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Quantum Algebras, Observables, and Random Variables

Gerd Niestegge

Krüner Straße 91. D-81377 München. Germany

(24.11.1998)

Abstract. In an earlier paper, the author introduced the concept of statistical and deterministic
predictability for an investigation of the quantum physical measuring process and defined quantum
algebras {Q-algebras) as the appropriate algebraic structure for this investigation. In this paper, Q-
algebras are studied in detail, and the concept oi observables is presented.

Various topologies, an order relation and the weak completion are introduced for Q-algebras and
used to elaborate on their relations with C*-algebras. W*-algebras and monotone sequentially complete
C*-algebras. The system of (orthogonal) projections in the weak sequential completion of a Q-algebra
forms a rj-complete orthomodular lattice, and the probabilities resulting from the statistical predictability
are a-additive on this lattice. Observables with values in an abstract measurable space can then be

defined and, using the spectral theorem, bounded real-valued observables can be identified with
selfadjoint elements of the weak sequential completion of the Q-algebra.

The observables, considered here, include both the self-adjoint operators of quantum physics as well
as the random variables of (Kolmogorovian) mathematical probability theory. This seems to render
possible a universal axiomatic theory comprising Kolmogorovian probability theory and a quantum
model although there remains a maior difference between certain quantum probabilities and

Kolmogorovian probability.

1 Introduction

O-algebras have been introduced in [1]; they seem to be the appropriate mathematical

structure to study the quantum physical measurement process. A Q-algebra c J is defined as a

complex algebra with unit element H and an involution * fulfilling the following two conditions:

(i) Xe<4,X*X=0=>X=0
(ii) For all Ae( 7 there exists an atom E and a Zee J with XYE±0.
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A self-adjoint element Eec/t with E2=E is called an (orthogonal) projection (the system of
projections is denoted by Ô), and an atom is a projection with Ec¥fE=(SZE. A partial order relation
is introduced on Ó by the definition: E<F :<t> EF=E (E,Fe£). The system ô is interpreted as

system of logical propositions with the relation < representing the "logical implication". The

"negation" is represented by the operation £->£":= 11 -E.

An element XecA is said to be statistically predictable under a projection E if EXE=XE for
some Xe C; A. is called the expectation value of A under E and denoted by E{X \E). If £ is an

atom, each X is statistically predictable under E. For a projection F. E(F \E) is a real number
from the unit interval [0,1] which is interpreted as a probability and is denoted by P(F\E).

Furthermore,

E(X*X\E)>0wtid E(x'\e)= E(X\E) iora\\Xec4.,

E (X \E) is a real number ifX=X\ and E {XY \E) =E(X \E) E (Y \E) if E commutes with X or Y

(XAAiÄ).
If E, YecA, E an atom with YE*0, then EY*YE*Q, E(Y*Y\E)±0, EY**0, YEY**0 and

1

YEY *0 (*)
e(y'y\e)

is an atom with

for all X&d, since F=F*,

N
e(y'xy\e)

E(XF) \ \' (*)
e(yy\e)

F2 =— -7Y(eY'YE)y' =-—, j-TYEY' F and
e(y'y\e) e{y'y\e)

i e(y'xy\e) eìy'xyìe)
FXF —; -y Y(EY XYE)Y —, -~ YEY —-, -^ F.

e(y'y\e) e(y'y\e) e(yy\e)

The above two equations marked with (*) will repeatedly be applied in this paper. For each

O^Xea?., there are Y.EscZl, E an atom, with XYE*0 (condition (ii) above). Then

ye*o,ey'ye*o,ey' *o.yey' *o, ey'x'xye*q, e(y'x'xy\e)*o
=> yey'x'xyey' e[y"x'xy\e)yey' * 0 => XYEY' * 0

1

=> XF * 0 with the atom F —-, r-r YEY
E(Y Y\e)

Condition (ii) in the definition of a Q-algebra is therefore equivalent to and can be replaced

by the following condition:
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0*Xecf => There exists in atom E in< J withXE*0.

Furthermore, for each 0*E<=/Z, there is an atom F with F<E (i.e. £ is atomic^), since first
there is an atom D with ED±0 and then

1

F:= -, ,EDE
e(e\d)

is an atom with EF=F.
This abstract algebraic formalism represents a kind of non-Boolean logic. It has been used

in [1] to study quantum measurement and quantum phenomena like indeterminism and
interference.

In the present paper, the mathematical structure of Q-algebras is analyzed in detail. First,
three different topologies as well as a partial order relation < (extending the above-mentioned
order relation on the system of projections) are introduced. Then, the completion of a Q-algebra
in the weakest one among the three topologies is studied and used to investigate the relations to
C*-algebras, W*-algebras and monotone sequentially complete C*-algebras. A major result is

that the system of orthogonal projections in a proper sequential completion forms a a-complete
lattice. This a-complete lattice will finally be the framework to study observables, and it will be

seen that "bounded real-valued" observables can be identified with self-adjoint elements in the

Q-algebra or in its weak completion.
The mathematical modeling of propositions and observables used here includes both the

model of quantum physics (orthogonal projections and operators on a Hilbert space) as well as

the Kolmogorov model of mathematical probability theory (rj-algebras and random variables),
although the probabilities considered here differ from those studied in mathematical probability-
theory.

2 Topologies and an order relation for Q-algebras

The following definition and the lemma provide the mathematical tools for the consideration
of topological structures and an order structure on a Q-algebra.

