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Transition de phase pour le modele de Kac
en dimension deux

By Thierry Bodineau

Université Paris 7, URA 1321
Mathématiques - Case 7012
2 Place Jussieu, 75251 Paris Cedex 05
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Abstract. We establish the phase diagram of the anisotropic local mean field model, called type A
Kac model. This enables us to solve a conjecture made by Kac [14].

Dans cet article, on établit le diagramme de phase pour le modele de champ moyen local
anisotrope, dit modeéle de Kac de type A. On résout ainsi une conjecture faite par Kac [14].

1 Introduction

Pour étudier de fagon rigoureuse certains problémes de transition de phase et en particulier
pour justifier la théorie de van der Waals de la transition liquide vapeur, Kac a introduit
un modele de champ moyen local [14]. La méthode employée par Kac consiste & étudier les
propriétés de ce modele a 1’aide de I'opérateur de transfert associé. En effet, des quantités
comme ['énergie libre ou la longueur de corrélation sont liées au spectre de cet opérateur;
la connaissance du spectre permet donc de retrouver les propriétés physiques du systeme.
Comme 'ont montré Brunaud et Helffer [4], une telle approche fournit une caractérisation
compléte du cas unidimensionnel (cf aussi Bodineau [2]). Cependant 1’étude du spectre de
cet opérateur dans le cas des dimensions supérieures est beaucoup plus difficile. Nous ren-
voyons le lecteur au cours de Helffer [10] ot différents résultats sur les opérateurs en grandes
dimensions sont détaillés.
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Pour généraliser le travail de Kac aux dimensions supérieures, Lebowitz et Penrose [17]
ont développé des méthodes qui s’affranchissent de l'opérateur de transfert. Cependant leur
étude ne reste valable que dans la limite de champ moyen et ne donne pas d’information
précise quand la portée des interactions est finie.

Ces dernieres années des approches probabilistes inspirées par la démarche de Lebowitz
et Penrose ont permis une bonne compréhension du modeéle de champ moyen local. En
particulier I'existence d’une transition de phase en dimension supérieure ou égale a4 2 a été
prouvée par Cassandro, Presutti [7] et Bovier, Zahradnik [3] (cf aussi [1]).

Dans cet article, on s'intéresse a une des variantes du modele de champ moyen appelée
par Kac modele de type A (cf [14]). Dans ce modele, & 2 dimensions, les interactions sont
anisotropes : elles sont & longue portée sur ’axe horyzontal et au plus proche voisin sur
I’axe vertical. Kac a conjecturé qu'une transition de phase apparait pour toute température
inférieure & une température critique, dés que le parametre de champ moyen est suffisamment
petit. La méthode de preuve utilisait le formalisme de 'opérateur de transfert; Kac avait
aussi conjecturé que la transition de phase était équivalente a la dégénérescence asymptotique
de la premiere valeur propre de l'opérateur de transfert. Cependant une preuve directe de
la transition de phase a ’aide de 'opérateur de transfert semble étre difficile.

Nous procédons de fagon différente en adaptant les méthodes probabilistes développées
par Cassandro et Presutti [7] dans le cas d’interactions isotropes. Une fois la transition de
phase établie, nous en déduisons un contréle du splitting et prouvons ainsi la conjecture de
Kac (concernant le splitting) pour certaines valeurs de la température. Cette méthode peut
fournir des resultats de transition de phase pour toute dimension supérieure ou égale & 2,
cependant nous préférons nous restreindre au cas bi-dimensionnel afin de faire le lien avec le
travail de Kac et les méthodes analytiques qu’il avait envisagé. L’intérét de cette approche
est de fournir un exemple explicite ou la méthode de Peierls donne des propriétés spectrales
d’opérateurs en grande dimension. En effet, I'intuition, issue du formalisme de I'opérateur
de transfert, permet de prédire que le comportement asymptotique de certains opérateurs du
type Schrodinger sur un réseau de dimension d peut se déduire de résultats sur des systémes
de spins classiques sur un réseau de dimension d + 1. Cette intuition, déja présente dans
[9], a été précisée plus récemment par B. Helffer [11], [12] dans le cas d > 2 : & aide des
estimations infra-rouge en dimension d + 1 > 3, on déduit un contrdle de 1'écart entre les
deux premieres valeurs propres pour certains opérateurs de Schrodinger quand la dimension
du réseau est d. Cependant, la véritable correspondance avec les systémes classiques s’avere
délicate a réaliser rigoureusement (cf [9] p. 233). Dans le cas particulier du modele de type A,
nous retrouvons des difficultés similaires a celles qui apparaissent dans la preuve de Frohlich
[9] quand on passe de l'opérateur & un systéme de spins avec interactions non isotropes. A
I’aide d'une procédure de renormalisation, nous parvenons a controler ces problémes ce qui
permet d’obtenir un contréle de I’écart entre les deux premiéres valeurs propres.

Pour conclure, précisons que l’étude de la transition de phase pour d’autres types de
potentiels, par exemple quand les interactions sont de méme nature dans les 2 directions,
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peut se faire en adaptant les méthodes développées par [7], [3]. Par contre il n’y a pas
d’équivalent en ce qui concerne l'opérateur de transfert qui lui dépend de la structure du
potentiel.

Ce papier est structuré de la fagon suivante; dans une premiere partie nous décrivons le
modele et les résultats obtenus, puis dans une seconde partie nous prouvons partiellement la
conjecture de Kac sur le splitting. La fin du texte est consacrée a la preuve de la transition
de phase a l’aide de ’argument de Peierls. La troisieme partie décrit les étapes nécessaires
pour obtenir I'estimée de Peierls. Ces différentes étapes seront prouvées dans la quatriéme
et la cinquiéme partie oli un argument emprunté a [7] joue un réle essentiel.

Remerciements : Je voudrais remercier tout particulierement B. Helffer qui m’a beaucoup
aidé dans la réalisation de ce travail par de nombreuses discussions et une relecture attentive.
Je souhaite aussi remercier E. Presutti pour m’avoir expliqué les résultats de [7].

Je remercie aussi la CEE qui a partiellement soutenu cette recherche par le programme
TMR - Network Postdoctoral training programme in partial differential equations and ap-
plication in quantum mechanics-.

2 Description du modele

Le modeéle considéré est constitué de spins modélisés par une famille de variables aléatoires
{S:}icz? a valeurs dans {—1,1}. Soit J une fonction paire, positive, lipschitzienne vérifiant
[ J(r) dr = 2. On définit alors la famille de potentiels de Kac {J,} indexés par le parameétre
v > 0 par

Vr € IR, {1} = HIl5r (2.1)

Cette définition généralise les hypothéses considérées par Kac; nous reviendrons par la suite
sur le choix particulier fait par Kac.

Soit v > 0 un parameétre fixé. On définit le potentiel ferromagnétique [, sur Zt x 7Z*
par

I (kLK) = J,(k— k)T (1,1, (2.2)
avec

, 1
J) =6y + §(f5t,z'+1 + 0 p-1).

Soit V un sous-ensemble fini de ZZ?; I'Hamiltonien de la configuration Sy = {S;}iev
appartenant a {—1,1}" avec conditions au bord Sy. s’écrit

1
Hy,(Sv|Sve) = = S I (r,8)S. S — Y I, (r,3)S,Ss. (2.3)

rseV reV,seve
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Pour tout parameétre § positif, on définit une mesure de probabilité sur {—1,1}" associée &
cet Hamiltonien

14, (Sv|Sye) = exp(—BHv(Sv|Sye)),

Z,a,«,(V)

ol Zg,(V) est une constante de normalisation. Les mesures {ug,v}v sappellent des

spécifications locales, elles permettent de définir les mesures de Gibbs sur {—1, 1}Zd. On dit
que pig,~ est une mesure de Gibbs si elle satisfait les équations de Dobrushin-Landford-Ruelle

vV C Zd, b (s v (-|Sve)) = ().

