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Abstract.

We consider the discrete Schrédinger operator in £2(Z¢) whose potential is an unbounded
quasi-periodic function concentrated on a proper subspace {0} x Z™ (m < d). Under the
condition that the potential satisfies a certain version of the small divisors condition, it is
proved that the part of the spectrum lying far enough from the spectrum of the free Laplacian
is pure point, dense and has multiplicity one and the corresponding eigenfunctions decay
exponentially.
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1 Introduction

De nombreux problemes de la physique des ondes et des solides et de la théorie spectrale
meénent & la résolution d’équations différentielles et d’équations aux différences finies dont
les coefficients sont concentrés au voisinage d’une surface (ou, plus généralement, d’un sous-
espace) de l'espace considéré. Il s’avére que dans certains cas les équations de ce type
admettent des solutions qui décroissent exponentiellement le long des directions orthogonales
a la surface (au sous-espace). De telles solutions sont souvent appelées “ondes de surface”
ou encore “états de surface”.

L’étude des ondes de surface a commencé il y a plus de cent ans aprés que Rayleigh eut
découvert en 1887 deux types de modes propres d'un demi-espace (voir [8])

Ri— = {(f,l'), E_>_ Oa z € RQ}
homogene, isotrope et élastique:

(i) des modes qui oscillent et dont ’amplitude ne décroit & l'infini en aucune des variables
spatiales, appelés “ondes de volume”;

(ii) des modes qui sont des ondes planes en la variable z et qui décroissent exponentielle-
ment en la variable £, appelés “ondes de surface”.

Les résultats de Rayleigh ont eu des applications dans la théorie de la propagation des
ondes sismiques et, plus tard, dans de nombreux domaines de la physique des états condensés.
Apres la découverte de Rayleigh, on a trouvé des ondes de surface acoustiques dans des
milieux stratifiés, en particulier, dans le cas de deux demi-espaces homogenes et élastiques a
constantes d’élasticité différentes. Au début du siecle, a propos de I’étude de la propagation
des ondes autour de la surface de la Terre, I’école de Sommerfeld a découvert des solutions
analogues pour les équations de Maxwell.

Ces résultats traduisent une propriété assez générale des solutions d’équations différen-
tielles et d’équations aux différences finies qu'on peut appeler “principe de localisation” et
qu’on peut formuler ainsi: s¢ les cocfficients d’une équation possédent une inhomogénéité
assez forte, il peut exister des solutions localisées (en général de fagon exponentielle) prés de
cette inhomogénéité.

Dans les années 40, ce principe a été appliqué par I. Lifshitz [6] dans ses études de
la dynamique des cristaux contenant des défauts de dimension inférieure a 3. Il a trouvé
des analogues cristallins des ondes de surface de Rayleigh, des “phonons de surface”, non
seulement dans la bande acoustique mais aussi dans des bandes optiques. Ses résultats
sont & la source de nombreuses applications techniques dans le traitement du signal haute
fréquence, dans l’acoustique optique, dans la physique des semi-conducteurs, etc.

Ces travaux considérent la surface qui porte le potentiel comme idéale et homogéne,
alors que, dans des conditions réelles, toute surface posséde une certaine rugosité. Dans la
plupart des cas, cette rugosité peut étre considérée comme aléatoire. Elle peut étre due a
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des crissements ou & une incommensurabilité, ce qui donne souvent des surfaces ondulées de
facon périodique ou presque périodique.

Il est intéressant d’étudier les effets de cette rugosité dans la dynamique de la surface
cristalline, en particulier sur la propagation et la localisation des ondes.

Dans cet article, nous considérons le cas particulier du régime de localisation forte, c’est-
a-dire le cas ou le degré de rugosité est assez élevé, et nous considérons aussi le cas ou
I’énergie est proche des extrémités du spectre de l'opérateur correspondant.

Nous présentons un modele discret quasi-périodique qui donne une localisation exponen-
tielle des états de surface. Dans la théorie mathématique de la localisation on connait déja
quelques résultats semblables (Grinshpun [4], Aizenman et Molchanov [1], Jaksi¢, Molchanov
et Pastur [5]) pour une surface aléatoirement rugueuse, modélisée par un opérateur de
Schrodinger discret avec une condition au bord.

Soit d > 2 un entier, et soit hg le laplacien discret défini dans l'espace £2(Z%) par

(hou)(X) = — Z u(Y) (1.1)

yezd
1Y =Xli=1
ot ||[Y — X|| = =L, |¥; — X;|. On considére un opérateur de Schrodinger discret défini dans
¢%(Z%) par
h=hy+V (1.2)

ou V est un potentiel “porté par un sous-espace”, et que nous allons définir. Soient 1 < v < d
et 1 < m < d deux entiers tels que v +m = d. On écrit Z% comme le produit cartésien:

ZP=7""=Z"xI"={X = (£,2), £E€Z, T €Z™}.

Soient {v(z), = € Z™} une suite réelle et §(¢) la fonction définie sur Z¥ par §(§) = 1, si
¢ =0, et 0 sinon.

On appelle potentiel porté par un sous-espace 1'opérateur V' de multiplication par la suite

v(€ ) = 8(E)v(z), (£ )€z (1.3)
Un tel potentiel V' est concentré sur le sous-espace
{0} x 2™ = {(¢,2) € 2?|€ = 0} (1.4)

appelé sous-espace du potentiel. Dans le cas particulier o d = 3 et m = 2, le sous-espace
(1.4) est une “surface” dans Z* et I'on parle de potentiel de surface.

On s’intéresse aux propriétés spectrales de 'opérateur h. Autrement dit, on cherche les

solutions (A, u,) du probléme:
huy = Auy, A€ER. (1.5)

Le résultat principal de larticle dit que, sous certaines hypotheéses, il existe un Ao > 0 tel
qu’en dehors de l'intervalle [—Xo, Ao] le spectre de lopérateur h soit purement ponctuel et
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que toutes les fonctions propres u, correspondantes décroissent exponentiellement a l'infini
en € et en x.

Le plan de 'article est le suivant. La section 2 contient ’énoncé du résultat principal, et
les définitions préliminaires indispensables. Dans la section 3 nous donnons quelques bréves
explications sur la démonstration de ce résultat, tandis que dans les sections 4 et 5 nous
en donnons les détails. Une annexe contient enfin les preuves de lemmes auxiliaires utilisés
dans la démonstration.

2 Deéfinitions. Résultat principal

Avant d’énoncer le résultat principal, nous indiquons d’abord les hypothéses qui vont y
intervenir. Ces hypothéses portent sur la suite

{o(z) =v7'(z), z € Z™} (2.1)

qui est I'inverse du potentiel, elles viennent du probléeme des petits diviseurs qui a ses origines
dans la théorie des perturbations des systémes d’équations différentielles non-linéaires et a
beaucoup d’applications en théorie spectrale. La classe de suites que nous considérons est
un cas particulier des suites définies dans l'article de Pdschel [7] sous I'appellation “stable
distal sequences”.

2.1 Forme quasi-périodique

La suite g(z) sera supposée quasi-périodique, i.e. de la forme

q(z) = f(w-z), (2.2)

obhz € Z™, ou f: R — R est une fonction périodique de période 1, ot w € R™ \ Q™ et ou
W= Z:n:]_ WiZj.

2.2 Condition diophantienne

Elle porte sur w. C'est une généralisation due & Riissemann [10] de la condition diophantienne
classique. Elle suppose le choix préalable d’une “fonction d’approximation”.

Définition 1 On appelle fonction d’approzimation une fonction continue € : (0,00) —
(1, 00) telle que, si l'on pose

®(o) =o™'™ sg;o)ﬂ(r)e'” < 400 (2.3)
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U(o) = ig;f ﬁ ®(0,)?" 7 < +o0, (2.4)

ou dans (2.4) 'infimum porte sur I’ ensemble Sy des suites 0g > ... > 0, > ... > 0 telles que
® 00v < 0, alors (o) et ¥(o) sont finis pour tout o > 0.

