 2 lemmes suivants.
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Lemme 2 Pour tous ô > 0 et £ > 0 il existe tq et c(Q, S) strictement positifs tels que

Vt, 0 < t < t0, inf ETT(m) > ^-^|r|.

L'expression EtA771) correspond à l'énergie de la configuration sur F sans les interactions
avec l'extérieur de F.

Lemme 3 II existe 5 > 0 et £ > 0 suffisamment petits tels que, pour tous ex > 0 et e2 > 0,

il existe r0 > 0 et L suffisamment grand tels que, pour tout 0 < t < r0

inf Pr/rT(m|mar) - inf PfT(m|mar) > -—Nr - — - £-^-NTL2,
m=>f/r '' m ' ~ T T T

où Nr est le nombre de blocs constituant la frontière de F.

Avant de démontrer ces lemmes nous terminons la preuve de (5.2). En supprimant les

interactions entre F et F/r, on obtient

inf PpT(m|mar) > inf Pp/pT(m|mar) + inf E\-T(m).
m=>r ' m=>r/r ' m=>r

Les événements sur F/F et F étant ainsi décorrélés, on remarque que

-Ef/r.rHmar) Er/r,r(m\m'dr).

On fixe 5 et Ç pour que le lemme 3 soit vérifié. On définit alors Tq et c(6, à l'aide du
lemme 2. On choisit ensuite ex < ^-j^ et e2 < ^p. Le lemme 3 permet d'affirmer qu'il

(21
existe Z, et to tels que

inf PrT(m|mar) > inf PrT(m|mar) + ^^|r| - -iVr - ^ - ^-NrL
m=>r ' m ' T T T T

2

On peut majorer le nombre de blocs sur la frontière de F par le nombre de blocs dans F,
c'est-à-dire A'r < |T|. D'après l'inégalité ci dessus, il suffit de choisir t0 tel que

L2£{To)<SML et r0<M(ro(1\r0<2>).

pour que l'inégalité (5.2) soit vérifiée.

5.2 Preuve du Lemme 2

Les paramètres 5 et £ étant fixés, on choisit t0 suffisamment petit pour que les minima de

//3]T soient dans [m,ß — {^,mß + yjj] U [—mß — -^, —mß + ¦£>]. Soit m une configuration dans

15
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T et C un bloc de spins dans F. On distingue 2 cas.

1er cas: 77(C) 0 :

Supposons d'abord qu'il existe C6 inclus dans C tel que

|— Y mx±mß\ >C-
zo sec«

Il existe 2 façons de réaliser un tel événement.

Ou bien il y a au moins |» rectangles S de C6 vérifiant \mx ± m.ß\ > £; alors chacun de

ces rectangles contribue à augmenter l'énergie car dans ce cas fßtT(mx) est supérieur à une
constante Ci(Ç) > 0. L'énergie du bloc C vérifie alors

Vt < t0, Ec,r(m) > Eci,T{m) ^ /ci(0-
4T

Ou bien le nombre de rectangles x vérifiant |ms ± mp\ > \ est inférieur à |£, alors il y a

au moins -^ rectangles où \mx — mp\ < £ et au moins ^ rectangles où \mx + mp\ < £.

Cette fois, c'est le terme d'interaction qui pénalise ces configurations; il existe donc c2 > 0

et t0 > 0 tels que

Ó~2C2

Vt < T0, Ec,T(m) > EcsT(m) > c2.
T

La dernière façon de réaliser 77(C) 0 consiste à avoir 2 blocs Cf et C2 adjacents tels que
l'aimantation moyenne de Cf soit proche de mp et celle de C2 proche de — mp. Dans ce cas,
il existe au moins — rectangles de Cf vérifiant \mx — mp\ < 2Ç et au moins A rectangles de

C2 tels que |mi + mp\ < 2Ç. Une preuve identique à celle ci-dessus donne alors le résultat.

2ème cas: 77(C) ^ 0.

Alors C est adjacent à un bloc C tel que n(C)r](C') —1. Dans ce cas l'énergie
d'interaction devient prépondérante car on peut trouver 2 blocs adjacents Cf (appartenant
à C) et C2 (appartenant à C) vérifiant les hypothèses du cas 1.