Le probléeme consiste & déterminer le diagramme de phase du systéme: pour v petit mais
non nul, on veut savoir si il existe plusieurs mesures de Gibbs. On introduit la température

critique G = ;.

Théoréme 1 Pour tout B supérieur a 3., il existe un paramétre strictement positif g tel
que pour tout -y inférieur a vz le modéle de Kac présente une transition de phase, ¢’est-a-dire
qu’il existe au moins deur mesures de Gibbs extrémales distinctes.

La preuve s’inspire des idées développées par Cassandro et Presutti [7].

Nous décrivons maintenant le cas particulier J(r) = exp(—|r|) considéré par Kac. Dans
son cours [14], Kac a montré que ce modele peut étre étudié a l’aide de 'opérateur de
transfert

1 1
KM = exp(=57q(2)) exp(yAu) exp(-574(2)),
avec

o L A P 7B
Vz € RV, vq(z) = - tanh(g) > zi— ) logcosh ( 7(:5;c + Tra1)),

on fera la convention x4 = 3.

Dans la limite ou 7 tend vers 0, le comportement du systeme ne dépend que du potentiel

¥ =

4(z) = :

1
in — log cosh (\/g(xk + Thy1))

1

On retrouve la valeur critique g, = 41 donnée dans l'introduction. En effet, pour § > 3., la
fonction

|
T = 21-:1:2 — log cosh (1/28x)
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posséde deux minima, tandis que si § < [3, cette fonction est alors strictement convexe.

Kac avait envisagé la démonstration du théoreme 1 comme la conséquence d’une conjec-
ture sur les valeurs propres de ’opérateur de transfert K,(YM).

Conjecture de Kac : Pour tout [ supérieur a f,, il existe un parametre strictement positif
v tel que pour tout 7 inférieur a vz on ait

— 1’
M—co iy (y, M)

ou (v, M) et pa(y, M) sont les deux premieres valeurs propres de K,(YM ).

Nous procédons différemment et prouvons & ’aide du théoreme 1 le résultat suivant

Théoréme 2 Soit {7y, }, une suite dans (0, 1] tendant vers 0. Il existe B, un sous-ensemble
de | 8., 0o[ dont le complémentaire dans |(., 00| est au plus dénombrable tel que pour tout [
dans B et tout n supérieur d une constante ng ne dépendant que de 3, on ait

: , M
lim #2(vn, M) = 1.
M—o0 M1 (f}"n) M)
En fait Kac avait méme prédit [15] que ’écart ua(vn, M) — pt1(7n, M) tendait exponen-
tiellement vite vers 0 quand M tend vers l'infini. La méthode utilisée dans ce papier ne
permet pas d’estimer cet écart.

3 Conjecture de Kac

Cette section est consacrée a la preuve du théoreme 2. Dans toute cette preuve, v désigne
un élément de la suite {7V, }nen-

Pour tous entiers positifs IV et M, on note Ay s le rectangle & N colonnes et M lignes
inclus dans Z?*. On considére gy, la mesure de Gibbs sur Ay avec conditions
périodiques au bord. On définit aussi la mesure de Gibbs uf  (resp pz.) obtenue par
limite thermodynamique des mesures pf_ , . . avec conditions + (resp —) au bord (cf Ellis

(8] p.158).

On souhaite maintenant prouver que

: : 1 -
Hm  lim pugyay . = 5 (M5, + 15 ,)-

M—00 N—oco 2
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Par compacité, on peut extraire des sous suites convergeant vers une mesure de Gibbs in-
variante par translation. Il suffit donc de prouver l'unicité de cette limite. On fixe v et on
suppose que [ est régulier, nous reviendrons sur cette hypothese par la suite. Dans ce cas,
le résultat de Pfister [18] (théoréme 4) (voir aussi [8] p.133 théoréme IV.8.2) est applicable
et toute mesure de Gibbs invariante par translation est combinaison linéaire de ,u}'ﬁ et fig ..
Par symétrie de pg Ay, ON sait que

VN,M € IN, /":H,'Y,AN,M(SO) = 0.

Par conséquent toute mesure limite 1 est nécessairement égale & (,uﬁ 5t lg 7) et est donc
unique.

Revenons maintenant sur I’hypothese faite sur 3, on dit que g3 est régulier si la pression

f(B) = Nl,i_r};o']'v—%log Z GXP(_I(’,HAN,M?(SAH‘)) )

S’\N,N

est dérivable en . D’apres [18], on sait que a +y fixé , il existe au plus un nombre dénombrable
de (3 non réguliers. On note B l'intersection pour tout n des ( réguliers associés & pug ..
Dans la suite de la preuve, on suppose que 3 appartient & B.

L’existence de la limite pg., étant établie, la corrélation entre les spins aux sites (0,0) et
(1,0) pour la mesure obtenue & partir de yi344, ,, S'écrit

pa(SoS) = lm T g ay,,(SoSt). (3.1)

En utilisant I'opérateur de Kac, on vérifie facilement que

v, M)
lim #’ﬁ'YANM OOSE Z (IU’J )) Cj: (32)

N—oo

ou les ¢; sont des constantes dépendant uniquement des vecteurs propres de KS,M ) et pas du
parametre [. En remarquant que

& pi(y, M)
;mé = 1\}m ‘uﬁ?ANM(SOSl) <1,

on déduit donc de (3.2) que

-1
. ,U'Q(’Ys M)
h}l_‘,%o B8.v.Ax 00 (S0S1) < (m) ;

Raisonnons par I’absurde et supposons que

lim inf ————'uz(% M)

<c<l.
M—oo py(7y, M)
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Le passage a la limite thermodynamique (3.1) impliquerait alors
Hﬁ,v(SOSl) o Ct—l,
c’est-a-dire

lim p15,,(S051) = 0.

En utilisant le fait que pg ., = %(,u}ﬁ + ,ugﬁ), on obtiendrait

ll—lglo ,U.E’,Y(S()Sl) = .

Montrons qu’un tel résultat conduirait & une contradiction. Le théoréme 1 permet
d’affirmer que pour tout 3 supérieur a . et v suffisamment petit

w5 (So) > 0. (3.4)

Le systeme étant ferromagnétique, 'inégalité FKG (cf. Ellis [8], p.143) implique
155050 = o (So) > 0. (3.5)

La relation (3.4) implique que le dernier terme est strictement positif. On obtiendrait alors
une contradiction, ceci permet de conclure que

M
lm M2 (fya )

e 1,
M=o iy (7, M)

4 Preuve du théoréme 1

Nous prouvons maintenant le théoréeme 1 pour des potentiels du type de ceux décrits dans
Iintroduction. La démonstration est divisée en plusieurs étapes, le point central consiste
a considérer le systeme a une échelle différente, dite échelle mésoscopique, afin de pouvoir
appliquer 'argument de Peierls. En effet, on ne peut pas se contenter de se restreindre aux
interactions aux plus proches voisins car dans le cas du modeéle de KKac, 'interaction entre
2 sites est de l'ordre de « : 'application naive de 'argument de Peierls ne suffirait pas a
montrer qu’il y a bien transition de phase au dela de la température critique. Il faut donc
utiliser une procédure de renormalisation et transposer I’argument de Peierls & des blocs de
spins définis a une échelle mésoscopique.
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4.1 Potentiels de portée finie

On commence par se ramener au cas d’interactions de portée finie. Supposons que le
théoreme 1 soit valable dans le cas d’interactions de portée finie et étendons le au cas
d’interactions de portée infinie.