Définition 2 On dit que w vérifie la condition diophantienne s’il existe une fonction d’appro-

ximation §? telle que
llw- z|| > Q7}(|z|), pour tout z # 0. (2.5)

Exemple 1 L’exemple le plus simple de fonction d’approximation est le suivant (voir [10]):
Qs)=s",s>217>m-1.
Dans ce cas, si l'on considére la suite o, = 27“"!¢ on obtient
U(o) < co™m T

ou ¢ est une constante qui ne dépend que de 7 et de la dimension m. De plus, pour une telle
fonction d’approximation €2, la condition (2.5) n’est autre que la condition diophantienne
classique. Pour m > 1, les produits scalaires z - w, pour = € Z™, sont denses dans R.

Exemple 2 Voici un autre exemple de fonction d’approximation [10]:

Qs) = {Q(so) pour 0 <s < sp=e'te

cexp (_I+T) pour s > Sp

5 1 1/2
¥(o) < -
(o) < - exXp | o exp (o:plog2)

pourun c et un ptelsque 0 <a<1/2et 0 < p< L.

avec un ¢ > 0. On a alors:

Dans le cas général on a un critére assurant qu’une fonction {2 est une fonction d’approxi-
mation.

Proposition 1 ([10]) Soit © : (0,00) — (1,00) une fonction continue. Si la fonction
w(r) = log Q(r) vérifie:

0< ()<w( ", 0<r<r,

0<r<r = o0,

|l—d‘i
[\‘)
\

alors,
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2.3 Condition de petits diviseurs

Cette condition, de nature technique, est la plus essentielle. Son utilité apparaitra plus
clairement dans la démonstration du résultat principal.

Définition 3 Soit & une algebre de Banach de fonctions réelles définies sur R dont la norme
|| - ||l # soit invariante par les translations définies par (7.,..¢)(t) = ¢(t +w - z). Soit w €
R™\Q™. On suppose que w vérifie la condition diophantienne 2.5 relativement & une fonction
d’approximation 2. Soit f une fonction quelconque, n’appartenant pas nécessairement a ).
On dit que f vérifie la condition de petits diviseurs s'il existe un nombre 7 € (0, 1) tel que,
pour toute fonction ¢ : R — R, telle que p — f € & et que ||[(¢ — f)|le <7 <1, on ait

(¢ —Tuzp)™h € F et (¢ — Tuzw) e < Q(lz]) (2.6)

pour tout z € Z™ \ {0}.

Remarque 1 On peut observer que cette condition de petits diviseurs implique une cer-
taine singularité de la fonction f. Il suit en particulier de la définition que f ne peut étre
continue sur R tout entier. De plus, toute fonction f qui vérifie cette condition doit possede
obligatoirement la propriété suivante:

1
sup T)| > 2F
a1 2 5 =
pour tout z € Z™. Il suit en effet de (2.6) que
-1 1 1
Qlz]) 2 I(f = Toef) 'l > sup >

te[0,1] |f®@) — (To=f)@E)| ~ 2SUPre[0,1] | £(r)]

pour tout x € Z™.

Voici un exemple qui illustre les définitions précédentes (voir [7]). Soit 7 > 0, et soit
J% V’espace des fonctions analytiques réelles définies sur la bande horizontale S, = {z € C:
|Im z| < r}, périodiques de période 1, et de dérivée bornée. On pose

46|76 = sup [v(z)] + sup |[4'(z)].
2€S, z€Sy
J%, est évidemment une algébre de Banach invariante par translation. La fonction f définie
par f(z) = tanmz est réelle, méromorphe, et périodique de période 1, mais elle n’appartient
pas a J%. Il est pourtant facile de voir que f vérifie la condition de petits diviseurs ci-dessus.
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2.4 Enoncé du résultat principal

Théoréme 1 Soit h = ho+V un opérateur de Schrédinger discret dans l’espace £2(Z%) défini
par les formules (1.1)-(1.2) avec un potentiel V porté par le sous-espace (1.4). Supposons
que la suite inverse du potentiel {q(z) = v=1(z), z € Z™} est de la forme ¢(z) = f(w - z)
(voir (2.2)) et que:

(i) w vérifie la condition diophantienne (2.5) avec une fonction d’approrimation §2;
(ii) la fonction f est continue sur [0,1) et a un seul zéro sur un intervalle de période;
(iil) la fonction f vérifie la condition de petits diviseurs pour §) et pour un T quelconque.

Il existe alors un \g = Ao(2,7) > 2d tel qu’en dehors de l'intervalle [— )Xo, Ao) le spectre
de h soit purement ponctuel, dense, de multiplicité 1, et que toutes les fonctions propres
décroissent exponentiellement dans toutes les directions de Z% (i.e. en & et en ).

Remarque 2 Il est important de souligner que la classe des potentiels du théoréme est
assez grande. On peut citer comme exemple de suite g(z) qui convient la suite g(z) =
tan?*!(mw - ) ot p € N. Pour des exemples analogues, voir (2, 7).

3 Schéma de la démonstration

La démonstration du théoréme comporte trois étapes:
A. Passage du probléme (1.5) & un probléme spectral dans l'espace ¢2(Z™).
B. Etude de ce probléme spectral, non linéaire en le parametre spectral A.

C. Application des résultats des sections précédentes a 1’étude de la mesure spectrale de
lopérateur h.

3.1 Etape A

On applique un résultat général de théorie spectrale (voir [9]). Si A est un opérateur auto-
adjoint et si R4(z) est sa résolvante, alors, pour tout opérateur auto-adjoint B, la résolvante
Ra.p de la somme A + B vérifie I'identité:

Raip(2z) = Ra(2) — Rayrp(2)BR4(z), pour tout z€ C\R.

Appliquons cette identité pour A = hg et B = V. Soient ¢((&,z),(n,v); 2) et go(€é — n,z —
y; z) les coefficients matriciels respectifs des opérateurs (h — A)™' et (hg — A)~'. Gréce
4 la structure particuliéere du potentiel l'identité précédente nous permet d‘exprimer les



466 Boutet de Monvel and Surkova

coefficients matriciels de la résolvante de h & partir de la résolvante du laplacien hg et de la
suite {¢g(z) = v~1(z), = € Z™}. Plus précisément:

Lemme 1 Si z € C\R, alors

9((& ), (m,y);2) = go(§ =z —y; 2)

- > gz -T2 Y Ngo(n, ¥ — y; 2), (3.1)
z' Yy €™
D(2) = Tol2) + @ (3.2)

ot Tg(2) est l'opérateur dans £2(Z™) qui a pour coefficients matriciels
Lo(z,y;2) = 90(0,2 — y;2), z,y€Z™ (3.3)

et ot @ est l'opérateur de multiplication par la suite {q(z), = € Z™}.

L’analyse de cette égalité nous montre pourquoi il est intéressant d’introduire et d’étudier
la suite g(x), inverse du potentiel v(z). Il est naturel de s’attendre & ce que l'inversibilité
de l'opérateur I'(z) qui intervient dans la partie droite de (3.1) joue un réle important dans
I'étude de la résolvante de h. C’est 'objet du lemme suivant:

Lemme 2 Sotent o(h) le spectre de h et o,(h) 'ensemble de ses valeurs propres. Alors,
pour tout A € R\ [—2d, 2d],

(i) A € a(h) st, et seulement st, 0 € o(['(N)),
(ii) A € op(h) si, et seulement si, 0 € op(T'(N)).

De plus, si A est tel que 0 € gp(I'(N\)) et st @) est le vecteur propre correspondant, i.e. si
ox € L2(Z™) et T'(N)pys = 0, alors le vecteur propre uy de h est donné par

ur(€,2) == Y go(&,z —u; Nal(w). (3.4)

yeZ™

L’article de Schréder [11] contient un résultat analogue pour le laplacien avec condition
au bord. La démonstration de ce lemme ressemble & celle de Schréder. Elle est donnée dans
la section 4. Ceci termine la premiére étape.

Nous sommes ainsi ramenés au probléme suivant:
Probléeme Trouver des valeurs du paramétre A € R telles que l’équation
F'(A)pr=0 (3.5)

ait une solution non-triviale dans £2(Z™).
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D’apres le lemme 2 'ensemble de ces A coincide avec 'ensemble des valeurs propres de
h, et & partir des vecteurs ) solutions de (3.5) on peut grace a la formule (3.4) construire
des vecteurs propres de h correspondants.

