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Some exact results on
the CGHS black-hole radiation*

By F. Vendrell!

Institut de physique théorique, Université de Lausanne
CH-1012 Dorigny, Switzerland

and

Blackett Laboratory, Imperial College
London SW7 2BZ, UK

(2.X.1997)

Abstract. Theorems on the emission of massless scalar particles by the CGHS black hole are
presented. The convergence of the mean number of particles created spontaneously in an arbitrary
state is studied and shown to be sirongly dependent on the infrared behavior of this state. A
bound for this quantity is given and its asymptotic forms close to the horizon and far from the
black hole are investigated. The physics of a wave packet is analysed in some detail in the black-
hole background. It is also shown that for some states the mean number of created particles is not
thermal close to the horizon. These states have a long queue extending far from the black hole, or
are unlocalised in configuration space.

1 Introduction

The quantum physics of black holes has been a field of extensive research since Hawking
discovered that, due to quantum mechanical effects, black holes emit spontaneously particles
with a thermal spectrum [1]. In order to understand better the physical outcomes of this

*Work done towards a Ph.D. at Lausanne University.
tSupported by the Société Académique Vaudoise and by the Swiss National Science Foundation.
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discovery, as for example the evaporation and entropy of black holes, two-dimensional black-
hole models have been studied for simplicity in the literature. One of these is the CGHS
black hole [2] which is again considered here.

The present paper is mainly concerned by the study, in the CGHS black-hole background,
of the mean number N[f] of massless scalar particles created spontaneously in an arbitrary
state f. The investigation of this issue has first been done by Wanders [3] for the Dirac
massless field. In that case, this quantity is reinterpreted as the probability W[ f] of detect-
ing a fermion in the state f. Wanders showed that this probability tends to the thermal
probability Wg h[f] when the state f is translated towards the event-horizon, where 3 is the
inverse temperature of the black hole. He obtained furthermore a bound for the difference
| W(f] = WZ*f]|, which exhibits a strong dependence on the queue of f extending far away
from the horizon.

The massless scalar field will be studied here along similar lines. In this case, however,
infrared issues are of primordial importance, so I shall also concentrated on them. Although
the Wightman function is in general not positive definite in two-dimensional spacetimes
because of its bad IR behaviour [4], the massless scalar field may still be considered if the
set of states is reduced in an appropriate way [5]. In this framework, one of the relevant
problem is then the influence of the infrared behavior of the state f on the mean number
N[f] and on the difference | N[f] — NI*[f]|, where NT*[f] is the average number of particles
in the state f for an outgoing thermal flux of radiation of temperature ~!. It is shown in
this paper that these quantities may diverge or not depending on the IR properties of the
considered state. This imply in particular that there ezist states for which the mean number
of created particles is not thermal close to the horizon. The IR properties of f are related
to the properties of its queue in configuration space. As in the fermionic case, a bound
is obtained for the difference | N[f] — NF*(f]|, which depends strongly on the queue of f
extending far away from the black hole.

The queues of states in configuration space play thus a relatively important role for the
black-hole physics. When one restricts oneself to positive momentum modes only, states
cannot be well localised. There is a theorem of Paley and Wiener (see appendix A.1) which
asserts that if the Fourier transform of a function of one variable vanishes for all negative val-
ues of its argument, then it does not decrease at infinity faster that an exponential function.
One is thus led to study states whose wave function decreases at infinity in an algebraic way
or which are unlocalised. One may expect that the global properties of these states come
into play when the physics of the black hole is analysed close to its event-horizon. This issue
is considered in the present paper.

The physics of a wave packet in the CGHS black-hole background is also studied. This
wave packet depends on a parameter J, and its Fourier transform becomes narrower in
momentum space when § vanishes. In this limit, the variance of the momentum operator
vanishes in this state and the wave packet is completely delocalised. In consequence, it is
not justified to make the approximation of the horizon to calculate the mean number N[f],
as it is usually done, and an exact calculation must be performed. This is done here for
the first time and leads to unexpected results. In particular, the mean number of particles
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created by the black hole in this delocalised state is equal to the half of the thermal average
NIMf], and is invariant under a translation of the state f.

Section 2 is devoted to a review of the CGHS black hole and of the quantum field
formalism [6]. In section 3, some conditions under which the mean number N[f] of created
particles diverges are investigated and a bound for this quantity is given. The asymptotic
behaviors of the mean number N[f] close to the horizon and far from the black hole are given
in section 4. These last results are applied to the physics of a wave packet in the black-hole
background in section 3.