Definition 1: Let cA be a Q-algebra with X. Yec J.

(i) \X\E:=\E(X\E)\foranatomE.

(ii) ||A||E : ^e[x'x\e) for an atom E.

(iii) || A|| := sup || A||;,.
all atoms £

(iv)X is called bounded if \\X\\ < oo.

(v) di\, denotes the set ofbounded elements inc^t.

(vi) X is called positive (X>0) if E (X\E)>0 for all atoms E.

(vii)A< K:<=> 7-A>0.

In [1], it was still conjectured that the system of projections in a Q-algebra need not be atomic.
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Lemma 1: Let cl be a Q-algebra andX.YecA.

(i) Let E be an atom. Then \XY\, <-(x,|A|,. + X,|A|,; + A.,|A|/, + X4\X\F>) with

F, =T^-(I +Y)E(l + y)\x, £((I +y)'(i +7)|£),
A.,

^2=T-(1 -10£(I -lO*,X2= jE((I -Y)'(l -Y)\e),
2

F} =—(I -iK)£(H -i}7)*,Â.= £((I -iK)'(l - iy)|£").and

F„ =—(1 + /T)£(I +iY)', X, e{(1 +iY)'(l +IY)\e).
xA

(ii) E(X\E)=0(i.e. \X\t=0)forallatomsE => X=0.
i i

(iii) | E(X'Y\E)\ < e(x'X\e)2 e(y'Y\e)2 for all atoms E

(iv) |A|t <||A||,, <|A|| for all atoms E \\X\\,: 0 for all atoms £=>A=0. ||A|| 0=>A=0.

(v) \\XY\\, =||A||,ISl1|, with F -r~T\ YEY' for YE * ° and WYXh * M Wa ¦

jc(/ Y\E)

(vOllATll^llAlllM, Ix'lhllXll and ||x*Af|| ||A||2.

Proof: (i) With the above equations (*). (i) immediately follows from the identity
4 AT' I + Y)X( I +Y) - (I -F)*A(I-F) + / l-iY)'X( I AY) - / I +iY)X( I HY).

(ii) Using (i) with Y=X\ we get from 0= E (X\E)=\X\E for all atoms E:

0 \XX'\s e{xX'\e) for all atoms E

=> 0=£AA*£ (a'£)'a''£ for all atoms E

=>0=A'£ for all atoms E

=> X'=0=>A 0.

(iii) p(A.f):= e(x'Y\e) for X,Y&^ defines a non-negative hermitean form on ol, and the

Cauchy-Schwarz inequality yields (iii).
(iv) The first inequality follows from (iii) with Y= \ and the second inequality is obvious. Then

apply (ii).
(v) Using the above equations (*) we get:

HATH, E{Y'X'XY\E)m E^'YlÉf ' e{X'X\F)m =||H|,||A|,
and then

UTAH,, =||A||,,i|/1|„<]|A||/,||y|| with D XEX'I e{x'X\E) forAE*0.
With A£=0, both sides equal 0.

(vi) llATf < ||A|| |y|| immediately follows from (v). Furthermore, with (iv):

||a'|2= sup e(xx'\e)= sup \zXX'\E<\\XX'\\<\\ZXl\\X'\\foTal\Xeal
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=> \\X'\\ < \\X\\ for all A e^ => ||A|| |(a")'| < |a'| for all A e< J

=>|A'|| ||A||forallAec/Ü
and

||a"a|<|a*| ||A|| ||A|2 =sup{te(a'A|£) | E &cA,E atom)

sup{|A'A'| g
| £ edL,E atom) <|a'a| forali A ec/£

which concludes the proof of Lemma 1.

From Lemma 1 (ii) we immediately get for XedL:

X X' <z> E(X\E) eR for all atoms £
and

A>0=>A A".

The family of semi-norms [ \e, E an atom, defines a locally convex topology t„, {weak
topology) on < £ The involution * and, with Yeoì fixed, the mappings < 73A-»ATec^ and

cAiX-+YXecA are continuous in this topology (|A|f \x'\E Lemma 1 (i), and YX=(X*Y*)*).

Another locally convex topology ts on c 4 is defined by the semi-norms || || £ an atom. With

YedL fixed, the mapping c//3A-»ATe< J is x.rcontinuous. and the mapping c4bX—>YX€cA is xs-

continuous only if y is bounded (Lemma 1 (v)). In general, the involution is not -^-continuous. ts
is stronger than t„

ij | is a norm on the linear space of bounded elements c^b- From Lemma 1 (vi) we now
obtain thaU^b is a normed involutive algebra fulfilling the C*-condition'21'1 '. Ondi, | | does not

provide a norm since œ is a possible value, but nevertheless. || || defines a topology x„ on aL This

topology is stronger than x„. and -s. The restriction of x„ oncib is the nomi topology.
For a projection £ in at, we have 0 < £s(£|£) < 1 and hence ||F| < 1. Lemma 1 (vi) implies

that either ||£|| 1 or £=0. Therefore, the set dL\, of bounded elements in at includes all

projections from < é and is itself a Q-algebra.
Definition 1 (vi) defines a partial order relation on cA as well as on cA\,. Lemma 1 (ii) yields

the antisymmetry of the relation. We shall now prove that this order relation is an extension of
the order relation on the system o of (orthogonal) projections in cV, mentioned in the

introduction. For E,FeÔ we have:

££ £=>£-£ (£-£)'=> E(F - E\d) > 0 for all atoms D e al,

and vice versa (again using the equations (*)),
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E(F- E\D) > 0 for all atoms D e o£

e(efe-e\d)= e(e(f-e)e\d)= e(e\d)e EDE >0F-E--,- —.e(e\d)
for all atoms D

=> EFE-E is positive.