Par conséquent, chaque bloc de F contribue à augmenter l'énergie. Il existe donc une
constante c(Ç, S) indépendante de F telle que l'énergie du contour F soit supérieure à ^^|r|.

5.3 Preuve du Lemme 3

La première étape consiste à réécrire Py]T. On définit le sous-ensemble V de IR x ZZ comme
l'image du sous-ensemble V de ZZ2 par l'application /t

k : (k,j)eZ2^[jk,j(k + l)lx{j}.
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Les configurations (mx)xe.v sont alors transformées en fonctions sur IRx ZZ par

V(r,j) e V, m(r,j)=mx si (r,j) G k(x). (5.3)

Soit m une fonction sur V k(V), on lui associe l'aimantation a

Vr C V, as - f m(r,j) dr. (5.4)
r J(r,j)eAx)

On définit les labels 77 associés à m comme les labels 77 associés à a. On peut donc utiliser
ainsi la notion de contours pour les configurations à valeurs continues.

On note mv= l'image de la configuration de av par l'application (5.3). Pour toute
fonction m sur V, on définit maintenant

Ev(m \mVc) -- Y / l(r,*)ev l(r',k')evJ(k, k')J(r - r')m(r, k)m(r', k') drdr'
1 k,k'

J

~zZ l(r,k)&> l(r>,k>)ev<J(k, k')J(r - r')m(r, k)mVc(r', k') drdr'
k,k'J

+ AZZ l(r,k)çv I(m(r, k)) dr.
P k J

On remarquera que le paramètre r a disparu dans cette nouvelle expression de l'énergie.
On cherche maintenant à relier Ev(m\myc) avec Py]T(<7y |oy=) où m est l'image de a par
l'application (5.3). On remarque que la fonction m est constante sur des segments horizontaux

de longueur t, ceci permet d'obtenir à l'aide de l'expression (4.2)

Ev,r(av \av) -77- Y I Mr,k)ev Mr',k>)ç.vJ(k, k')J(r - r')m(r, k)m(r', k') drdr'(5.5)
lT k,k' J

Y I l(r,k)€V l(r'.k')ev<:J(k, k')J(r - r')m(r, k)m(r', k') drdr'
T k,k'

J

+ ^T E /Wv I{rn(r, k)) dr + ì#|V|e(r),

où m est l'image de a par l'application (5.3) et #|V| est le volume de V défini par

#|V| T{nombre de rectangles x dans V}.

Cette quantité est donc liée au nombre de blocs dans V (à un facteur L2 près). Par la suite,
la notation e(t) désignera n'importe quelle fonction tendant vers 0 quand t tend vers 0.

L'équation (5.5) permet d'obtenir

- inf Ev(m \mVc) + —#|V|ê:(t) > inf EvT(ov\c>v)
T mv=>r T av=*r

>- inf Ev(m\mVc) - -#|V|e(r),
7- mv^r T
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où {my =>¦ T} est l'ensemble des configurations réalisant le contour F. La borm inférieure
s'obtient directement tandis que la borne supérieure nécessite l'utilisation de la convexité de

l'entropie

¦ Y J(a*) ^zZ l(r,k)evl(m(r,k))
*{-V Ir •*

où a est défini par (5.4).

Désormais et jusqu'à la fin du texte, seules des fonctions sur IR x ZZ vont intervenir.
Pour simplifier on notera x tout élément de IR x ZZ et m(x) — m(r, k). On note J le terme
d'interaction

V x (r, k), y (r\ k), I(x, y) J{k, k')J(r - r1).

On introduit la mesure produit v sur IR x ZZ dont la première marginale est la mesure
de Lebesgue et la seconde la mesure de comptage. Par la suite on notera pour tout sous-
cnsemble A de IR x ZZ et toute fonction /

jf f(x)u(dx) =YJ l(r,*)€A/({r, k}) dr.