On a donc réussi a réduire le probléeme (1.5) avec un potentiel inhomogeéne a 1’étude d’un
probléme dans £2(Z™) avec des coefficients partout non-nuls dans Z¢. La particularité de
ce probléme est qu'il est non-linéaire en le parametre spectral A. Sa résolution, comparée a
celle des problémes spectraux classiques, requiert une analyse particuliére qui fait 'objet de
I’étape suivante.

3.2 Etape B

On étudie d’abord le spectre de 'opérateur I'(A) pour A fixé quelconque. Il s’avere qu'il existe
un g tel qu’en dehors de U'intervalle [—Ag, o] le spectre de I'(\) est purement ponctuel. On
considere ensuite chaque valeur propre de I'(\) comme une fonction de A et on en cherche
les zéros.

Remarquons que dans la présentation (3.2) de ['(\) 'opérateur @ a un spectre purement
ponctuel. De plus, en analysant les coefficients matriciels de I'g(A\) on observe que, pour A
assez grand, sa norme est aussi petite que I'on veut. On peut donc considérer I'(A) comme
une petite perturbation de ). Le probléme spectral (3.5), pour un A fixé, devient alors un
probléeme de perturbation de spectre purement ponctuel. La condition de petitesse imposée
a l'opérateur ['g(\) provoque l'apparition de I'intervalle [—\g, Ao] dans I’énoncé du théoréme.

La particularité des données initiales fait penser aux méthodes de la théorie KAM qui
s’averent trés efficaces dans 1’étude des propriétés spectrales des opérateurs a coefficients
quasi-périodiques [7, 2]. De fait, pour étudier le spectre de I'(\), on utilise une version
de l'algorithme proposé par Craig [3] et Péschel [7]. L’idée principale consiste & ramener,
par approximations successives, I'opérateur ['(\) & un opérateur Q()) de multiplication par
une suite {§(z, ), £ € Z™}. Autrement dit, on cherche une application unitaire U(A) :
2(Z™) — 2(Z™) qui transforme T'(\) en Q()), i.e. tel que

DY) = UNQMNUH(N).

Une fois U()) trouvée, on obtient que le spectre de I'(\) coincide avec celui de Q()), donc
avec la suite {G(z, \), = € Z™}.

Nous cherchons U(A) sous la forme d’un produit infini d’applications:

U = lim Ua())

n—oo
n-1

Un(X) = [T + WL(N)).

v=0

A chaque pas de l'itération, nous supposons que

Un(A)THTA) + QUa(A) = Qu(A) + Tu(X), n>0.
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L’application W,,(z) est déterminée comme 'unique solution de 1’équation
[Qn+1()\)a Wn(/\)] + Ta(A) - [Pn()\)] =0, (3.6)

ou 'on note [A] la matrice diagonale dont la diagonale est formée de A et ot Q,,4+1(A) est défini
par Qni1(A) = Qn(A) + [[n(N\)]. Dans la théorie KAM, I’équation (3.6) est appelée équation
homologique. Pour montrer que ce schéma converge, on définit une échelle d’espaces normés
M?* telle que tous les opérateurs du schéma soient bornés dans les espaces correspondants
et que

Cp(A) — 0,
Un(2) = U,

~

Qn(A) = Q(})
en norme, quand n — o0.
L’équation homologique (3.6) est le point central de ’algorithme. Sa résolution formelle
est de la forme:

0 siz=1y,
Wa(z,y; A) = { In(z,y;A) si 1 #

= = Y.

Gn1(T5 A) = Gur1(ys A)

(3.7)

Pour que cette formule définisse un opérateur borné et inversible, il faut étudier le comporte-
ment des dénominateurs dans (3.7). On appelle ces dénominateurs les petits diviseurs. On
observe, d’abord, que les coefficients matriciels I',(z, y; A) des opérateurs I',(A) décroissent
exponentiellement quand |z —y| — co. Il suffit donc que les quantités P T /\)ién“(y; 3 Soient
bornées supérieurement par un polynéme en |z — y|. La condition de petits diviseurs que
nous avons introduite dans la section précédente garantit les estimations adéquates.

Comme nous 'avons déja dit, les suites qui satisfont cette condition de petits diviseurs
ue sont qu'un exemple particulier des suites définies dans (7] sous I'appellation “stable dis-
tal sequences”. Pour ce qui concerne la convergence des approximations successives, notre
algorithme est semblable & celui de Péschel pour résoudre le probléme spectral direct pour
des opérateurs aux différences finies avec “stable distal potentials”. Il faut remarquer que
toutes les estimations valent pour des valeurs du parametre spectral dans toute une bande
{z€C:0<Imz <&} du plan complexe. Cela servira dans I’étape C de la démonstration.
On obtient ainsi, & la limite, 'opérateur Q(\) comme somme de la série:

~

Q) = Q+ M) + SOV 39)

Une analyse spéciale, effectuée a chaque pas de l'itération, montre que les termes de la
suite G(z; A) sont des fonctions strictement monotones de A. Ils ne peuvent donc avoir qu'un
seul zéro, noté A(z). Ensuite, d’apres le lemme 2, on peut représenter I’ensemble des valeurs
propres de h en dehors de l'intervalle [—\g, Ag] comme suit:

ao(h) N {R\ [=20, Mo]} = {A: d(z, \) =0, z € Z™, |A] > Ao}
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Finalement, la représentation de 'opérateur Q()\) que nous avons obtenue (voir 3.8) et
les propriétés de la suite ¢(z) nous permettent de prouver que

(i) le spectre ponctuel de h est dense dans R \ [—Ao, AoJ;
(ii) il est de multiplicité 1;

(iii) les fonctions propres correspondantes décroissent exponentiellement dans toutes les
directions.

Il reste alors & démontrer qu’en dehors de [—\g, Ao le spectre est purement ponctuel.
C’est 'objet de 1'étape C.

3.3 Etape C

Soit &},(dX) la famille spectrale de 'opérateur h. D’apres le théoréme spectral (voir [9]), la
résolvante Ry (z) est la transformée de Borel de &,(d)), i.e.

S(dN)

A—z

On peut donc exprimer &} au moyen de Rp(z) grace a la formule d’inversion. Soit {ex(Y) =
5(Y — X), Y € Z%} la base canonique orthonormée de £2(Z%). Alors, pour tout intervalle
A e R,

Rh(z) =

(& (A)ex, ex) = ] Im g(X, X; A +i€)d), X € Z° (3.9)

1071’

L’étape C consiste & calculer la limite de la partie droite de (3.9). On utilise d’abord
I'identité (3.1), ce qui donne
lim W/ Im (X, X; A + ie)dA = — lim ~ - [ Im(Dx, px)(A + ie)dx

ot I'(z) est défini par (3.2) et ol px(2) est un vecteur dans £2(Z™) dont les éléments sont
de la forme:

ox(U;2) = go(X, (0,9);2), z=A+ie
On utilise ensuite les résultats de la section 4. Pour des valeurs z = A + ie 'algorithme
itératif nous donne des opérateurs U(z) et ¢(2) tels que
TY(A +ie) = UN+ie) Q7 (A + ie) U™ (A + de).

On observe ici que pour tout € > 0 l'opérateur ['(A + ic) est inversible. On développe donc
QYA +1g), U\ +ie) et U™H(X + ig) en séries de € et l'on passe & la limite, en faisant
attention aux singularités aux points A(z) tels que §(z, A(z)) = 0. On obtient finalement:

5 [y, Aw)I®
mmea 94, Ay))
ce qui équivaut a dire que la mesure (6,(A)ex,ex) est purement ponctuelle, ce qui achéve
la preuve du théoréme.

lim = [ Im(Q7 (A + ie)p(), (M)A = -

el0 T
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4 Etape A de la démonstration

Cette étape consiste a prouver le lemme 2. La démonstration utilise les deux lemmes suivants
dont nous donnons les preuves apres celle du lemme 2.

