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Chiral Schwinger Model with the Faddeevian
Regularization in the Light-Front Frame:
Construction of the Gauge-Invariant Theory
Through the Stueckelberg Term, Hamiltonian
and BRST Formulations

By Usha Kulshreshtha

Department of Physics and Astrophysics, University of Delhi
Delhi-110007, India

(11.XI.1996)

Abstract A chiral Schwinger model with the Faddeevian regularization a la Mitra is studied in
the light-front frame. The front-form theory is found to be gauge-non-invariant. The Hamiltonian
formulation of this gauge-non-invariant theory is first investigated and then the Stueckelberg term
for this theory is constructed. Finally, the Hamiltonian and BRST formulations of the resulting
gauge-invariant theory, obtained by the inclusion of the Stueckelberg term in the action of the
above gauge-non-invariant theory, are investigated with some specific gauge choices.

1 Introduction

The Chiral Schwinger Model (CSM) in one-space one-time dimension has attracted very
wide interest in the recent years [1-10] the model describes a massless Dirac field 9 (xz,t)
in two dimensions with only one of its chiral components coupled to a U(1) gauge field
Az, t) [1]. Jackiw and Rajaraman [1], in particular have considered a gauge anomalous
Chiral Schwinger model [1]. By studying the field equations and propagator obtained
from the effective gauge field action, they concluded [1] that the theory was not gauge
invariant, but was unitary and amenable to particle interpretation [1]. They also found
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that the vector gauge boson necessarily acquires a mass when consistency and unitarity
are demanded.

The Jackiw-Rajaraman model [1-7] is found to admit exact solutions in positive metric
Hilbert space, respecting unitarity, provided that the Jackiw-Rajaraman (J-R) regulariza-
tion parameter a (introduced in Ref. [1] is restricted to the range a > 1 [1]. In fact, the
model is seen to yield a sensible theory for a class of regularizations [1] and the spectrum
of the theory is seen to depend on the regularization in a crucial way. The class of regular-
ization that have been considered involve the dimensionless J-R regularization parameter
a. For a > 1 the theory is sensible. The spectrum of the theory for a > 1 contains a
massive photon in addition to a massless fermion and for a = 1 only a massless fermion.

Very recently, Mitra [10] has considered a new regularization which does not belong
to the above class. With this regularization [10] the photon is once again massive and
the massless fermion present in the theory has (unlike the J-R regularization) a chirality
opposite to that entering the interaction with the electromagnetic field [10]. Further, this
regularization, being in accordance with the Faddeev’s picture [11] of anomalous gauge
theories, has been called by Mitra [10] as the "Faddeevian regularization” [10,11].

It i1s important to mention here at this point that the nature of the matrix of the
Poisson brackets of the constraints of the theory decides the nature of the set of constraints
of the theory [12] and also as to whether the theory is gauge-invariant or not : so that if the
matrix is singular , than the set of constraints of the theory is first-class and the theory is
gauge-invariant (and if the matrix is null matrix and therefore also singular then the theory
is a true or bonafide gauge-invariant theory) and if the matrix is non-singular than the set of
constraints of the theory is second-class and the theory is gauge-non-invariant. Further, in
the last case, if the matrix of the Poisson brackets of the constraints of the theory becomes
non-singular because of the non-vanishing Poisson bracket of the Gauss law constraint of
the theory with itself (-called Faddeev’s anomaly [11,10]), so that the constraints become
second-class and the theory becomes gauge-non-invariant or it looses gauge-invariance
because of this Faddeev’s anomaly [11,10] then the theory fits into the Faddeev’s scenario
[11,10]. In the Chiral Schwinger model with the Faddeevian regularization considered by
Mitra [10], the Faddeevian mechanism works because the constraints of the theory become
second class through the Faddeev’s anomaly for the Gauss law constraint of the theory.

Mitra {10] has studied the Hamiltonian formulation of the above Chiral Schwinger
model with the Faddeevian regularization in a recent paper [10,11] in the instant-form
[13], where the instant-form theory is seen to be gauge-non-invariant possessing a set of
three second-class constraints.

In the present work, we study the above theory in the light-front frame. The front-
form theory is also found to be gauge-non-invariant possessing a set of three second-
class constraints. The Hamiltonian formulation of this gauge-non-invariant front-form
theory is first presented in Section 3A, and then the Stueckelberg term [14,9,7,15] for this
theory is constructed. Finally, the Hamiltonian [12] and Becchi-Rouet-Stora and Tyutin
(BRST) [16,15,17,9,7] formulations of the resulting theory, obtained by the inclusion of
the Stueckelberg term in the action of the above gauge-non-invariant front-form theory,
are investigated with some specific gauge choice in Sections 3C and 3D.
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Further, in the usual Hamiltonian formulation of a gauge-invariant theory under some
gauge-fixing conditions, one necessarily destroys the gauge invariance of the theory by
fixing the gauge (which converts a set of first-class constraints into a set of second-class
constraints, implying a breaking of gauge invariance under the gauge fixing). To achieve
the quantization of a gauge-invariant theory such that the gauge invariance of the theory
is maintained even under gauge fixing, one goes to a more generalized procedure called
the BRST formulation [16,15,17,9,7]. In the BRST formulation [16,15,17,9,7] of a gauge-
invariant theory, the theory is rewritten as a quantum system that possesses a generalized
gauge invariance called the BRST symmetry. For this, one enlarges the Hilbert space of the
gauge-invariant theory and replaces the notion of the gauge transformation, which shifts
operators by c-number functions, by a BRST transformation, which mixes operators having
different statistics. In view of this, one introduces new anti-commuting variables ¢ and ¢
called the Faddeev-Popov ghost and anti-ghost fields, which are Grassmann numbers on
the classical level and operators in the quantized theory, and a commuting variable b called
the Nakanishi-Lautrup field (16,15,17,9,7]. In the BRST formulation, one thus embeds a
gauge-invariant theory into a BRST invariant system, and quantum Hamiltonian of the
system (which includes the gauge-fixing contribution) commutes with the BRST charge

operator @ as well as with the anti-BRST charge operator ), the new symmetry of the
quantum system (the BRST symmetry) that replaces the gauge invariance is maintained
(even under the gauge-fixing) and hence projecting any state onto the sector of BRST
and anti-BRST invariant states yields a theory which is isomorphic to the original gauge-
invariant theory. The unitarity and consistency of the BRST-invariant theory described
by the gauge-fixed quantum Lagrangian is guaranteed by the conservation and nilpotency
of the BRST charge Q.

