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Abstract.

We consider the discrete Schrödinger operator in £2(Zd) whose potential is an unbounded

quasi-periodic function concentrated on a proper subspace {0} x Zm (m < d). Under the
condition that the potential satisfies a certain version of the small divisors condition, it is

proved that the part of the spectrum lying far enough from the spectrum of the free Laplacian
is pure point, dense and has multiplicity one and the corresponding eigenfunctions decay

exponentially.
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1 Introduction

De nombreux problèmes de la physique des ondes et des solides et de la théorie spectrale
mènent à la résolution d'équations différentielles et d'équations aux différences finies dont
les coefficients sont concentrés au voisinage d'une surface (ou, plus généralement, d'un sous-
espace) de l'espace considéré. Il s'avère que dans certains cas les équations de ce type
admettent des solutions qui décroissent exponentiellement le long des directions orthogonales
à la surface (au sous-espace). De telles solutions sont souvent appelées "ondes de surface"
ou encore "états de surface".

L'étude des ondes de surface a commencé il y a plus de cent ans après que Rayleigh eut
découvert en 1887 deux types de modes propres d'un demi-espace (voir [8])

R?. {(£*), (>0,iel2}
homogène, isotrope et élastique:

(i) des modes qui oscillent et dont l'amplitude ne décroît à l'infini en aucune des variables
spatiales, appelés "ondes de volume";

(ii) des modes qui sont des ondes planes en la variable x et qui décroissent exponentiellement

en la variable £, appelés "ondes de surface".

Les résultats de Rayleigh ont eu des applications dans la théorie de la propagation des
ondes sismiques et, plus tard, dans de nombreux domaines de la physique des états condensés.

Après la découverte de Rayleigh, on a trouvé des ondes de surface acoustiques dans des
milieux stratifiés, en particulier, dans le cas de deux demi-espaces homogènes et élastiques à
constantes d'élasticité différentes. Au début du siècle, à propos de l'étude de la propagation
des ondes autour de la surface de la Terre, l'école de Sommerfeld a découvert des solutions
analogues pour les équations de Maxwell.

Ces résultats traduisent une propriété assez générale des solutions d'équations différentielles

et d'équations aux différences finies qu'on peut appeler "principe de localisation" et
qu'on peut formuler ainsi: si les coefficients d'une équation possèdent une inhomogénéité
assez forte, il peut exister des solutions localisées (en général de façon exponentielle) près de

cette inhomogénéité.

Dans les années 40, ce principe a été appliqué par I. Lifshitz [6] dans ses études de

la dynamique des cristaux contenant des défauts de dimension inférieure à 3. Il a trouvé
des analogues cristallins des ondes de surface de Rayleigh, des "phonons de surface", non
seulement dans la bande acoustique mais aussi dans des bandes optiques. Ses résultats
sont à la source de nombreuses applications techniques dans le traitement du signal haute
fréquence, dans l'acoustique optique, dans la physique des semi-conducteurs, etc.

Ces travaux considèrent la surface qui porte le potentiel comme idéale et homogène,
alors que, dans des conditions réelles, toute surface possède une certaine rugosité. Dans la
plupart des cas, cette rugosité peut être considérée comme aléatoire. Elle peut être due à
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des crissements ou à une incommensurabilité, ce qui donne souvent des surfaces ondulées de

façon périodique ou presque périodique.

Il est intéressant d'étudier les effets de cette rugosité dans la dynamique de la surface

cristalline, en particulier sur la propagation et la localisation des ondes.

Dans cet article, nous considérons le cas particulier du régime de localisation forte, c'est-
à-dire le cas où le degré de rugosité est assez élevé, et nous considérons aussi le cas où

l'énergie est proche des extrémités du spectre de l'opérateur correspondant.

Nous présentons un modèle discret quasi-périodique qui donne une localisation exponentielle

des états de surface. Dans la théorie mathématique de la localisation on connaît déjà
quelques résultats semblables (Grinshpun [4], Aizenman et Molchanov [1], Jaksic, Molchanov
et Pastur [5]) pour une surface aléatoirement rugueuse, modélisée par un opérateur de

Schrödinger discret avec une condition au bord.

Soit d > 2 un entier, et soit ho le laplacien discret défini dans l'espace £2(Zd) par

(h0u)(x) - y, <Y) (i-i)
Yezd

l|y-x||=i

où \\Y — X\\ Y,i=i \Yi — AZ,\. On considère un opérateur de Schrödinger discret défini dans
e2(Zd) par

h-ho + V (1.2)

où V est un potentiel "porté par un sous-espace", et que nous allons définir. Soient 1 < v < d

et 1 < m < d deux entiers tels que v + m d. On écrit Zd comme le produit cartésien:

jd z„+m z, x Zm ,x ^^ ÇeZ", xe TA}.

Soient {v(x), x G Zm} une suite réelle et 6(f) la fonction définie sur Z" par 6(Ç) 1, si

Ç 0, et 0 sinon.

On appelle potentiel porté par un sous-espace l'opérateur V de multiplication par la suite

v(f„x) 6(f)v(x), (Z,x)£l,d. (1.3)

Un tel potentiel V est concentré sur le sous-espace

{o}xZm {(^)ezdIC o} (1-4)

appelé sous-espace du potentiel. Dans le cas particulier où d 3 et m 2, le sous-espace
(1.4) est une "surface" dans Z3 et l'on parle de potentiel de surface.

On s'intéresse aux propriétés spectrales de l'opérateur h. Autrement dit, on cherche les

solutions (A, ux) du problème:
hu\ \ux, A £ M. (1.5)

Le résultat principal de l'article dit que, sous certaines hypothèses, il existe un Ao > 0 tel
qu'en dehors de l'intervalle [—A0, A0] le spectre de l'opérateur h soit purement ponctuel et
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que toutes les fonctions propres Ux correspondantes décroissent exponentiellement à l'infini
en Ç et en x.

Le plan de l'article est le suivant. La section 2 contient l'énoncé du résultat principal, et
les définitions préliminaires indispensables. Dans la section 3 nous donnons quelques brèves
explications sur la démonstration de ce résultat, tandis que dans les sections 4 et 5 nous
en donnons les détails. Une annexe contient enfin les preuves de lemmes auxiliaires utilisés
dans la démonstration.

2 Définitions. Résultat principal

Avant d'énoncer le résultat principal, nous indiquons d'abord les hypothèses qui vont y
intervenir. Ces hypothèses portent sur la suite

{q(x) =v~1(x), xeZA1} (2.1)

qui est l'inverse du potentiel, elles viennent du problème des petits diviseurs qui a ses origines
dans la théorie des perturbations des systèmes d'équations différentielles non-linéaires et a
beaucoup d'applications en théorie spectrale. La classe de suites que nous considérons est

un cas particulier des suites définies dans l'article de Pöschel [7] sous l'appellation "stable
distal sequences".

2.1 Forme quasi-périodique

La suite q(x) sera supposée quasi-périodique, i.e. de la forme

q(x) f(u ¦ x), (2.2)

où a: € Zm, où / : R —» M est une fonction périodique de période 1, où w 6 Rm \ Qm et où

2.2 Condition diophantienne

Elle porte sur uj. C'est une généralisation due à Rûssemann [10] de la condition diophantienne
classique. Elle suppose le choix préalable d'une "fonction d'approximation".

Définition 1 On appelle fonction d'approximation une fonction continue fi : (0,oo) —>

(1, oo) telle que, si l'on pose

$(cr) o--4m sup Q(r)e-ar < +oo (2.3)
r>0
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tf(<7) inf J] $(^)2~"-1 < +00. (2-4)
s" „=o

où dans (2.4) l'infimum porte sur l'ensemble Sa des suites or, > > ou > > 0 telles que
££Lo<7" — ai al°rs Q(a) et ^(a) sont hms pour tout o > 0.

Définition 2 On dit que u> vérifie la condition diophantienne s'il existe une fonction
d'approximation fi telle que

||w • x|| > fi-1(|x|), pour tout i^O. (2.5)

Exemple 1 L'exemple le plus simple de fonction d'approximation est le suivant (voir [10]):

fi(s) sT, s > 1 t >m- 1.

Dans ce cas, si l'on considère la suite ov 1~v~lo on obtient

*(a) < co'im-T

où c est une constante qui ne dépend que de r et de la dimension m. De plus, pour une telle
fonction d'approximation fi, la condition (2.5) n'est autre que la condition diophantienne
classique. Pour m > 1, les produits scalaires x ¦ tu, pour x € Zm, sont denses dans R.