Lemme 3 Fizons un A tel que |\| > 2d. Soient u € €%(Z%) et (h — Nu = f. Posons

@) =u0.2), LEZ™
F(z)=[(ho = N)'f)(0,2), z€Z™
FO(:E’ y:)\) = gO(O:w - Y )\)7 I,y = Zm'

Alors,
L@ '+ DN =F (4.1)
et il existe 0 < C(A) < co tel que
1
Tl | 3 e — g~ X)™ .
6@ ol > sl = 0 = )71} 42)
ot || - |lm et || - |la sont les normes respectives des espaces £2(Z™) et £2(Z2).

Lemme 4 Soient ¢ € £2(Z™) et ([oQ !+ I)¢ = F. Posons

u(é,r) = — Z go(&, T —y; /\)—];_‘P(y) +0(6,z), (§z)€ z° (4.3)
o Y q(y)
& (&)
_ _p(&,
avec , 60 45
plE ) = (27) Jrv A+ 2354 cosb; 44)
Alors,
(i) (h=MNu=f, u(0,z) = ¢(z), € Z™ avec
fEa) = —6OF@)+ Y AEz-v)+a6z+) (4.5)

p(0,2) yezm, lyl=1

(i) I flla < CllF[lm

(iif) [lulla = llellm -
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4.1 Preuve du lemme 2

Cette preuve utilise les lemmes 3 et 4 que nous venons d’énoncer.

(i,) A € o(h) = 0 € o(T'(N))
Soit A € o(h). D’aprés le critére de Weyl, il existe une suite {uz}52, telle que |luglla = 1,k =
1,2,3,... et ||(h — Auk|la — 0, k — o0. Soit (b — A)ug = fx. Posons ¢i(z) = ur(0,2), z €
Z™. Alors, d’apres le lemme 3, (ToQ ™'+ 1)k = Fy, ot Fy(z) = [(ho— )" fx](0,2), z € Z™.
Donc,
ITo@™" + Dellm = 1 Fllm < 11(ho = A) ™ filla = 0, k — co.

En posant 9y = FOQ"lsDk, on a:
1(To + Q)T5 Ykllm = |(ToQ " + Igkllm — 0, k — oo.

D’autre part, d’apres le lemme 3, la norme de 1), peut étre estimée comme suit:

Wl > 5 {lsla = 1Gho = 27 fella} = 3, = oo

Il s’ensuit que
I(To + Q)5 Yk |lm

1%l m
Donc, 0 € o((To + Q)I'5?). 1l est alors facile de voir que 0 € o(T'y + Q).

— 0, k — o0.

(i2) A€ a(h) <= 0€ a(l'(N)
Soit 0 € o((Co+ Q)). Il existe alors une suite {px}2; telle que [[@kllm =1, k=1,2,3,... et
|(To+Q)wk|lm — 0, k — co. Posons Fy, = (Do+Q)wx et Yx = Q. Il vient (ToQ 1+ 1)y =
F}.. Définissons ui (&, z) comme dans (4.3) avec ¢ = 9k, F = Fy. Alors, d’apres le lemme 4,
(h = Nug = fi. Il suit de la définition de la fonction fi (voir (4.5)) que

(R = Nuglla = [[fella < CllFillm — 0si k — o0

On sait d’autre part que

”‘Pka 1 .
> _ i e B
“uk”d = 2d+ ‘/\l C”Fk” 2d+ |A| S1

Donc, A € o(h).

(iiy) A € op(h) = 0 € 0p(C'(N))
Soit A € op(h). 1l existe alors u € £2(Z%) tel que (h — A)u = 0. Posons ¢(z) = u(0, z), pour
z € Z™. D’apres le lemme 3, ([oQ 2 +1)p =0, ||¢llm < |Julla < co. Alors, 0 € op(To@2+1)
et, évidemment, 0 € o,(lo + Q).

(ii) A € op(h) < 0 € a5(T'(N))
Supposons que 0 € op(Ty + Q). Il existe alors ¢ € £2(Z™) tel que (I'o + Q)¢ = 0. Posons

u(é,z) =— Y go((&, 2),(0,), \e(v).

yezZ™
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Le lemme 4 pour F' = 0 montre que cette fonction u vérifie I’équation (h — A)u = 0 et que
llulla € Cll¢|lm- On a donc A € o,(h) et u est un vecteur propre de h correspondant, ce qui
prouve la derniére assertion du lemme.

4.2 Preuve du Lemme 3

Soit (h — A)u = f. On a alors l'identité:
(ho - /\)—l(ho - A+ ’U)'U, = (ho - )\)_lf :

autrement dit
—(ho = )\)—1’1}'11, = (ho = )\)—lf .

Etant donné la structure particuliere du potentiel v (voir (1.3)), on développe en série le
premier terme du membre de droite de cette derniére relation, ce qui donne

~ T glEc—y, A)ﬁw(w + (ho = X)) (E,2), (4.6)

yeEL™

ol g(y) = v~ (y) et p(y) = u(0,y), y € Z™

Pour démontrer (4.1) il suffit alors de poser ¢ = 0 dans 1'égalité (4.6), et il suit de cette
relation que

- % a2 = 5N o), 2 ke = l1ha = )7

yezZm™ ( )

D’autre part, il existe un C(A) positif et fini, indépendant de ¢, tel que

H Y go(é,z—y, )% (y)HdSCIIFoQ‘lem- (4.7)

yezm )

En effet, le membre de gauche de (4.7) admet la représentation intégrale

1 / 1Q-Tp(6) [[2dody
(2m)d Jre A+ 2% Y cosp; +2X 7, cosb;

ou Q"Tcp(ﬂ) est la transformée de Fourier de Q!¢ dans £*(Z™). Ensuite, comme |\| > 2d,
on peut estimer la fonction sous le signe intégrale de la maniére suivante:

1 1 1

. ™ <C) =
A+23 jcosp;+2300, cosf; T A 2v+23 7", cosb; A+23T, cosb;

ou C(A) > Lf(‘;T”l La derniére inégalité donne (4.7), puis (4.2).



Boutet de Monvel and Surkova 473

4.3 Preuve du Lemme 4

Soient ¢ € £2(Z™) et (ToQ' + I)¢ = F. Définissons u(£,z) comme dans (4.3)-(4.5).
L’assertion (i) se vérifie facilement par simple substitution, compte tenu du fait que la
fonction p(&, A) est solution de I’équation:

. plE—mA) + Ap(E, ) = 8(8).

neZY, |n|l=1

Pour démontrer (ii) il suffit de remarquer que

17113 <

1 2 7 _ 2
200, 3) IFNI2, + 4[| FI|2,0*(0,X) = COV| FII5, -

Enfin, (iii) est une conséquence triviale de (i) et (ii).

5 FEtape B de la démonstration

Cette section est consacrée a I’étude du probléeme spectral non-linéaire (3.5). On utilise ici
une des versions de la théorie KAM, proposée par Craig [3] et Pdschel [7]. Il s’avére que
pour un A fixé et assez grand l'opérateur I'(\) = ['y()\) + @ vérifie les conditions du théoréme
B de l'article [7] de Péschel. Ce théoréme dit que le spectre d’un tel opérateur est purement
ponctuel. Pour étudier, en outre, le comportement des valeurs propres de I'(A), on a besoin
d’une généralisation du résultat de [7], que nous énongons edt démontrons ici sous la forme
d’un théoréme. Voici d’abord quelques notions qui nous seront utiles.