The plan of the paper is as follows. In Section 2, we briefly recapitulate the Chiral
Schwinger model with the Faddeevian regularization [10] in the instant-form [13]. In
Section 3, we consider this theory in the light-front frame. This front-form theory is also
found to be gauge-non-invariant. In Section 3A, the Hamiltonian formulation of this gauge-
non-invariant front-form theory is considered. The construction of the gauge-invariant
theory and the calculation of the Stueckelberg term for this gauge-non-invariant front-
form theory is considered in Section 3B. Finally, the Hamiltonian and BRST formulations
of the gauge-invariant front-form theory (obtained by the inclusion of the Stueckelberg
term) are studied in Sections 3C and 3D respectively, with some specific gauge choices.

2 The Instant-Form Theory : A Brief Recapitulation
[10]

The Chiral Schwinger model with the Faddeevian regularization due to Mitra [10] in one-
space one-time dimension in the instant-form [10,13] is described by the bosonized action
[10] :

St = /E"dz dt (2.1a)
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. 1., .
£ = (58~ 287 +eld+ ) (4 - A)
1 (2.1b)
- 5(Al —Ap)?+ e (Ay — A))% — 2242
g"” = diag(+1 - 1) (2.1¢)

The overdots and primes denote time and space derivatives respectively. The first
term in (2.1b) represents [10] a massless boson, which is equivalent to a massless fermion
in two dimensions. The second term represents the chiral coupling of this fermion to the
electromagnetic field A ,. The third term is the kinetic energy term of the electromagnetic
field. The last two terms involve only the electromagnetic field and may be regarded as a
signature of the regularization [10]. Here the sum of the last two terms in (2.1b) (namely,
%62(.40 — A,)* —2¢°A?)) has been chosen [10] as the mass-like term of the model [10], to
be compared with the mass-term (éaczAﬁA“) of the Jackiw-Rajaraman Chiral Schwinger
model [1]; where a is the Jackiw-Rajaraman regularization parameter [1], and it has been
called a different (namely, Faddeevian) regularization in Ref. [10].

The action (2.1) is seen to possess a set of three second-class constraints [10] :

Q,=I=0 (2.2a)
Oy = [E' +e(ll+¢)] ~0 (2.20)
Q= (4 +A)) =0. (2.2¢)

Where §2, is a primary constraints and {2, and 2, are secondary constraints [10]. Here, II,
I, and E(= Hl) are the momenta canonically conjugate respectively to ¢, A; and A,. The
matrix of the Poisson brackets of the constraints €2, is seen to be non-singular, implying
that the set of constraints €2, is second-class and that the theory is gauge-non-invariant
(GNI) [10]. Using the Hamilton’s equations of motion of the theory that preserve the
constraints of the theory in the course of time, one can see that A, satisfies the Klein-
Gordon equation [10] :

(O+4e*)A, =0 (2.3)

implying that the photon has a mass 2|e|. Further, by defining a new field y by [10] :
]' A / s
x=¢)+(§e)(/11+,41) ; (2.4)

it is seen that y satisfies [10]

implying that x is a self-dual boon, and there by showing that the theory contains a chiral
boson, which could also be thought of as a chiral fermion [10]. The fields ¢, A, and A,
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could then be expressed in terms of the free massive scalar field A; and the free self-dual
boson x (or equivalently a chiral fermion) [10]. For further details of this theory, we refer
to the work of Ref. [10].

The mass-like term of this model (i.e., the sum of the last two terms in (2.1b)) does
not have the Lorentz invariance and therefore the theory (2.1) lacks manifest Lorentz
covariance. However, the three Poincaré generators namely, the Hamiltonian operator
Hy(= Pp), the field momentum operator Pp(= PE); and the Lorentz boost operator
Mg (= M’}zo): all defined on the constraints hypersurface of the theory (i.e., under the
constraints of the theory) are seen to satisfy the Poincaré algebra [10] :

[PS, PL] =0 [MY, P3| =—iP" {[M§z, Pi] = —iP° . (2.6)

In view of this, the theory described by the action (2.1), despite the lack of manifest
Lorentz covariance, is seen to be implicitly Lorentz-invariant [10]. In view of the Faddeev’s
arguments [11]. The gauge-non-invariant theory described by the action (2.1) would have
more physical degrees of freedom than the gauge-invariant theories because no gauge-fixing
conditions are required for quantizing the theory [10,11]. Also, the spectrum of this theory
in this Faddeevian regularization is found [10] to contain a self-dual boson [10]. This
is in contrast with the case of the Chiral Schwinger model with the Jackiw-Rajaraman
regularization schemes [1].