Exemple 2 Voici un autre exemple de fonction d'approximation [10]:

J fi(so) pour 0 < s < so e1+Q

^ ~ \ cexp (7^37) pour s > s0

avec un c > 0. On a alors:

2 / /1 ^^(c) < -exp cr exp
c \ \ ap log 2

pour un a et un p tels que 0 < a < 1/2 et 0 < p < 1.

Dans le cas général on a un critère assurant qu'une fonction fi est une fonction d'approximation.

Proposition 1 ([10]) Soit fi : (0,oo) —» (1,00) une fonction continue. Si la fonction
oj(r) logfi(r) vérifie:

0<uj(r)<u)(r'), 0<r<r',
uj(r) to(r') „ „—— > -A-A- -*0. 0 < r < r' -> 00

log

alors,

-fz2Js

r
' co(r)dr
—77- <°~ >

•o£ te
\ 4m

45
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2.3 Condition de petits diviseurs

Cette condition, de nature technique, est la plus essentielle. Son utilité apparaîtra plus
clairement dans la démonstration du résultat principal.

Définition 3 Soit & une algèbre de Banach de fonctions réelles définies sur R dont la norme
|| ¦ 11^- soit invariante par les translations définies par ifTu.xtp)(t) ip(t +u> ¦ x). Soit ui G

Rm\Qm. On suppose que w vérifie la condition diophantienne 2.5 relativement à une fonction
d'approximation fi. Soit / une fonction quelconque, n'appartenant pas nécessairement à &).
On dit que / vérifie la condition de petits diviseurs s'il existe un nombre t G (0,1) tel que,

pour toute fonction ip : R —> R, telle que ip — f 6 & et que ||(v? — f)\\s^ < r < 1, on ait

{<P - ÎL-xV)-1 € & et \\(tp - Tu.xtp)-l\\* < 0(1*1) (2.6)

pour tout x e Zm \ {0}.

Remarque 1 On peut observer que cette condition de petits diviseurs implique une
certaine singularité de la fonction /. Il suit en particulier de la définition que / ne peut être
continue sur R tout entier. De plus, toute fonction / qui vérifie cette condition doit possède
obligatoirement la propriété suivante:

sup |/(r)| > -^-r- (2.7)
re[o,i] 2fi(|i[)

pour tout x € Zm. Il suit en effet de (2.6) que

0(1*1) >!!(/- Tu.xf)~ly > sup p— 1 ,.¦¦¦ > l
tmi\ \f(t) - (Tu.J)(t)\ - 2suPre[0,1] |/(r)|

pour tout x e Zm.

Voici un exemple qui illustre les définitions précédentes (voir [7]). Soit r > 0, ct soit
JfT l'espace des fonctions analytiques réelles définies sur la bande horizontale Sr {z € C :

| Imz| < r}, périodiques de période 1, et de dérivée bornée. On pose

\\r/;\\œr sup \i,(z)\ +sup \ip'(z)\.
ZëSr Z€Sr

J$?r est évidemment une algèbre de Banach invariante par translation. La fonction / définie

par f(z) — tan-7r.z est réelle, méromorphe, et périodique de période 1, mais elle n'appartient
pas à 3€r. Il est pourtant facile de voir que / vérifie la condition de petits diviseurs ci-dessus.
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2.4 Enoncé du résultat principal

Theoreme 1 Soit h ha+V un opérateur de Schrödinger discret dans l'espace l2(fZZd) défini

par les formules (1.1)-(1.2) avec un potentiel V porté par le sous-espace (1.4). Supposons

que la suite inverse du potentiel {q(x) v~1(x), x € Zm} est de la forme q(x) f(u ¦ x)
(voir (2.2)J et que:

(i) u vérifie la condition diophantienne (2.5) avec une fonction d'approximation fi;

(ii) la fonction f est continue sur [0,1) et a un seul zéro sur un intervalle de période;

(iii) la fonction f vérifie la condition de petits diviseurs pour fi et pour un r quelconque.

Il existe alors un Ao Ao(fi,r) > 2d tel qu'en dehors de l'intervalle [—Ao, Ao] le spectre
de h soit purement ponctuel, dense, de multiplicité 1, et que toutes les fonctions propres
décroissent exponentiellement dans toutes les directions de Zd (i.e. en £ et en x).

Remarque 2 II est important de souligner que la classe des potentiels du théorème est

assez grande. On peut citer comme exemple de suite q(x) qui convient la suite q(x)
tan2p+1(7Tw • x) où p e N. Pour des exemples analogues, voir [2, 7].

3 Schéma de la démonstration

La démonstration du théorème comporte trois étapes:

A. Passage du problème (1.5) à un problème spectral dans l'espace £2(Zm).

B. Etude de ce problème spectral, non linéaire en le paramètre spectral A.

C. Application des résultats des sections précédentes à l'étude de la mesure spectrale de

l'opérateur h.

3.1 Etape A

On applique un résultat général de théorie spectrale (voir [9]). Si A est un opérateur
autoadjoint et si Ra(z) est sa résolvante, alors, pour tout opérateur auto-adjoint B, la résolvante

Ra+b de la somme A + B vérifie l'identité:

Ra+b(z) Ra(z) - Ra+b(z)BRa(z), pour tout zéC\R.

Appliquons cette identité pour A ho et B V. Soient g((t;, x), (n, y); z) et g0(Ç — r/, x —

y; z) les coefficients matriciels respectifs des opérateurs (h — A)-1 et (h0 — A)-1. Grâce
à la structure particulière du potentiel l'identité précédente nous permet d'exprimer les
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coefficients matriciels de la résolvante de h à partir de la résolvante du laplacien /i0 et de la
suite {q(x) v~1(x), x € Zm}. Plus précisément:

Lemme 1 Si z € C \ R, alors

9((Ç, x), (-q, y);z)=g0(Ç-ri,x- y; z)

- E go(î,x - x';z)T-1(x',y';X)g0(r1,y' -y;z), (3.1)
x',y'ëZm

T(z) rQ(z) + Q (3.2)

où Tq(z) est l'opérateur dans £2(Zm) qui a pour coefficients matriciels

ro(x,y;z) go(0,x-y;z), x,y£Zm (3.3)

et où Q est l'opérateur de multiplication par la suite {q(x), x S Zm}.

L'analyse de cette égalité nous montre pourquoi il est intéressant d'introduire et d'étudier
la suite q(x), inverse du potentiel v(x). Il est naturel de s'attendre à ce que l'inversibilité
de l'opérateur V(z) qui intervient dans la partie droite de (3.1) joue un rôle important dans
l'étude de la résolvante de h. C'est l'objet du lemme suivant:

Lemme 2 Soient a(h) le spectre de h et op(h) l'ensemble de ses valeurs propres. Alors,
pour tout A e R \ [-2d, 2d],

(i) A € cr(h) si, et seulement si, 0 € cr(T(\)),

(ii) A G ctp(h) si, et seulement si, 0 € crp(F(A)).

De plus, si A est tel que 0 e <7p(r(A)) et si ipx est le vecteur propre correspondant, i.e. si
tpx € £2(Zm) et r(X)ip\ 0, alors le vecteur propre ux de h est donné par

ux(f,,x) - E 9o(i,x-y;\)ipx(y)- (3.4)
yezm

L'article de Schröder [11] contient un résultat analogue pour le laplacien avec condition
au bord. La démonstration de ce lemme ressemble à celle de Schröder. Elle est donnée dans
la section 4. Ceci termine la première étape.

Nous sommes ainsi ramenés au problème suivant:

Problème Trouver des valeurs du paramètre A € R telles que l'équation

T(X)ipx 0 (3.5)

ait une solution non-triviale dans £2(Zm).
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D'après le lemme 2 l'ensemble de ces A coincide avec l'ensemble des valeurs propres de

h, et à partir des vecteurs ipx solutions de (3.5) on peut grâce à la formule (3.4) construire
des vecteurs propres de h correspondants.

On a donc réussi à réduire le problème (1.5) avec un potentiel inhomogène à l'étude d'un
problème dans £2(Zm) avec des coefficients partout non-nuls dans Zd. La particularité de

ce problème est qu'il est non-linéaire en le paramètre spectral A. Sa résolution, comparée à
celle des problèmes spectraux classiques, requiert une analyse particulière qui fait l'objet de

l'étape suivante.