However. £-£££=£( I -£)£=(( II -£)£)*(( II -£)£) is positive as well, and therefore £££=£, which
implies ££=£ (see [1]).

Example 1: Letali be the Q-algebra consisting of all complex-valued measurable functions

on a set Q with a a-algebra 9 such that the singletons {co} belong to 9 for each coeQ. In this
case, the norm defined above is given by

sup|A(co)| for XecA
V, 60,

The weak topology (x„) and the vtopology coincide (as they always do if the Q-algebra is

commutative), and convergence in one of these two topologies coincides with point-wise
convergence. Furthermore, A>0 if and only ifA(co)>0 for all coeQ (Xed]).

Example 2: Let 1A2 be the Q-algebra consisting of all bounded linear operators on a Hilbert
space. Then the norm defined above coincides with the usual operator norm, the weak topology
coincides with the weak operator topology and the vtopology coincides with the strong operator

topology. Furthermore, X>0 if and only if (t, \ X%) > 0 for all Hilbert space vectors £, (XecAf)-

Example 3: Let X0 be a pre-Hilbert-space and let c /3 be the system of those linear operators
A from Zj{i0 to ZA,„ for which there is a linear operator X from K>a to ZK>0 with

(ri|A^) (A-n|4)forallT1,^€^0.

cyf.3 is a Q-algebra. The norm defined above coincides with the usual operator norm, but ah can

contain unbounded operators. If ZJti0 is complete, ah contains bounded operators only and

coincides with ali.
The last theorem in [1] gave a representation fl of any Q-algebra al as linear operators on a

pre-Hilbert-space ZAZ>0. The following lemma provides further topological properties of this

representation.

Lemma 2: Let Xa be a net (generalized sequence) in < 4 andXet t.
(0 l|n(A)|| ||A||.

(ii) Xa—T-^A » |n(Aj^-n(A)4Jj >• 0 for all £ e ^„.

(»0*, ..(^, >X » fejrnXX) ?(ç|n(A)ç)forallÇe2v

(iv)A>0<=> (c,|n(A)£)>0forall£e5Ko.
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Proof: For each atom £ there is a vector %eZX>0 with ||ç| l and E(x\E) (t\u(xX) for all

Xedt.. Hence |n(X)\ > \\X\\ and the implications "<=" of (ii), (iii), and (iv).
On the other hand, for each vector l\ e ZX>0, there are neN.n atoms £,,...,£„ and Yi,...,Y„ eat
with YkEi^0 and

(ç|n(A)^) J u(£*y4|£t) Z £(r;n|£t)£ A ¦YEY
E(y'jk\Ek)'

n

for all Xeat (again with (*)). |çf £ ^YJf). From this, we get |n(A)||<|A|| and the
*=i

implications "=>" of (ii), (iii), and (iv). D

3 The weak completion of a Q-algebra

If the Q-algebra cA is T„-complete, aha is norm complete and thus becomes a C*-algebra'2'-'3'.
It is well-known that each C*-algebra has a representation as bounded operators on a Hilbert
space (Gelfand Naimark theorem), which again provides us with a representation of alb and

particularly of ô on a Hilbert space while IT is a pre-Hilbert space representation of of! including
the elements that are not bounded (and the construction''' of IT does not require C*-algebra
theory).

If a Q-algebra at has a finite dimension, it is automatically complete and each element is
bounded. Thus it is a finite-dimensional C*-algebra, and therefore it is the finite direct sum of
matrix algebras'2':

m

dl. © M„ where Mn is the algebra of complex nk x nk - matrices.

Now, we consider the weak (x„.) completion cA of a Q-algebra at. cA is a linear space

comprising at, but the product XY is not defined in at. XY is defined only if at least one of the

two elements X, Y lies in cA. For 0*XecA there is an atom £ in cA with A£*0 since 0*Xec^.
implies 0 * \X\E IT(a|£) for some atom £ in cA, thus £A£*0 and A£*0.

lidi is commutative, IATI,.. =|A|,,|}/|/. and the product AT can be defined for all X,Y^dt.
Then dl is a Q-algebra.

Lemma 3: Let al be a Q-algebra.

(i) Each monotone increasing sequence 0<Xn<Xnr\<Y {X„e<.A) with an upper bound Y in cA

weakly converges against its lowest upper bound supX„ e cA. and E (sup X„\E) sup E (A„|£)
for all atoms EecA..

(ii) Each monotone increasing net 0<Aa<y (Xae cA with an upper bound Y in dl weakly

converges against its lowest upper bound supXa e at and E (sup Aff|£) sup E (X^E) for all
atoms EecA.
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Proof: (i)0<X„<X„^<Y=>0<E(X„\E)<E(X„+i\E)<E(Y\E)^>E(Xn\E) converges in IR. Since

|A„-Am|g=|i£(Aj£)-i£(xj£|

for all atoms £ in at, X„ is a Cauchy sequence in the weak topology and thus weakly converges

against a Ze at. From

E(z\E) lim £(X„|£) for all atoms £ eat

we get: A,„ < Z < Y for all m e ZV.