Soit # une algebre de fonctions comme dans la section 2.3. Soit .# I’ensemble des suites
a = {a(z), x € Z™} pour lesquelles il existe une fonction ¢ € F telle que

a(z) = plw-z), z€Z™ (5.1)
Nous définissons sur .# une norme en posant

lall.e = inf [|¢ll#

ou l'infimum porte sur I’ensemble des ¢ € & qui vérifient (5.1). Nous définissons ensuite
I'addition et la multiplication, puis 'opération de translation par (7;)a(y) = a(z +y). 1l
est clair que .# est ainsi une algebre de Banach, invariante par translations, i.e. pour tout
a € A et pour tout z € Z™, alors Tpa € A et ||Tpa|l.e¢ = |||

Soit M l'espace des matrices A = {a(z,y)}ryezm dont les diverses diagonales A, =
{a(y,y + z)}yezm appartiennent & .# pour tout £ € Z™. On définit dans M une échelle
d’espaces de Banach par

M ={AeM, ||Al| <}, 0<s<

ou
IAlls = sup [|Az]|e™".
reZm
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Lemme 5 La suite quasi-périodique q(z) définie dans le théoréme est stablement distale au
sens de la définition de Pdschel ([7]), i.e. elle vérifie la condition suivante: pour toute suite
g telle que §—qg € A et ||§—qll.w <7 <1, alors

(q-Teq)" €A, |(g—T:q) e < Q|2|), pour tout z € Z™ \ {0}. (5.2)

Dans cette section nous utilisons cette version de la condition de petits diviseurs plutét
que celle donnée en 2.3.

Théoréme 2 Soit Q l'opérateur diagonal dans Uespace £2(Z™) dont la diagonale {q(z)}zezm
est une sutte qui vérifie la condition de petits diviseurs (5.2) vis-d-vis d’une fonction d’approzi-
mation () et d’une constante 0 < 7 < 1. Soit G C C un ouvert conneze, et soit { P(z), z € G}
une famille d’opérateurs paramétrée par ce domaine.

S’il eziste des constantes 0 < s < 00 et 0 < ¢ < 1,5 indépendantes de z et telles que

_4/0
1P)lls < ¥ ™(3) (53)
et que p
”EP(z) (S 2P(2)|I2 ) pour tout z € G, (5.4)
alors il existe un opérateur diagonal Q(z) et un opérateur inversible U(z) tels que
U(2)(P(2) + Q)U(2) = Q=) (5.5)
avec
1U(2) = s » 1U7(2) = Ills—s < CIP(2)]]s
1Q(2) = Q = [P(2)]lleo < CIP()IIZ
ou o
I
c_a§WQ (5.8)
et ou [ -] désigne la projection canonique M — M. De plus,
d 2 I 1 2
_ - < - : 3
Q@) = [PEN)| < IPGIL (5.9)

Si, pour un z = A réel, l'opérateur P()\) est hermitien, alors on peut choisir le U(\) corre-
spondant unitaire dans £*(Z™).

La démonstration de ce théoréme utilise les lemmes auxiliaires que voici.

Lemme 6 Si Ae M* 7, si B€ M* et 510 < o <min{l, 3}, alors AB € M*°, et
b
14Bll.-. < —lIAll,—oI1BIl

ou b > 1 est une constante qui ne dépend que de la dimension m.
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Lemme 7 Soit b la constante définie au lemme 6, et soit A € M* tel que ||A — I||; < %"-,
pour un 0 < o < inf{1,s}. Si A est inversible dans l'espace M*~7, alors

JA™ = Ifls-o < (1 = bo™™[|A = I|ls) M| A = I]ls.
Lemme 8 Soit G C C un ouvert conneze, et soit Q(z) lopérateur diagonal dans ¢*(Z™)

dont la diagonale {q(z, z), = € Z™} vérifie la condition (5.2) uniformément en z € G. Soit
{P(2)}:ec une famille d’opérateurs dans M. L’équation

[Q(2), W] + P(z) — [P(2)] = 0

admet alors une seule solution W(z) € M telle que [W(2)] = 0. Si, pour tout z € G, on a
P(z) € M* et LP(z) € M?, et si 2Q(2) € M™, et 0 < ¢ < min{1, £}, alors:

(i) W(z) € M*79, et
W (2)lls-0 < ¢(a)I1P(2)]]s,

(i) LW (z) € M*~%, et

| 2w, ,, < ¥(@)|=P@), + 22| Q@| 1P . (.10

#(o) = sup Q(r)e™"" = ¢*™d (o).

>0

Pour la démonstration des lemmes 6 et 7, voir 'article de Péschel [7]. Quant au lemme
8 il est démontré en annexe.

Remarque 3 Le théoréme 2 est une généralisation du théoréme de Péschel, 7], pour le cas
ol I'opérateur P(z) dépend d'un parameétre complexe.

5.1 Preuve du théoréeme 2

Pour démontrer le théoréme 2 nous utilisons un algorithme itératif semblable & celui de [7],
mais modifié en fonction des particularités du probleme. Nous allons donc présenter ici en
détail uniquement ce qui est de nouveau, notamment ’analyse de la dérivabilité en A des
approximations construites.

Rappelons d’abord en quoi consiste le processus itératif.

On construit U(z) comme un produit infini

U(z) = lim Un(2)
n—1

Un(z2) = H (I + Wy (2)).

v=0
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A chaque itération on a (cf. (5.6))

Un(2) 71 (P(2) + Q)Un(2) = Qn(2) + Fa(2) ,
et, pour n = 0,
Uo = I; P() = P

On cherche une transformation I+ W,(z) qui, appliquée a Q,(z)+ P,(z), donne un opérateur
de la méme forme, i.e.

(I + Win(2)) " (Qn(2) + Pa(2))(I + Wia(2)) = Qnsr(2) + Pasr(2) (5.11)

de fagon que l'opérateur P,.;(z) soit d’un ordre de grandeur plus petit que le précédent
P,(z). En développant le membre de droite de cette derniére relation et en séparant la
partie diagonale, on obtient:

(I 4+ Wa(2)) " (Pa(2) + Qn(2))(I + Wa(2)) = @n(2) + [Pa(2)] )
+(I + Wn(z))_l([Qn(z) + [Pn(z)], Wha(2)]
+Pu(2) — [Fa(2)] + (Fa(2) — [Pa(2))Wa(2)) -

Posons alors X )
Qn+1(2) = Qn(2) + [Pn(z)] .

On élimine maintenant les éléments du méme ordre de grandeur que ||FP,(2)|], en suivant
I’idée principale de la méthode KAM. Autrement dit, on exige que W, (z) vérifie I'équation
homologique: )

[Qnt1(2), Wa(2)] + Pa(2) — [Pa(2)] = 0. (5.12)

Cette équation détermine W,(z). En la résolvant, on pose:

Poy1(2) = (I + Wa(2)) ™ (Pa(2) = [Pa(2)])Wa(2) (5.13)
Un+1(2) = Un(2)(I + Wa(2)).

Cela nous donne (5.11). Sil'on fait tendre n vers l'infini, on obtient a la limite P,(2) — 0,
Un(z) = U, et Qu(2) = Q(2) = Q + X2,[P.(2)], ce qui nous donne finalement (5.5).

Nous introduisons maintenant une échelle de constantes qui interviennent dans les di-
verses estimations de fagon inductive. Il suit de la définition des fonctions ®(o) et ¥(o)
(voir (2.3) et (2.4)) que

(i) ®(o) et V(o) sont, toutes les deux, monotones en ¢ et que

1< ®(0) £ ¥(0), o >0;

(ii) il existe une suite {0, }72, € Sz telle que 72,0, = 3 et que
o0

og)-for

v=0
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ou ®, = P(o,), pour v=0,1,2,....

Soit {0,152, une telle suite. Posons

n-1
S0=358, Shn=5—2)» 0, n>1,

v=0

ce qui implique s = s9 > 51 > ... > 8, — s — ¢. Posons ensuite

n—1
0o =|Pls, bo=c"""|PI,J]®2", n>1 (5.14)

v=0

ol I’on prend pour constante ¢ (voir [7])
c=960°. (5.15)

Alors,

Ooo = cHPHs\Iﬂ(%). (5.16)

Remarquons que dans (5.14) et (5.16) la norme ||P||s dépend de z. Ainsi, 8, et 6 en
dépendent aussi. Pour simplifier, nous négligeons cette dépendance dans les notations.

Sous les hypotheses du théoreme 2,
b < cTCr . (5.17)

La constante o sera déterminée de facon précise plus tard. Pour 'instant, nous demandons
seulement qu’elle vérifie I'inégalité:

ca < 3_11) (5.18)

ol b est toujours la constante du lemme 6. Il est facile de voir que

n L3 n 243 n 0 n
c®202" < 6%, 02027 < g7, 67 < c'l\P'Q(E)GgO.