3.2 Etape B

On étudie d'abord le spectre de l'opérateur T(A) pour A fixé quelconque. Il s'avère qu'il existe

un A0 tel qu'en dehors de l'intervalle [—Ao, Ao] le spectre de F(A) est purement ponctuel. On
considère ensuite chaque valeur propre de T(A) comme une fonction de A et on en cherche
les zéros.

Remarquons que dans la présentation (3.2) de T(A) l'opérateur Q a un spectre purement
ponctuel. De plus, en analysant les coefficients matriciels de T0(A) on observe que, pour A

assez grand, sa norme est aussi petite que l'on veut. On peut donc considérer T(A) comme
une petite perturbation de Q. Le problème spectral (3.5), pour un A fixé, devient alors un
problème de perturbation de spectre purement ponctuel. La condition de petitesse imposée
à l'opérateur To(A) provoque l'apparition de l'intervalle [—Ao, Ao] dans l'énoncé du théorème.

La particularité des données initiales fait penser aux méthodes de la théorie KAM qui
s'avèrent très efficaces dans l'étude des propriétés spectrales des opérateurs à coefficients
quasi-périodiques [7, 2]. De fait, pour étudier le spectre de T(A), on utilise une version
de l'algorithme proposé par Craig [3] et Pöschel [7]. L'idée principale consiste à ramener,
par approximations successives, l'opérateur T(A) à un opérateur Q(X) de multiplication par
une suite {q(x, A), x G Z771}. Autrement dit, on cherche une application unitaire U(X) :

£2(Zm) — £2(Zm) qui transforme T(A) en Q(X), i.e. tel que

T(A) U(X)Q(X)U~l(X).

Une fois U(X) trouvée, on obtient que le spectre de F(A) coïncide avec celui de Q(X), donc

avec la suite {q(x,X), x € Zm}.

Nous cherchons U(X) sous la forme d'un produit infini d'applications:

U(X) lim UJX)

Un(X)=ïï(I + W„(X)).

A chaque pas de l'itération, nous supposons que

C/n(A)-1(r(A) + Q)Un(X) Qn(X) + rn(A), n > 0.
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L'application Wn(z) est déterminée comme l'unique solution de l'équation

[<3„+i(A), wn(x)) + rn(A) - [rn(A)] o, (3.6)

où l'on note [>!] la matrice diagonale dont la diagonale est formée de A et où Qn+i(A) est défini

par Qn+i(A) Qn(A) A [rn(A)]. Dans la théorie KAM, l'équation (3.6) est appelée équation
homologique. Pour montrer que ce schéma converge, on définit une échelle d'espaces normes
Ms" telle que tous les opérateurs du schéma soient bornés dans les espaces correspondants
et que

r»(A) -*o,
Un(X) -- 17(A),

QnW --«(A)

en norme, quand n —» oo.

L'équation homologique (3.6) est le point central de l'algorithme. Sa résolution formelle
est de la forme:

(0
si x — v

rn(x,y,\) SÌXUy[ (3-7)
qn+l(x;X) -qn+1(y;X)

Pour que cette formule définisse un opérateur borné et inversible, il faut étudier le comportement

des dénominateurs dans (3.7). On appelle ces dénominateurs les petits diviseurs. On
observe, d'abord, que les coefficients matriciels Tn(x, y;X) des opérateurs Tn(A) décroissent
exponentiellement quand \x — y\ —> oo. Il suffit donc que les quantités -z—, AA.—t—j-t soient
bornées supérieurement par un polynôme en \x — y\. La condition de petits diviseurs que
nous avons introduite dans la section précédente garantit les estimations adéquates.

Comme nous l'avons déjà dit, les suites qui satisfont cette condition de petits diviseurs
ne sont qu'un exemple particulier des suites définies dans [7] sous l'appellation "stable distal

sequences". Pour ce qui concerne la convergence des approximations successives, notre
algorithme est semblable à celui de Pôschel pour résoudre le problème spectral direct pour
des opérateurs aux différences finies avec "stable distal potentials". Il faut remarquer que
toutes les estimations valent pour des valeurs du paramètre spectral dans toute une bande

{z S C : 0 < Im 2 < £0} du plan complexe. Cela servira dans l'étape C de la démonstration.
On obtient ainsi, à la limite, l'opérateur Q(X) comme somme de la série:

oo

<3(A) Q + [ro(A)] + ]r[r(n)(A)]. (3.8)

Une analyse spéciale, effectuée à chaque pas de l'itération, montre que les termes de la
suite q(x; X) sont des fonctions strictement monotones de A. Ils ne peuvent donc avoir qu'un
seul zéro, noté A(x). Ensuite, d'après le lemme 2, on peut représenter l'ensemble des valeurs

propres de h en dehors de l'intervalle [—Ao, A0] comme suit:

op(h) n {R \ [-A0, Ao]} {A : q(x, X) 0, x € Zm, \X\ > A0}.
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Finalement, la représentation de l'opérateur Q(X) que nous avons obtenue (voir 3.8) et
les propriétés de la suite q(x) nous permettent de prouver que

(i) le spectre ponctuel de h est dense dans R \ [—A0, A0];

(ii) il est de multiplicité 1;

(iii) les fonctions propres correspondantes décroissent exponentiellement dans toutes les

directions.

Il reste alors à démontrer qu'en dehors de [—Ao, Ao] le spectre est purement ponctuel.
C'est l'objet de l'étape C.

3.3 Etape C

Soit <?/i(dA) la famille spectrale de l'opérateur h. D'après le théorème spectral (voir [9]), la
résolvante Rh(z) est la transformée de Borei de e?i,(dX), i.e.

J X — z

On peut donc exprimer <£/, au moyen de Rh(z) grâce à la formule d'inversion. Soit {ex(Y)
6(Y — X), Y € Zd} la base canonique orthonormée de £2(Zd). Alors, pour tout intervalle
AeR,

(<g'h(A)ex,ex) \im- [ lmg(X,X;X + i£)dX, XçZd. (3.9)
eio n Ja

L'étape C consiste à calculer la limite de la partie droite de (3.9). On utilise d'abord
l'identité (3.1), ce qui donne

lim- / lmg(X,X;X + ie)dX -lim- / Im(r-Vx,<Px)(A + ie)dX
do tt Ja eJ.o it Ja

où T(z) est défini par (3.2) et où ipx(z) est un vecteur dans £2(Zm) dont les éléments sont
de la forme:

<Px(y;z) go(X,(0,y);z), z X + i£.

On utilise ensuite les résultats de la section 4. Pour des valeurs z X + ie l'algorithme
itératif nous donne des opérateurs U(z) et Q(z) tels que

r_1(A + is) U(X + ie)Q-l(X + ie)U~\X + ie).

On observe ici que pour tout e > 0 l'opérateur T(A + ie) est inversible. On développe donc
Q_1(A + is), U(X + ie) et U~l(X + ie) en séries de e et l'on passe à la limite, en faisant
attention aux singularités aux points X(x) tels que q(x, X(x)) 0. On obtient finalement:

lim- f lm(Q-\X + ieMX)MX))dX - £ ^f^f,£i07r^
y.xwzA dq(y,X{y))

ce qui équivaut à dire que la mesure (S'h(A)ex, ex) est purement ponctuelle, ce qui achève

la preuve du théorème.



470 Boutet de Monvel and Surkova

4 Etape A de la démonstration

Cette étape consiste à prouver le lemme 2. La démonstration utilise les deux lemmes suivants
dont nous donnons les preuves après celle du lemme 2.

Lemme 3 Fixons un X tel que \X\ > 2d. Soient u € £2(Zd) et (h — X)u f. Poions

tp(x) u(0,x), xeZm
F(x) l(h0-X)'lf}(Q,x), x€Zm
TQ(x,y,X)=g0(0,x-y;X), x,yeZm.

Alors,
(T0Q-1 + I)if F (4.1)

et il existe 0 < C(X) < oo tel que

I|r0<?-VIL > c{Ä){Mä - Uh - x)-lfU (4.2)

où II • ||m et || • \\d sont les normes respectives des espaces £2(Zm) et £2(Zd).

Lemme 4 Soient ip € £2(Zm) et (TQQ-1 + I)<p F. Posons

«fé. x) - E sofé.x - v, *)-n<p(y) + p(t *), (c, x) e zd (4.3)

où

avec

p{î<x) j27tylx + 2zucose,' <44)

Alors,

(i) (h — X)u f, u(0, x) ip(x), x € Zm avec

f^x) ^A-M)F(x)A E P(t,x-y) + p(t;,x + y) (4.5)
Plu>AJ „ez-», ||ï||=l

(h) ll/lld < C||F||m

(iii) ||li||d > HvIL •
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4.1 Preuve du lemme 2

Cette preuve utilise les lemmes 3 et 4 que nous venons d'énoncer.