3 The Theory in the Light-Front Frame

3A. Hamiltonian Formulation of the Gauge-Non-Invariant The-
ory

In the light-front frame approach one defines the coordinates [13] :

1
¥ = —(2°+ 1)

V2

and then writes all the quantities involved in the action in terms of z< instead of z° and z'.
After doing this the instant-form action of the theory given by (2.1) [10] in the light-front
frame [13] becomes :

SN = /ﬁ‘Ndar_(l:L'+ (3.1a)

L. _\2
LY == (0,0)(0_0) +2eAT (0, ¢) + §(d+A+ —0_A")?
—e* (A7) +2e*AT AT

(3.1b)



358 Kulshreshtha

1 1 ... .
(Ag F A;) ; g% = —= (0 F 0y) ; (3.1¢)

B =
V2

Sl

g"" = diag(+1,-1) ; p,vr=0,1 (3.1d)

the Greek indices p, v, appearing in the text represent Minkowsky indices and take on
. . . N
values 0 and 1. The light-cone canonical momenta obtained from £~ are

o™
he - 39,
I1 _—8(6+A‘) 0 (3.2a)
oLy 0 e e ,
il — —6(8+A+) =(0,AT —-39_A") (3.20)
ocy | . ,
o = (0 et 3.2c
I1 30.9) (O_¢p+ 2eA™) (3.2¢)

where II7, IT™ and II are the momenta canonically conjugate respectively to A7, AT and

. . . ) N . .
Equations (3.2a) and (3.2c) imply that £% possesses two primary constraints :

py=(II7) =0 (3.3a)

po=(I1—08_¢p—2eA7) =0 . (3.3b)
The canonical Hamiltonian density corresponding to N is

HY =7 (0, A7)+ T (8, AT) + (0, 6) — LV

1 (3.4)
= 5(rr)2 +II7(0_A7) +e?(A7)% — 2 AT A~ .
After including the primary constraints p, and p, in the canonical Hamiltonian density Hg
with the help of Lagrange multiplier fields w, and w,, one can write the total Hamiltonian

density of the theory Hg as :

]_ 2 —\?2 =+ _—
HY = .2_(11—)2 + (I (O_A7) +e* (A7) —2e*ATA™ + [TTw,

+ (1 - 8, — 2eA™)w, .

(3.5)

The Hamilton’s equations of motion of the theory obtained from the total Hamiltonian
N —4,;N

Hy = [dz™Hy are:

ol

ol

D, 0 = w, (3.6a)



Kulshreshtha 359

. N
—0, 11 = ‘)g; =0_w, (3.6b)
_ oHY .
0,A” = 31‘[1’: =y (3.6¢)
. N
-0, 11" = gii = (=2e*A™ — 2ew,) (3.6d)
N
9, AT = %ﬁ{ =TI~ +d_A") (3.6¢)
+ BH%’Y ‘ - .2 A— 2 4+ 3 f
—0 T = o= = (—0_II7 + 22 A7 — 2e?A¥) (3.6f)
OHN
O, w; = BHI =] (3.69)
OHN
8.0, =—L =1+ (3.6h)
T Jw,
NV
O, w, = ggT =0 (3.61)
HY
~9,10,, = 0 =(I1-8_¢ — 2eAt) . (3.67)
Ow,

These are the equations of motion of the theory that preserve the constraints of the theory
in the course of time. For Poisson bracket { , }p of two functions A and B, we choose the
convention :

() 94(z) 9B()
(460, B}, = [ - Z{aqa Bols) B Pl P

Demanding that the primary constraint p, be preserved in the course of time, we
obtaln the secondary constraint

p3 i= {plﬁHZIY}p = [a_n_ + 262(.4_ == d4+)] ~ 0. (38)

The preservation of p, for all time does not give rise to any further constraints. The
preservation of p, for all time also does not yield any further constraints. The theory
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is thus seen to possess only three constraints p,, p, and p;. The matrix of the Poisson
brackets of the constraint p; is

Saﬁ(wﬁz) = {f)o:(w) ) pﬁ(z)}p

0 0 2e’§(w” —z7) (3.9)
== 0 -20_6(w —z) 2e0_6(w —z) ‘
—2e%§(w” —27) 2e0_6(w” —z7) —4e*9_S(w” —z7)

16 matrix 1 seen to be non-singular implying that the set of constraints p, is second-
The matrix S 4 is seen to be no gular implying that the set of constraints p, !
. . N ey o4 v . .
class and that the theory described by the action | 1) i1s a gauge-non-invariant theory.
1 d that the theory d bed by ti tion S (3.1 gaug t theory
. ) . N . — N k . :
The reduced Hamiltonian of the theory Hp = [ da” Hy, obtained from the total Hamil-

tonian Hay (3.5), after implementation of the constraints p, is given by
N . .—rl -2 2 -\ 2)
Hp = [ dz {E(H ) —e*(A7)7]. (3.10)
The Dirac bracket { , }, of two functions A and B is defined as [12] :

{A. B}y = {A B} p— [dw‘dz‘ S (A To(w)} 5
' o3 (311)

Az (w, 2){T5(2). B} p] -

Where I'; are the constraints of the theory and A 4(w,z):= {T,(w), Tg(z)}p] is the
matrix of the Poisson brackets of the constraints I';. The transition to quantum theory
is made by the replacement of the Dirac brackets by the operator commutation relations
according to :

{A,B}p = (-0)[A,B] , i=Vv—-1. (3.12)

Finally, the nonvanishing equal light-cone-time (™ = y7) commutators obtained for

; : ; ‘ N /-
the gauge-non-invariant front-form theory £ (3.1) are :

[p(z7), My )] = gm‘(f -y7) (3.130)
[$(=7), I (y7)] = ~%iee(~r‘ -y7) (3.13b)
A7), U] = =505z — y7) (3.130)
[A* (™), T~ (y7)] = iba™ — y™) (3.134)

[¢(z7), d(y7)] = —que(z™ —y7) (3.13¢)
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[$a7), A7) = 5-ida™ —y7) (3.13f)

A (@), A~ (7)) = = gi0_0(a™ ~ y) (3.139)
(A7), A ()] = =500z~ ~ y7) (3.13h)
(M), 1)) = ~5i0_0(z™ ~y) (3.133)
M=), 1= (y7)] = —ied(a™ —y) (3.137)

[N (27), I~ (7)) = —ie?e(a™ —y7) . (3.13k)

Here e(z™ — y ) is a step function defined as :

e — ) =4 L (7 —y ) >0 :
(: ) {_1? (:u‘—;;‘)<o . (3.14)