De même pour tous sous-ensembles A, B de IR x ZZ et toute fonction g, on a

/ f(x, y)u(dx)u(dy) Y l{r,k)eA V.*')eß 9({r,k), {A, k'}) drdr'.
JaxB k>k,

J

Comme dans le cas discret, on peut redéfinir l'énergie sous la forme

1 r 2
Ev(m\mVc) - / J(x,y)(m(x) -m(y)) u(dx)u(dy)

4 Jvxv
1 ,- 2+- / I(x,y)(m(x) -m(y)) v(dx)v(dy)
2 JvxV

+ f fp(m(x))v(dx)+C(mVc),
Jv

où C(mVc) est une constante ne dépendant que des conditions au bord et fß ne dépend pas
de t

Vm G [-1,1], fp(m) ß~lI(m) - 2m2.

Nous allons utiliser cette nouvelle représentation de l'énergie, pour montrer le lemme 3.

Soit T un contour donné et mar des conditions au bord fixées. Les paramètres ex et e2 étant
fixés, il suffit de prouver

inf EfiT(m \m*gr) — inf Er(m |mar) > -exNr — e2, (5.6)
m=>f/r 'm
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où cette fois Pf/r désigne la version sous forme intégrale de l'énergie. On conserve le symbole

f/r pour l'image de f/T par l'application k.

On choisit d'abord une fonction mr ,r telle que

H,r, Er/r(m\m'ar) > Pr/r(mr/r|mar) - e2. (5.7)

Pour montrer (5.6), il suffit de vérifier qu'il existe une fonction mp telle que

Pr/r(mr/r|mar) > Pr/r(mp|mar); (5.8)

de plus, on veut que ml(x) soit égale à mß sur F et soit exponentiellement proche de la
valeur d'équilibre mß quand x est proche de F, c'est-à-dire

Va; G f/r, \ml(x) - mß\ < exp(-c dist(z, ar)), (5.9)

où cette fois

dist((r, k); (r1, k')) sup (\r - r'\, \k - k'\).

En utilisant (5.9), on montre que l'interaction entre F/F et F peut être alors rendue
arbitrairement petite si L est assez grand. On peut donc prolonger mp sur F par mß

Evlr(rr^)>Ef(m\,)-exNT.

Ceci conduit à (5.6). L'existence d'une fonction mp est démontrée dans la section suivante.

6 Dynamique

Cette section est consacrée à la construction d'une configuration mp qui satisfait les

conditions (5.8) et (5.9). La preuve repose sur les arguments développés par Cassandro et
Presutti [7]. Cette nouvelle configuration sera obtenue à partir de mr,r introduite en (5.7).

Plus précisément, on considère le problème de Cauchy ci dessous, de donnée initiale mr ,r

V£>0,Vr G f/T, -4^ (M) -m(x, t) + tanh (/?[! x (m + m*dr)](x,t)) (6.1)

m(:r,0) mL(i).
où

î(x,y) I(x, y) + 5X-V [ I(x,x") dv(x")

et pour toute configuration m, la fonction J x m est définie par

[Jxm](x,t)=f I(x,y)m(y,t)u(dy)+( f I(x, x")v(dx") j m(x, t).
JyeRxz/r \Jx"€T J
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Par la suite, on notera [J x m](x, t) I x m(x, t). On utilisera une notation similaire pour
les fonctions indépendantes de t.

La première étape consiste à montrer la décroissance de t —» Ef/T(m(.,t) |mar); on en
déduit (5.8). Il suffit ensuite de vérifier que quand t est suffisamment grand les fonctions
x —¥ m(x, t) satisfont (5.9).

6.1 Décroissance de l'énergie

Nous commençons par définir les notions de sous-solutions et de sur-solutions.

Définition 3 Une fonction v est une sous-solution pour le problème de Cauchy (6.1) si elle

vérifie, pour tout t > 0,

Vx G f/F, v(x, 0) < mr/r(x),

— (x,t) < -v(x,t) + tanh (ßJ x (v + m*dr)(x,t

De la même façon, u est une sur-solution si

Vx G F/r, u(x,0) > rr4/r(x),

— (x,t) > -u(x,t) + tanh (ßl x (u + mar)(x,i))

Les sous-solutions et sur-solutions permettent d'encadrer les solutions de (6.1)

Lemme 4 Si v est une sous-solution pour (6.1) et u une sur-solution alors

Vt > 0,Vx G f/r, v(x,t) < m(x,t) < u(x,t).