Nous démontrons par récurrence sur n le résultat suivant. Pour tout n > 0 il existe un
P,(z) € M~ tel que
| Pa(2)lls, < 62 - (5.19)

De plus, P,(z) est différentiable, OP,(z) € M*" et
10P(2)|ls, < Boobs - (5.20)
Enfin, il eziste un opérateur U,(z) € M®+9 qui est inversible, avec U,(2)™! € M*n,

[Un(2) = Un-1(2)|lsn 40> [[U;l(z) - Un_—ll(z)”sn < Uzmeg:_l, n=l1 (5.21)

et
Un(z)_l(P(z) + Q)Un(z) = Qn(z) + Pn(z):
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ou

Qn(2) = Q + E[Pu(z)]. (5.22)

Ce résultat est vrai pour n = 0.

Soit ensuite n > 0. Nous supposons que le résultat est vrai pour tout entier < n. Comme
nous I’avons dit au départ, nous omettons ici la démonstration des inégalités (5.19) et (5.21).
Nous nous fixons sur la différentiabilité de P,(z). Compte tenu de ’hypothése de récurrence,
pour dériver I'expression (5.13) il faut s’assurer que W,(z) est dérivable. On utilise alors le
lemme 8. Le point essentiel est que la dérivée de I'opérateur W,(2) contient les carrés des
petits diviseurs qui apparaissent dans la formule (3.7). Cela exige une analyse particuliére.
La condition de petits diviseurs nous permet d’estimer %Wn(z) de la méme maniere que
Wo(2).

Commengons par appliquer le lemme 8. En utilisant ’expression (5.22) et les estimations
(5.17)-(5.19) on peut voir que:

[@nea(2) = Qlle = [ 217

<SP, < 2000 <7 .
v=0

Compte tenu du lemme 5, on conclut que la diagonale §,41(2) de 'opérateur Qn+1(z) vérifie
(6.2). D’aprés le lemme 8, ’équation homologique (5.13) a donc une seule solution W,(z)
vérifiant [W,(2)] = 0. De plus,

IWa(2)llsn=on < S(@n)|Pa(2)sn < o™ 2,07 (5.23)
Cette solution est différentiable et
d d d A
- & —P . — . :
|7, < olon)| 0| +26%0w)| £0u)| 1RGN (520
D’aprés le lemme 7, opérateur (I + W, (z)) est inversible dans M*r=27n et

T + W2 lsnes (1 + Wa(2)) " lsas < g

On peut alors dériver 'opérateur Qn+1(z) défini par l'expression (5.22), ce qui donne:

d A LN
ROSICEDY =R
On en déduit que:

n

_EX

v=0

d

—P| <0 > 6% <202 (5.25)
z

Su v=0

“ Qn+1

En utilisant alors dans le membre de droite les estimations précédentes (voir (5.19)-(5.20) et

(5.25)), on obtient:
d "
— W, < D, 0262 0,
Ndz (Z) —_ n'n

Sn—20n
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ou
Dy, = o1 + 40*™f,,) < 5. (5.26)

Maintenant, nous pouvons dériver l'identité (5.13), ce qui donne:

2 Pasa(a) = — W20 + Wa(2)) ™ Pasa(2)
I+ Wal2) L Pale) = S (PaAIIWal2)
(T + Wa(2) ™ (Pa(2) ~ [Pul]) W), (5.27)

En estimant successivement chacun des trois termes du membre de droite de (5.27), on

prouve que
2n+1

d 32
,EP,,H(Z) < (14 2D,)0657

Ensuite, on observe que 2 (1 +2D,) <1, ce qui suit de (5.26) et (5.15)). On a donc

Sn41

2n+1

é 9008n+1 9

d
”apnﬂ(z)

Sn+1

ce qu'il fallait démontrer. On conclut alors que les hypotheéses inductives sont vraies pour
tout n > 0.

On peut maintenant, comme dans (7], déduire les inégalités (5.6) et (5.7) de (5.19), (5.21)
et (5.22).

Pour démontrer (5.9), remarquons que

iQ() L <SR <63 6
dz °°_u=ldzusv_oou=lu.

En utilisant (5.20), on peut estimer cette derniére série comme suit:

9002193" gc-lqﬂ(z) Zeg; _5 ¢\ ( )65,

v=1

On déduit de la définition de f (voir (5.16)) et des hypothéses du théoréme 2 (voir 5.3))
que
3 _ 31p3gs(Z 2 2
62 = | PP (5) < Pral ( )IP|2.

Alors, g 5
—1q,-2{ %\ p3 2 2
o'l (5)900 < 5% Pl
I1 suffit maintenant de choisir a tel que
3 1
~ca< -,
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ce qui implique (5.18), pour obtenir:

|56 - 2 1P

il
(o o]

ce qui est précisément (5.9).

La derniére assertion du théoréme se démontre par les mémes arguments que ceux de (7).
Soient z = A réel et P(A) hermitien. La construction faite ne détermine pas U(\) de fagon
unique. U(A) n’est donc pas obligatoirement unitaire. D’autre part, la suite diagonale §(\)
de l'opérateur Q(A) vérifie la condition (5.2), ce qui implique que le spectre de 'opérateur
P()) + Q est simple et que les colonnes de la matrice de U(A) sont des vecteurs propres
correspondants. L’opérateur U*U est alors diagonal dans ¢2(Z™), et proche de l'identité.
Nous pouvons donc remplacer U () par U(A)(U*(A)U(X))~1/2 qui est unitaire, ce qui termine
la démonstration du théoréme 2.

5.2 Application au probleme spectral

Il nous reste maintenant & appliquer ce théoréme & 1’étude du probleme spectral (3.4). Soit
A€ R\ [-2d,2d]. 1l suit de (3.3) que

1 eie=v0 dfdip
(2m)d Jra A+ 250 cosp; + 23 cosb;

Lo(z,9,A) =v(z -y A) = — (5.28)

Les diagonales I'g - (A) = {To(z + y,2, A) }yezm de 'opérateur I'o(A) sont alors de la forme
Loz(A) =7(z,A)1, zeZ™

ou 1 désigne la suite constante dont tous les éléments sont égaux a 1. Il est évident que
Loz(A) € A et que |[Toz(A)|l.e = |7(z, A)| pour tout z € Z™. Remarquons que, pour z = 0,
(0, A) est de la forme:

1 / d6dy
(2m)d Jre A+ 23 cosp; + 23T cosb;

v(0;A) = — (5.29)

En dérivant par rapport a A, on trouve:

1 / dfdy
(2m)d Jre (A +23F cosp; + 237 cosB;)?

9v(0; \) =

Puisque A est en dehors du spectre du Laplacien, i.e. hors de l'intervalle [—2d, 2d], I'intégrale
dans (5.29) est réelle, et positive si A < —2d, négative si A > 2d. Cela implique la propriété

importante suivante:
[7(0; A)] = —sgn A - 4(0; ). (5.30)

En particulier, compte tenu de ce fait, on peut déduire de (5.28) que

Iv(z, A)| < e PNl y(0, 8)], z € Z™,
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ou 1
B(A) = Elog(l + |A] — 2d).

Posons s = 2 et o = 1. Alors, pour tout A tel que [\ > A=2d+e2—1, on a

ITa(Ml2 = [7(0, A)] (5.31)

et
10T(A)[l2 = [07(0, M), [Al > A (5.32)

ou, pour simplifier, 8 = d,\

Considérons v(0, A). Vu (5.30), on a les estimations:

1
— & < ,
porag < OIS g (5:33)
et .
Goraap = O0N S —
ce qui implique, en particulier, que
1
517(0, M* < 8v(0,) < 21v(0, M)I* - (5.35)
Posons 4 1
— el (5 ¥ Bl
=24+ — (2) (5.36)

ol les constantes 7 et « sont tirées des conditions du théoréme 2, et la fonction ¥ est
définie par la formule (2.4). Remarquons que A; > A. Alors, comme il suit de (5.31)-(5.36),
I'opérateur ['g(\) vérifie, pour tout A tel que |A| > A, les conditions du théoreme 2.