3B. Construction of the Gauge-Invariant Theory : The Stueckel-
berg Term

: . . : N .
In constructing a gauge-invariant model corresponding to £~ (3.1), we calculate the

Stueckelberg term for ™. For this, we enlarge the Hilbert space of the theory described
by £, and introduce a new field 6, called the Stueckelberg field [14,15.9,7], through the

following redefinition of fields ¢ and A% in the original Lagrangian density e (the motiva-
tion for which comes from the gauge transformations (3.27) of the expected gauge-invariant
theory (3.16) :

p—=P=0¢—0; AAT =5 AT = A= +0_0 (3.15)
the Stueckelberg field @ is a full Quantum field [14,15,9,7]. Performing the changes (3.15)
in £V, we obtain the modified Lagrangian density as :

=¥ % (3.16a)

with
t L5 =[(1-2e+2e*)(0,0)(0_0) — (1 —2¢)(0,¢)(9_0)
— (0,0)(0_¢) +2e(ec — 1)AT(0,.0) — €*(0,6)°
—2e°A7(0,.0-0_0))] .

(3.16b)
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Here £° is the appropriate Stueckelberg term corresponding to Y. We shall see later
that £7 describes a gauge-invariant theory possessing a set of three first-class constraints.
In fact, we will be able to recover the physical content of the gauge-non-invariant theory
described by Vi (3.1), under some special choice of gauge.

: . I
The Euler-Lagrange equations obtained from £ are :

20.0_¢=0_0_0+ (1 —2e)0,0_0 - 2ed, AT (3.17a)
eJ, =0, (0,AT —0_A7) =2e*A7 +2ed_¢ + 2e(e — 1)d_.0 (3.17b)
eJ_=0_(0,AT —0_A") =2e%(A™ — AT) +2¢%(9,.0 - 0_0) (3.17¢)

2¢0.0,0 — (1 —2e+2e*)0,0_0+2(1 —e)d,0_¢ +2ed AT
+“+ + + +

3.17d
~ 230, AT +8_ A~ -8,A7)]=0. (3.17d)

The vector current (J*) has the divergence :
o

L.
8,J* 1 = =0,(9,F*) =0, J_+0d_J,
=20,0_¢+ (2¢% = 1)0,0_0 + 20, A (3.18)
= 2e(e — 1)0,(0_6) + 0_(0_0)

which is seen to vanish in the gauge —(9_6¢) = 0 (which is a consequence of the unitary
gauge choice 9”6 = 0 to be considered later). This implies that the theory possesses at the
classical level, a vector gauge symmetry under the gauge 0”0 = 0. The divergence of the
axial-vector current JE, at the same time, is (by virtue of the Euler-Lagrange equations
(3.17)) non-zero (e" = —&"* %1 = +1) -

g JE = l‘-““'F = (0, AT —0_A")#0 (3.19)

n7S T 9T pv + - e .

this further implies that under the gauge 9“6 = 0 the theory L' does not possess any
vector-gauge anomaly. On the other hand, for the gauge-non-invariant theory CN, one
has a nonvanishing divergence of vector-current (J"), implying that the latter theory is
anomalous.

3C. Hamiltonian Formulation of the Gauge-Invariant Theory

The light-cone canonical momenta for the gauge-invariant theory described by L (with
I1, being the light-cone momentum canonically conjugate to the Stueckelberg field 4) are :
aL'

H+ = W =1 (320&)
+4
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D . . _
I — m = (3+A = 8_,4 ) (320b)
oc’ A i
1l 8= 50,9 J_¢+2eA™ — (1 —2e)(0_0) (3.20c¢)
aﬁl 2 =R = 2
— _ —AT) =2 ~II. .
= 5y = 26800+ A7 - 47) —2¢2(0,0) - 1 (3.20d)

Equations (3.20a) and (3.20c¢) imply that Vo possesses two primary constraints :

P, = It =0 (3.21a)

Wy =1 —0_¢—2eA* + (1—2e)0_6] =0 . (3.21b)

. . . . . I.
The canonical Hamiltonian density corresponding to £ is :

HE =170, A7)+ 7 (0, AT) + 1(0,.6) + T1y(0,0) — LT
= {l(n-)2 +TI7(0_A7) +e*(A7)? — 2e®AT A
2 ;
1 (3.22)
—2e2A7(0_6) - ozl — (1 - 2e+ 2¢2)(0_0) + 0_¢

—2e(e — 1)AT +2e°A7)%} .
After including the primary constraints ¢, and v, in the canonical Hamiltonian den-

sity ?—[é with the help of Lagrange multiplier fields u and v, one can write the total
Hamiltonian density of the theory ’H:} as :

HE =HL + TTHu+ [T - 0_¢ — 2eAT + (1 — 2€)0_0)v (3.23)

the Hamilton’s equations of motion of the theory obtained from the total Hamiltonian
HE: = [dz™ HE, are :

_ 9Hr _
8+¢— ﬁ— =V (324(1)
-0 H—aH{""L[B I, — (1 —2e+2e*0_0_60+0_0_¢
T g T 2e2' 08 AR A Tl (3.24b)
—2e(e—1)0_A*T +2e%0_A~] +0_v
_ OHj
0,A" = =y, (3.24c)

© oot
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_ OHL  2e(e—1) I (
~g I~ = (’)AI =| 52 {IIy = (1 — 2e+2e°)0_0+ 0_¢
—2e(e—1)AT + 247} — 222 A~ — 2ev]
OH} .
8+A+ = 01_1—_ =11+ ([)_.‘:1—
. OH7 )
—0, 10" = 8Af =[—{l, — (1 - 2e+2e*)J_0
+0_¢—2ele—1)AT +2e* A}
—-0_II" + 262(;1_ — AT - ‘2(’.2{)_9]
dHy ~1 "
8,0 ==L My — (1 —2e+2e*)0_0+0_¢

T 0, 262
—2e(e — 1)A™ +2e* A7)

OH;
1 ¢ 2 - ¢ 2 -
+ 10, +0_¢ — 2e(e — 1) AT + 2247}
+2e20_A" — (1 — 2e)0_v]
ok
()+1L — E)—i—l’: -
-9, 11, = OH; = [t
R T
. OHp
+77 I,
QI .
- . IL, = B = I—0_¢—2eA™ + (1 —2e)0_0] .