Since X is an arbitrary upper bound for the sequence X„, this means that Z is the lowest upper
bound sup X„.

(ii) Replace the sequence by a net (generalized sequence) in the proof of (i). D

Definition 2 A: Lete A be a Q-algebra.

(i) AL. : | A e cA \X is the weak limit ofa norm - bounded sequence Yn in atb \.

(ii) c/w. : | X e at \X is the weak limit ofa norm - bounded net Ya in otb

We again consider the representation IT on the pre-Hilbert space Xa. Let ZJC> be the

completion of ZZK>0. ZK> is a Hilbert space. Since the bounded linear operators on 7ö0 can uniquely
be extended to bounded linear operators on ZA, and since, for each norm-bounded net of bounded

linear operators Ta,

\A\TJA) is a Cauchy net for allÇ e X0 <=> (ç| 7" ç) is a Cauchy net for all Ç e ZK)

we get from Lemma 2 that c -Zw» is isomorphic to the weak closure (weak operator topology) of
n(cA) in the space TjQCZ) consisting of all bounded linear operators from X to ZK> (the space
C5(5K) is complete in the weak operator topology) and that c-ttV. is isomorphic to the weak

sequential closure of Y\.(cAh) in rJAfXZ) Thus we get the following theorem.

Theorem 1: Let c 4 be any Q-algebra. Then cAw* is a W*-algebra and< Vv. is a Baire-*-aIgebra
with c 4.\)ÇZpiz*SpAvi: Furthermore, cAw andc Ai* are Q-algebras.

A C*-algebra is called a W*-algebra if each monotone increasing bounded net has a lowest

upper bound and if a separating family of normal functionals exists (or, which is an equivalent
definiton, if it is the dual space of a Banach space). C*-algebras and W*-algebras have

extensively been studied since John von Neumann's first publications on this subject in the

1930ies; [2] and [3] are only two among a huge variety of books available now on the subject.

A C*-algebra is called a Baire-*-algebra if each monotone increasing bounded sequence of
self-adjoint elements has a lowest upper bound (i.e. the C*-algebra is monotone sequentially

: Operator algebras that are sequentially closed in the weak operator topology are studied under the name

Z*-algebras in [4].
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complete) and if a separating family of rj-normal functionals exists. Baire-*-algebras are very
interesting from a measure theoretic viewpoint and have been studied in [5-11 ].

div is a Baire-*-algebra, but there may be a smaller Baire-*-algebra containing alb-
Therefore, we add to Definiton 2A:

Definition 2B: Let at be a Q-algebra. A subalgebra rJZ> of\ */» « is called monotone sequentially
closed iflimX,, e Œfor each bounded, monotone sequence ofself-adjoint elements in rJi weakly
converging against lim X„ in c /»•*. The smallest monotone sequentially closed subalgebra ofcAw*
containing c A/, is denoted by cA.Bam*-

f^Baire* is a Baire-*-algebra (in fact, the smallest one containing the bounded elements of cA),
and we have:

dh c < -/„,„„, e < 4,. e, -/„,. e <j.

An important feature of W*-algebras and Baire-*-algebras is that the spectral decomposition
theorem can be applied (which is not possible in C*-algebras). Furthermore, the system of
projections in a W*-algebra forms a complete lattice, and the system of projections in a Baire-*-
algebra forms a a-complete lattice.

This provides two important properties of the system of projections c^aire» in c^Baire*- First,
f^Baire« is a lattice: i.e. £a£ and £v£ exist in c-ÌRaire* for all E,Feô^m»3Ô. In Ô, EaF and £v£
exist only for commuting pairs £.£. Second, osairc* is a-complete: i.e.

CO CC

a £ and v £
-.= 1 n.l

exist in Claire» for each sequence £„ in osairc*- The a-completeness is important for the
introduction of observables in the next paragraph. Furthermore, it follows from Lemma 3 that the

probabilities P(E]E) are a-additive in £on óBaire».

Ifc-/. is weakly complete, c72b=c^Baire*=c^i*=c^w*, and 6 is a complete lattice. If at is

sequentially x„-complete,, Ah=c /Baire«=< lz; and ô is a a-complete lattice.

If the Q-algebra c 4 is commutative and sequentially complete in the weak topology, & is an
atomic a-complete Boolean lattice and can therefore be represented as a a-algebra (consisting of
subsets of the set of atoms). The a-algebras play a fundamental role in modem mathematical

probability theory based on Kolmogorov's axioms.
Let us have a look again at the examples considered in the last paragraph. The Q-algebra cA.\

of measurable functions is sequentially complete, but in general not complete in the weak

topology. The Q-algebra of all bounded measurable functions is not sequentially complete in the

weak topology if the a-algebra contains an infinite number of atoms. The Q-algebra cAi of all
bounded linear operators on a Hilbert space is always complete in the weak topology. In general.
cA.t, is not weakly complete, and its weak completion is an abstract space containing elements that
cannot be represented as operators3.

The weak completion ofc/Zî can be represented as the linear space consisting of the sesqui-linear forms
on X0. A sesqui-linear form is a mapping p: A0xX0^><£ such that p(r),s) is linear in the second and

anti-linear in the first component.
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For each norm-bounded sequence 0<X„<X„+\ in a weakly complete Q-algebrac^/ we have

n supA„ =suPn(A„),
1=] ' n=l

from which we can now conclude that a a-complete orthomodular lattice has a Hilbert space
representation that is compliant not only with finite, but also with countably infinite operations a
and v if and only if has a a-additive embedding in a weakly complete Q-algebra. A complete
orthomodular lattice has a Hilbert space representation that is compliant with arbitrary infinite
operations a and v if and only if it has a completely additive embedding in a weakly complete Q-
algebra.