Remarque 4 Soit G C C I'’ensemble défini par
G={z€C:z=XA+1ig [A| >\, 0<e<eo}. (5.37)
On peut toujours choisir un gy tel que
ITa(2)l2 < [7(0, M)

et que P
—TI
2, 10(z)

Alors, compte tenu de (5.29) et de (5.30), il vient:

S 107(0, A)|.

ITo(2)|l2 £ ITa(A)]|2, pour tout z= A +ic € G.

|=ra(a)], < et

On peut donc appliquer le théoréme 2 a la famille d’opérateurs {[y(z), z € G}. Cela servira
plus loin, dans la section suivante.
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G(z, A) est donc strictement monotone en A. Cela implique que 1’équation
a(z) +7(0,A) +4(z,A) =0 (5.43)
ne peut avoir qu’un seul zéro pour un z € Z™ fixé.

Pour mieux comprendre la localisation de ces zéros, on poursuit I’étude des fonctions
3(x, A). Remarquons que dans Iestimation (5.40) C||To(A)[l2 < 3 (cela suit de (5.3) et de
(5.8)). On trouve alors, en utilisant (5.40), (5.31) et (5.33), que:

3 1 1

T 5 &
55— 5 <9(0,2) +%(z, M) < WL

A> A,

et que
1

]_
<r}/“ +/\7I <
( ’)\) ( 7)\) A‘—‘Qd’

2N +2d =
Définissons les ensembles I3, I, I3 C R par:

A< =) .

NGRS

3 1 1 1
Il—{qelR.|q|>§A1*2d}, IQ-—{QER.!Q‘<§A1+2d}, I3—R\{IIUI2}. (544)

Si g(z) € I, I'équation (5.43) n’a pas de zéro en dehors de l'intervalle [— A1, A\1]. Sig(z) € I,
I'équation (5.43) admet une seule solution A = A\(z). Enfin, si g(z) € I3, on ne peut rien dire
de l'existence d'une solution de (5.43).

On définit alors deux ensembles sur I'axe du parameétre spectral A:

o1 = {A@) : gz) € Ir, 4(z, A(z)) = 0}

et
oy = {\(z) : ¢(z) € I3, §(z, A(z)) = 0}. (5.45)

L'union ¢ = g, U 0y est I’ensemble des A possibles pour lesquels 0 est une valeur propre de
I'(A). Alors, d’apres la deuxiéme assertion du lemme 2, on a

O'p(h) N {]R\ [—')\1, /\1]} =gy U os.

Montrons d’abord que o, est dense dans R\ [—A;, A;]. En effet, on sait d’apres les conditions
du théoréme 1, que la suite ¢ est de la forme: g(z) = f(w - z), et que w vérifie la condition
diophantienne (2.5). Alors, I’ensemble {w - zmod 1, € Z™} est dense dans [0,1]. Ensuite,
on observe que la condition de petits diviseurs imposée & la fonction f implique que

-
> — :
swp |0 2 555

Etant donné que f est continue et a un seul zéro sur tout intervalle de période, il est clair
que l'ensemble

{q(z), z€ Z™} N . . ]

20 +2d" 20 +2d
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est également dense. Enfin, puisque dans I'équation (5.43), la fonction ¥(z, A) + ¥(0, A) est
continue et strictement monotone, on voit que ’ensemble des solutions ¢; est dense dans
R\ [-A1,A1]. Quant & I'ensemble o9, il suffit de remarquer qu'il est au plus dénombrable.
Donc, le spectre de 'opérateur h, qui est la réunion de o, et g2, est évidemment dense dans
R\ [—A1, A1]. D’autre part, il est de multiplicité 1, car pour tout A la suite {¢(z, A), =z € Z™}
vérifie la condition de petits diviseurs (5.2), ce qui implique que A(z) # A(y) quand z # .

A la fin de cette section nous démontrons que les fonctions propres de h qui correspondent
aux valeurs propres situées dans R \ [—A;, A\;] décroissent exponentiellement. Cela suit de la
représentation (3.4) donnée dans le lemme 2, compte tenu des deux faits suivants:

(i) @, étant le vecteur propre de I'(A) qui correspond a la valeur propre zéro, ses éléments
©(y) décroissent exponentiellement, quand |y| — oo;

(ii) les coefficients matriciels go(€ — 1,2z — y; A) de la résolvante du Laplacien décroissent
exponentiellement, quand | — 7| — oo, ou quand |z — y| — oo.

I1 nous reste maintenant & démontrer que la mesure spectrale de h est purement ponctuelle.
On passe ainsi a 'étape C.

6 Etape C de la démonstration

Dans cette section on calcule la limite

lim = /Img (X, X; A+ i€)d) = —lim ~ [ Im(T 7, o) (A + i) (6.1)

el0 el0 T

oll p(z,X) est le vecteur dans £?(Z™) défini par:
(X, y;2) = 9o(X, (0,y); 2), z= A +1e.
En accord avec le développement de la résolvante en série de €
Ro(A + i) = Ro(A) — e%((ho — A)? + €2 IRy(N\) —ie((ho — A)* + €))7}
on peut représenter ¢(A + ig) sous la forme de la somme:

@(A +1ig) = p(A) — iepi(X) + O(e?)

ot ¢1(\) est un vecteur réel dans £2(Z™) et O(g?) est un vecteur dans £2(Z™) dont la norme
se comporte comme 2 quand £ — 0.

Soit G le domaine défini par (5.37). Comme on !’a déja mentionné (voir la remarque de

la section 5) on peut appliquer le théoréme 2 & la famille d’opérateurs {I'o(2), z € G}. 11

existe alors un opérateur inversible U(z) € M et un opérateur diagonal Q(z) vérifiant (5.6),
(5.7) et (5.9) tels que

[7Y(z) = U(2)Q 7 (2)U(2). (6.2)
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Dans ce qui suit on utilise les deux lemmes ci-dessous, dont les preuves se trouvent dans
I’annexe.

Lemme 9 Soient Q, P(z) et U(z) les opérateurs définis dans le théoréme 2. Supposons que
P(\ +ig) admette le développement suivant:

P(A+ie) = P(\) —iePy ()N e) + e Py(\e), AER, e >0
ou Pi(A g) et Py(A €) sont des opérateurs ayant des matrices réelles tels que:
PN ells, [1P2(A €)lls < (IP(A)s-
Alors, les opérateurs U(X\ + i) et U™Y(\ + i) admettent, a leur tour, la représentation:

U(X + i) = U(A) + €Uy (A €) + O(€?) (6.3)
Ur(X +ig) = UH(A) + eUa(N, €) + O(€?), (6.4)

ot ||Up|ls, ||Uz]ls £ D < oo avec une constante D indépendante de €, et ot O(e?) est un
opérateur dans M* dont la norme décroit comme €% quand € tend vers zéro.

Lemme 10 Sotent vi(A,€) et va(A, €) deuz vecteurs réels dans £%(Z™) dont les éléments
décroissent exponentiellement en y € Z™, uniformément en A et € dans un intervalle (0, g).
Alors,

lim < [ (Q (A +ie)vy(\, &), va(), €))dA = 0. (6.5)

elo T JA

En utilisant l'identité (6.2), on trouve

1 1t . ~
lim = | Im(I'"Yp,0)(A +ie)dA = lim = [ Im(Q™ 'y, P} (A + ie)dA :
im — | Im(T™"p, ) (A + ie) im — [ Im{(Q7'9, %) (A + ie) (6.6)
ot ¥(z) = U(z)e(z) et ¥ = (U(2))*p(z). D’apres le théoréme 2 tout élément diagonal
‘—jﬁ de Vopérateur @~ !(z) a au plus une singularité, notamment, un pdle simple au point
A(z) € R\ [=A1, A1) Or, |Q7H + i€) ||l 2(zmy < %. On utilise ensuite le lemme 9. Compte
tenu du fait que 'opérateur U(\) est unitaire pour A réel, on a:

lim [ (@, 9+ e = lim - [ (@0 + w3, )

~lim = [A Re((Q1(A + i) U (N1 (), UNw(N) + (O~ (A + i) U (A)(A), U (N1 (A))) dA

+I§F3%f&1m(@‘1()~+ ie)U1(A, (A), UN @A) + (Q7 (A + i) U(N)p(X), Uz (A, p(N)))dA
+0(e). (6.7)