Kulshreshtha

(3.24d)

(3.24e)

(3.24f)

(3.249)

(3.24h)

(3.240)

These are the equations of motion of the theory that preserve the constraints of the
theory in the course of time. Demanding that the primary constraint %, be preserved in

the course of time, we obtain the secondary constraint

thy i= {1y, Hp}p = [0_TI + Iy — (1 — 2€)(0_6)
+0_¢+2eAT| =0 .
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The preservation of i, for all time does not give rise to any further constraints. The
preservation of ¥, for all time also does not yield any further constraints. The theory is
thus seen to possess three constraints v,,1, and v¥;. The matrix of the Poisson brackets
of the constraints ; is :

Top(w; 2) i= {Pq(w), ¥s(2)} p

0 0 0 ’
)
=0 -20_d0(w —27) 20_6(w —2z7) . by

0 20_6(w™ —z") =20_6(w~ —z2")

The matrix T4 is clearly singular implying that the set of constraints 1, is first-class

r T . . p y §
and that the theory described by £ is a gauge-invariant theory. In fact, the Lagrangian
density £ is seen to be invariant under the time-dependent chiral gauge transformations :

SA*T=08_8,6A"=08,8,66=-08,60=-0,

. , (3.27a)
bu=209,0,0,0v=-9,p

v

ST+ = 6T1~ = 611 = 611, = 611, = 811, = 0 (3.27b)

where 8 = A(z™,27) is an arbitrary function of its arguments. The reduced Hamiltonian of

I oy seqof ; I ; ; : ;
the theory Hy = [ dz” Hp, obtained from Hr. after the implementation of the constraints
Y, 1s given by :

1 , .
HE = /cl.’z:“{§(H_)2 +II7(0_A") +e?(A7)2 —2e2ATA™ —2e2470_0
- 1 . , _ 5 5 ey
~ (2¢20_0 — 0_TI~ — 2e* A" +2e247)?] .

(3.28)

In order to quantize the theory using Dirac’s procedure [12], one has to convert the
set of first-class constraints of the theory into a set of second-class ones. This one can
achieve by imposing arbitrarily, some additional constraints on the system in the form
of gauge-fixing conditions or the gauge-constraints. For this, we go to a special gauge
given by 9"# = 0 (or equivalently 9,60 = 0 and —d_6 = 0), and accordingly choose the
gauge-fixing conditions of the theory as [4,15,9] :

¢ =—(0_8) ~0 (3.29a)

G, = g+ 0_¢ —2e(e —1)AT +2e*A7] =0 . (3.29b)

With the gauge-fixing conditions (3.29), the total set of constraints of the theory
becomes

G =, =I"%0 (3.30a)
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Ey =1y = [l1 = (O_¢) — 2eAT + (1 — 2€)(0_6)] = 0 (3.300)

€3 =1hy = [(O_TI7) + I, — (1 — 2€)(I_0) + (I_¢) + 2eAT] = 0 (3.30¢)
§4=6=-(0_0)=0 (3.30d)

Es=c,= [y +I_¢—2e(e—1)AT +2e°A7| =~ 0. (3.30e)

The matrix of the Poisson brackets of the constraints &;, namely, M, 5(w, 2) := { (w), €5(2)
is then calculated. The nonvanishing matrix elements of the matrix M, 4(w, z) are :

M,s = —M;, = —2e*6(w™ — 27) 3.31a)
M,y = Mgy = —20_8(w™ — 27) (3.31b)
Mys = M3, =20_6(w™ — 27) (3.31¢)
My =Mz, =2(1 —e)d_d0(w™ —2z7) (3.31d)
My, =M, = —0_8(w™ —z7) (3.31e)
Mys = Mz = (2% = 1)0_S(w™ — 27) (3.31f)
Mys =My, =—-0_06(w~ —27). (3.319)

The matrix M, 5 is seen to be nonsingular and therefore its inverse exists. The non-
vanishing elements of the inverse of the matrix M,; (i.e., the elements of the matrix

(M_I)QIB are :

(MY, = 2_—;8_(5(10' - 27) (3-32¢)
(Mg = (M) = [ 10w = 27) (3.320)
(MY = ~(M™V)y; = [ 160w = 27) (3.32)
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(M_l)m = _(—’W—I)m = [(2P _28226 = 1)]‘5("“— — & ) (3.32d)
(MY, = —(M™Y),, = [%}5@”- ) (3.32¢)
(M) = [ lelw™ = 27) (3.32f)
(M), = (M~1),, = {Zzl]e(w- %) (3.329)
(Mg = (M) gy = [ le(w™ ~ 27) (3.320)
and
[dz_M(x,z)M*l(z,y) = leys0(z™ —9y7) . (3.33)

The nonvanishing equal light-cone time (z¥ = y¥) commutators of the gauge-invariant
front-form described by £ under the gauge (3.29) are finally obtained as :

[9(a™). (7)) = Sid™ ~ ) (3.34a)
[$(e™). I (y7)] = ~giee(z™ —y7) (3.340)
(A=), Ty ™)) = ~5-0_6(z™ = y7) (3.34¢)
[A* (@), (y7)] = id(™ — y7) (3.34d)
[Ba™), 8(y7)] = ~iele™ ") (3.34¢)
($(), A7) = 5oidle™ = y) (3.34f)
[A™(27), A(y7)] = — 5 gi0_0a™ —y") (3.349)
(A (&™), AT ()] = —55i0_0(a™ = y7) (3.34h)
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M), Ty ™)) = ~ 50 6™~ y7) (3.341)
[[I(z7), 07 (y7)] = —ied(z™ —y7) (3.345)