4 Observables

A way how an observable can formally be defined when a system of logical propositions is

given only is shown in [12]: In the case of a "real-valued" observable, it should be possible to
allocate to each interval I a logical proposition E\ or moreover to each Borei set B a logical
proposition Eg. The mapping £->£/? should be compatible with the logical operations.
Observables with values in any abstract set Q with a a-algebra 9 over Q (the pair Q,9 is a

measurable space) can be considered as well.

Definition 3: Let Ô be an orthomodular a-complete lattice (e.g. the system ofprojections in a

Baire-*-algebra) and let Q,9 be a measurable space. An observable on ô with values in Q,9 is a

mapping A: 9—» ô with the following properties:
(i) A(Q)=1
(ii) X(Br) =X(B)for all Z?e94

(iii) Xl U BA v X(Bn) for each sequence ofsets B„ in 9.

Further properties that follow from this definition are: A(0) 0, AÇ4)<A(Z?) for AœB

(A.BeQ) and. for each sequence of sets B„ in 9:

xloA =*AB»)-

Furthermore, A(9) forms a a-complete Boolean sublattice of Ó.

Note that the observables considered here include the random variables of mathematical

probability theory'13'. A random variable is a measurable function/and defines an observable X/
via Xj(B):=/"'(£). A closer look at mathematical probability theory shows that the mapping
B^rfA(B) between two a-algebras is much more important for the theory than the mapping

co->y(cû) between two point sets itself.

4BL=Q-B is the set theoretic complement, and the operation £->£ is the orthocomplementation in Ô. If <5

is the system of projections in a Baire-*-algebra. then E- I -E.
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Vice versa, for each observable Aon a a-algebra I over a set A with values in R" (with the

Borei a-algebra). a measurable R" -valued function fon A can be found such that X-Xj : For xg A
let 8T denote the Dirac measure on A concentrated in the point x. Then ôt°X is a {0,1}-valued

measure on iTand thus itself a Dirac measure in some point se R". With f(x):=s we have:

/"'(fi)={xeA I ôT(A(fi))=l }=X(B). This also implies that/is measurable.

Definition 4: Let X be an observable (under the assumptions ofDefinition 3).

(i) Let A,S be another measurable space and let f.Q.—>Ês be a measurable mapping. Then

AaZ)—>X(f~ (D)) defines an observable on Ô with values in A. This observable is denoted by

W-
(ii) An element coeQ is called eigen-value ofX ifX(B)±0 for all fie9 with coefi. Z/'{co}e9, this

is equivalent to: A({co})*0.
(Hi)Let Q be a topological space and lei 9 be the Borei a-algebra over Q (i.e. the a-algebra

generated by the topology on QZ). An element tneQ. is called spectral-value ofX ifA"(ß)*0 for
all open sets ficzQ with coefi. The sel ofall spectral-values is the spectrum ofX denoted by
spc(X).

(iv) Let Q be the real continuum. X is called bounded ifspc(X) is bounded.

Under the assumptions of (i) with Q.A being topological spaces. 9.S the Borei a-algebras
and/a continuous mapping, we have: spc(f(ZX))=fispc(X)).

We will now study observables Aon /Zßaire* which is the system of projections in the Baire-*-
algebra < V &!„.<.• generated by a Q-algebra c 4. In this case, X(A) and X(B) commute for all A.Beò
since

A (AnB)v(AnBc)
=> X(A) X((A nB)u(An Bc)) (X(A) a X(B)) v(x(A) a AU)')
=> X(A)X(B) X(B)X(A) (see [1]).

Definition 5: Let X be an observable on the system &Bain* ofprojections in the Baire-*-algebra
cAßaire* generated by a Q-algebra < 4. IfX(B) is statistically predictable under EecZßaire' for some

fie9, we define:

PXK(B\- P(X(B)\E).

IfX(B) is statistically predictable under Eec,Bam*for all fie 9 (e.g. when E is an atom), we thus

get a a-additive probability measure IP " ' on 9 which is called the distribution ofX under E.

There is a simple relation between these distributions and the eigen-values of an observable.

Assuming that the singleton {co} belongs to the a-algebra 9, co is an eigen-value ofA if and only
if there is an £*0 in Ò with

px ' =5^ (Dirac measure concentrated in co).

If co is an eigen-value. select £:=A({co})*0. A({co})A(ß)A({cü})=A({co}nB) which equals A({co})

if meß and which equals 0 if cogfi, i.e. Px F(B) equals 1 if coeß and 0 if cogfi. Vice versa, if
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Pxu' is the Dirac measure in co for O^EefZ, we have Pxn:(B)=\, i.e. EX(B)E=E, for all B with
coefi, therefore A(fi)*0 for all S with coefi, i.e. co is an eigen-value.

The following two theorems show the relation between the distributions of an observable and

its spectrum.