Soit R une constante positive, on introduit J f le potentiel de portée finie déduit de [,
par troncature

IRk, LK) = v I (v(k = K) L p-r|<ry-1y T (L 1').

Soit @ fixé supérieur & (., on choisit R suffisamment grand tel que, pour  petit, on ait

1
ez L5 (k,1,0,0)

1
B> >Bc::1'-

D’aprés le théoreme 1, il se produit une transition de phase pour la mesure de Gibbs
associée a J7. Par I'inégalité ferromagnétique GKS (cf Ellis [8] p.147), on en déduit qu’il y
a aussi une transition de phase pour la mesure de Gibbs associée & .1 ,.

Montrons maintenant le théoréeme 1 dans le cas d’un potentiel de portée finie, c’est a
dire avec J a support compact et Lipschitzienne. On peut, sans restriction, choisir [—1, 1]
comme support de J; la preuve serait identique pour tout support du type [—R, R].

4.2 Echelle mésoscopique

Dans cette partie, on introduit de nouvelles notations correspondant a des quantités de
I’échelle mésoscopique.

Soit £ un entier tel que 1 « £ < v~ L.

Définition 1 Pour tout z de la forme z = (if,7) avec i,j deuzr entiers. On note I le
rectangle de ZZ* défini par

i:ﬂhm1~§<k—wggyzﬂ.

L’aimantation moyenne du rectangle T est alors

O'in:%Z:S-p-

TET

L’échelle mésoscopique ne fait intervenir que les moyennes locales de l'aimantation o;.
Dans toute la suite, les variables S représenteront des spins & valeurs +1, les variables o
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représenteront I’aimantation moyenne a valeurs discrétes dans [—1, 1] et m correspondra a
I’aimantation moyenne quand £ tend vers 'infini, m prendra donc des valeurs continues dans
[-1,1].

On réalise un pavage de Z* avec des rectangles du type Z. Cette procédure de renormal-
isation va permettre de réécrire les spécifications locales en termes de ’aimantation moyenne
oz de chaque rectangle.

La premieére étape consiste a réécrire I’Hamiltonien. La fonction J étant Lipschitzienne,
il existe une constante ¢, telle que, pour tous z,y, s et r de ZZ* avec r appartenant & T et s
appartenant a 7

| Ly (7, 8) = Iy (z,9)] < a1y’

Pour tout sous-ensemble fini V' de ZZ? réunion de rectangles &, la relation ci-dessus conduit
a

| HyA(Sv|Sye) + — Z Iy (z,y)oz05 + 2 Z I (z,y)oz05| < aN(V)ve%,  (4.1)

2 sgcv TCVgcve

ou N(V) est le nombre de rectangles dans V.

L’inégalité précédente permet de comparer I’Hamiltonien avec des quantités de 1’échelle
mésoscopique, il ne reste plus qu’a analyser le comportement de chaque oz quand £ tend vers
I'infini. Le fait de moyenner un grand nombre de variables aléatoires impose d’introduire
I’entropie. Soit o € [—1,1] tel que 2+ appartienne & ZZ, un calcul explicite donne

% (155 =) =7 (i)

ol P, est la probabilité produit ®,(36, + £6_,) sur {—1,1}%. On peut alors définir I’entropie,
notée I (cf [8] p. 38)

vm € [-1,1], I(m) = Li_r}rg)}im lOng ( Y S €] —5,m+s]) ;

TET
En utilisant la formule de Stirling, on montre classiquement que I s’écrit

1+m

vm € [-1, 1], I(m) = log(1 +m) + L-m log(1 — m);

on obtient aussi I’équivalent suivant

P, (% 38, = a) — exp (—U(cr) + 50(10—512)) |

TET

Comme on le verra par la suite (cf (4.6)), il est naturel de considérer une énergie
mésoscopique définie par

Ev.(ov]ove) = _% Z L (z,y)oz0q — Z L (z,y)oz05 + Z B7H(oz), (42)

zZ,gcv TCV,gCVve ICV
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ou 7 = {v est un nouveau parameétre caractéristique du systéme. Le seul paramétre inter-
venant dans l’expression ci dessus est le produit £y. En remarquant que

Y o(z,y)or= Y Ly Jy(E-)T (1),
ECV,j (i6,5)EV;(i'e,5")
on obtient alors la relation
> en (et = X (3 2enen ot = - sk (4.3
ICV,g ICV \ieZ
avec

V7 >0, Je= 2 7J(7li]).

1€Z

La somme de Riemann qui définit j, converge quand 7 tend vers 0
1[_1_1’)1"1)]7 = 2/}3 de J(7) = 4.

En utilisant (4.3) et 'identité ci dessous

1 g 1
—0z0g = 5(05: —0g)" — 5(0’; + U;), (4.4)

on peut réécrire ’énergie (4.2) sous la forme

Y L(z,9)(0: ~ o) (45)

FCV,gcve

b | —

0., (z,y)(oz — ag)Q —
a'gcv

(4.
1
EV,T(UVIUVC) = Z

+ 3 (87(02) = 35002) = Culove)
ICcV =
Le terme Cy(ove) = 3 Szcv Lgcve ¢J,(z,y)o; ne contient que des termes de bord et dis-
paraitra dans l'expression de la mesure de Gibbs conditionnelle (4.6). A part ce terme de
bord, la formule (4.5) se compose de 2 types de termes : des termes quadratiques d’interaction
et des termes correspondant au potentiel fz,

vm e [-1,1], for(m) =B (m) - %jfm?

Si B > B, la fonction fg, possede deux minima symétriques distincts £mg, pour tout 7
suffisamment petit. Quand 7 tend vers 0, le minimum mg . tend vers le minimum de fg
noté mg.

Nous sommes maintenant en mesure d’écrire une version mésoscopique des spécifications
locales. On définit {Sy = oy} comme 'ensemble des configurations Sy dont la moyenne sur
chaque rectangle Z est oz. En utilisant (4.5), on peut écrire la mesure de Gibbs conditionnelle
sur V, sachant que les conditions au bord Sy sont compatibles avec oy«

exp(—(LEy . (av|ove))
Loy eXp(—BLEy (av|oye))

exp (EN(V)(G(% 7) + O(#))) ;

py v ({S = ov}Sve) (4.6)
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ou la fonction ¢ tend vers 0 quand -y et 7 tendent vers 0. Le second terme d’erreur tend vers
0 quand £ tend vers 'infini. Par la suite, le paramétre 7 sera proche de 0, ce qui imposera
une condition entre £ et 7.

On peut maintenant énoncer un théoréme qui donne un contréle de (4.6) quand ¢ tend
vers l'infini.

Théoréme 3 Soit V une réunion de rectangles T et A un sous-ensemble fermé de ’ensemble
des configurations {my = {mz}zev | VZ C V, mz € [—1,1]}. Alors pour toute configu-
ration extérieure oye

log ( > exp(—ﬁEEV,.,(aﬂavc))) + Mmi?& Ey.(myv|oye)| < EN(V)e(£),

oy €EA

ou linfimum est pris pour des configurations my a& valeurs continues. On note N(V) le
nombre de rectangles T dans V' et la fonction €(£) tend vers 0 quand ¢ tend vers linfini (le
parameétre T restant fizé). La fonction € est indépendante de A et de oye.