2 Quantum field theory in the black-hole background

2.1 The CGHS black hole

The CGHS black hole [2] is a vacuum solution of the dilatonic gravity theory defined by the
action

§ = %/dzx\/—_g {e-2¢[R+4(v¢)2+4,\2] ——;-(Vf)z}, (2.1)

where ¢ is the metric, ¢ the dilatonic field, f a classical massless matter field and A% the
cosmological constant. This black hole may be created from a shock wave of f-matter, whose
only non-vanishing energy-momentum tensor T/,(z) component is

T{i(z) = §(04f)* = Mé(z*), (2:2)

where M > 0. For simplicity, one assumes that A = M = 1 without loss of generality. If
the line element is Minkowskian for z* < 0, then from the equations of motion one gets for
zt >0

drztdz~

ds? = - .
* 14 €* (e"’+—1) (

o
(%]
~—

The « coordinates are the incoming coordinates, the outgoing coordinates (y*,y~) € IR? are
defined by the transformation

2.4
~y™) = —log(1+e'y_). (24)

These coordinates parametrise only the lower half-plane 2= < 0 of spacetime where the line
element (2.3) is given by

dytdy~

14ev v

ds? = (2.5)
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Black hole

Singularity

Flat spacetime

Figure 1: Spacetime diagram of the CGHS black hole in z coordinates. The event-horizon
is located at x= =0 or y~ = 4o0.

if z¥ > 0. This tends to the Minkowski metric in the limit y* — +oc0. The spacetime
diagram in shown in fig. 1.

Equation (2.3) implies that the scalar curvature is singular on the curve z= = z35(z%)
where (7]

z5(zt) = —log (1 — g ) . (2.6)

The signature of the line element (2.3) is reversed there, i.e. the conformal factor is only
positive if z7 < zg(z*). This line element may be rewritten in terms of the function zj:

dzt dz~

TT-T3 (zt) .

ds? = (2.7)

l—e¢

In the Minkowskian region close to the singularity, i.e. in the limits 2~ = zg and zt > 1,
eq. (2.7) tends to [6, 8]
datds
ds? = ——— (2.8)
T
since z3(z*) =~ 0 if z* > 1. For this new line element, the transformation z = z(y) is
redefined by

2.9
(y7) = -, 29

{l‘*(y*) = ¥,

and this line element is Minkowskian in these new y coordinates. In the limit 2= = 0, the
two transformations (2.4) and (2.9) coincide.
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2.2 Quantum field theory
2.2.1 Fields and test functions

In a two-dimensional spacetime, the line element can always be written in a conformal form
in an appropriate set of coordinates, at least locally. In these coordinates, the left and
right moving modes of the massless scalar field decouple. If the transformation relating
the incoming and outgoing coordinates, denoted by z and y respectively, takes the form
z% = 2*(y*), these modes do not mix up when the change of coordinates is made, i.e. left
(right) moving modes in incoming coordinates are still left (right) moving modes in outgoing
coordinates. The physics of the left moving modes is then trivial in the CGHS black-hole
background (see eqs (2.4)), and so we will concentrate from now on only on the right moving
modes, and the subscripts + will be dropped.

The incoming and outgoing field distributions, denoted by ¢ and c;/S\ , are related through

the equation QS[f] = qg[f] [6]. The incoming test function f(:c) is given in terms of the
outgoing test function f(y) by

TA)
fly) = ) f(=z(y)), VYyeR, (2.10)
or by f = Uf, where the kernel of the operator U is defined by

+00 . .
By = = / dy e~ =) ¢iry, (2.11)

2 oo

The incoming and outgoing momenta are denoted by k and p respectively. The outgoing
wave function space is Lz(gg, IRy ), and is the completion of the set?

S(Ry) = {f €S(R)| f(p)=0(p)f(p),¥PER}, (2.12)
where S(IR) is the Schwartz space.
In the CGHS black-hole background, one has from eqs (2.4) and (2.11),

Ulk,p) = %B(ip—ik+0+,—3p+0+). (2.13)
Here B is the beta function defined by [9]
[(g) T(r) /+°° e’
- = =) dy ———— 2.14
B(qJ T) B(T, Q) [‘(q + T') - y (1 + ey)q+r ( )

where [" is the gamma function satisfying

|TGp) |° = e —_ (2.15)

g denotes the step function defined by 8(p) = 0 if p < 0 and 6(p) = 1 otherwise.
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2.2.2 Local observables

The two-point function for the incoming vacuum is given in y coordinates by [6]

Wy) = o log[a(y) - z(y) +i0%]. (2.16)
In the CGHS black-hole background, it is periodic in the imaginary direction for all y,y’ € IR,
W(yy) = W(yy +i2m), VYneZ (2.17)

Since the thermal two-point function is given by [6]
Wit (y,y) = —%—log{ésinh[z (y'-—y+i0+)”, (2.18)

T T Jo}
one obtains in this case

W (y,y') ~ WIt(y,y), when y,y’ > 1, (2.19)
Wyy) =~ WSuy),  when —y,—y' > 1, (2:20)

if two-point functions are considered as kernel of distributions on S(IRy) x S(IRy). This
means that, in outgoing coordinates, the incoming vacuum is a thermal state of tempera-
ture (27)~! close to the horizon, and of temperature zero far from the horizon. Since the
energy-momentum tensor T(y) in y coordinates may be obtained from the two-point func-
tion W (y,y’'), these results imply that T(y) is also thermal close the horizon and far from
the CGHS black hole,

lim T(y) = T lim T(y) = T, (2.21)

y—+co y—+—00
where the thermal energy-momentum tensor of temperature 3! is given by
s
T = —. 2.22
B 12ﬁ2 ( )

2.2.3 Mean number of created particles and implementability

The mean number of particles created spontaneously in a normalised state f € L2(%§, R+)
is given by [6]

_ o dk A "
= — | = . 2.2
Nfl = [T 1R (2:23)
In the CGHS black-hole background one has from eq. (2.15),
1 k sinh 7k
|U(=k,p)|* = (2.24)

4 p(p+ k) sinh 7p sinh 7 (p + k)

1 [ ok) , _6(=k) } if |kl>pl+1.  (2.25)

2rp | €8P —1 ' 1—e 2™
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The mean number of particles created in a given mode f,, defined by f,(p') = 2p'8(p — 7)
where p > 0, is UV divergent in k,

N(f,] = co (2.26)

The total mean number of created particles is clearly also infinite, with an additional IR
divergence in p. The incoming and outgoing vacuums can thus not be related by an unitary
transformation, i.e. the problem is not implementable.