™ (z7), I (y7)] = —ie’e(z™ —y7) (3.34k)
[6(7), Ty(y™)] = i1+ 2)3(a™ —y7) (3.341)

(A= (z), T, (y~)] = %m_&(r ) (3.94m)

(AT (@7), Mypega(y )] = —i0_0(z~ —y7) (3.34n)
[0(z7), Ly(y™)] = 2i6(z™ —y7) (3.340)

"), Iy (y™)] = Si(1 - 2000_6(a~ ~ 37) (3.34p)
(I (z7), Hp(y™)] = ie(e — 1)d(z™ —y~) (3-34q)
[Mg(z™), Hp(y7)] = —%i(?@ —1)?9_6(z~ —y7) . (3.347)

Following the sequence of reasoning offered in [4,15,9,7], it is easy to see that (3.34)
together with Hé (3.22) under the gauge (3.29), reproduce precisely the quantum system
described by £ (3.1) [4,15,9.7]. The gauge (3.29) translates the gauge-invariant version
of the theory described by £ into the gauge-non-invariant one described by £V, A com-
parison of (3.34) and (3.13) reveals that (3.34a - 3.34k) coincide completely with (3.13)
as they should. The additional commutators appearing in (3.34) (viz., (3.341)-(3.34r)) ex-
press merely the dependence on ¢ and II,. In fact, the physical Hilbert spaces of the two
theories ([ljr and L',N) are the same. The addition of the Stueckelberg term (ES) to the
theory (i.e., to CN) enlarges only the unphysical part of the full Hilbert space of the theory
£, without modifying the physical content of the theory. The Stueckelberg field @ itself,
in fact, represents only an unphysical degree of freedom and correspondingly the physics
of the theories with and without the Stueckelberg term remains the same [4,15.9,7].
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For the later use (in the next section), for considering the BRST formulation of the
gauge-invariant theory described by EI, we convert the total Hamiltonian density H; into
the first-order Lagrangian density

Lio=TIT(0,A7) + T (0, AF) + TI(D,.¢) + Ty(0,6)
+ 10, (0, u) + 10, (0, v) — HE
1
= {_5(11—)2 + (0, 0) + 11, (0, u) + 1, (9, v) + I (9, AT)

9 : 3:38
—e2(A7)2 +2e°AYA™ +2e2A7(0_0) — [(—0_¢ — 2eAT) ( )
I ;
+ (1 —2e)0_0)(0,¢) + 4—,;{1'[9 — (1 = 2e+2e%)(0_0)
™
+0_¢ —2e(e—1)AT +2e2A7)} .
In the above equation (3.35), the terms II7 (0, A~ — u) and I1(d, ¢ — v) drop out in view

of the Hamilton’s equations (3.24c) and (3.24a).

3D. The BRST Formulation of the Gauge-Invariant Theory

3D1. The BRST Invariance

For the BRST formulation of the theory, we rewrite the gauge-invariant theory chas .
quantum system which possesses the generalized gauge invariance called BRST symmetry.
For this, we first enlarge the Hilbert space of our gauge-invariant model £ and replace the
notion of gauge transformation which shifts operators by c-number functions by a BRST
transformation which mixes operators with Bose and Fermi statistics. We then introduce
new anti-commuting variables ¢ and ¢ (Grassmann numbers on the classical level, operators
in the quantized theory) and a commuting variable b such that [14,15,9,7,17] :

Sp=080=—c 0AT =0 ¢ 0A" = d,¢e o = d.0,c (3.36a)
du = —8, ¢ ;oI = I, = §T+ = 11~ = 811, = 411, = 0 (3.36b)
Se=0:0c=0b,6b=0 (3.36¢)

with the property 6% = 0. We could now define a BRST-invariant function of the

dynamical variables to be a function )
flp. AT AT 0, u,v,¢,8 b, T T 17, Ty, 1T, T, T, T, I1,) such that f = 0.
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3D2. Gauge-Fixing in the BRST Formalism

Performing gauge-fixing in the BRST formalism implies adding to the first-order La-
grangian density (3.35) a trivial BRST-invariant function [14,15.9,7.17]. We thus write
the gauge-fixing quantum Lagrangian density (taking e.g. a trivial BRST-invariaat func-
tion as follows [14,15,9,7,17] :

5 1
Lorst = Lo + 0[6(0, A7 +0_0+ Sb+ AT — 4]

= — S ()2 + T1,(0,6) + T1,(9,u) + T1,(,) — €(A™)? + T1=(2, A*)

+2e?AT AT +2e*A7(0_0) — [-0_¢ — 2eAT
+ (1 -2e)(9_0)](0.,.4)

é[ns —(1—2e+2e%)(0_0) + 0_¢ — 2e(e — 1) AT

. 1
+2e* A2 + [0, A” +0_0 + 50+ AT - ¢)]

the last term in the above equation (3.37) is the extra BRST-invariant gauge-fixirg term.
Using the definition of § we can rewrite Lppor (With one integration by parts) :

1 ‘
Lo par = —E(H‘)Q + Iy (0.0) + 11, (0, u) + 1, (0, v) —e*(A7)* + 117 (0, AT)

F

+2e? AT AT +2e*A7(0_60) — [-0_d — 2eAT
1 : %
+ (1 —2e)0_0)(0,8) + @{Hf, — (1 =2e+2e*)(0_6) (3.38)
1. -
+0_¢ —2e(e — 1)AT +2e2A7]% + 51;- +b(0, A
+I_6+ AT =)+ (8,0)(0.c) — c .
Proceeding classically, the Euler-Lagrange equation for b reads :

b= (9. A" +0_60+ AT —¢) (3.39)

the requirement 6b = 0 (cf. (3.36¢)) then implies :

P

~0b=[6(0, A7) +0(3_0) + AT — 4] =0 (3.40)

which in turn implies

~8,(0.c)=c. (3.41)

The above equation is also an Euler-Lagrange equation obtained by the variation of £ gpep
with respect to ¢. We now define the bosonic momenta in the usual way so that :

H+ i aE’BRST
(9, A")

+b (3.42)
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the fermionic momenta are, however, defined using the directional derivatives such that
[14,15,9,7,17] :

9 _ J
I, = CBRSTa_(a_ =0,¢;1l;:= mE’BRST =0d,c

3.43
3 (3.43)

implying that the variable canonically conjugate to c is (0, ¢) and the variable conjugate to
¢ is (0,.c). In constructing the quantum Hamiltonian density H g s from the Lagrangian
density in the usual way one has to keep in mind that the former has to be Hermitian.