Preuve : On procede en 2 étapes.

Etape 1 : Pour la borne inférieure, on a

oy EA

log ( Z exp(—ﬁBEV,T(ovlcrvc))) > —ﬁﬁa'{/nefA By (av|oye).

On souhaite maintenant passer des blocs de spins discrets aux blocs de spins continus.
L’erreur est de 'ordre de % sur chaque . En utilisant le fait que fg, est uniformément

continue sur [—1, 1], on en déduit que

oy €A

IOg ( Z exp(—BEEV,T(crvlavc))) 2 _ﬁemingA Ev,T(mv|chc) = EN(I/)E(Z)

Etape 2 : Pour la borne supérieure, il suffit de majorer par le nombre £V(V) de configurations
mésoscopiques

>~ exp(—pLEy,(ov]ove)) < £V EXP(—ﬁgmiHé"A By (my|ove)).
oyvEA v

Ceci donne le résultat.

4.3 Procédure de renormalisation

Dans cette partie, nous définissons la notion de contours a 1’échelle mésoscopique. Nous mon-
trons ensuite que la transition de phase (théoréme 1) peut s’obtenir a ’aide d’une inégalité
sur la probabilité des contours.
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Soit L > 0 une constante qui sera fixée ultérieurement. On définit le cube C, par
Z*N[-Ly™', Ly ![x[~L, L]. On partitionne ZZ* en blocs C, chacun étant déduit de Cy par
translation. Pour tout parametre § > 0, on introduit une autre partition de ZZ* a ’aide des
blocs C® déduits par translation du bloc C§ = Z* N [—dy~!, 6y~ [x{0}. Afin de se ramener
a un systéme de “spins”, on associe & chaque bloc C' un label n(C); on constitue ainsi des
blocs de spins. Soit ¢ > 0 un parameétre qui sera fixé ultérieurement. On définit

1 sivCéccC |2 Tiecs Si — mg| < ¢,
HET) = -1 sivliccC |55 Ziecs Si +mg| < ¢,
0 sinon.

On remarque que les parametres 7 et ¢ n’interviennent pas dans la définition des blocs de
spins.

Pour [ supérieur a (3., le probleme de la transition de phase se réduit, comme dans
I’argument de Peierls, a démontrer une brisure de symétrie des que - est inférieur & une
certaine constante 7, c’est-a-dire que pour tout v < 7, il existe une mesure de Gibbs “En
telle que

1

i, ({n(Co) <0} < 5, (4.7)

le bloc Cj et son label dépendent des parametres L, ( et § qui seront ajustés par la suite. Si
cette mesure était unique alors un argument de symétrie permettrait d’affirmer que

15, ((Co) = 1) = pz,(n(Co) = -1).

I1 y aurait donc une contradiction. Pour prouver le théoreme 1, il suffit donc de démontrer
(4.7).

La démonstration de (4.7) fait appel a la notion de contours.

Définition 2 Un bloc C est dit correct si n(C) est non nul et a la méme valeur pour
tous les blocs adjacents. Un contour est alors un ensemble (mazimal) conneze de blocs
du complémentaire de l’ensemble des blocs corrects.

Un contour est donc un ensemble de blocs avec des labels déterminés.

Soit A un sous-ensemble fini de ZZ%, on note 15, 2 la mesure de Gibbs sur A avec des
conditions au bord de label 1 notées S*. Une configuration S, appartient a I’ensemble
{n(Cy) < 0} si cette configuration produit un contour I" entourant Cy

whoa({n(Co) <0} < 3 i, A (D). (4.8)
r'30
La notation I" 3 0 signifie que 'on somme sur tous les contours I' entourant Cy. Il suffit
donc d’obtenir une majoration uniforme pour tout A de la probabilité d’avoir un contour T'.
Nous allons prouver que
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Lemme 1 1 eziste des constantes strictement positives c,o,(,d et L telles que, pour tout
contour I' inclus dans un sous-ensemble A de Z* et pour tout v < 7,, on ait

C
i A(0) < exp(—;lfl)»

ot |T'| est le nombre de blocs C inclus dans T'.

En appliquant ce lemme & I'inégalité (4.8), on montre par un argument combinatoire (cf
[7]) que pour v suffisamment petit I'inégalité (4.7) est vérifiée. Ce lemme sera prouvé dans
la section suivante.

5 Inégalité de Peierls (lemme 1)

5.1 Réduction a un principe variationnel

Dans cette section, nous montrons comment réduire a un principe variationnel I'inégalité du
lemme 1. La premiére étape consiste, a ’aide d’un conditionnement, & se ramener a évaluer
un événement localisé autour du contour I'. Les parametres {, 7, d et L seront fixés au cours
de la preuve.

Les interactions étant anisotropes, on introduit une distance sur ZZ* dépendant de v

disty((7,7); (', 5')) = min(ylz — 7', |7 — 5']).

On définit la frontiere I' d’un contour I' comme la réunion des rectangles Z dont la
distance & I" est dans I'intervalle [L — 10, L]. De plus, on note I la réunion des rectangles Z
dont la distance a I" est inférieure a L — 10. Par définition de T, on sait que I’aimantation
moyenne dans une partie connexe de OI" est de signe constant et est proche de mg ou —mg.
On note alors Ssr la réunion des configurations dans chaque partie connexe de la frontiere
de I'. On obtient Si en modifiant les configurations de Sgr par I’application Sgr — —Sar
si la frontiére du contour est constituée de blocs de label -1; si la frontiéere est de label 1, on
n’effectue pas de modifications. Cette application retourne les spins dans les parties connexes
de I' ou le labe] est —1.

On note {Sy = I'} Pensemble des configurations compatibles avec le contour T', c’est-a-
dire les configurations produisant des labels 7 identiques & ceux de I'. On fixe des conditions
au bord de label 1 notées S*. Le contour I' sépare V' en 2 régions, I’extérieur (c’est-a-dire
la partie au contact avec V) sera noté V; et l'intérieur V5.

> Usy=ryexp(—=BHy,(Sv[S*)) =3 > exp(—BHw 4 (Sw|S™) — BHy,»(Sw,))
Sy

Sv; Sv,

¥ sq Lisy=ry exp(—BHz ,(Sp[Sar)),
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ou Spr correspond aux conditions fixées au bord de I' par Sy, et Sy,. Les régions V; et V3
sont ainsi découplées, on peut donc inverser le signe des spins de Sy, si la partie commune
a Sy, et Spr a un label de signe négatif. On note Sy, la configuration ainsi obtenue.