2.2.4 The thermal case

In ref. [6], it is shown that the theory of a massless scalar field interacting with an outgoing
thermal flux of radiation is equivalent to the theory of this field in the spacetime background
defined by eq. (2.8), in the sense that expectation values of observables in the incoming
vacuum are equal to their thermal averages in the outgoing Hilbert space. In particular, the
incoming-vacuum two-point function and energy-momentum tensor are given everywhere in
this spacetime by eqs (2.18) and (2.22) with 3 = 2, i.e. they coincide with the thermal
averages. Similarly, the mean number of particles spontaneously created in this spacetime
and in the normalised state f € Lz(gg,IR+) is given by N[f] = NI*(f] with 8 = 27, where
NZ*(f] is the thermal average given by

_ o dp|F(p)|?
N = ﬁ—le);p(p_)ll. (2.27)

In the spacetime defined by eq. (2.8), the incoming test function will thus be denoted by

fT"(a:), which is defined by eq. (2.10), where the transformation z(y) is given by eq. (2.9).
This spacetime is the dynamical counterpart of the n — ¢ spacetime of Gui [10], which
corresponds to the thermal equilibrium case. Since the CGHS line element (2.7) coincides
with the line element (2.8) in the region defined by z= &~ 0 and z* > 1, the outgoing
radiation emitted by the CGHS black hole is thermal in that region.

3 The mean number of created particles

3.1 Convergence of the mean number N[f]

A quick look at eq. (2.23) shows that the mean number N[f] of particles created by the
black hole may diverge or not depending on the infrared and ultraviolet behaviors of the

incoming test function )/”\ (k). These behaviors are related to the properties of the outgoing
test function f(y) through eq. (2.10). It is therefore interesting to study the influence of
f(y) on the convergence of the mean number N[f] in the CGHS black-hole background, and
in the spacetime defined by eq. (2.8) as well, in order to understand the physics of the black
hole close to the horizon. Of particular interest are the infrared behavior of f (p) and the
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decreasing properties of f(y) at infinity. Their influence on the function f(k) 1s explored in
the two following lemmas.

Lemma 1 Let ¥ € C*®(IR) be a function satisfying x(0) # 0, vanishing at infinity and such
that all its derivatives vanish at the origin and at infinity. If one defines the function f, by
falp) = 0(p) p® X(p), ¥p € R, where & > 0, then one has in the CGHS black-hole background

|fa(_k)’ S Cakq(a)'i'o(k)’ 1f kz0+’ (31)
A _ Ca-  B(k) 1 .
fol=R) = =gk T © [(Iog k)‘*“] T E>L (3.2)
and in the spacetime defined by eq. (2.8)
( a,+ A(k) 1 . ~ N+
X V21 a(—logk)* +o (—logk)tte |’ if k0, (8:8)
FI=k) =
Ca—- B(k) 1 .
Frter tolwire] e 09

where the functions A and B are both bounded by above and below, C, and C, s+ are three
constants depending on «, and where the function q is defined by

a, if 0<a<1/2,
g(a) = {

1/2,  if 1/2<a. 14:5)

Proof See appendix A.2.

This first lemma shows in a generic example that both the IR and UV behaviors of f(—k)
are determined by the IR. properties of f (p). The smoothness assumption on ¥ is necessary
in order that the decreasing property of f,(y) at infinity is well determined for in that case
one has [11]

L 1 ,

yH'-a +0 (y2+a) ) if —y> 1, (36)
foly) = Co . |

y1+a 3 0 y2+a ) 1f y > ]-7 (37)

where C, + are the same constants as in 'emma 1 (if Y ¢ C*(R), the discontinuity of one
of the derivatives of fi(p) may imply that f(y) decreases more slowly). Equations (3.6) and

(3.7) determine then the behavior of j/‘:,(.c) for —z > 1 and z = 0~ respectively through
eq. (2.10), on which the properties of fa(:k) depend. It can actually be shown, in a more
general context, that the IR behavior of f(—k) depends solely on the behavior of f(y) far
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from the black hole, and that the UV behavior of f(—k) depends solely on the behavior of
f(y) close to the horizon. This is done in the following lemma which gives bounds instead of
asymptotic behaviors for weaker assumptions, in particular it is assumed that the modulus
of f decreases at infinity faster than the inverse of an algebraic function. From theorem A.1,
if f is squared integrable, it is always possible to choose the phase of f in such a way that
its Fourier transform f vanishes for all negative values of its argument.