Puisque les opérateurs U, U;, U, sont bornés dans l'espace M, les éléments des vecteurs
Up, Upy, Uyp et Usep décroissent exponentiellement a l'infini. En utilisant le lemme 10, on
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voit que tous les termes, sauf le premier, du membre de droite de (6.7) tendent vers zéro.
Ecrivons le premier terme sous la forme:

lim 2 [ Im(Q (0 + i) U(N)e(A), U(A)p(A)})dA = lim — Im [T W@ I

6.8
elo T Ja el0 T vezm Ay, A + i€) (98]

On définit ensuite deux ensembles de y:
={yeZ™:gy)l € L}, My=Z"\IL

ol I) est défini dans (5.44). On peut découper la somme du membre de droite de (6.8) en
deux:

y A)® )| , A)|?
5 W NE _ 3 1CICTE] 5 1w II°
vezm QU A +ie) o Gy, A +ie) o, Ay A+ ie)
Remarquons que I’ensemble o défini par (5.45) est localisé: ga C [—Ag, —A1] U [A1, Ag], ol
Ao =3\ +8d.

Alors, pour tout y € II;, la fonction §(y, A + ie) n’a pas de zéro dans R\ [—Xq, Ao], €t, si
y € Ily, elle a un seul zéro, d’ordre 1, au point A(z) € R\ [—A1, A1)

Choisissons 'intervalle A C {R\ [=Ao, \o]}. Alors, quand y € II;, la fonction §(y, A+ i€)
est bornée inférieurement par une constante qui dépend uniquement de Aq et de la distance
entre les intervalles A et [—Ag, Ap]. Cela donne:

% e < aDe sup 5 wiw 0P 0,10

yell ?J, A + ZE) AEA yezm
Siy € II; on développe ( 5 en série de Laurent de £ au voisinage du péle A(z) € R\[- A, A1)

1 1
Gy, A +ie) 94y, A(y)) (A — Ay) +e)
ol les quantités O(1) et O(e) sont réelles. Alors,

¥ (y, |y, )P
Ielgl';rlm/ ;2 y,A+zs)dA—l§%wIm/y€ZH28qy, (¥) (A — )\()+i£)dl\'

+0(1) +i0(e)

La série du membre de droite de cette derniére relation converge uniformément par rapport
a A et €. D’apreés le théoréme de Lebesgue, on peut donc échanger 1'ordre des opérations:

1 5103 1 . [ (y, A))I?
lim — | Tm(Q7 (A +ie)p(A), ¥(A))dA = y;%ea——aé(ya Q) (6.9)
Remarquons que
Py, A®) = {UT (M) ( ()} ()
= :ZmU ', y; My))p(z'; A(y))
= 3 U, 5 A®)90(X, (0,2); A(®))- (6.10)

mlezd
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La colonne {U(z', y; A(y)) } ez de opérateur U(\) est juste le vecteur propre de I'(A(y)) cor-
respondant a la valeur propre ¢(y, A(y)) = 0. D’apres le lemme 2 la derniére série représente
I'élément u, (X; A(y)) du vecteur propre de 'opérateur h, correspondant & la valeur propre
A(y). Finalement, en combinant (6.9) et (6.10) avec (6.1) et (6.6) on obtient:

B - [ur) (& 2)I°
lim— [ Img(X,X; A+ ie)d) = Ll /1
elo T fA gl ) y:)%):eA Aq(y, A(v))

ce qui termine la démonstration du théoréme.

A Annexe

A.1 Preuve du lemme 8

L’équation [@, W]+ P — [P] = 0 a une solution et une seule donnée par

R ST bt
) -Teqy  Pour z# 0.
Sa dérivée vaut:
Ly, (A) = {0 9P:(A) NN Tagl)) o T 0,
ax = * O Ty~ e =Toaoy? ~  pour z # 0.

Puisque P,, 0F,, 0Q € .#, alors %WE(A) € . et 1'on a

| S| < =60 [0PO)1, + 2870 0QM) = POV,
A

ce qui implique l'assertion du lemme.

A.2 Preuve du lemme 9

Les hypothéses du lemme 9 impliquent que la série correspondante au produit scalaire dans
(6.5) converge uniformément par rapport & Sous les hypothéses du lemme on peut écrire:

T(A+ig) = P(A) + Q — 2Py (), €) — iePy(\, €)

On applique d’abord le théoreme 2 & 'opérateur P(\) + Q. En fait, seule la premiiére partie
dp théoréme est importante ici, notamment celle qui dit qu'’il existe des opérateurs U(A) et
Q()) tels que R

U AP + QU = Q(A).
Alors,

G(A + ie) = UN{Q(N\) — 2U Y NP\, e)U(N) — ieU Y (A Py(\, ) UM JU ().
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Puisque [[UN)|ls, 1UMN]s < 3, [[Pi(A\e)lls < |P(N)]ls et que Iopérateur Q()) vérifie
la condition de petits diviseurs (5.2), on peut appliquer le méme théoreme a l'opérateur
Q(A) — 2UY(A)Pi(X,€)U(N). On obtient ainsi les opérateurs Vi(), g) et Q1(), €) tels que

Q) = U NP UM = Vi(A, &) QA Vi(A e).
Alors,
T(A+ie) = UMV, {1 (A, &) —ieVi (M, ) UL\ Py(M, e)U (VA (A, )}V, e)U~L(N)
En répétant cette procédure encore une fois, on trouve:
L(A +ie) = UMV, e)Va(X, €)Q2(A, )V (A ) VT H (A, e)UTH(A)

11 est clair que Qa(\,€) = QA+ ie) et que U(X + ie) = UMN)Vi(A, €)Va(\ €). De plus, le
théoréme 2 donne les estimations:

IVi(A€) = Ills, V7 (N €) = Ills < CEX[[P(A)]s,
IVa(A,€) = Illsy V2 (A €) = Ills < Cel P(V)]ls-

1l est facile de vérifier qu’on peut représenter U (XA + ie) et U™1(A + ie) comme suit:
UA+ie) =UN)+V(A)(Vi(Ae) = 1)
+UN)(Va(Ar€) = 1) + U(A)(Vi(A€) — D)(Va(A, €) = I);
U~ YA +i€) = UL(\) + (Vi €) — DUH(N)
+VH A e) = DU + (V3 (A e) = DV (A €) = DU ).
En notant
eli(A,e) =UN)(Va(Ae) = 1);
eUz(M ) = (V31 (A e) = DUTI(N),
on a (6.3) et (6.4).

A.3 Preuve du lemme 10

Les hypothéses du lemme impliquent que la série correspondant au produit scalaire dans
(6.5) converge uniformément en A et . On peut donc utiliser le théoréme de Lebesgue pour
intervertir l'ordre des opérations. On trouve ainsi que

/vl(y>)"6)v2(y’)\’€)d)\. (A.1)
A

lime— /(Q (A +ie)vi(X€),v2(A€))dA = 3 lim Gy, A + ie)

el0 yezm ElO ™

Fixons y € Z™. Si §(y, A) n’a pas de zéro dans l'intervalle A, alors

lim = [ 2 B X sy, 1,8) jy
eld 7 JA Gy, A+ i€)
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S'il existe un A(y) € A tel que §(y, A(y)) = 0, alors on développe m en série de Laurent
de € au voisinage de A(y):

1 1
g g B gy = k-
Q(y, A +ie) 94y, A(y)) (A — Ay) + ie)
Si 'on substitue ce développement (A.2) dans le membre de droite de (A.1), on observe que

les fonctions qui sont sous le signe intégrale sont continues en A et bornées uniformément en
€. Alors, compte tenu du facteur € devant l'intégrale, on trouve que la limite est nulle:

0(1). (A.2)

1 ooy, A e)va(y, A ) .1 v1(y, A, €)va(y, A €)

1 —] &% =N

o “ma T qlyh+ie) 10 “7 Ja 94(y, N@)) (A — A(y) + ie)
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1
84(z,\) 2 711(0, ) > 0.
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