Preuve :

On se contente de vérifier l'inégalité dans le cas d'une sous-solution, la preuve étant
identique pour une sur-solution. Pour tout T > 0, on note Ct; l'ensemble des fonctions sur

T/r x [0,T] continues sur [0,T]. Soit G l'opérateur de Ct dans lui même défini par

V/ GCT,Va:Gf/r,V«>0,

G(f)(x,t) =exp(-t)f(x,0)+ f ds exp(s - t) tanh (/?! x (/+ mar)(a;,s))

Si T est suffisamment petit, G est une contraction et par itération on montre que la
solution m de (6.1) s'écrit

Vi G [0,T], m(t) lim G(n)(m°)(t).
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Si v est une sous-solution, on a alors

Vz G f/r, dt(G(v)(x,t) -v(x,t)) >v(x,t)-G(v)(x,t).

On en déduit que

VxGf/r, G(v)(x,t) >v(x,t).

On constate que si / > g alors G(f) > G(g). Par conséquent, en itérant l'équation ci dessus,

on en déduit

Vt G [0,T],Vz G f/r, rh(x,t) >v(x,t),

où rn est la solution de (6.1) de donnée initiale tj(0); Comme m(0) > tti(O), on a en utilisant
la monotonie de G que

Vt G 10,T],\tx G f/r, m(x,t) >m(x,t).

L'argument ne dépend pas des données initiales, on peut l'étendre sur [T, 2T] puis sur IR.

Nous montrons maintenant que pour tout temps les solutions m(.,t) de (6.1) vérifient
(5.8).

Proposition 1 La fonctionnelle Pf/r('lmar) es^ une fonctionnelle de Lyapunov pour le

problème de Cauchy (6.1), c'est-à-dire

Ef,T(m(., t) | mar) - Pf/rK/r I ™Sr) < 0- (6.2)

Preuve :

La première étape consiste à vérifier que pour tout temps ||m(.,£)||oo < 1- Pour cela,

on construit une sur-solution de donnée initiale 1 et on vérifie qu'elle devient strictement
inférieure à 1 pour tout temps strictement positif. Vérifions que pour S et £ suffisamment

petits, il existe c < 1 tel que

VxGf/r, -c + tanh(/3lx (c + m'dv)(x)) < 0. (6.3)

En utilisant le fait que J est uniformément équicontinue, on a

1 x m'gr(r, k) Y J(k' k') [ J(r - r>ar(r, fc) dr'
k

J

< Y 3^ k') E SJ{r - Sj)(mß + C) + e(ö),
k 3

c'est-à-dire

I x mar < î x (mB + C) + e(à)-
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Par conséquent, si S et Ç sont petits, alors I x mer < J x 1. On peut trouver c < 1 vérifiant
(6.3) pour toute condition au bord msr. On définit alors u(t) comme la fonction

VrGT/r, u(t) c + exp(-t)(ï -c).

Quand c est suffisamment proche de 1, cette fonction est bien une sur-solution de donnée
initiale 1. On fait de même avec une sous-solution de donnée initiale —1. Le lemme 4 permet
alors de contrôler le comportement de m et d'obtenir ||m(.,t)||00 < 1.

La donnée initiale du problème de Cauchy pouvant être choisie dans ] — 1,1[, ceci implique
que la fonction m(., t) reste dans l'intervalle ] — 1,1[ pour tout temps et par conséquent que
t —> I(m(x,t)) est derivable. En dérivant l'énergie, on obtient

dEf/r 1 fJ (m(.,t) | mar) - /_
_ v(dx)v(dy)I(x,y)(m(x,t)-m(y,t))ot 2, Jr/Txr/r

— m(x, t) + m(y, t) + tanh (ßj x (m + m*dv)(x, t))

- tanh [ßl x (m + m*gr)(y, t))

+ / J(x, y)(m(x, t) - m(y, t))
Jr/rxdr

(—m(x, t) + tanh (ßj x (m + m*dr)(x, t)J) u(dx v(dy)

+ I (/T1 tanh-1 m(x, t) - 2m(x, t))
Jf/r

(—m(x, t) + tanh (lx(m + m*dr)(x, t))) du(x).