Lemma 2 If f is an integrable function satisfying f (0) = 0, whose derivative f' exists and
is integrable, and such that its modulus |f| satisfies

C_ )
ol < [ if y<-L, (3.8)
) S
e w2l (3.9)

where Cy >0, L > 1, a > 0 and € > 0 are five constants, then

5 Ce k) + O(k), if k= 0%, (3.10)
FERL < preg 1
+ .
W+O(\_/_E), if k>1, (3.11)
and
Yol
N ————— + O(k), f k=07, 3.12
Frnry < | £ 18R " 1 -
25, 1 ,
G(Tgk)a-'-o(ﬁ)’ iof B> 1, (3.13)

where the function q is defined by eq. (8.5), and where C. > 0 is a constant which diverges
when ¢ — 0F.

Proof See appendix A.3.

Under the assumptions of this lemma, the IR and UV behaviors of )/‘\ Th(—k) and the UV
behavior of j‘\ (—k) are thus at least inversely proportional to a power of the logarithm of &,

and )/‘\ (—k) decreases at least in an algebraic way in the IR region. Lemmas 1 and 2 imply
from eq. (2.23) that the mean number N[f] of created particles is very sensitive to the IR
properties of f (p) or to the asymptotic behavior of f(y) at infinity. This is highlight in the
two following theorems.
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Theorem 1 Let x € C*®(IR) be a smooth function satisfying x(0) # 0, vanishing at infinity
and such that all its derivatives vanish at the origin and at infinity. If fo(p) = 0(p) p* X (p)
(¥p € R) is a normalised wave function where o > 0, then one has the equivalences

Nifs]<oo <= a>1/2, (3.14)
NIM[fal < 0 = a>1/2, (3.15)
| N[ fa] = N [ fa]| <00 = a>1/2 (3.16)

If a < 1/2, N[fa] is only UV divergent in the incoming momenta k, whereas NI" [ fo] is
both IR and UV divergent in k, and lN[fa] - NTh [fa]! is only IR divergent in k.

Proof This theorem follows from lemma 1 and eq. (2.23). For example one has

C2 _ A(k)? 1 .

~ ~ a+O 1+2a ’ If k%o-*-,

Foen)| = | Frrn | = 4 18 ety (3.17)
o [W} ; if k> 1,

which implies that the difference | N[ fo] — NE*[f.]| is IR convergent in & if and only if
o > 1/2, and that it is UV convergent in k. )

Theorem 2 Let f € Lz(%g, R4) be a normalised wave function such that f and f' exist and
are integrable, and such that its modulus |f| satisfies

(—:_:UQ')lT: if y _<. _LJ
TOIER A | (3.13)
dFa> If y 2 L)
Y
where C >0, L > 1, a > 1/2 and € > 0 are four constants. Then
N[f] < oo, (3.19)
and if furthermore e > 1/2,
NIMSf] < oo (3.20)
Proof This theorem is proved in a straightforward way from lemma 2. a

Theorem 1 shows that the numbers N(f] and NJ*[f], and their difference diverge if f (p)
does not decrease sufficiently fast at the origin p = 0. Theorem 2 shows that the convergence
»f N[f] depends essentially on the asymptotic behavior of f(y) far from the black hole, and
that the convergence of NX*[f] depends on the behavior of f(y) for both ¥ > 1 and —y > 1.
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3.2 A bound for the mean number N[f]

A bound for the difference | N[f] - %Ng,h[f] | is now given, as a first step towards obtaining
a bound for the mean number N[f].

Lemma 3 If f € Lz(%g, IR+) is a normalised wave function such that f ezists and is inte-
grable, then

fom dp' f(p') t(p)" ]000 dp P —f;,p_)t]f?) ‘

_ 1 - 1
N -5 8MA| < =

> 1 f(p)] 2 } +F
N ' .
+ [/0 p e 1) 1+ p° +log

p)r (3.21)

where t is a complex function satisfying

1) = \| 7= (3.22)

and C > 0 is a constant.

Proof See appendix A.4.

Although this bound is quite complicated, it contains useful informations which will be
exploited in section 5. The first term of this bound is the main UV contribution in mo-
mentum k and stems from the values of the wave function close to the horizon. The p?
contribution in the second term is the UV correction to the first term, this is needed be-
cause the wave function f is not necessarily localised close to the horizon. The logarithmic
expression in the second term is the IR contribution in k& and stems from the values of the
wave function far from the black hole. The first contribution in the second term is due to
the finite values of k.

Some cruder but simpler bounds are given in the following theorem.

Theorem 3 If f € Lz(;—iﬁ,lR.i_) is a normalised wave function such that [ ezists and is
integrable, then

w < o[ 2 1L, (3.23)
w0 -w21a| < o RO (3.24)

0o 2p1l—e?P’

where C' > 0 is a constant.
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Proof This theorem follows from lemma 3. The first term on the r.h.s. of eq. (3.21) is
bounded by applying a theorem on Hilbert transforms (see theorem A.2) which enables us
to treat the principal value

p) f“" dp |f(p)*
<
'/ ' f (p j ap p L D)10) ' S _1 (3.25)
Using the Cauchy-Schwartz inequality for the second term, one gets eqs (3.23) and (3.24)
from eq. (2.27). O

Theorems 1 and 3 are in agreement, both predict that the mean number N[ f.] and the
difference | N[ fo ] = NI} [ fo]| converge if @ > 1/2, where f, is defined in theorem 1. From
theorem 3, it is clear that if N[f] and | N[f] — NI*[f]| are infinite, they may only be IR

divergent mn p.