ZI{SV:J‘} exp(— 6HV.W(SV|S+ ZZBXP ﬁH%,v(SV1|S+) _/BHVz,'r(S;@))
Sv

SVI SV2

.\ 8 L{sy=r) exp(—BHz . (Sp|Sar))
—0BHz . (Sg|S - :
Szrexp( JB I",,'( 1"| 61“)) ZsﬁEXp(“ﬁHf,q(Sflsér))

Comme Sjp et Sy, sont compatibles, on obtient
3 Lisvr) exp(~FHva(SvIST) < T exp(=0Huy (Sv1S)
Sy

>sp L{sp=ry exp(—BHr ,(Sp|Sar))
Y. exp(—=BHp ,(Sp[SEr))

Ceci permet de majorer la probabilité de réaliser I'

sy Liss=r) exp(—BHr ,(Sp|Sar))
T({Sy = I'}) <su L_~71 2
M,y ({ V }) 2 Sa;P-) ZSf\ eXp(—ﬂHf',y(SﬂSér))

En utilisant I’approximation mésoscopique (4.6) et en appliquant le théoreme 3, on vérifie
que

s . . L2
ko i (1) < exp (~ Beinf (,éifp Ep . (mloar) — 1%fEf,r(m|oar)) i 7|TIE(% .0), (5.1)

ou |I'| est le nombre de blocs dans I' et 'infimum est pris pour des configurations osr
compatibles avec I. La fonction N(I'), définie au théoreme 3, est liée a |I'| par la relation

N = I

11 suffit donc de prouver qu'il existe ¢((, L, d) strictement positif tel que I'inégalité suivante
est vérifiée quand 7 est inférieur & une constante 7

(C5L)

inf Er(m|mer) — inf Er . (m|mer) 2 T, (5.2)

uniformément en I' et en myr (on remplace cette fois ogr par des configurations a valeurs
continues). On remarque que -y et £ ne figurent pas dans (5.2). Les constantes ¢, d et L étant
fixées, il suffit alors de choisir vy, 7 et £ tels que

c(¢,6,L

———(C’Q ) > L2%e(7, T, £).

A D’aide de (5.2), on obtient alors le lemme 1.

L’inégalité (5.2) se déduit des 2 lemmes suivants.
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Lemme 2 Pour tous § > 0 et > 0 il existe 1y et ¢((,0) strictement positifs tels que

c(¢,9)

T

V1, 0 < 7 < 79, inf Er.(m) > IT|.
m=T

L’expression Er ,(m) correspond & l'énergie de la configuration sur I' sans les interactions
avec 'extérieur de I'.

Lemme 3 Il existe 6 > 0 et ( > 0 suffisamment petits tels que, pour tous e; > 0 et g, > 0,
il existe 7o > 0 et L suffisamment grand tels que, pour tout 0 < 17 < 7y

. 4 . . €1 g2 €(7) 2
inf FEp m|myr) — inf Er .(m|mjyr) > ——Np — — — —=NpL“,
=TT I‘/I",f( | 81") gL ( l ar) = T r e = r

ot Ny est le nombre de blocs constituant la frontiére de I'.

Avant de démontrer ces lemmes nous terminons la preuve de (5.2). En supprimant les
interactions entre I' et I'/I", on obtient

nilr:1>fp Er . (m|mgr) > mglff/r Epr.-(m|mar) + nir;fr Er.(m).

Les événements sur I'/T" et I' étant ainsi décorrélés, on remarque que
*
Er/p,f(mlmar) = Ef‘/r,f(m|mar)-

On fixe § et ¢ pour que le lemme 3 soit vérifié. On définit alors Tél) et ¢(d,¢) a laide du

lemme 2. On choisit ensuite &, < L% et g, < €44 Le lemme 3 permet d’affirmer qu’il
4 4

existe L et Téz) tels que

: . c(¢,9) L g &(7) 2
f Er > inf Ef 5 I'| = —Npr - = - —=NrlL~
ol i (m|mar) 2 inf Er - (m|mjr) + = T’ ok b —=r

On peut majorer le nombre de blocs sur la frontiére de I' par le nombre de blocs dans T,
c’est-a-dire Nr < |I'|. D’aprés l'inégalité ci dessus, il suffit de choisir 75 tel que

)
LQE(TQ) < —C( Lig) et T inf('rél),féz))‘

pour que l'inégalité (5.2) soit vérifiée.

5.2 Preuve du Lemme 2

Les parametres § et ¢ étant fixés, on choisit 7, suffisamment petit pour que les minima de

f5.- soient dans [mg — &, mg + =] U [-mg — &, —mg + 55]. Soit m une configuration dans

15



506 Bodineau

I’ et C un bloc de spins dans I'. On distingue 2 cas.

ler cas: n(C)=0:
Supposons d’abord qu’il existe C? inclus dans C tel que

4
% Z mz + mg| > (.
zCCs

Il existe 2 fagons de réaliser un tel événement.

Ou bien il y a au moins %S rectangles T de C’ vérifiant |m; & mg| > %; alors chacun de
ces rectangles contribue & augmenter 1'énergie car dans ce cas fz.(mz) est supérieur & une

constante ¢;(¢) > 0. L’énergie du bloc C vérifie alors

V1 < To, EC,T(m) b ECJ,T(Tn') Z %C}_(C)

Ou bien le nombre de rectangles T vérifiant |mz; + mg| > 45 est inférieur & %, alors il y a
au moins 1—50% rectangles ot |mz — mg| < et au moins 1—‘504; rectangles o |mz + mg| < §.
Cette fois, c’est le terme d’interaction qui pénalise ces configurations; il existe donc c; > 0
et 7o > 0 tels que
52(2
V1 < 70, Ec.(m) > Egs .(m) > Tcg.

La derniére facon de réaliser n(C) = 0 consiste & avoir 2 blocs C? et C¢ adjacents tels que
I'aimantation moyenne de C? soit proche de mg et celle de C§ proche de —mg. Dans ce cas,
il existe au moins % rectangles de C? vérifiant |m; — mg| < 2¢ et au moins 2—‘1 rectangles de

C} tels que |mz + mg| < 2¢. Une preuve identique A celle ci-dessus donne alors le résultat.

2éme cas: 7(C) # 0.

Alors C' est adjacent & un bloc C' tel que n(C)n(C') = —1. Dans ce cas I’énergie
d’interaction devient prépondérante car on peut trouver 2 blocs adjacents C? (appartenant
a C) et CS (appartenant & C") vérifiant les hypotheses du cas 1.

Par conséquent, chaque bloc de I" contribue a augmenter ’énergie. Il existe donc une

constante ¢(¢, d) indépendante de I" telle que I’énergie du contour I" soit supérieure & mf;’él|[‘|.

53 Preuve du Lemme 3

La premiere étape consiste a réécrire Ey, .. On définit le sous-ensemble V de IR x ZZ comme
I'image du sous-ensemble V de ZZ? par Iapplication &

&t (k,j§) € Z° — [vk,v(k + 1)[x{5}.
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Les configurations (mz)zev sont alors transformées en fonctions sur IR x Z par

V(r,7) € V, m(r,j) = msz si (r,7) € k(Z). (5.3)

Soit m une fonction sur V = k(V'), on lui associe 'aimantation o

1

YZICV, af:—f m(r, j) dr. 5.4
T J(r,j)Ek(Z) ( j) ( )

On définit les labels 7 associés & m comme les labels 7 associés & 0. On peut donc utiliser
ainsi la notion de contours pour les configurations & valeurs continues.

On note myc 'image de la configuration de oy. par l'application (5.3). Pour toute
fonction m sur V, on définit maintenant

1 ! ! ! ! '
EV(m lmvc) = —5 Z / 1(1',’0)6‘/ l(r'»k')EVj(k) k )J(T =T )m(r, k)m(r vk ) drdr
k k!
-3 [ Liriyev Lo gnyeve I (k, &) J (r — v Ym(r, k)mye (r', k') drdr’
kK’

+%; [ 1ewey Im(r, k) dr.