On a utilisé la relation I'(m) tanh-1 (m).

Après simplification on obtient

<9Pf/r
m

(m(.,t)\m*ar) J (-m(x,t) + tanh(/3l x (m + mar)(x,t)))

(ß~l tanh_1(m(x, t) — J x (m + m*ar)(x, t)) dv(x),

c'est-à-dire

<9P,

-j£ (m(.,t)|mar)<0.

En intégrant entre 0 et t, on obtient (6.2).

6.2 Relaxation vers l'équilibre

On cherche finalement à déduire de (6.1) une configuration m}-/r vérifiant (5.8) et (5.9). Pour

cela, nous encadrons m(t) entre une sous-solution et une sur-solution. D'après la proposition
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1, il suffit de montrer que, pour des temps assez grands, les solutions de (6.1) vérifient (5.9).

D'après l'appendice, on sait que m^,,r peut être choisie telle que

Vx G f/r, 1 > mr/r(x) > mB - 2Ç.

On rappelle que le paramètre Ç a été introduit dans la procédure de renormalisation. Pour
tout entier i plus petit que N lk\, on définit

K, {r G f |dist(r,ÓT) > 2i}.

On partitionne F/r en couches Si Ki/Ki+i.

L'équation de champ moyen m tanh(4/3m) admet comme solution strictement positive
mß. On définit la suite de fonctions {vi}iep/ par

Vi<2,Vt>0, v,(t) =mß-3(,
Vz>3,Vt>0, dtv,(t) =-Vi(t) + ta.nh(4ßv,_i(t)) et v,(0) mß - 3Ç.

On sait alors que

Vi > 2, vl+x(t) exp(-t)(mß - 3() + / dsexp(s - t) Unh(4ßvi(s)).
Jo

On vérifie, par récurrence, que pour tout i la fonction Vi est inférieure à mß. En effet si

Vi < mp alors tanh(4/9?ji) < mp, l'expression de Vi(t) ci dessus donne alors le résultat. D'après
l'équation différentielle qui régit vi} on en déduit que Vi est croissante. Ceci implique

Vi G IN, v* lim Tj^t),
t—»oo

et par conséquent v*+l tanh(4/??j*). Comme mp est un point fixe par l'application x -+
tanh(4/?x) on en déduit que

Vi G IN, v* > mß — cx exp(—c2i),

où cx et c2 sont des constantes positives.

On définit alors la fonction w par

Vi G {1,..., N}, Vx G Su w(x, t) v,(t).

Il reste a prouver que w est une sous-solution, en utilisant le lemme 4 ceci impliquera
alors que

Vx G Si, liminf m(x,t) > mp — cx exp(—c2i). (6.4)
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On va d'abord montrer que, pour tout i, la fonction D{(t) vi+x(t) — Vi(t) est positive.
On sait que

Di+l(t)= f dsexp(s - t)(ta.nh(Aßv,(s)) - tanh(4ßv,_As))).
JoJO

Par récurrence on en déduit que D, est positive.

Sur Sx et iS2, la fonction w est constante. Une preuve similaire à celle de l'inégalité (6.3)
permet de montrer que pour tout 5 et Ç suffisamment petits, on a

Vx G Sx US2, -w(x,t) + tanh(ßi x (w+ mlr)(x,t)) > 0 -^-(x,t).
at

Si i > 2, on vérifie maintenant que pour tout x dans Si on a

1 x w(x,t) > j J(x,y)v,^x(t)dv(y) > 4?j,_i(i). (6.5)

On remarque que pour i > 2, le terme mar n'intervient plus dans l'équation différentielle,
on obtient donc

Vx G Si, dtw(x,t) Aw(x,t)— tanh(/?J x (w + mar)(x,t))
tanh(4/?7j1_1(f)) - tanh(/?l x w(x,t)).