Accordingly, we have [14,15,9,7,17] :

Hppsy =TT (0, A7) + 7 (0, A7) + T1(0, ¢) + [1,(,.6)
+ 10,0, u) + 11,0, v) + I1.(0, ¢) + (0,01, = Lgpsr

= %(H-)2 +II7(0_A7) +e2(A7)2 —2e2AT A~ — 22 A7 (0_0)

— [0y — (1 —2e+2e*)(0_0) +0_¢ — 2e(e — 1) AT

(3.44)

1
+2e?47)? - §(H+)2 ~OT(0_6+ AT — ¢) + I I, + éc .

We can check the consistency of (3.43) with (3.44) by looking at Hamilton’s equations for
the fermionic variables i.e. (cf. Ref. [14,15,9,7,17])

] " o
Oyc= a—HCHBRST 10,c= HBRSTE)FE (3.45)
thus we see that
) o -
dic= a_HCHBRST =I;;0,c= HBRSTBT =1, (3.46)

[¢]]

is in agreement with (3.43). For the operators ¢, ¢, d, c and J_¢, one needs to specify the
anti-commutation relations of d, ¢ with ¢ or of d_¢ with ¢, but not of ¢ with ¢. In general,
c and ¢ are independent canonical variables and one assumes that [14,15,9,7,17] :

{IL,,II;} = {¢,c} =0;0.{¢,c} =D (3.47a)

{0.,8, e} = —~{0. & &} (3.47b)

where { , } means an anticommutator. We thus see that the anticommutators in (3.47b)
are non-trivial and need to be fixed. In order to fix these, we demand that c satisfy the
Heisenberg equation [14,15,9,7,17] :

[C, HBRST] = i8+c (348)
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and using the property == 0, one obtains

e, Hgrst) = {0,6,c}0, ¢ (3.49)
Equations (3.47)-(3.49) then imply

{0.6c}t=-{0,¢c} =i. (3.50)

Here the minus sign in the above equation is non-trivial and implies the existence of states
with negative norm in the space of state vectors of the theory [14,15,9,7,17].

3D3. The BRST Charge Operator

The BRST charge operator @) is the generator of the BRST transformation (3.36). It is
nilpotent and satisfies Q2 = 0. It mixes operators that satisty Bose and Fermi statistics.
According to its conventional definition, its commutators with Bose operators and its
anticommutators with Fermi operators for the present theory satisfy :

[LQ]=(-8.c—8_8.¢) ;[$. Q| =8.c (3.51a)

[A*, Q) =0_c;[A™,Q] =d.c (3.51b)

6.Q] = —c [, Q] = (1—2€)[0_c+0_0,c] (3.51c)
(6,Q} = 0_d +2eA* —TIT =TT — (1 - 2¢)(0_6) (3.51d)
117, Q] = 2e(c+d.c) (3.51e)
(0,6,Q)=(1-2)0_6—-0_T1" —Tl, —0_¢ — 2eA™ . (3.51f)

All other commutators and anti-commutators involving () vanish. In view of (3.51), the
BRST charge operator for the present theory can be written as [14,15,9,7,17] :

Q= fd:c‘[z'c{a_n' + 10, - (1—2e)0_0+0_¢ + 2eA™)
— i(a+C){H+ +T1—0_¢ — 2eAT + (1 — 2e)0_6)]
this equation implies that the set of states satisfying the condition

) =0 (3.53a)
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(I —0_¢ —2eA™ + (1 — 2¢)0_0]|y) =0 (3.53b)

[O_TI~ + I, — (1 — 2)0_60 + 9_¢ + 2eAH)]|v)) = 0 (3.53¢)

belongs to the dynamically stable subspace of states |1) satisfying Q|¢) = 0, i.e., it belongs
to the set of BRST-invariant states.

In order to understand the condition needed for recovering the physical states of the
theory we write the operators ¢ and ¢ in terms of fermionic annihilation and creation
operators. For this purpose we consider Eq. (3.41) (namely, —=0,_0,c = ¢). The solution
of this equation gives the Heisenberg operator ¢(7) where 7(= 2¥) is the light-cone time
variable, (and correspondingly &(7)) as [14,15,9,7,17] :

¢(r) =" B+e""D ;e(r) = e BT + &7 DI (3.54)
which at time 7 = 0 imply

c=c(o)=B+D;é=co) =Bl + DI (3.55)

d,c=0,c(o) =i(B-D);d,e=0,¢0) = —i(BT - DI). (3.56)

By imposing the conditions [14,15,9,7,17] :

=8 ={¢c}={0,60.¢c}=0; (3.57)
(0,6,c} =i=—{d,c,c} (3.58)
one then obtains
B*+{B,D}+D*= B +{BT DI} +DI? =0 (3.59a)
{B,BNY +{D, DT} + (B, DT} + (BT, D} =0 (3.59)
(8,8} + {D, D"} - (B, DT} - (BT, D} =0 (3.59¢)
(B,BY} - {D,DT} - {B, DT} + {D, BT} = -1 (3.59d)

{B,B1} = {D,D1} + {B,DT} - {D,BT} = -1 (3.59€)
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with the solution

B2=Dp?=pB12=pl2 = (3.60a)
{B,D}={BT,D}={B,D} ={BI, DI}y =0 (3.600)
(B, B} = 223 D', D} =+ . (3.60¢)

We now let |0) denote the fermionic vacuum for which
Bl0) = D|0) =0 . (3.61)
Defining |0) to have norm one, (3.60c) implies
(0|BBT|0) = —1/2 : (0|DDT|0) = +1/2 (3.62)

so that
B0y #0;DT0) #£0. (3.63)

The theory is thus seen to possess negative norm states in the fermionic sector. The
existence of these negative norm states as free states of the fermionic part of Hzpep is
however, irrelevant to the existence of physical states in the orthogonal subspace of the
Hilbert space.