4 Asymptotic behaviors of the mean number N|f]

4.1 Close to the horizon

The asymptotic behavior of the mean number N[f] close to the horizon is now investigated.
The translation of the wave function f by a quantity y, is first defined by

fly) = fly—v), VyeR (4.1)

Then one asks oneself the questions: Does the mean number of created particles in the state
fy, tend to its thermal average if y, = +oc0 7 In another words, do we have

Jim (N[f.]- N [f]) = 0 (4.2)
And if the answer to this question is positive, how does N[ f,, ] tend to NX*[f, ] in this
limit? Notice that since a translation of f implies only a global change of the phase of [,
the thermal average VX" [ f,.] does not actually depend on y, (see eq. (2.27)).

Theorem 1 tells us that the answer to question (4.2) may be negative, since from eq. (3.16)
there are wave functions f such that

| N[ fu] = N3 [ £ ]

i.e., although the numbers N| f,, ] and NI [ f,. ] are both infinite in these cases, their differ-
ences are IR divergent. Thus, even if the wave function f is translated towards the horizon,
the mean number N[ f,, ] may not tend to the thermal average N2 [ f,. ]. One expects from
theorem 1 and eqs (3.6) and (3.7) that such wave functions should decrease more slowly than
1/|y|*/? at infinity. It turns out, however, that only the asymptotic behavior of f(y) far from
the black hole (i.e. for y — —o0) determines whether the mean number N[ f,, ] does tend

= &9, Yy, € R, (4.3)
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or not to the thermal average NI"[ f,.] close to the horizon, and if it does, how it does it.
It is shown below that if f(y) decreases strictly faster than 1/|y|*/? far from the black hole,

then the answer to question (4.2) is positive. Two bounds for the Fourier transform ]/‘;,o(—-k)
are first given in the following lemmas.

Lemma 4 If f is an integrable function such that f (0) = 0 and if its modulus | f| satisfies

)| < ﬁ ify<-L, (4.4)

where C, L and o are three positive constants, then

4C 2«

A
_ < -Yof2 S
V2r | fr(=k)| < Vke 2| f], + o

A
where 0 < k < e¥e=2L. This result is also true in the thermal case, i.e. for fyfh(—k).

Proof See appendix A.5.

Lemma 5 If the function 5}'\ is defined by the difference 5fA(a:) = ]/C\(:r) - jl”\T"(a:) (z <0)
where f and its derivative are integrable, then

VI IR < (gp+g) (U +11) (46)

where k > 0.

Proof See appendix A.6.

A bound for the difference ’ N[fu.]1= NI*[ f,.]

is now given in terms of y, > 0.

Theorem 4 If f € L2(‘5{§, IR+) is @ normalised wave function such that f and its derivative
exist and are integrable, and if the modulus |f| satisfies

C
| fly)| < M if y < -1, (4.7)

where C'> 0, L > 1 and a > 1/2 are three constants, then

| N fo.]— NER L £,,]

< o ey + (1 +171,) (49)

where y, > 0.
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Proof Since the Fourier transforms f(—k) and f”(—k) behave similarly for & > 1 but
differently for £ ~ 0 (see lemmas 1 and 2), one writes

| N [fro] = N5 [ fy]

[ 5 [amr+ 120+ 721 02 - 1R, @49)

where 0 < W < e¥~2L_ Notice that the bounds of both the integrals and integrands depends
on y,. Lemma 4 implies that

fowff {Ifyo( )|2+I£,fh(~k)[2] <

W 2 4 16 (2 (4.10)
e ¥ fll: + Z2a—1) (yo—log W — 1)201—1'
If §f,,(z) = f,.(z) — fT*(z) one has
|4J§O(—k)|2— PR < 210 16A (=R |+ 185 (=R) . (4.11)

Applying lemma 5 one gets if &£ > 0,

+ ) (Ul 171500 (412

A A
U =R)F = | FEA =R
This last equation implies

°U dk X
L =2 = 1 £ =h P

Sa\vwtwTw
From eqs (4.10) and (4.13) one gets eq. (4.8) if W = e¥/2=2L (which satisfies W < e¥~2L). O

<1 (Tt (s + 1100 (429)

This last theorem shows clearly that the mean number N f,,] does tend to the thermal
average Ni*[ f,.] when y, — +oo if f decreases sufficiently fast far from the black hole.

4.2 Far from the horizon

The asymptotic behavior of the mean number N[f] far from the horizon is now investigated.
In this region, i.e. in the limit y — —oco, the metric in y coordinates tends to the Minkowski
metric, and thus there is no local creation of particles there. However, this does not imply
that the mean number N[f] is arbitrary small if the test function f is translated towards
that region, because one expects that the queue of f(y) close to the horizon may have a
significant contribution to N[f] even in that limit. Theorem 1 tells us that there are indeed
wave functions f such that

N(fu] = o, Vg eR, (4.14)
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and that these wave functions decrease more slowly than 1/|y|*/? at infinity. One ask thus
oneself the questions: If f,, is defined by eq. (4.1), under what conditions does one have

lim N[f,.] = 0, (4.15)

Yo —+—00

and if the answer to this question is positive, how does N[ f,, ] vanish in this limit? It is
shown below that if f(y) decreases strictly faster than 1/y*?2 close to the horizon, then the

A
answer to question (4.15) is positive. Three bounds for the Fourier transform f, (—k) are
first given in the following lemma.