On remarquera que le parametre 7 a disparu dans cette nouvelle expression de l’énergie.
On cherche maintenant & relier Ey(m |myc) avec Ey . (oy |ove) ol m est I'image de o par
I’application (5.3). On remarque que la fonction m est constante sur des segments horizon-
taux de longueur 7, ceci permet d’obtenir & 'aide de 1’expression (4.2)

1 ! / ! ! 1
Ey.(ov |oye) = = Z/ Lrwyey L wyev T (k, k) J(r = r'ym(r, k)m(r', k') drdr'(5.5)
k!
1
—= Z / Lopyev L gnyeve T (k, k) I (r — r"Ym(r, E)m(r', k) drdr’
LY
+2- 3 1w Im(r, 0)) dr + ~#[V]e(r)
57_ k y: b T )

ot m est 'image de o par l'application (5.3) et #|V| est le volume de V défini par
#|V| = 7{nombre de rectangles Z dans V'}.

Cette quantité est donc liée au nombre de blocs dans V' (& un facteur L? pres). Par la suite,
la notation €(7) désignera n’importe quelle fonction tendant vers 0 quand 7 tend vers 0.
L’équation (5.5) permet d’obtenir

1 . 1 ,
— inf Ey(m|mye) + ;#lV'E(T) > 1nfr Ey.(oy |ove)

T my=T oy =

> 2 inf_ By (mmue) ~ ~#{VIe(r),

T my=T
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ot {my = I'} est I'ensemble des configurations réalisant le contour I'. La born inférieure
s’obtient directement tandis que la borne supérieure nécessite 1'utilisation de la cynvexité de
I’entropie

r Y 102) £ T [ Lmev Im(r, ) dr,
k

zCv
ol o est défini par (5.4).

Désormais et jusqu'a la fin du texte, seules des fonctions sur IR x Z vont intervenir.
Pour simplifier on notera z tout élément de IR x ZZ et m(z) = m(r, k). On note .I le terme
d’interaction

Vz=(rk), y=(rk), I(z,y) =Tk, kYJ(r—7").

On introduit la mesure produit v sur IR x Z dont la premiére marginale est la mesure
de Lebesgue et la seconde la mesure de comptage. Par la suite on notera pour tout sous-
ensemble A de IR x Z et toute fonction f

Lf(:c)v(d:r;) = Z[l(r,k)EAf({T: k}) dr.
k
De méme pour tous sous-ensembles A, B de IR x Z et toute fonction g, on a

f flz,y)v(dz)v(dy) = Z/l(r,k)eA Lo eyes g({r k}, {r', K'}) drdr’.
AxB k&’

Comme dans le cas discret, on peut redéfinir I'énergie sous la forme

1

4 P I(z,y)(m(z) - m(y))zu(dm)u(dy)

Ey(m|mye) =
I(z,y)(m(z) — m(y))*v(dz)v(dy)

+ [ folm(@)v(dz) + Clmye),

2 Jyxye

ou C(myc) est une constante ne dépendant que des conditions au bord et fz ne dépend pas
de 7

vm € [-1,1], fa(m) = B~ (m) — 2m?,

Nous allons utiliser cette nouvelle représentation de 1’énergie, pour montrer le lemme 3.
Soit I un contour donné et myr des conditions au bord fixées. Les parametres €; et £, étant
fixés, il suffit de prouver

inl_f/F Epp(m |mpp) — inf Epn(m |map) > —&1Np — &q, (5.6)
m= .
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ou cette fois B désigne la version sous forme intégrale de I'énergie. On conserve le symbole
I'/T pour 'image de I'/T" par I'application «.

On choisit d’abord une fonction ml‘i T telle que

inf FEr ar) = Er g ) — E3. .
. rr(mlmgr) > Epjr(mprlmar) — €2 (5.7)

Pour montrer (5.6), il suffit de vérifier qu’il existe une fonction mg telle que
Ef‘/r(m(rl‘/ﬂm:?r) e Ef/r(m%*|m5r)§ (5.8)

de plus, on veut que m'(z) soit égale & my sur I et soit exponentiellement proche de la
valeur d’équilibre mg quand z est proche de I', c’est-a-dire

vz € T'/T, |m!(z) — mg| < exp(—c dist(z, aT)), (5.9)
ou cette fois
dist((r, k); (r', k")) = sup (|r — [, |k — K']).

En utilisant (5.9), on montre que l'interaction entre I'/T et I peut étre alors rendue arbi-
trairement petite si L est assez grand. On peut donc prolonger mt sur I’ par myg

Erjp(mp) > Ep(mp) — e1Nr.

Ceci conduit & (5.6). L’existence d’une fonction m} est démontrée dans la section suivante.

6 Dynamique

Cette section est consacrée a la construction d'une configuration mi qui satisfait les con-
ditions (5.8) et (5.9). La preuve repose sur les arguments développés par Cassandro et
Presutti [7]. Cette nouvelle configuration sera obtenue & partir de m /T introduite en (5.7).

Plus précisément, on considere le probleme de Cauchy ci dessous, de donnée initiale m‘% /T

vt > 0,Vz € I'/T, %—T(z, t) = —m(z,t) + tanh (ﬁ[:ﬂ X (m+ myp)|(z, t)) , (6.1)

i, 0) = m?—-/r(x).

ou

T(@,9) = I@,9) + 6umy ([, T(z,27) d(a"))
"€
et pour toute configuration m, la fonction J x m est définie par

[T x m(z,t) = / I(z,y)m(y, t)v(dy) + (L

yeERXZ/T

I(x,x”)u(d:z”)) m(z,t).

” EF
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Par la suite, on notera [.I x m](z,t) = J x m(z,t). On utilisera une notation similaire pour
les fonctions indépendantes de ¢.

La premiere étape consiste & montrer la décroissance de t — Ep,p(m(.,t) |mjp); on en
déduit (5.8). Il suffit ensuite de vérifier que quand ¢ est suffisamment grand les fonctions
z — m(z,t) satisfont (5.9).

6.1 Décroissance de 1’énergie

Nous commencons par définir les notions de sous-solutions et de sur-solutions.

Définition 3 Une fonction v est une sous-solution pour le probléme de Cauchy (6.1) si elle
vérifie, pour toutt > 0,

Ve € I, v(z,0) < mdr(a),
—g%(m, t) < —v(z,t) + tanh (BT x (v + mjp)(z, 1)) .
De la méme fagon, u est une sur-solution si
vz € /T, u(z,0) > mp . (2),
du

:9?(;5, t) > —u(z,t) + tanh (ﬁj[ X (u+ mfar)(f:t)) :

Les sous-solutions et sur-solutions permettent d’encadrer les solutions de (6.1)

Lemme 4 Siv est une sous-solution pour (6.1) et u une sur-solution alors

vt > 0,Vz € T/T, v(z,t) < m(z,t) < ulz,t).

Preuve :

On se contente de vérifier I'inégalité dans le cas d’une sous-solution, la preuve étant
identique pour une sur-solution. Pour tout 7 > 0, on note Cr 'ensemble des fonctions sur
I'/T x [0, T] continues sur [0,T]. Soit G 'opérateur de Cr dans lui méme défini par

Vf € Cr,Yz € T/T,Vt > 0,
t N
G(f)(z,t) = exp(—1)f(z,0) + [ ds exp(s ) tanh (BT x (f +m3r)(a,9)) .
Si T est suffisamment petit, G est une contraction et par itération on montre que la

solution m de (6.1) s’écrit

vee[0,T], m(t) = lim G™(m°)(t).
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Si v est une sous-solution, on a alors
vz € T/T, 0(G(v)(z,t) — v(z,t)) > v(z,t) — G(v)(z,1).
On en déduit que
vz € /T, G(v)(z,t) > v(z,1).