D'après (6.5), l'expression ci dessus est négative, ceci permet de conclure que w est une
sous-solution.

De la même façon, on construit une sur-solution ut de donnée initiale uQ 1. Par un
raisonnement identique on obtient que

Vi € {!,..., N}, Vx £ S„ lim sup m(x,t) < m/3 + Ci exp(—c2i). (6.6)

Par (6.4) et (6.6), on sait qu'il existe (pour t suffisamment grand) une fonction mp sur

f qui satisfait (5.9).

7 appendice

Dans cet appendice, on montre que le minimum de l'énergie sur l'ensemble des fonctions
proches en moyenne de m,ß est en fait pris pour des fonctions proches de m,ß pour la norme
uniforme.

Lemme 5 Soit V C IR x ZZ, un ensemble constitué de blocs. Pour £ fixé, il existe 5

suffisamment petit tel que pour toute fonction m sur V C IR x ZZ avec des labels n égaux à

1 (cf. (5.4)), il existe une fonction in telle que

Pv(m|mv<0 > Ev(m\mvc) et m>mß — 2C
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Preuve :

On commence par définir 2 zones tampons Vx et V2 par

V,-= {(r, fc) G V | i-l< inf (2\r-r'\,\k-k'\)<i).- (r',/c')eaye
V I/ - J

Soit m une fonction définie sur V dont les labels 77 valent 1. On définit tti par

VxGV, m(x) { im{x)l S[ M*!! *"*""£ (7.1)x '
y mp — 2Ç si |m(x)| < mp — 2Ç. v '

Soit A un sous-ensemble de IR x ZZ, on pose

Vx & IRx ZZ, h(x,m,A) -—- / J(x, y)m(y) d;y(y).
fAI(x,y)du(y)JA

En utilisant l'équicontinuité de J, on montre que, pour 5 suffisamment petit, alors pour
tout m dont le label vaut 1, on a

VxGVi, h(x,m,Vc) >m0-2Ç, (7.2)

et

VxGV2, h(x,m,VcUVx) >m0-2Ç. (7.3)

D'après la définition de m (cf. (7.1)), le terme de potentiel vérifie

Vx G V, fp(m(x)) > f0(m(x))-

Par conséquent, il suffit de montrer que le terme d'interaction diminue quand on remplace
m par m. On note

V(A,B) C (IRxZZ)2,

R(A; B)= j j I(x, y){(m(x) - m(y))2 - (m(x) - m(y))2} dv(x)du(y).
JxeA JyeB l '

Soit s dans [— 1,1] et A C IR x ZZ, on pose

Vx G IR x ZZ, G(x, s,A)= f I(x, y)(s - m(x))2 dv(y).
J A

Les 2 remarques suivantes seront très utiles par la suite

si - 1 < s < t < h(x,m,A), alors G(x,s,A) > G(x,t,A). (7.4)

et si h(x, m, A) > 0 alors

G(x,s,A)>G(x,\s\,A). (7.5)
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Afin de montrer que R(V x Ve; V x Ve) est négatif, on procède maintenant en plusieurs
étapes.

Etape 1 : R(V/VX,V/VX) < 0, Ä(Vi,Vi) < 0, R(V/V2,VX) < 0.

Par définition de m, on a \m(x) — rri(y)| < |m(x) — m(y)\, ceci implique le résultat.

Etape 2 : P(Vi,Vc) < 0

D'après (7.2), on a h(r, m, Ve) > mß - 2( > 0. En appliquant (7.4) et (7.5), on a

VxGVi, G(x,m,Vi)>G(x,m,Vx),
ce qui permet de conclure.

Etape 3 : P(V2,VCUV!) <0

On décompose R(A; B) sous la forme P(.4; B) RX(A; B) + R2(A; B) avec

RX(A;B) f f I(x,y){(m(x)-m(y))2-(m(x)-m(y))2}dv(x)du(y),
Jx€A JyeB l '

R2(A;B) f [ I(x,y){(m(x)-m(y))2-(m(x)-m(y))2\di>(x)dv(y).
JxeA JyeB l '

On considère maintenant des sous-ensembles particuliers. Tout d'abord, on pose A V2fl
{x G V2; |m(x)| < mp — 2Q et B VcUVi. Pour tout x dans A, on a h(x, m, A) > mp — 2Ç

par conséquent (7.4) implique RX(A, B) < 0.