Lemma 6 Let f be an integrable function such that its modulus |f| satisfies

fw)] < ifi 'TEL (4.16)

where C > 0, L > 1 and a > 0 are three constants, and assume that y, < 0.

a) If f(0) =0 and a > 1/2, then

Var | fu(—K)] < 22CVE+keE| fllp, (4.17)
where et > k > 0.

b) If f is such that f (p) = 6(p) f (p), Vp € R, then

2 1
a (L—y,/2)*’

Var | fu(=k)| < k| Fllp B + (4.18)

where k > 0.
c) If the derivative of f is integrable, then

21+ac 9 ,
sk —ar t g (2P CH Il + 11l ) (419)

VI ful-B)] < =

where k > 2 e,

Proof See appendix A.7T.

A bound for N[ f,,] is now given in terms of y, < 0.

Theorem 5 If f € Lz(%,IR+) is a normalised wave function such that f exists and is
integrable, and if the modulus |f| satisfies

f@)] < y% Fy 2L, (4.20)
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where C > 0, L > 1 and a > 1/2 are three constants, then

_ 1 8C?
Nifwl < a(2a—-1) (~yo/4 + L/2 —1)%"!

2
+ 2042 (e | £l + 1 FL) S (4.21)

where yo < —4(1 + L).

Proof Lemma 6 is applied. The bounds (4.17), (4.18) and (4.19) are useful for small, finite
and large values of k respectively. If w and W are two constants such that 0 < w < e~ and

2¢2L < W, then

/ow % FACOIE 24?2 w+ 11;; e w? || f 1L, (4.22)
[ Renr < i emews+ 22 o g T ()
: % PG 252 o (24:— 1) (log W — 2;(, — )zl

B2 (2l + 1) (4.24)

These bounds imply eq. (4.21) if w = e¥%/4 and W = el~%/% under the constraint y, <
—4 (1 + L), so that the assumptions stated on w and W are satisfied. o

This last theorem shows clearly that N[f,,] does vanish when y, — —oo if f decreases
sufficiently fast close to the horizon.

5 A wave packet

The physics of a wave packet in the CGHS black-hole background is now considered. This
wave packet depends on two parameters ¢ and p, and is defined by

fm (0) = 0(p)\/2lpl Aslp—ps),  VpER, (5.1)

where p, > 6 > 0 and

i) As is a normalised function in L*(dp,R): [T dp |As(p)|? = 1;

11) the support of Ajs is included in the interval (=4, §);
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: 5 ~ ~ (n) : o 3 ;
21) fpi € C"(IR) where r > 0; (fpi ) vanish at the origin and at infinity forn = 0,1, .., r;

o ~§ \(r+1) ~5 \(r+2)
the derivatives (f,,o ) and (f,,o ) exist almost everywhere and are bounded and

integrable respectively;
tv) the function Ay is real and positive;

v) the function fgo and its derivative are integrable.

: . T _—_—
From property ¢) the wave function f,, is normalised in Lz(gl;-, IR+), and property 1) implies

that fpi is centred about p, in momentum space. From property 12) one shows that the
function f?fo decreases in configuration space at least as 1/|y|"*? if |y| > 1, and property iv)
implies that fgo is centred about y = 0. Property v) will be useful below, when theorems 4
and 5 are applied to this wave function. The function fJ ,. is defined to be the translation
of f;fa as in eq. (4.1), and its Fourier transform is given by

@) = 8(p)/2Ipl As(p—po) e, ¥peR. (5.2)

For example, if A;s is the triangle-shaped function

3

As(p) = Zg[ﬂm9w—pﬂ5~P%+ﬂ*m9®+pﬂé+m1, (5.3)

conditions ¢) to v) with r = 0 are satisfied. In this case, the wave function in configuration
space is given by

3po i - - 6 (y - yo) 1 6 -
$ - 1/ ipo(y=1yo) 2 o=
fbo,yo(y) e 4 27!' 53 € sin { 2 (y _ yo)‘}! + 50 po b (04)

and takes its maximum value at y = y, where

+50( i). (5.5)

Po

34 p,
27

f:go,yo(yc)) =

The wave length of the generic wave packet (5.1) is given approximately by

2r

Ay = 5.6
y = — (5.6)

If Az is the wave length of the incoming wave packet jf’\,‘fmyo(x), one has
Ay(z) = y(z+ Az)—-y(z). (5.7)

The incoming momentum is approximately given by k, = 27 /Az. If k, > 1, the incoming
and outgoing momenta are related by [12]

Po = (1 =€)k, if z<0. (5.8)
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Close to the horizon, one has p, ~ (—z)k, and thus the outgoing momenta p, is strongly
shifted towards the IR region when k, is kept fixed. In the limit # —+ —o0, the incoming and
outgoing momenta are asymptotically equal. One also has if p, > 1,

ke =~ (1+¢€Y)p., (5.9)

and thus close to the horizon the incoming momenta k, is strongly shifted towards the UV
region when p, is kept fixed.