On constate que si f > g alors G(f) > G(g). Par conséquent, en itérant ’équation ci dessus,
on en déduit

vt € [0,T),Vz € T'/T, m(z,t) > v(z,t),

ou m est la solution de (6.1) de donnée initiale v(0); Comme m(0) > m(0), on a en utilisant
la monotonie de G que

vt € [0,T),Vz € /T, m(z,t) > m(z,t).

L’argument ne dépend pas des données initiales, on peut I’étendre sur [T, 2T] puis sur IR.

Nous montrons maintenant que pour tout temps les solutions m(.,t) de (6.1) vérifient
(5.8).

Proposition 1 La fonctionnelle Epr(-|mar) est une fonctionnelle de Lyapunov pour le
probléme de Cauchy (6.1), c’est-d-dire

Ep/r(m(.,t) | mpp) — Ef‘/l‘(mlq“/r |myr) < 0. (6.2)

Preuve :

La premiére étape consiste & vérifier que pour tout temps |m(.,t)|lc < 1. Pour cela,
on construit une sur-solution de donnée initiale 1 et on vérifie qu’elle devient strictement
inférieure & 1 pour tout temps strictement positif. Vérifions que pour § et ¢ suffisamment
petits, il existe ¢ < 1 tel que

Ve € T/T,  —c+ tanh(B.0 x (c+mjp)(z)) < 0. (6.3)
En utilisant le fait que J est uniformément équicontinue, on a
I xmye(r k) = STk K) / J(r — r')ymip(r, k) dr’
k

<> Tk, K ZJJ(T —87)(mg + ¢) +£(8),

c’est-a-dire 3 )
I x myr < I % (mg+ ) +£(4).
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Par conséquent, si § et ( sont petits, alors .J x myr < J x 1. On peut trouver ¢ < 1 vérifiant
(6.3) pour toute condition au bord mjp. On définit alors u(t) comme la fonction

vr e ['/T, u(t) = c+exp(—t)(1 — c).

Quand c est suffisamment proche de 1, cette fonction est bien une sur-solution de donnée
initiale 1. On fait de méme avec une sous-solution de donnée initiale —1. Le lemme 4 permet
alors de contréler le comportement de m et d’obtenir ||m(., )|« < 1.

La donnée initiale du probléme de Cauchy pouvant étre choisie dans |—1, 1, ceci implique
que la fonction m(.,t) reste dans l'intervalle | — 1, 1[ pour tout temps et par conséquent que
t = I(m(z,t)) est dérivable. En dérivant 1'énergie, on obtient

aEf' r % 1
5 mot) | omae) =3 v(da)v(dy) (@ y)m(, 1) = m(y, )
( — m(z,t) + m(y,t) + tanh (ﬁjf x (m + mjp)(z, t))
— tanh (8.0 x (m + mpr)(y,1)) )

+ £ /Txar .I(ZE, y) (m(x, t) - m(y’ t))
(-—m(a:, t) + tanh (ﬁj x (m + mjp)(z, t))) v(dz v(dy)

+ [ (B 'tanh™'m(z,t) — 2m(z, t))
T

(—m(a:, t) + tanh (jf x (m + mjr)(z, t))) dv(z).

On a utilisé la relation I'(m) = tanh™'(m).

Apres simplification on obtient

%ﬂ(m(., t) | myp) = ff‘/r (—-m(:z:, t) + tanh (p”lf X (m + mgr)(m,t)))
(ﬁ_l tanh™'(m(z,t) — I x (m +mjp)(z, t)) dv(z),

c’est-a-dire
5E'1= /T
ot

En intégrant entre 0 et ¢, on obtient (6.2).

(m(.,t) | mr) < 0.

6.2 Relaxation vers 1’équilibre

On cherche finalement & déduire de (6.1) une configuration m%—./r vérifiant (5.8) et (5.9). Pour
cela, nous encadrons m(t) entre une sous-solution et une sur-solution. D’aprés la proposition
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1, il suffit de montrer que, pour des temps assez grands, les solutions de (6.1) vérifient (5.9).

D’apres I'appendice, on sait que ml(l jr peut étre choisie telle que
vz € T/T, 1>ml{ifr($)2mg—2§.

On rappelle que le parameétre ¢ a été introduit dans la procédure de renormalisation. Pour
tout entier i plus petit que N = [%], on définit

K; = {r € T | dist(r, ") > 2i}.
On partitionne I'/T" en couches S; = K;/K;.,.

L’'équation de champ moyen m = tanh(4/m) admet comme solution strictement positive
mg. On définit la suite de fonctions {v;}icn par

Vi < 2,Vt >0, v;(t) = mg — 3¢,
Vi > 3,V >0, Ovv;(t) = —u;(t) + tanh(4f8v;-1(2)) et v;(0) =mg — 3C.

On sait alors que

Vi> 2, vi+1(t) = exp(—t)(ms — 3¢) + /Ot dsexp(s — t) tanh(45v;(s)).

On vérifie, par récurrence, que pour tout ¢ la fonction v; est inférieure & mg. En effet si
v; < mg alors tanh(48v;) < mg, I'expression de v;(t) ci dessus donne alors le résultat. D’apres
I’équation différentielle qui régit v;, on en déduit que v; est croissante. Ceci implique

Vi € IN, v} = lim v;(2),
t—o0

et par conséquent v;,, = tanh(4fv]). Comme mg est un point fixe par I’application = —
tanh(45z) on en déduit que

Vi € IN, v; > mg — ¢y exp(—cat),
ou c; et ¢y sont des constantes positives.
On définit alors la fonction w par
vie{1,...,N}, Vz € S, Wz, t) =u(t).
Il reste a prouver que w est une sous-solution, en utilisant le lemme 4 ceci impliquera
alors que

Vz € §;, litm inf m(z,t) > mg — ¢ exp(—cyi). (6.4)

—0C
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On va d’abord montrer que, pour tout ¢, la fonction D;(t) = vy (t) — vi(2) est positive.
On sait que

t
Dy (t) = [0 dsexp(s — t)( tanh(46vi(s)) — tanh(dBvi_y(s))).
Par récurrence on en déduit que D; est positive.

Sur &; et Sy, la fonction w est constante. Une preuve similaire a celle de 'inégalité (6.3)
permet de montrer que pour tout ¢ et ¢ suffisamment petits, on a

Vz € §;US,, —w(z,t) + tanh(BI x (w +mip)(z,t)) > 0 = %?(x,t).
Si 7 > 2, on vérifie maintenant que pour tout z dans S; on a
I x w(z,t) > /JT(.’r, Y)vi—1(t) dv(y) > vy (2). (6.5)

On remarque que pour ¢ > 2, le terme mj n’intervient plus dans I’équation différentielle,
on obtient donc

Vz € S;, dow(z,t) + w(z,t)—  tanh(BJ x (w+mip)(z,t)) =
tanh(48v;_;(t)) — tanh(BJ x w(z, t)).

D’apres (6.5), l'expression ci dessus est négative, ceci permet de conclure que w est une
sous-solution.

De la méme fagon, on construit une sur-solution u, de donnée initiale ug = 1. Par un
raisonnement identique on obtient que

vie{1,...,N}, Vz € §,, limsup m(z,t) < mg + c; exp(—czi). (6.6)

t—ro0

Par (6.4) et (6.6), on sait qu'il existe (pour ¢ suffisamment grand) une fonction mp sur
[’ qui satisfait (5.9).