Pour contrôler R2, on pose

Pi Ve, P2 {xGVi; |m(x)| <mp-2Q
P3 {xeVx; \m(x)\> mß -2Q.

Comme sur Pi la configuration m est inchangée, on a R2(A, Bf) 0. Sur B2 et A
la configuration m vaut mß — 2Ç, on a donc R2(A,B2) 0. Finalement sur Bz, on a
7Ti(x) |m(x)|, en remarquant que sur A on remarque que 7n(x) m,ß — 2£, on en déduit
que

R2(A;B3)= [ f I(x,y){(m(x)-\m(y)\)2-(m(x)-m(y))2\dv(x)dv(y)<Q.
Jx€A Jy£B3 k '

Dans un second temps, on pose A V2 n {x G V2; |m(x)| > mß — 2Ç} et P Ve. Une

preuve similaire à la précédente montre que P(^4, B) < 0.

References

[1] T.Bodineau and E.Presutti: Phase diagram of Ising systems with additional long range
forces. Comm. Math. Phys. 189, n 2 (1997), p. 287-298.



lodineau 517

T.Bodineau: Etude du modèle de champ moyen local. Thèse (1997)

A.Bovier and M.Zahradnik: The low-temperaturc phase of Kac-Ising models. Jour.
Stat. Phys. 87 (1997), p.311-332.

M.Brunaud and B.Helffer: Un problème de double puits provenant de la théorie
statistico-mécanique des changements de phase (ou relecture d'un cours de M.Kac).
Preprint LMENS, March 1991.

M.Cassandro, R.Marra and E.Presutti: Corrections to the critical temperature in 2d

Ising systems with Kac potentials. Jour. Stat. Phys. 78 (1995), p.1131-1138.

M.Cassandro, R.Marra and E.Presutti: Upper bounds on the critical temperature for
Kac potentials. Jour. Stat. Phys. 88, 3/4, (1997), p.537-566.

M.Cassandro and E.Presutti: Phase transitions in Ising systems with long but finite
range interactions. Mark. Proc. and Rei Fields 2, (1996), p. 241-262.

R.Ellis: Entropy large deviations and stastical mechanics. Springer Verlag (1985).

J.Fröhlich: Phase transitions, Goldstone bosons and topological superselection rules,
Acta Phys. Austriaca Suppl. XV, (1976) p. 133-269.

B.Helffer: Semiclassical analysis for Schrödinger operators, Laplace integrals and transfer

operators in large dimension: an introduction, Editions Paris-Sud (France) (1995).

B.Helffer: Splitting in large dimension and infrared estimates, in Microlocal Analysis
and spectral theory, L. Rodino (editor), Proceedings of the NATO-ASI conference,
(1997), p. 307-348, Kluwer.

B.Helffer: Splitting in large dimension and infrared estimates II - Moment inequalities,
à paraître dans Jour. Math. Phys. (1997).

E.Heffand and M.Kac: J. Math. Phys. 4 (1963), p.1078-1088

M. Kac: Mathematical mechanisms of phase transitions. Brandeis lectures (1966),
Gordon and Breach.

M.Kac and C.Thompson: On the mathematical mechanism of phase transition.
Proc.7V.yl.S. 55 (1966), p.676-683.

M.Kac and C.Thompson: Erratum. Proc.N.A.S. 56 (1966), p.1625.

J.Lebowitz and O.Penrose: Rigourous treatment of the Van der Waals-Maxwell theory
of the liquid vapor transition Jour. Math. Phys. 7, (1966), p.98-113.

18] C.Pfister: On the ergodic decomposition of Gibbs random fields for ferromagnetic
Abelian lattice models. Annals of the New York Academy of Sciences 491 (1987),
p.170-180.


	Transition de phase pour le modèle de Kac en dimension deux