The limits § — 0* and y, — +oo of the mean number of particles N [ fS ,. ] are now
considered. As it is shown below, these limits do not commute. The limits y, — Foco are
first evaluated in the following theorem.

Theorem 6 If the wave function f;,so is defined by eq. (5.1), then for all § > 0

yol—i&riloo(N[fg"'y"] —Ng;rh[fgo-yo]) = 07 (510)
yolj»@oo]v[fzfo.yo] = 0, (5.11)
and thus
im lim (F(f) = N Fs]) = 0, (5.12)
lim lim N[fS.,] = 0. (5.13)

§—=0 Yo—+—o0

Proof Since the function fgo(y) decreases at least as 1/|y|? at infinity and property v) is
satisfled by assumption, theorems 4 and 5 can be applied to this wave function and one
concludes immediately. a

The generalised function f,, is now defined by
>0 5 ~6
fro (p) = [lim fp (p),  VpER (5.14)

The expectation value of the momentum operator in the corresponding state equals p, and
its variance vanishes in this state. Notice that, in configuration space, the function fg .,

becomes more and more extended in the limit § — 0%, although, if ﬁi € C*(R), f5 ..
decreases at infinity faster than the inverse of any algebraic function of y. Theorems 4
and 5 may thus not be applied to f = f? , because the quantity L defined in eqs (4.7) or
(4.20) tends to infinity when ¢ — 0%, and consequently the bounds (4.8) and (4.21) diverge
exponentially in this limit. The following lemma will be needed to consider the physics of
the delocalised wave function f7 .

Lemma 7 Let § and € be two positive constants. If § is small enough, one has for all
Yo € (—€/6,¢/0)

N(fw) -5 < G[n(p,,)m%g_—”l— , (5.15)

2

Ng;rh [fgo-yo ]
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where C' > 0 is a constant and where the function n satisfies

ba ¥ (5.16)
se~ime. if p, > 1,

2
log_p, if po =07,
In(po)| <

and is bounded except in the neighborhood of p, = 0.

Proof See appendix A.8.

This lemma implies that the mean number N[ f3 4] is approximately equal to the half
of the thermal average N7 [ f3, 4, ] if & and € are small enough. It may be applied to the
generalised function f; to calculate N[ f7,,, ]

Theorem 7 If the generalised function f; is defined by eq. (5.14), then
1 1

N{frow.] = 3 e 1’ Yy, € R, (5.17)
where p, > 0, and in consequence
. : - L o
Jim tim (NSl = 5 M (fh)) = 0, (5.18)

where the wave function fgo is defined in eq. (5.1).

Proof The limit § — 0% is first evaluated in eq. (5.15) of lemma 7 and the result obtained
is then true for all y, € R. The limit ¢ — 0% is next evaluated and eq. (5.17) is obtained.
Equation (5.18) follows then from eq. (2.27). m]

This theorem shows again that the mean number of particles created in a state may not
be thermal close to the horizon and may not vanish far from the black hole. Theorems 6
and 7 imply that the limits § — 0* and y, — Zco of the mean number N [f¢ ,.] do not
commute.

6 Conclusions

In the present paper, exact calculations of the mean number N[f] of massless scalar particles
created spontaneously in a given state f have been performed in the CGHS black-hole
background. Since our approach do not rely on the approximation of the horizon, one was
able to draw some rigorous conclusions on the issues related to the convergence of the mean
number N[f] and to the approach to the thermal equilibrium as well, and to calculate exactly
the mean number of particles created in a given mode.
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The main conclusion of this paper is that the physics close - or asymptotically close -
to the horizon depends on the global properties of the considered state. For example, the
approach to the thermal equilibrium of the mean number N[f] close to the horizon depends
on the queue of the state far from the black hole, if this decreases sufficiently fast, otherwise
N|[f) may be not thermal in that limit. Similarly, the mean number of particles created in
a given mode is not thermal even close to the horizon, because the corresponding state is
unlocalised, and the contribution of the part of the state which is far from the black hole must
also be taken into account. Since N[f] is essentially not a local quantity, and because a state
without negative momentum components cannot be localised, the mean number of particles
N{[f] created close to the horizon depends to some extent on the spacetime properties far
from the black hole.
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A Appendices

A.1 Two useful theorems

Theorem A.1 (Paley-Wiener [13]) Assume that g € L*(dy,R). Then there is a function
w : R = R such that the Fourier transform of f(y) = g(y) €“®) satisfies

fp) = 6()f(p), VpeR, (A.1)
if and and only if

/+°°dy log [g(y) | é 1 (A.2)

-0 ].-l-y’2

In particular, eq. (A.1) implies that the modulus | f| is strictly bounded at infinity from below
by a decreasing exponential function.