Theorem 2: Let X be an observable on the system ôsatre' ofprojections in the Baire-*-algebra
generated by a Q-algebra c 4 with values in the metric space Q. Then are equivalent:
(i) tùespc(X).
(ii) There is a sequence ofatoms E„ in <f,Bam' with

y\ „ „ f 1 if ta is an inner point ofB e 9
limPA,i"(5)=

co-*" [0 if tu is an inner point of B e 9

Proof: (i)=>(ii) Let d denote the metric on Q. For U„ := {co' eQ|c/(co',co)< 11 n), we have

A(c7„)*0, and hence there is an atom £„ in <iaa,rc» with E„ < X(U„). Then for all n with U„œB:

E„X(B)E„ E„X(U„)X(B)E„ E„X(U„ n b)E„ E„x(U„)E„ E„ => FV|';" (ß) 1.

(ii)=>(i) Let Z/be an open set with eoe U. Then, there is an atom E„ with PX'E" (U) > 0.

^> E„X(U)E„ ±0=> X(U) *0.Z

Theorem 3: Let X be a real-valued observable on the system ÔBWre' ofprojections in the Baire-*-
algebra generated by a Q-algebra at Then are equivalent:
(i) Xespc(X).
(ii) There is a sequence ofatoms E„ in oßam' such that the expectation values of the probability

distributions Px*k" converge against X and their variances converge against 0.

Proof: (i)=>(ii) Let E„ be an atom with E„<X(U„) and U„ : {4-s - X\ < 1 / n}. Then:

FA|'-"(Z7„)=1 => j(s-X)2dPxlE"(s)= j(s-X)2dPX£As)< — -

m ii„ n

This implies that the variance of the probability distribution P™ " is smaller than 1/m and that

the distance between X and the expectation value of Px " is smaller than 1/m.

(ii)=>(i) If U is an open set with Xe U, there is e>0 with {s: \s-X\<e}c,U. Then choose n such that

we have for the variance Var(Px''" and for the expectation value Exp(P*'l:" ):

Var(Px]l:" )<e2/4 and \Exp(Px E" )-X\< s/2.

Then U 3 {s:\s - X\ < z) 2 \s:\s - Expl Px h" < % | and, from the Tschebyscheff inequality
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Px"" (U) > P " '" (j.s-:|.v - Exp[ Px '¦ )| < 8 / 2j

{( / m tt Var[px[E")
1 - Px E" \\s-\s - Exp[ PA/:" j] > s / 2 J > 1 ^ '-

> 0

=> £„ A(Z/)£„ * 0 => X(U) * 0. G

IfAis an observable with values in the topological space Q and X e Q \ spc(X), there is an

open set F containing X with X(V)=0. Therefore

Px'(V)=0

for all Ee/Z; i.e. a measurement of the observable A will never provide the value X. This and the
last two theorems justify the interpretation of the spectrum as the set of possible outcomes of a

measurement.
Observables on the system ôsaire* of projections in the Baire-*-algebra < 4BalK- generated by a

Q-algebra c4 are spectral measures in the Baire-*-algebra oiWe*, and the spectral theorem
provides a one-to-one correspondence between the bounded real-valued (complex-valued)
observables and the self-adjoint (normal3) elements of c J Bam' which we will identify with each

other from now on. In addition to the interpretation of the projections in cA as logical
propositions considered in [1], this now gives us also an interpretation of the self-adjoint
bounded elements in cA as real-valued observables. Furthermore, we have found a way to

compute the probability distribution of a self-adjoint bounded A" in < A in addition to the

expectation value and variance under Ee&, and we have the identity:

E(X\E)= JX dPxh

For an observable X with vaiues in Q,9 and a real-valued measurable function/on ii, f\X) is

a real-valued observable with:

ZE(/(A)|£) J X dP'(x)h \f(X) dPx

So far, we have two ways of constructing X" for a self-adjoint X in cABa,re< multiplying A n

times with itself. and/LY) with the function f(X)=X" (Definition 4 (i)). It follows from spectral
theory that both ways provide the same result.

Let's have a look again at our second example. Let < 4i be the algebra of bounded linear

operators on a Hilbert space X. cA2 is weakly complete, and ô is the lattice of orthogonal
projections on X. Let A be an observable on ô with values in a measurable space Q,9. and let

5 X is called normal if it commutes with its adjoint: XX~=XX.
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£erJ be the orthogonal projection on a one-dimensional linear subspace of X. Then we have for

any normed vector c\eE(Xiyx':

Px h(B) (c\x(B)l) Vfie9.

If Q is the real continuum, the mapping B-+X(B) is the spectral measure of a self-adjoint closed

linear operator A on XZ> which is bounded if and only if the observable X is bounded (for the

sake of clarity let's, for a moment, make a distinction between the operator and the observable).
In both cases, we have for any normed vector iDeE(X):

\X dPxh JX d{l\x(*)l) {l\Xq)

In the unbounded case, we only have to assume that Ç belongs to the dense linear subspace of X>

where X is defined to ensure integrability.
With a commutative Q-algebra. the distributions considered above provide only the

probabilities 1 and 0; values between 0 and 1 are not possible'1'. The distribution of an

observable with values in R" under an atom £ then reduces to a measure concentrated in a

single point (Dirac measure).
Now we turn to the question whether there the same relations between unbounded elements

of a Q-algebra and unbounded observables as in the bounded case studied above. For this

purpose, we need the algebraic spectrum.
For Xec4. the algebraic spectrum of A is the complement of the set of all Xe (C such that

(X-XI )' exists in < 4ßaire*. The algebraic spectrum is defined for any XecA, X need not be

selfadjoint or normal. It follows from spectral theory that the algebraic spectrum ofA coincides with
spc(A) ifAhas a spectral decomposition.