(ii) A G o(h) => 0 G o(T(X))
Soit A G cr(/i). D'après le critère de Weyl, il existe une suite {uk}'k'=l telle que ||ufc||<i 1, k

1,2,3,... et \\(h — X)uk\\d —* 0, k —> oo. Soit (h — X)uk fk- Posons ipk(x) uk(0, x), x €
Zm. Alors, d'après le lemme 3, (r0Q-1-r-i>fc Fk, où Fk(x) [(/i0-A)_1/;c](0,z), x&Zm.
Donc,

IKroQ-1 + J)^||m \\F„\\m < ||(fto - A)-7*||d -» o, fc -» oo.

En posant ipk FoQ~1<Pk, on a:

||(r0 + Q)röVfc||m IKroQ"1 + i)fk\\m ^ o, fc - co.

D'autre part, d'après le lemme 3, la norme de tfk peut être estimée comme suit:

UkWm > \{\\Uk\U - \\(h0 - Xy'fkh} - \, fc - 00.

Il s'ensuit que
||(r0 + Q)röV*ll

0, fc
HV'fcllm

Donc, 0 G cr((r0 + Q)r0"1). Il est alors facile de voir que 0 G o-(F0 + Q).

(k) X G a(h) <=06 o(Y(X))
Soit 0 G o((To + Q)). Il existe alors une suite {<Pk}kLi telle que ||</?*:||m 1, fc 1,2,3,... et
\\(r0+Q)<pk\\m -» 0, fc -» oo. Posons Ffc (Po+QVfc et ipk Qtpk. Il vient (TQQ-l+I)i>k
Fk. Définissons uk(f,,x) comme dans (4.3) avec tp — ipk, F Fk. Alors, d'après le lemme 4,

(h — X)uk fk- Il suit de la définition de la fonction fk (voir (4.5)) que

\\(h - X)uk\\d WfkWd < C\\Fk\\m - 0 si fc - co

On sait d'autre part que

ii*"* * 5^-°™-~ arra ¦>*-¦"¦
Donc, A G a (h).

(iii) A G ap(h) 0 G ffp(r(A))
Soit A G crp(h). Il existe alors u G £2(Zd) tel que (h — A)u 0. Posons ip(x) u(0, *), pour
x G Zm. D'après le lemme 3, (r0Q_1+/)(/? 0, |M|m < ||u||d < oo. Alors, 0 G crp(r0Q_1+/)
et, évidemment, 0 G o-p(r0 + Q).

(ii2) A G op(h) <= 0 G op(r(X))
Supposons que 0 G crp(Po + Q)- Il existe alors <p G £2(Zm) tel que (r0 + Q)<p 0. Posons

«&*) - E ft»((e,*),(o,»),AM»).
yezm
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Le lemme 4 pour F 0 montre que cette fonction u vérifie l'équation (h — X)u 0 et que
\\u\\d < Cllvllm- On a donc A G op(h) et u est un vecteur propre de h correspondant, ce qui
prouve la dernière assertion du lemme.

4.2 Preuve du Lemme 3

Soit (h — X)u /. On a alors l'identité:

(h0 - A)"1 (/i0 -X + v)u= (h0 - A)"1/

autrement dit
u -(/i0 - Xyhu + (h0 - A)"1/

Etant donné la structure particulière du potentiel v (voir (1-3)), on développe en série le

premier terme du membre de droite de cette dernière relation, ce qui donne

u(Ç,x) - E 9o(^,x-y,X)-r-ip(y) + (h0-X) 1f)(Ç,x),
v€z- i(y)

(4.6)

où q(y) v x(y) et ip(y) u(0,y), y G

Pour démontrer (4.1) il suffit alors de poser f, 0 dans l'égalité (4.6), et il suit de cette
relation que

- E 9o(î,x-y,X)^-My) >NU-||(/io-A)-7||«.
yeZm q(y) d

D'autre part, il existe un C(X) positif et fini, indépendant de tp, tel que

- E sofé, x-v, A)4r^(y) < c||r0Q-VIL-
ygz"» i(y) d

En effet, le membre de gauche de (4.7) admet la représentation intégrale

\\Q^tp(e)\\2d9dtp

(4.7)

(2
i_/ _Tt)d hd X + 2Ei=1cos<pi + 2££iCos0i

>

où Q~ltp(6) est la transformée de Fourier de Q 1tp dans £2(Zm). Ensuite, comme |A| > 2d.

on peut estimer la fonction sous le signe intégrale de la manière suivante:

1 1
< c(xy

A + 2£fc.iCOS¥>i + 2Efe1co8 0j - A - 2i/+ 2££i cos0{ - v ' A + 2 ££i cos 0<

où C(X) > X+lzZ2dv) ¦ La dernière inégalité donne (4.7), puis (4.2).
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4.3 Preuve du Lemme 4

Soient tp G £2(Zm) et (r0Q_1 + I)tp F. Définissons u(Ç,x) comme dans (4.3)-(4.5).
L'assertion (i) se vérifie facilement par simple substitution, compte tenu du fait que la
fonction p(Ç, A) est solution de l'équation:

£ p(t-ri,\)+\p{t,\)=6{t).
¦n&L", IM|=1

Pour démontrer (ii) il suffit de remarquer que

Il/Il2<^yll^ + 4||F||^2(0,A) C(A)||^.

Enfin, (iii) est une conséquence triviale de (i) et (ii).

5 Etape B de la démonstration

Cette section est consacrée à l'étude du problème spectral non-linéaire (3.5). On utilise ici
une des versions de la théorie KAM, proposée par Craig [3] et Pöschel [7]. Il s'avère que

pour un A fixé et assez grand l'opérateur T(A) To(A) +Q vérifie les conditions du théorème
B de l'article [7] de Pöschel. Ce théorème dit que le spectre d'un tel opérateur est purement
ponctuel. Pour étudier, en outre, le comportement des valeurs propres de T(A), on a besoin
d'une généralisation du résultat de [7], que nous énonçons edt démontrons ici sous la forme
d'un théorème. Voici d'abord quelques notions qui nous seront utiles.

Soit & une algèbre de fonctions comme dans la section 2.3. Soit Jt l'ensemble des suites

a — {a(x), x G Zm} pour lesquelles il existe une fonction tp G & telle que

a(x) tp(w-x), x€Zm. (5.1)

Nous définissons sur JZ une norme en posant

||a|U inf \tp\f
où l'infimum porte sur l'ensemble des tp G & qui vérifient (5.1). Nous définissons ensuite
l'addition et la multiplication, puis l'opération de translation par (Tx)a(y) a(x + y). Il
est clair que Je est ainsi une algèbre de Banach, invariante par translations, i.e. pour tout
a G M et pour tout x G Zm, alors Txa G J( et ||Txa||^r ||a||^r.

Soit M l'espace des matrices A {a(x,y)}x>yçzm dont les diverses diagonales Ax

{a(y,y A x)}y£zm appartiennent à J( pour tout x G Zm. On définit dans M une échelle

d'espaces de Banach par

Ms {A G M, \\A\\S < oo}, 0 < s < oo

où
\\A\\. sup PxlUeM*.

l€Zm
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Lemme 5 La suite quasi-périodique q(x) définie dans le théorème est stablement distale au
sens de la définition de Pöschel ([7]), i.e. e//e vérifie la condition suivante: pour toute suite
q telle que q — q G Ji et ||g — q\\^ < T < 1, alors

(q-Txq)-1 £J(, IKg-Tk^lU^fiflxl), pour tout x G Zm \ {0}. (5.2)

Dans cette section nous utilisons cette version de la condition de petits diviseurs plutôt
que celle donnée en 2.3.

Théorème 2 Soit Q l'opérateur diagonal dans l'espace £2(Zm) dont la diagonale {q(x)}xeZm
est une suite qui vérifie la condition de petits diviseurs (5.2) vis-à-vis d'une fonction d'approximation

fi et d'une constante 0 < r < 1. Soit G C C un ouvert connexe, et soit {P(z), z £ G}
une famille d'opérateurs paramétrée par ce domaine.