In terms of fermionic annihilation and creation operators the quantum Hamiltonian
density is

1 9 . 2 = 5 4o
HBRST: ‘2‘(H—)2+H—(8_A_)+6“(A )M—QE“A-*-.A — 2e“A (0_9)

- ;—z[ng- (1= 2e+ 26%)(8_6) + 0_¢ — 2e(e — DA™ o
- 3.6
+2e2A7) — %(H*)2 —IIT(0_0+ AT — ¢)

+2(B'B + DI D)

and the BRST charge operator @ is

= fdx'[iB{(@_H' + 1, — (1 -2e)0_0+0_¢+2eA7)

— (It + 1 — 8_¢ — 2eA™ + (1 — 2e)0_0)} (3.65)
+iD{(0_II" + I, — (1 —2e)0_0 + d_¢ + 2eA™)
+i(MIT + 1 —0_¢ — 2eAt + (1 —2e)0_0)}] .

Now because Q[¢) = 0, the set of states annihilated by @ contains not only tae set of
states for which (3.53) holds, but also additional states for which

Bly) =Dlyp) =0 (3.66a)
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I*|y) #0 (3.66b)
I —9_¢—2eAT + (1 —2e)0_0)|v) # 0 (3.66¢)
[O_T17 + 11, — (1 —2e)0_0 4+ 0_¢ + 2eAt]|y) #0 . (3.664d)

The Hamiltonian is, however, also invariant under the anti-BRST transformations (in
which the role of ¢ and —¢ gets interchanged) given by [14,15,9,7,17] :

+:;5u:—8+8+5;c:3v:f)+6, (3.67a)

3l
31

Bh= 66 =5 6uF

Il

|
(S5)
ol
=
g

Il

|
QO
ol

STI = 811, ; 6II* = 011~ = 611, = 11, = 0 (3.67b)

85 =0rbc= =5 45— (3.67¢)

with generator or anti-BRST charge

Q= fdz:_[—ié{a_ﬂ_ +1I,— (1 —2e)0_6+0_¢+ 2e AT}

(3.68)
+i(0,e){IIT + 11— 8_¢ — 2eA™ + (1 — 2e)0_0}]

= /dm'[—iBT{(B_H' +1I, — (1 —2€)0_0+0_¢+2eA™)
+Z(H++H—a_d)—2€A+ +(1 —28)8_6)} (369)

—iDT{(0_II~ + I, — (1 — 2€)0_0+ O_¢ + 2eA™)

— (It + T —0_¢ — 2eAT + (1 —2e)0_0)}] .
We also have B

(@, Hgpst| = (@, Hgpsr) =0 (3.70a)
Hppsr = fdf"HBRST (3.700)

and we further impose the dual condition that both @ and () annihilate physical states,
implying that :

Qly) =0 (3.71a)

Qly)=0. (3.71b)
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The states for which (3.53) hold, satisfy both the above conditions (3.71a) and (3.71b)
and, in fact, are the only states satisfying both of these conditions since, although with
(3.60)

2(BJ|'B+DTD)—_-—2(BBT+DDT) (3.72)

there are no states of this operator with BTIO) = 0 and DTIO) =0 (cf. (3.63)), and hence
no free cigenstates of the fermionic part of H zpgpr which are annihilated by each of B, BT,

D, DT. Thus the only states satisfying (3.71) are those satisfying the constraints (3.21)
and (3.25). Further, the states for which (3.53) hold, satisfy both of the conditions (3.71a)
and (3.71b) and in fact, are the only states satisfying both of these conditions (3.71a) and
(3.71b), because in view of (3.57) and (3.58), one can not have simultaneously, ¢, J, ¢,
and ¢, 0,¢, applied to [1) to give zero. Thus the only states satisfying (3.71) are those
that satisfy the constraints of the theory (3.21) and (3.25), and they belong to the set of
BRST-invariant and anti-BRST-invariant states.

One can understand the above point in terms of fermionic annihilation and creation
operators as follows. The condition Qi) = 0 implies that the set of states annihilated
by () contains not only the states for which (3.53) holds, but also additional states for
which (3.66) holds. However, Q|w) = () guarantees that the set of states annihilated by Q

contains only the states for which (3.53) holds, simply because BT|1/)) =0 and D)) # 0.
Thus, in this alternative way also we see that the states satisfying Q[v) = Q|v) = 0 (i.e.,
satisfying (3.71)) are only those that satisfy the constraints of the theory (3.21) and (3.25)
and also that these states belong to the set of BRST invariant and anti-BRST-invariant
states.

Towards the end, we like to make an important observation that some interesting
work on the same model has been done in Refs. [18,19]. The instant-form of the chiral
Schwinger model discovered in [10] correspond to a regularization different from those
involved in the class of models studied earlier [1-7]. The gauge field becomes massive once
again, but the massless excitation that remains in this case appears to be chiral from the
counting of degrees of freedom. In [18], it has been shown that the Pauli-Villars method
can accomodate Lorentz noninvariant regularizations and thereby lead to the bosonized
instant-form action of [10]. Gauge invariant reformulation of the instant-form model [10]
has also been studied in [18]. In [19], the instant-form model [10] has been solved and
its exact fermion propagator has been derived in a path integral approach. Further, the
operator solutions of the instant-form theory in the bosonized and fermionic forms have
also been obtained in [19]. For the details of this work we refer to the work of Refs [18,19].
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