An unbounded real-valued observable Xneed not necessarily provide an element in cA or cA.

For instance, if X is a Hilbert space with infinite dimension and cA is the algebra of all bounded

linear operators on X, unbounded real-valued observables exist, but do not belong to at—at.
However, if c^ is the algebra of all complex-valued measurable functions on a measurable space

Q,9, all real-valued observables including the unbounded ones belong to self-adjoint elements of
at.

Vice versa, does an unbounded self-adjoint element A in a Q-algebra iA represent an
observable? i.e. does it have a spectral decomposition? The answer is yes if A fulfills an

additional condition (which bounded self-adjoint elements do anyway): the algebraic spectrum of
A must contain real numbers only. Like in the theory' of unbounded symmetrical Hilbert space

operators, this can be proved by using the Cayley transformation C,\'-={X-i)(X+i)' Cx is unitary
(Cx =Cx thus bounded and normal and has a spectral decomposition from which the spectral

decomposition ofAcan be derived with the function/(X):=/(A.-1)(A.+ 1)"

Lemma 4: Ifa Q-algebra c -/ is commutative and sequentially complete in the weak topology, the

algebraic spectrum ofeach Ae( 7 with X=X* contains real numbers only.
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Proof: In the commutative case, we have for a polynomial mapping/?:

\p(X)\r =\e(p(X)\e)\ \p[e(X\E))\ for each atom £

Now let p„ be a sequence of polynomial mappings with limp (s) y Vs e IR, and

cA.^X-X*. Since E (A|£) is real, /?„(A) is a weak Cauchy sequence and thus weakly converges
against some ZecA with

Z(l+A2) lim/>„(A)(I +A2) 1.

=t> (X-i)(X + i)Z (l +A2)Z I

=> (X + i)Z (X-i)~].
Furthermore:

1 e{(X - i)(X - /)"' \e) ZE((A - /)|£) e((X -i)~'\E) for all atoms E

=7>
I e{(X - /')"' \e) I

i—; r—r < 1 for all atoms £
1 V n \E(X\E)-i\

=> A - ;')" pi, since ||Y|| sup | Z£(y|£| for Y e at in the commutative case.
If atom

For X=cx+iß with real a,ß and ß*0, we can apply the above to (A-a)/ß to see that

(X-a

has a bounded inverse. Therefore, X does not belong to the algebraic spectrum ofA. G

Theorem 4: Each commutative Q-algebra at that is sequentially complete in the weak topology
is isomorphic to the algebra of measurable complex-valuedfunctions on some measurable space
Q,9 with an atomic a-algebra 9.

Proof: Let Q be the set of atoms of c 4. For Xeat define a complex-valued function on Q by

X(E)-- E(X\E).

The mapping A—» Ais linear, multiplicative, injective, and commutes with the involution'1'.
Weak convergence in < A corresponds with pointwise convergence of the functions on Q. Each

projection £ in at defines a subset fif-:={£eQ|£<£}czQ and the system of all Bf forms an
atomic a-algebra 9.

It follows from the spectral decomposition of a self-adjoint element A of ct? (which is possible
due to Lemma 4) that A can be weakly approximated by a sequence Y„ of finite linear combinations

of projections in at. Obviously, the Y„ are measurable and so is their pointwise limit A.
Since each Aec^ can be written as X=Y+iZ with Y,Zec 4 self-adjoint, A is measurable for all
Xeat.
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For any complex-valued measurable function fon Q there is a sequence of simple measurable

functions gn on Q with f[E)-lim g„(E) for all £eQ. A simple function is a finite linear
combination of indicator functions of measurable sets from 9. Since the indicator function of fi/-

equals F, there is a Y„ecA for each g„ with gn Y„, and since the g„ converge, the Y„ form a

weak Cauchy sequence. Let Abe the limit. Then X /.
5 An extension of the concept of statistical predictability

What is ZE(yiA=.r) or P(F\X=x) for observables AT and a projection £? If x is an eigenvalue

of A and if the singleton {x} belongs to the a-algebra 9, we have A({x})*0 and we can

define E (Y\X=x):= E (Y\X({x})) or P(F]X=x):=P(F]X({x}) if Y or £ are statistically predictable
under the projection A({x}). However, we would like to define E(Y\X=x) or P(F]X=x) for other

x that are not eigen-values. too. As we will see now, this is possible for any x belonging to the

spectrum ofA although A({x})=0.
A realistic physical measurement never provides a real number as result, because of the

limited precision the result is always an interval. The interval can be made narrower by

improving precesion, and only by doing this infinitely many times, a real number can be achieved

as measurement result. This infinite process, of course, is not possible in practice, but represents

a theoretical and idealistic measurement process. Without assuming such a theoretical possibility,
there would be no need to explain E(Y\X=x) or P(F]X=x).

Let dl be a Q-algebra. and let A be an observable on /Zßaire* (the system of projections in

cA-Baire*) with values in a topological space Q. Furthermore, assume tnespc(ZX) and let Z7 be an

open set in Q with eoe U. Then, A(Z7)^0, and we can define:

rDu:= VY e d'I Y is statistically predictable under X(U)) and

®x=A- U r'\r
(/open witli to eU

For open sets U, V with UçzV we have X(U)<X(V) and therefore rOvcADu and

Z£(y|A(c7))= e(y\X(V)) for all Ye<Vv (see [1]). For open sets U, V with coeZ/, eoe V and

Ye'DyrADu we thus have:

e(y\X(U))= e(y\X(UCìV))= e(y\X(V)).