S'il existe des constantes 0 < s < oo et 0 < o < 1,1 indépendantes de z et telles que

\\P(z)\\s< ra*-"Q (5.3)

et que

\—P(z)\ < 2\\P(z)\\2s pour tout z G G (5.4)

alors il existe un opérateur diagonal Q(z) et un opérateur inversible U{z) tels que

U-1(z)(P(z) + Q)U(z) Q(z) (5.5)

\\U(z) - /||_ \\U-\z) - /||_ < C7||P(z)||. (5.6)

\lQ(z)-Q-[P(z)}\\O0<C2\\P(z)\\23, (5.7)

¦2
et où [•] désigne la projection canonique Ms —> M°°. De plus,

1

C Q-1*(|) (5.8)

-(Q(z) - lP(z)}) < j\\P(z)\\i (5.9)

Si, pour un z X réel, l'opérateur P(X) est hermitien, alors on peut choisir le U(X)
correspondant unitaire dans £2(Zm).

La démonstration de ce théorème utilise les lemmes auxiliaires que voici.

Lemme 6 Si A G M3'", si B G Ms et siO <o < min{l, f}, alors AB G Ms~", et

||AB|U < ±-\\A\\^\\B\\s

où b > 1 est une constante qui ne dépend que de la dimension m.
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Lemme 7 Soit b la constante définie au lemme 6, et soit A G Ms tel que \\A — I\\s < ^-,
pour un 0 < o < inf{l, s}. Si A est inversible dans l'espace Ms~", alors

U'1 - /||a_„ < (1 - bo~m\\A - I\\s)-l\\A - I\\s.

Lemme 8 Soit G C C un ouvert connexe, et soit Q(z) l'opérateur diagonal dans £2(Zm)
dont la diagonale {q(x,z), x G Zm} vérifie la condition (5.2) uniformément en z G G. Soit
{P(z)}zçG une famille d'opérateurs dans AI. L'équation

lQ(z),W] + P(z)-lP(z)] 0

admet alors une seule solution W(z) G M telle que lW(z)] 0. Si, pour tout z Ç. G, on a

P(z) G Ms et £P(z) G M3, et si j-zQ(z) G M°°, et 0 < o < min{l, f}, alors:

(i) W(z) G M3-", et

\\W(z)l\3.„ < 4>(a)\\P(z)\U,

(ii) j-W(z) G M3-2", et

|^H/(.)||s_2CT<^(a)||^P(z)||s + 2$2(a)|AQ(2)L||PW||3. (5.10)

où
4>(tx) supfi(r)e-<Tr ff4m$(cr).

r>0

Pour la démonstration des lemmes 6 et 7, voir l'article de Pöschel [7]. Quant au lemme
8 il est démontré en annexe.

Remarque 3 Le théorème 2 est une généralisation du théorème de Pöschel, [7], pour le cas

où l'opérateur P(z) dépend d'un paramètre complexe.

5.1 Preuve du théorème 2

Pour démontrer le théorème 2 nous utilisons un algorithme itératif semblable à celui de [7],

mais modifié en fonction des particularités du problème. Nous allons donc présenter ici en

détail uniquement ce qui est de nouveau, notamment l'analyse de la dérivabilité en A des

approximations construites.

Rappelons d'abord en quoi consiste le processus itératif.

On construit U(z) comme un produit infini

U(z) lim UJz)

Un(z)=nf[(I + Wv(z)).
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A chaque itération on a (cf. (5.6))

Un(z)-\P(z) + Q)Un(z) Qn(z) + Pn(z)

et, pour n — 0,

Uo I; P0 P.

On cherche une transformation I+Wn(z) qui, appliquée à Qn(z) + Pn(z), donne un opérateur
de la même forme, i.e.

(/ + Wn(z))-l(Qn(z) + Pn(z))(I + Wn(z)) Qn+l(z) + Pn+1(z) (5.11)

de façon que l'opérateur Pn+i(z) soit d'un ordre de grandeur plus petit que le précédent
Pn(z). En développant le membre de droite de cette dernière relation et en séparant la
partie diagonale, on obtient:

(/ + Wn(z))-l(Pn(z) + Qn(z))(I + Wn(z)) Qn(z) + lPn(z)}

+(I + Wn(z))-l(lQn(z) + [Pn(z)],Wn(z)}

+Pn(z) - lPn(z)} A (Pn(z) - lPn(z)\)Wn(z))

Posons alors
Qn+l(z) Qn(z) A (P„(Z)]

On élimine maintenant les éléments du même ordre de grandeur que ||Pn(z)||, en suivant
l'idée principale de la méthode KAM. Autrement dit, on exige que Wn(z) vérifie l'équation
homologique:

lQn+i(z),Wn(z)) + Pn(z) - lPn(z)) 0. (5.12)

Cette équation détermine Wn(z). En la résolvant, on pose:

Pn+1(z) (I + Wn(z))-\Pn(z) - lPn(z)])Wn(z) (5.13)

Un+1(z) Un(z)(l + Wn(z)).

Cela nous donne (5.11). Si l'on fait tendre n vers l'infini, on obtient à la limite Pn(z) —» 0,

Un(z) —> U, et Qn(z) —* Q(z) Q + Yf?=olPv(z)}> ce 9.m nous donne finalement (5.5).

Nous introduisons maintenant une échelle de constantes qui interviennent dans les

diverses estimations de façon inductive. Il suit de la définition des fonctions $(<t) et $(cr)
(voir (2.3) et (2.4)) que

(i) $(cr) et ^(c) sont, toutes les deux, monotones en o et que

1 < $(cr) < -9(a), o>0;

(ii) il existe une suite {<7„}£i0 S Sa. telle que Y1^L0 crv f et que

^@ n*r-1
L i/=0
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où <ÉV ®((Tv), pour v 0,1, 2,....

Soit {0v}£io une telle suite. Posons

so s, sn s - 2 ]T cr„, n > 1,

i/=0

ce qui implique s So > Si > > sn —* s — cr. Posons ensuite

0o hph., en j-^n n *r. « > i (5-14)
i/=0

où l'on prend pour constante c (voir [7])

c 9666. (5.15)

Alors,
öoo c||P||.*2Q. (5.16)

Remarquons que dans (5.14) et (5.16) la norme ||P||S dépend de z. Ainsi, 9n et 0;» en

dépendent aussi. Pour simplifier, nous négligeons cette dépendance dans les notations.

Sous les hypothèses du théorème 2,

0TC < era (5.17)

La constante a sera déterminée de façon précise plus tard. Pour l'instant, nous demandons
seulement qu'elle vérifie l'inégalité:

ca < 1 (5.18)

où b est toujours la constante du lemme 6. Il est facile de voir que

2/Q2" <, 02" „^2fl2"+» ^ 02n+1 d2n ^ „-l,T,-2 (-itf^.c$202" < 02" c$202n+ < e, e2" < C_1*u^nun — "oo i '-^n^n — un+l > "n — ° *

Nous démontrons par récurrence sur n le résultat suivant. Pour £om£ n > 0 il existe un
Pn(z) G Ms" te/ çue

\\Pn(z)\L < d2;. (5.19)

De plus, Pn(z) est differentiable, dPn(z) G MSn et

\\dPn(z)\\3n < 0oo0f- (5.20)

Enfin, il existe un opérateur Un(z) G M3n+"n qui est inversible, avec Un(z)~l G MSn,

\\Un(z) - Un-Mh.+^, \\U-\z) - U-ìx(z)\\Sn < o2mdV, n > 1 (5.21)

et

Un(z)~l(P(z) + Q)Un(z) Qn(z) A Pn(z),
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ou

&.(*) Q + £[P„(X>].
i/=0

(5.22)

Ce résultat est vrai pour n 0.

Soit ensuite n > 0. Nous supposons que le résultat est vrai pour tout entier < n. Comme
nous l'avons dit au départ, nous omettons ici la démonstration des inégalités (5.19) et (5.21).
Nous nous fixons sur la différentiabilité de P„(z). Compte tenu de l'hypothèse de récurrence,

pour dériver l'expression (5.13) il faut s'assurer que Wn(z) est derivable. On utilise alors le
lemme 8. Le point essentiel est que la dérivée de l'opérateur Wn(z) contient les carrés des

petits diviseurs qui apparaissent dans la formule (3.7). Cela exige une analyse particulière.
La condition de petits diviseurs nous permet d'estimer j^Wn(z) de la même manière que
Wn(z).

Commençons par appliquer le lemme 8. En utilisant l'expression (5.22) et les estimations
(5.17)-(5.19) on peut voir que:

\\Qn+i(z) - QU [ENI ^ E HPIL < 20OO < r

Compte tenu du lemme 5, on conclut que la diagonale çn+1(z) de l'opérateur Qn+i(z) vérifie
(5.2). D'après le lemme 8, l'équation homologique (5.13) a donc une seule solution Wn(z)
vérifiant [Wn(z)] 0. De plus,

\\Wn(z)\\Sn.an < <ß(on)\\Pn(z)\\Sn < <7n4m*n0f.