7 appendice

Dans cet appendice, on montre que le minimum de 1’énergie sur I’ensemble des fonctions
proches en moyenne de mg est en fait pris pour des fonctions proches de mg pour la norme
uniforme.

Lemme 5 Soit V C IR x Z, un ensemble constitué de blocs. Pour ( fizé, il eziste ¢
suffisamment petit tel que pour toute fonction m sur V C IR x Z avec des labels n égauzx @
1 (cf. (5.4)), il existe une fonction m telle que

Ey(m|mye) > Ey(m|mye) et  m>mg—2C.
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Preuve :
On commence par définir 2 zones tampons V, et V, par

o TR TR .
Vi={(r,k) eV | 1 1_(T”}611r)1£avc(2|r |, |k —K'|) < i}

Soit m une fonction définie sur V dont les labels 1 valent 1. On définit 7 par

Im(z)| st |m(z)| 2 mp — 2,

Vz eV, 'rh(:c)z{ mg —2¢ si |m(z)| < mg—2¢.

(7.1)

Soit A un sous-ensemble de IR x ZZ, on pose

Vz € IR x Z, h(z,m, A) =

1
fA I(SL‘, 'y) dy(y) -/A 'I(x’ L’)m(y) dr/(y)_

En utilisant 1’équicontinuité de J, on montre que, pour ¢ suffisamment petit, alors pour
tout m dont le label vaut 1, on a

YV € V), h(:c,m, VC) 2 mg— 2¢, (7.2)
et

Vz € V,, h(z,m,V*UV;) > mg — 2. (7.3)

D’apres la définition de m (cf. (7.1)), le terme de potentiel vérifie

vz eV,  fa(m(z)) 2 f5(m(z)).

Par conséquent, il suffit de montrer que le terme d’interaction diminue quand on remplace
m par m. On note

V(A4,B) C (IR x Z)?
R(4; B) [ / i(z) = (y)? - (m(z) = m(y))*} dv(z)du(y).

Soit s dans [—1,1] et A C IR x Z, on pose
Vz € IR x Z, G(z,s,A) = /A.I(x,y)(s —m(z))? dv(y).
Les 2 remarques suivantes seront tres utiles par la suite
si —1<s<t<h(z,m,A), alors G(z,s,A) > G(z,t, A). (7.4)
et si h(z,m, A) > 0 alors

G(z,s,A) > G(z,|s, A). (7.5)
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Afin de montrer que R(V x V¢V x V) est négatif, on procéde maintenant en plusieurs
étapes.

Etape 1: R(V/vlav/vl) S 0) R(Vlﬁvl) S Om R(V/Vg,vl) S 0.
Par définition de m, on a |m(z) — m(y)| < |m(z) — m(y)|, ceci implique le résultat.

Etape 2 : R(V;,V¢) €0
D’apres (7.2), on a h(r,m, V) > mg — 2¢ > 0. En appliquant (7.4) et (7.5), on a

Yz € Vl, G(I, ﬁl, V[) 2 G(:L‘;m) Vl):

ce qui permet de conclure.

Etape 3 : R(V,, VU V) <0
On décompose R(A; B) sous la forme R(A; B) = R,(A; B) + Ry(A4; B) avec
R(4B) = [ [ I@y{@) - m) - (n(@) - m)7} dv(a)drly),

R4B) = [ [ d@{n@) - m)? - (hiz) - m(v)’} dv(z)dv(y).

On considére maintenant des sous-ensembles particuliers. Tout d’abord, on pose 4 = V,N
{z € Vy; |m(z)| < mg—2(} et B =V°UV,. Pour tout « dans A, on a h(z,m, A) > mg—2(
par conséquent (7.4) implique R;(A, B) < 0.

Pour controler Ry, on pose
B, = V5 B, ={z eV |m(z)] <mg—2C}
B; = {zeV;; |m(z)|>mp—2(}.

Comme sur B; la configuration m est inchangée, on a Ry(A,B,) = 0. Sur B; et A
la configuration m vaut mg — 2¢, on a donc Ry(A4,B;) = 0. Finalement sur Bz, on a
m(z) = |m(z)|, en remarquant que sur A on remarque que m(z) = mg — 2¢, on en déduit
que

o Bo)= [

|y, T@0{(2(@) = Im)])* ~ (2(2) ~ m(y))*} dv(z)dv(y) < 0.

Dans un second temps, on pose A =V, N {z € V,; |m(z)| > mp — 2(} et B = V°. Une
preuve similaire a la précédente montre que R(A, B) < 0.

References

[1] T.Bodineau and E.Presutti: Phase diagram of Ising systems with additional long range
forces. Comm. Math. Phys. 189, n 2 (1997), p. 287-298.



jodineau 517

[2] T.Bodineau: Etude du modéle de champ moyen local. Thése (1997)

[3] A.Bovier and M.Zahradnik: The low-temperature phase of Kac-Ising models. Jour.
Stat. Phys. 87 (1997), p.311-332.

[4] M.Brunaud and B.Helffer: Un probléme de double puits provenant de la théorie
statistico-mécanique des changements de phase (ou relecture d’un cours de M.Kac).
Preprint LMENS, March 1991.

[5] M.Cassandro, R.Marra and E.Presutti: Corrections to the critical temperature in 2d
Ising systems with Kac potentials. Jour. Stat. Phys. 78 (1995), p.1131-1138.

(6] M.Cassandro, R.Marra and E.Presutti: Upper bounds on the critical temperature for
Kac potentials. Jour. Stat. Phys. 88, 3/4, (1997), p.537-566.

(7] M.Cassandro and E.Presutti: Phase transitions in Ising systems with long but finite
range interactions. Mark. Proc. and Rel. Fields 2, (1996), p. 241-262.

(8] R.Ellis: Entropy large deviations and stastical mechanics. Springer Verlag (1985).

(9] J.Frohlich: Phase transitions, Goldstone bosons and topological superselection rules,
Acta Phys. Austriaca Suppl. XV, (1976) p. 133-269.

10] B.Helffer: Semiclassical analysis for Schrédinger operators, Laplace integrals and trans-
fer operators in large dimension: an introduction, Editions Paris-Sud (France) (1995).

11] B.Helffer: Splitting in large dimension and infrared estimates, in Microlocal Analysis
and spectral theory, L. Rodino (editor), Proceedings of the NATO-ASI conference,
(1997), p. 307-348, Kluwer.

12] B.Helffer: Splitting in large dimension and infrared estimates IT - Moment inequalities,
a paraitre dans Jour. Math. Phys. (1997).

13] E.Helfand and M.Kac: J. Math. Phys. 4 (1963), p.1078-1088 .

14] M. Kac: Mathematical mechanisms of phase transitions. Brandeis lectures (1966),
Gordon and Breach.

15) M.Kac and C.Thompson: On the mathematical mechanism of phase transition.
Proc.N.A.S. 55 (1966), p.676-683.

16) M.Kac and C.Thompson: Erratum. Proc.N.A.S. 56 (1966), p.1625.

17] J.Lebowitz and O.Penrose: Rigourous treatment of the Van der Waals-Maxwell theory
of the liquid vapor transition Jour. Math. Phys. 7, (1966), p.98-113.

18] C.Pfister: On the ergodic decomposition of Gibbs random fields for ferromagnetic
Abelian lattice models. Annals of the New York Academy of Sciences 491 (1987),
p.170-180.



	Transition de phase pour le modèle de Kac en dimension deux