For Ye<7)x=m we can therefore define: E(y\X co):= e(Y\X(U)) where U is any open set with

eoe U and YeA)u. Ou and A)x=a are linear subspaces of c t (but not subalgebras), and the mapping

y-> E(YX co) is linear on AZ>x=a- Since

| e(y\X co)| I e{y\X(U))\ I e{y\X(U))x(U)\\ \\X(U)YX(U)\\

<lA(t/)|||/1||A(c7)l |/1|,
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the mapping K-> E(y\X co) can uniquely be extended to the xn-completion <T>x.<* of ^?x=<d-

Then A) x .u Q < 4 This extension is again denoted by E(y\X co).

Definition 6: (i) The elements Yer/)x=a are called statistically predictable under A=co w(7/? f«e

expectation value E(Y\X co). For Eeôaaire'^'TJx-e>, this expectation value is interpreted

as probability and denoted by P(e\ X co)

(ii) If Y is an observable with values in a measurable space A.Z and Bel. such that Y(B) is

statistically predictable under X=co. vre define:

P] x'a(B):= P(Y(B)\X m).

Generally, this probability is defined only for a subset of E, and in those cases when it is
defined for all Bel,, it is not necessarily a-additive. it may be only finitely additive.

Example: We assume that Y=ßX) with a measurable mapping / between Q and another

topological space A and that/is continuous in co. Then, for a Borei subset D in A:

„.„ [l if f (co) is an inner point of Z)
Pyx"a(£>):= Y \

[0 if/(co) is an inner point of Z3C

Proof Let/co) be an inner point in D. i.e. there is an open set VçzA with/co)e VçzD, and let Z/be
an open set in Q such that coeL' andf(U)çzV. Then Y(D)=X(f A(D)) and X(U) commute and

X(U)Y(D)X(U)=X(f-\D))/^(U)=X(f-\D)nU)=X(U), i.e. p(y(D)\X(U)) 1. If/co) is an inner

point in £>'. we get in the same way: p(y(D')\x(U)) 1. i.e. p(y(D)\x(L')) 0. I
In general, the probability in the example above cannot be extended to those Bore! subsets D

in A where/(to) is not an inner point of D or Dc.

6 Conclusions

The concept of statistical predictablity introduced in [1], on the one hand, can be derived
from an analysis of quantum measurement and, on the other hand, can be taken as a starting point
from which the quantum theoretic mathematical formalism can be developed. The minimum
mathematical structure necessary to consider statistical predictablity is the Q-algebra. Each Q-
algebra has a representation as linear (not necessarily bounded) operators on a pre-Hilbert-space.

An axiomatic approach to quantum theory would thus include the definition of the following
three items only:

• statistical predictability'1' (the formal definition and its interpretation as probability),

• Q-algebras'1', and

• observables (§4).
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The definition of observables requires a a-complete lattice, and this is the reason why we had

to consider the Baire-*-algebra generated by a Q-algebra in §3.

This axiomatic approach to quantum theory may not be more intelligible but it presumes, at

least mathematically, less structure than the traditional Hilbert space approach, and the

interpretation of X with EFE=XE (which implies 0<X<1) as a probability does not appear to be

less intelligible than the postulate that

U41

(with Hilbert space vectors r\,£, and a complex number <n|^>) represents a probability.
With this approach, the mathematical modeling of propositions and observables includes

both the model of quantum physics (orthogonal projections and operators on a Hilbert space) as

well as the Kolmogorov model of mathematical probability theory (a-algebras and measurable

functions: here the propositions and observables are called events and random variables The

algebra of measurable functions is a Baire-*-algebra. but not a W*-algebra. From this point of
view. Baire-*-algebras seem to be a more appropriate structure for quantum theory than W*-
algebras the use of which, however, is more common among mathematically oriented physicists.

A major difference between this approach and other approaches to quantum theory is the

concept of statistical predictability. It is this concept where the probabilities typical for quantum
theory arise from. These probabilities differ from those studied in mathematical probability
theory, what has extensively been discussed in [1]. So far. the commonalities with mathematical

probability theory include propositions and observables, but not the probability.
Nevertheless, the introduction of states on the Q-algebra <A (a-additive positive linear

functionals cp onc4Ra,re* with cp( II )=1) would provide a second type of probability corresponding
to the one considered in mathematical probability theory. This would result in Kolmogorov's
approach to probability theory if at. is assumed to be commutative, and in a non-Boolean

extension of probability theory if<A is not commutative. Statistical quantum mechanics (quantum
thermodynamics) deals with both types of probabilities and needs the non-Boolean extension of
probability theory.

For a projection £ we can define (Pe(A):= E (A]£) for those A that are statistically predictable
under £. tpE is defined on all < ißa,re* and thus becomes a state if and only if £ is an atom. The cp£

(£ an atom) provide a special type of states, but there are many other states not arising from

atoms.
A real-valued observable A can have the property: A(A)=0 for all Lebesgue-negligible Borei

sets N. Then, each distribution of A is Lebesgue-continuous. This is impossible with a real-

valued random variable defined on a measurable space. Thus, the assumption of dominated

classes of distributions that is very often needed in mathematical statistics becomes much more
natural in the more general framework of observables.
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