Cette solution est differentiable et

d

dz
Wn(z)

S„-2<7„
< 0(«7„)

d „Tz™ A 2é2(on)
dz

Qn(z)

D'après le lemme 7, l'opérateur (I + Wn(z)) est. inversible dans MSn 2a

3

Pn(z)\\

et

\\(I + Wn(z))\\8n+1, \\(I + Wn(z))- <

(5.23)

(5.24)

On peut alors dériver l'opérateur Qn+1(z) défini par l'expression (5.22), ce qui donne:

dd - n

—Qn+i(z) J2
az ^=oL dz

P,

On en déduit que:

j-Qn+i(z) <E dz
Pv <0ooEör<202 (5.25)

En utihsant alors dans le membre de droite les estimations précédentes (voir (5.19)-(5.20) et

(5.25)), on obtient:

dz
Wn(z) < D^Xe^
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Dn a4m(l+4a4m0oo)<5.

Maintenant, nous pouvons dériver l'identité (5.13), ce qui donne:

£pn+1(z) ~Wn(z)(I + Wn(z))-lPn+x(z)

+(I + Wn(z))-\fzPn(z) - ±[Pn(z)}}Wn(z)

+ A(I + Wn(z))-l(Pn(z) - lPn(z)))jAVn(z).

(5.26)

(5.27)

En estimant successivement chacun des trois termes du membre de droite de (5.27), on
prouve que

TzP»^ <3l(l + 2Dn)8oceï++11

Ensuite, on observe que ^-(1 + 2Dn) < 1, ce qui suit de (5.26) et (5.15)). On a donc

dz
Pn+l(z) < 0OO0T.+ 1

ce qu'il fallait démontrer. On conclut alors que les hypothèses inductives sont vraies pour
tout n > 0.

On peut maintenant, comme dans [7], déduire les inégalités (5.6) et (5.7) de (5.19), (5.21)
et (5.22).

Pour démontrer (5.9), remarquons que

54W-SW.11..SE dz
P, <«»EC

En utilisant (5.20), on peut estimer cette dernière série comme suit:

000 E € < c-^QöooEC < K1*-2®*

On déduit de la définition de 0oo (voir (5.16)) et des hypothèses du théorème 2 (voir 5.3))

que

el c3\\p\\l^Q <c>Ta*2Q\\p\\2s.

Alors,

Il suffit maintenant de choisir a tel que

\c-^-2Qel<\c2a\\P\t

2CQ<4'
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ce qui implique (5.18), pour obtenir:

eOm-eW'» < ;|fï
ce qui est précisément (5.9).

La dernière assertion du théorème se démontre par les mêmes arguments que ceux de [7].
Soient z — X réel et P(A) hermitien. La construction faite ne détermine pas U(X) de façon
unique. U(X) n'est donc pas obligatoirement unitaire. D'autre part, la suite diagonale g(A)
de l'opérateur Q(A) vérifie la condition (5.2), ce qui implique que le spectre de l'opérateur
P(A) + Q est simple et que les colonnes de la matrice de U(X) sont des vecteurs propres
correspondants. L'opérateur U*U est alors diagonal dans £2(Zm), et proche de l'identité.
Nous pouvons donc remplacer (7(A) par U(X)(U*(X)U(X))~1^2 qui est unitaire, ce qui termine
la démonstration du théorème 2.

5.2 Application au problème spectral

Il nous reste maintenant à appliquer ce théorème à l'étude du problème spectral (3.4). Soit
A G K \ l-2d,2d]. Il suit de (3.3) que

1 /" el{x~y'e)dOdtp
^(x,y,X)=^(x-y-X) -J^JjdX + 2EUcos^ + 2E^cos9i.

(5.28)

Les diagonales Po,i(A) {Tq(x + y,x, X)}y€zm de l'opérateur Fo(A) sont alors de la forme

r0,I(A) 7(i,A)l, xGZm

où 1 désigne la suite constante dont tous les éléments sont égaux à 1. Il est évident que
ro,x(A) G Jt et que IIFo^A)!].^ J7(x, A)j pour tout x G Z"1. Remarquons que, pour x 0,

7(0, A) est de la forme:

1 f dBdtp
' ' ~ (2^p /r« À + 2£r=iCos^ + 2£SiCOS0,

¦ ^529)7

En dérivant par rapport à A, on trouve

d^V 7kdl dOdtp

(2it)d Jt> (A + 2 ELi cos tp, + 2 E^i cos Of)2
'

Puisque A est en dehors du spectre du Laplacien, i.e. hors de l'intervalle [—2d, 2d], l'intégrale
dans (5.29) est réelle, et positive si A < —2d, négative si A > 2d. Cela implique la propriété
importante suivante:

|7(0;A)| -sgnA-7(0;A). (5.30)

En particulier, compte tenu de ce fait, on peut déduire de (5.28) que

|7(*,A)|<e-™|7(0,A)|, xeZ™,
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1
/3(A) -log(l + |A|-2d).

Posons s 2 et o 1. Alors, pour tout A tel que | A| > A 2d -f e2 — 1, on a

||r0(A)||2 |7(0,A)|

et
||ÓT0(A)||2 1^7(0, A)|, |A|>Â

où, pour simplifier, d 4r.

Considérons 7(0, A). Vu (5.30), on a les estimations:

1

<l7(0,A)|<
l

et

|A + 2d|

1
< Ô7(0, A) <

|A-2d|

1___
(A - 2d)2(A + 2d)2

ce qui implique, en particulier, que

^|7(0,A)|2<97(0,A)<2|7(0,A)|2

Posons

A! 2d+-1^(1)
ar x2'

où les constantes r et a sont tirées des conditions du théorème 2, et la fonction ^ est

définie par la formule (2.4). Remarquons que Ai > A. Alors, comme il suit de (5.31)-(5.36),
l'opérateur r0(A) vérifie, pour tout A tel que |A| > Ai, les conditions du théorème 2.

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

Remarque 4 Soit G C C l'ensemble défini par

G {z G C : z X + ie, |A| > Ai, 0 < e < e0}-

On peut toujours choisir un £0 tel que

||r0(z)||2<|7(0,A)|

et que

<|97(0,A)|.

(5.37)

|r°W
Alors, compte tenu de (5.29) et de (5.30), il vient:

||r0(«)||a< l|ro(A)||2, pour tout z X + ie G G.

et

sr«w < IM*
On peut donc appliquer le théorème 2 à la famille d'opérateurs {T0(z), z Ç. G}. Cela servira
plus loin, dans la section suivante.
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q(x, X) est donc strictement monotone en A. Cela implique que l'équation

q(x) + 7(0, A) + 7(1, A) 0 (5.43)

ne peut avoir qu'un seul zéro pour un x G Zm fixé.

Pour mieux comprendre la localisation de ces zéros, on poursuit l'étude des fonctions
7(1, A). Remarquons que dans l'estimation (5.40) C|[r0(A)[|2 < \ (cela suit de (5.3) et de

(5.8)). On trouve alors, en utilisant (5.40), (5.31) et (5.33), que:

-îl^d^0'x)+^x^-ïxWd' A>Al<

et que

l2xhd^^x)+^x)4ihd' A<-Ai-
Définissons les ensembles Ii, I2,13 C R par:

M9GK:|9l>k^}' h={qeR-ìqì<ìx^2d}' '.-*\ttU/9>.ÖW4)

Si q(x) G Ii, l'équation (5.43) n'a pas de zéro en dehors de l'intervalle [—Ai, Ai]. Si q(x) G h,
l'équation (5.43) admet une seule solution A X(x). Enfin, si q(x) G /3, on ne peut rien dire
de l'existence d'une solution de (5.43).

On définit alors deux ensembles sur l'axe du paramètre spectral A:

<Tj {X(x) : q(x) G h, q(x, X(x)) 0}

et

o2 {X(x) : q(x) G /3, q(x, X(x)) 0}. (5.45)

L'union o ax U o<i est l'ensemble des A possibles pour lesquels 0 est une valeur propre de

r(A). Alors, d'après la deuxième assertion du lemme 2, on a

op(h) n {E \ [-Ai, Ai]} ai U ao.

Montrons d'abord que 0\ est dense dans R\[—Ai, Ai]. En effet, on sait d'après les conditions
du théorème 1, que la suite q est de la forme: q(x) f(uj ¦ x), et que w vérifie la condition
diophantienne (2.5). Alors, l'ensemble {w ¦ a;modi, x G Zm} est dense dans [0,1]. Ensuite,
on observe que la condition de petits diviseurs imposée à la fonction / implique que

sup |/(r)| >
re[o,i) 2 Ai + 2d

Etant donné que / est continue et a un seul zéro sur tout intervalle de période, il est clair
que l'ensemble

{q(x), xGZm}n 1111
2Ai + 2d'2Ai+2d
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est également dense. Enfin, puisque dans l'équation (5.43), la fonction j(x, X) + 7(0, A) est
continue et strictement monotone, on voit que l'ensemble des solutions ox est dense dans

K \ [—Ai, Ai]. Quant à l'ensemble 02, il suffit de remarquer qu'il est au plus dénombrable.
Donc, le spectre de l'opérateur h, qui est la réunion de ox et 02, est évidemment dense dans

1R\[—Ai, Ai]. D'autre part, il est de multiplicité 1, car pour tout A la suite {q(x, A), x G Zm}
vérifie la condition de petits diviseurs (5.2), ce qui implique que X(x) ^ X(y) quand x ^ y.

A la fin de cette section nous démontrons que les fonctions propres de h qui correspondent
aux valeurs propres situées dans R \ [—Ai, Ai] décroissent exponentiellement. Cela suit de la

représentation (3.4) donnée dans le lemme 2, compte tenu des deux faits suivants:

(i) tpx étant le vecteur propre de T(A) qui correspond à la valeur propre zéro, ses éléments

tpx(y) décroissent exponentiellement, quand \y\ —+ 00;

(ii) les coefficients matriciels go(^ — i],x — y; X) de la résolvante du Laplacien décroissent

exponentiellement, quand |Ç — n\ —+ 00, ou quand \x — y\ —» 00.

Il nous reste maintenant à démontrer que la mesure spectrale de h est purement ponctuelle.
On passe ainsi à l'étape C.

6 Etape C de la démonstration

Dans cette section on calcule la limite

lim- / lmg(X,X;X + ie)dX -lim- f lm(F-1tp,tp)(X + ie)dX (6.1)

où tp(z.X) est le vecteur dans ^2(Zm) défini par:

tp(X,y;z) g0(X, (0,y);z), z X + ie.

En accord avec le développement de la résolvante en série de e

Po(A + ie) Po(A) - e2((ho - A)2 + e2)~lRo(X) - ie((h0 - A)2 + e2)'1

on peut représenter tp(X + ie) sous la forme de la somme:

tp(X + ie) tp(X) - ietpx(X) + 0(e2)

où tpi(X) est un vecteur réel dans £2(Zm) et 0(e2) est un vecteur dans £2(Zm) dont la norme
se comporte comme e2 quand e —> 0.

Soit G le domaine défini par (5.37). Comme on l'a déjà mentionné (voir la remarque de

la section 5) on peut appliquer le théorème 2 à la famille d'opérateurs {Po(.z), z G G}. Il
existe alors un opérateur inversible U(z) G M1 et un opérateur diagonal Q(z) vérifiant (5.6),
(5.7) et (5.9) tels que

r~l(z) U(z)Q-l(z)U-\z). (6.2)
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Dans ce qui suit on utilise les deux lemmes ci-dessous, dont les preuves se trouvent dans
l'annexe.

Lemme 9 Soient Q, P(z) et U(z) les opérateurs définis dans le théorème 2. Supposons que
P(X + ie) admette le développement suivant:

P(X + ie) P(X)-iePx(X,e)+e2P2(X,e), A G M, £>0

où Px(X,e) et P2(A,e) sont des opérateurs ayant des matrices réelles tels que:

\\Px(X,e\\3, ||P2(A,£)||S<||P(A)||S.

Alors, les opérateurs U(X + ie) et U~l(X + ie) admettent, à leur tour, la représentation:

U(X + ie) U(X) + eUx (X,e) + 0(e2) (6.3)

Ui(X + ie) U~\X) + eU2(X, e) + 0(e2), (6.4)

où \\Ui\\s, \\U2Ws < D < 00 avec une constante D indépendante de e, et où 0(e2) est un
opérateur dans M3 dont la norme décroît comme e2 quand e tend vers zéro.

Lemme 10 Soient vx(X,e) et v2(X,e) deux vecteurs réels dans £2(Zm) dont les éléments
décroissent exponentiellement en y G Zm, uniformément en X et e dans un intervalle (0, eo]-

Alors,

firnJf (Q-\X + ie)vx(X,e),v2(X,e))dX 0. (6.5)

En utilisant l'identité (6.2), on trouve

lim- / \m(T-ltp,tp)(X + ie)dX \im- f lm(Q-1ip,^)(X + ie)dX (6.6)
£|o ir Ja ciò 7T Ja

où ip(z) U(z)tp(z) et tp (U~l(z))*tp(z). D'après le théorème 2 tout élément diagonal

jrrr^y de l'opérateur Q~l(z) a au plus une singularité, notamment, un pôle simple au point
X(x) Gl\ [—Ai, Ai]. Or, ||Q_1(A + i£)||;2(Zm) < —. On utilise ensuite le lemme 9. Compte
tenu du fait que l'opérateur U(X) est unitaire pour A réel, on a:

limi f lm(Q-1tp,î>)(X + ie)dX lim- [ Im(Q_1(A + ie)^(A),^(A))dA
e|0 it Ja £i0 r: Ja

-lim- / Re«Q-1(A + ie)U(X)<pl(X),U(X)ip(X)) + (Q'^X + ie)U(X)tp(X),U(X)tpx(X)))dX
£|0 7T Ja

+ lim - / lm((Q-l(X + ie)Ux(X, tp(X), U(X)tp(X)) + (Q-'(X + ie)U(X)tp(X), f/2*(A, <p(X)))dX
e|0 tt Ja

+0(e). (6.7)

Puisque les opérateurs U, Ux, U2 sont bornés dans l'espace M1, les éléments des vecteurs
Utp, Utfi, Uxip et U2tp décroissent exponentiellement à l'infini. En utilisant le lemme 10, on
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voit que tous les termes, sauf le premier, du membre de droite de (6.7) tendent vers zéro.

Ecrivons le premier terme sous la forme:

limi f lm(Q-1(X + ie)U(X)<p(X),U(X)tp(X))dX lim-lm f Y J^%^ .dX (6.8)
«10 tt Ja x v ' ' v «io tt JAy^(mq(y,X + ie)

On définit ensuite deux ensembles de y:

ni {2/GZm:|g(j/)|G/i}, il2 Zm \ Ux

où Ix est défini dans (5.44). On peut découper la somme du membre de droite de (6.8) en

deux:

v \yj(y,X)\2 W(y,X)\2 y \iP(y,X)\2

yf£mq(y,X + ie) yJ£j(y,X + ie) ^ $(y, A + ie)
"

Remarquons que l'ensemble cr2 défini par (5.45) est localisé: o2 C [—Ao,—Ai] U [Ai,Ao], où

A0 3Ai+8d

Alors, pour tout y G III, la fonction q(y, X + ie) n'a pas de zéro dans R \ [— Ao, Ao], et, si

y G n2, elle a un seul zéro, d'ordre 1, au point X(x) G R \ [—Ai, Ai].

Choisissons l'intervalle A C {R \ [—Ao, Ao]}. Alors, quand y G ui, la fonction q(y, X + ie)
est bornée inférieurement par une constante qui dépend uniquement de Ao et de la distance
entre les intervalles A et [—Ao, Ao]. Cela donne:

f £ Im J/^'^dA < \A\De sup £ \tp(y, A)|2 - 0, i 0.
•/Aytfîi q(y,XAie) xeAy|zm

Si y G n2 on développe ^rj en série de Laurent de e au voisinage du pôle A(x) G R\[—Ai, AJ:

+ 0(1) +»0(e)

9(y,A)

1 1

q(y,X + ie) dq(y,X(y))(X - X(y) +ie)
où les quantités 0(1) et 0(e) sont réelles. Alors,

Ä^dA Hmilm/E- '^'^
,y€ll2q(y,X + ie) «io tt Ja^

La série du membre de droite de cette dernière relation converge uniformément par rapport
à A et e. D'après le théorème de Lebesgue, on peut donc échanger l'ordre des opérations:

li>{y,Ky))\2

!/:A(l/)€A

Remarquons que

Th(y,X(y)) {U-1(X(y))tp(X(y))}(y)

£ U(x',y;X(y))tp(x';X(y))
i'ezm

J2 U(x',y;X(y))go(X,(0,x');X(y)). (6.10)
x'ezd

1-ilm/ E J^-A)|2^A limllm/ E ___ÄÄ___dA
«to tt Ja 4ff, q(y, X + ie) «10 tt 7a „t* 9g(y, A(y))(A - X(y) + ie)

hmi/lm(Ô-1(A + î£WA),^A))dA=- £ !gj% ^jf (6.9)
£i0 t Ja „:AWfA ^ A(y))
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La colonne {U(x',y; X(y))}x>ezm de l'opérateur U(X) est juste le vecteur proprede T(\(y))
correspondant à la valeur propre q(y, X(y)) 0. D'après le lemme 2 la dernière série représente
l'élément uy(X\ X(y)) du vecteur propre de l'opérateur h, correspondant à la valeur propre
X(y). Finalement, en combinant (6.9) et (6.10) avec (6.1) et (6.6) on obtient:

lim - f Im g(X, X;X + ie)dX T ^%^«W*-k y.xtleA dq(y,X(y))

ce qui termine la démonstration du théorème.

A Annexe

A.l Preuve du lemme 8

L'équation [Ç, W] + P — [P] 0 a une solution et une seule donnée par

0 pour x — 0,
WX(X) p,tx) ,Q{ qW-txqW P°ur XTV-

Sa dérivée vaut:

d [0 pour i 0,
— Wx(X) i dPx{X) _ P*Wd{q{X)-Tiq{X)) 0dA [ „(x)-Tiq(x) [i(\)-T.q(\))i pour x ru-

Puisque Px, dPx, dQ G JC, alors -^-WX(X) G JC et l'on a

dXW*W < e-^3-2^(^)\\dP(X)\\s A 202(a)||9Q(A)||M=o||P(A)||s),

ce qui implique l'assertion du iemme.

A.2 Preuve du lemme 9

Les hypothèses du lemme 9 impliquent que la série correspondante au produit scalaire dans
(6.5) converge uniformément par rapport à Sous les hypothèses du lemme on peut écrire:

T(A + ie) P(X) + Q- e2Px(X, e) - ieP2(X, e)

On applique d'abord le théorème 2 à l'opérateur P(A) + Q. En fait, seule la premiière partie
du théorème est importante ici, notamment celle qui dit qu'il existe des opérateurs U(X) et
Q(X) tels que

U~l(X)(P(X) + Q)U(X) Q(X).

Alors,

G(A + i£) C/(A){Ô(A)-£2Lr-1(A)Pi(A,e)rj(A)-î£[/-1(A)P2(A,£)l7(A)}(7-1(A).
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Puisque ||<7(A)||S, ||t/(A)i||s < §, ||Pa(A,e)||, < \\P(X)\\S et que l'opérateur Q(A) vérifie
la condition de petits diviseurs (5.2), on peut appliquer le même théorème à l'opérateur
Ô(A) — £2C/-1(A)Pi(A,e)£/(A). On obtient ainsi les opérateurs Vi(A, e) et Ôi(A,e) tels que

Q(X) - e2U-\X)Px(X,e)U(X) VX(X,e)~lQx(X,e)Vx(X,e).

Alors,

r(A + z£) l^(A)yi(A,£){Qi(A,£)-î£yi(A,£)-1(7-1(A)P2(A,£)rj(A)Vi(A,£)}yi-1(A,£)r7-1(A)

En répétant cette procédure encore une fois, on trouve:

T(A + ie) U(X)Vx(X,e)V2(X,e)Q2(X,e)V2-1(X,e)Vx~1(X,e)U-1(X)

Il est clair que Q2(A,£) Q(A + ie) et que U(X + ie) U(X)Vx(X,e)V2(X,e). De plus, le
théorème 2 donne les estimations:

\\Vx(X,e) - 7|U ||Vrl(A,e)-/||. < C£2||P(A)||S,

\\V2(X,e) - I\\s, \\V2-\X,e)-I\\s < 0£||P(A)||s.

Il est facile de vérifier qu'on peut représenter U(X A ie) et U~l(X + ie) comme suit:

U(X + ie) U(X) + V(X)(Vx(A,e) - /)
AU(X)(V2(X, £)-/) + U(X)(VX(X, e) - I)(V2(X, e) - I);

U~\X + ie) U~l(\) A (V2~l(X,e) - /)t7-1(A)
+(yr1(A,e) - I)U-\X) + (VfWe) - I)(Vfl(X,e) - I)U~l(X).

En notant

on a (6.3) et (6.4).

erj1(A,e) rj(A)(y2(A,e)-/);
eC/2(A,£) (V2-1(A,e)-/)C/-1(A),

A.3 Preuve du lemme 10

Les hypothèses du lemme impliquent que la série correspondant au produit scalaire dans

(6.5) converge uniformément en A et e. On peut donc utiliser le théorème de Lebesgue pour
intervertir l'ordre des opérations. On trouve ainsi que

lime- [ (Q-\X + ie)v1(X,e),v2(X,e))dX= £ lim- [ Hll%M^iMdA. (A.l)
«io ttJa^ v ^m«l0 7rÌA q(y,X + ie)

Fixons y G Zm. Si q(y, X) n'a pas de zéro dans l'intervalle A, alors

]ime_rvx(y,X,e)v2(yX,e)dX ^
«io tt Ja q(y, X + ie)
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S'il existe un X(y) G A tel que q(y, X(y)) 0, alors on développe ^+ig. en série de Laurent
de e au voisinage de X(y):

q(y, X + ie) dq(y, X(y))(X - X(y) + fe)
+ °(1)' (A'2)

Si l'on substitue ce développement (A.2) dans le membre de droite de (A.l), on observe que
les fonctions qui sont sous le signe intégrale sont continues en A et bornées uniformément en
e. Alors, compte tenu du facteur e devant l'intégrale, on trouve que la limite est nulle:

1 r vx(y,X,e)v2(y,X,e) If vx(y,X,e)v2(y,X,e)
hme-/ ;— r-t dA lime- / 777,—w ,,,,— dA 0.
«io ir Ja q(y,X + ie) «io tt Ja oq(y, X(y))(X — X(y) + ie)
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Pour l'instant, appliquons le théorème 2 en prenant G — R \ [—Ai, Ai] et la famille
d'opérateurs {Fo(A), |A| > Ai}. On obtient ainsi un opérateur diagonal Q(A) avecQ(A) — Q G

M°° et un opérateur unitaire U(X) G M1 tels que

U~1(X)(r0(X) + Q)U(X)=Q(X). (5.38)

F(A) est ainsi unitairement équivalent à l'opérateur de multiplication Q(A) donné par

oo

Ô(A) Q + [r0(A)] + £[r(n)(A)] (5.39)
n=l

où r'n'(A) est l'approximation construite au n-ième pas (voir (5.23)). Les spectres de T(A)
et <5(A) coïncident donc, i.e.

<7p(r(A)) op(Q(X)) {q(x,X) :xeZm, |A| > Ai}.

Il suit de (5.38) que les colonnes de U(X) sont vecteurs propres de P(A). Ils forment un
système complet dans £2(Zm) et leurs éléments décroissent exponentiellement. Finalement,
d'après (5.6) et (5.10),

||Ô(A)-Q-[r0(A)]||oo<O2||r0(A)||2 (5.40)

et

||9Q(A)-9[r0(A)]||0O<i||r0(A)||2 (5.41)

où la constante C est définie par (5.8).

D'après le lemme 2, l'ensemble des valeurs propres de l'opérateur h situées hors de

l'intervalle [—Ai, AJ est donné par:

ap(h) n {R \ [-Ai, AJ} {A : q(x, X) 0, x G Zm, |A| > AJ.

Pour étudier la structure de cet ensemble, fixons un x G Zm et considérons l'équation
q(x, X) 0. Remarquons que la fonction q(x, X) est de la forme

q(x, X) q(x) + 7(0, A) + j(x, X)

où î(x,X) est l'élément diagonal correspondant de la série du membre de droite de (5.39).
D'après le théorème 2, q(x, X) est differentiable par rapport à A. De plus, en utilisant (5.41),
(5.35) et (5.31), on a l'estimation suivante de sa dérivée:

|9g(x,A)-97(0,A)|<J|7(0,A)|2. (5.42)

D'autre part, on déduit de (5.35) et de (5.42) que

9g(:r,A)> i|7(0, A)|2 > 0.
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