Theorem A.2 (Hilbert transform [13]) If ¢ € L*(dp,R), then

{0 ——P/ d’;’_p (A.3)

converges almost everywhere if p € R. Furthermore, one has f € L*(dp,R) and

~ 1 +eo If(p’)
T p—— —_— 4
g(p) TFP./—oo dpp’—p’ Vp€ER, (A.4)

[T iier = [Ca1fer. (4.5)

—00o
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A.2 Proof of lemma 1

Lemma A.1 Let be a differentiable function g € L'(dz,Ry) such that g (0) =0, and define
the function h by
h(z)

T (—log z)*+e’

g9(z) if >0, (A.6)

where a > 0. If the limit C € € of h exists when 2 — 400 (or z — 0%), and if one has

Hiz) = o( ! ) (A7)

z logz

when x> 1 (or z = 0%), then

B C  Ayk) 1
-k) = = —_ :
g ( ) \/2‘7? o (logk)a + O [(1ng)a+l] ’ (A 8)
where Ay is a function depending on g and satisfying
1/2 < |Alk)| < 3/2 (A.9)

when k = 0% (ork > 1)

Proof The proof will be only sketched here (see ref. [11] for a complete proof). The idea
is to split the Fourier transform g (—k) into two terms:

L 5 _
V2rg(=k) = f“ dz g(z) €** + | de g(z) e, A.10)
0 3
Under assumption (A.7), one shows that the second term on the r.h.s. of this last equation

is of higher order than the first one by integrating by part. One next defines the function
Ag(k) by

jﬁdmg(x)eikx = Ay(k) fﬁdzg(w), (A.11)
0 0

from which inequalities (A.9) are deduced from the L’Hospital rule. Approximating and
integrating the r.h.s. of eq. (A.11) yields eq. (A.8) from eqs (A.6) and (A.7). m)

Lemma A.2 [f g € L(dz,R,) is such that g (0) = 0, and if its modulus |g| satisfies
2C

< -7

9@ < g

where C > 0, [ > log 2, and € > 0 are three constants, then

» 4C 1
V2 —k)] € —&E) | — | $ k(-1 1 ., (A.13
™ |g(=k)| < q(2) & 9[1 — q(e)] (e Mglle (dzRy) ( )

when 0 < k < (7!, and where the function q is defined in eq. (3.5)."

if =21, (A.12)
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Proof The primitive G of g is defined by G(z) = [ dz’ g(z'). Since g (0) = G(0) = 0, one
gets by splitting the integral and by integrating by parts,

1/k . o0 . .
aal(— e=y 0 ikz kr _ i
V2m g (—k) ik L dz G(z) €™ + f1/k dz g(z) (e e ) (A.14)

From assumption (A.12), a bound for the first term on the r.h.s. of this last equation is
obtained by writing follk dz = [idz + fll/k dz, where 0 < k < 7!, and by noting that the
behavior of the bound for f,llk dz G(z) €'** depends on e. A bound for the second term is
easily obtained from assumption (A.12) as well and one gets finally eq. (A.13). o

Proof of lemma 1 From eqs (3.6) and (3.7), one has

A 2|Ca,- 1 .
| a(=2)| < @ —llog2)'“'°‘ 4 g (x2+a) ; if ©1, (A.15)
A _ Ccr.+ 1 : ~ 0+
Jal=2) = = (—loga)= T 9 L(—Iogﬂ”“] R el
and
ATh(_ _ Cor,? +0 1 f 7 3 1 (A 17)
a (=) = z (—logz)i* z (—log )|’ z 2 0t '

To obtain eq. (A.15), one made use of |y(—z)| > z —log2 and y'(—z) < 2 if = > log2.

Equations (3.2), (3.3) and (3.4) follow then from lemma A.l if g(z) = J/f;(—:t:) Equation
(3.1) follows from lemma A.2. ]

A.3 Proof of lemma 2

Lemma A.3 If g € L'(dz,Ry) is a function such that g (0) = 0, and if its modulus |g|
satisfies

C_

)1+a’

S e ) > Al
z (logz ez, (A.18)

lg(z)]

where C_ >0, [ > 1, and a > 0 are three constants, then

~ 36
Ver |g(—k)| < m+k1|lgllLl(dr,R+) (A.19)

where 0 < k < [7!.
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Proof The proof 1s similar to the one of lemma A.2. In this case, however, the behavior
of the bound for f, *dz G(z) €** one obtains does not depend on the parameter c. O

Lemma A.4 [f g € L}(dz,R,) is a differentiable function such that its modulus satisfies

C
lg(z)| < ﬂ_b;mﬂ,

if 0<z <, (A.20)
where Cy > 0, 0 <!l <1 and a > 0 are three constants, then

. 20, 1 2%C,
i — < —_— d A.
2 lg(=k)l < o (log k)™ * VE (log k) 1+°’ k / s gz Gt

where k > (72,

Proof The Fourier transform g (k) is split into two terms,
A1
/ﬁdmg ’k’+/ dz g(z) €**. (A.22)
0
A bound for the first term on the r.h.s. of this last equation is obtained directly from

assumption (A.20) if £ > [~2, and a bound for the second term is deduced by integrating it
by parts. Equation (A.21) then follows. 0O

Proof of lemma 2 From egs (3.8) and (3.9), one has

. = i 21,
f-a)l < . (A.23)
t —  if zx07,
z(—logz)*
and
G :
poy G oy 8 if 2> 1,
Frien)) < {21 (A.20)
¢ if = =0t

+
z(~ leg @)’
Lemmas A.2 and A.3 imply eqgs (3.10) and (3.12) respectively. Lemma A.4 is next applied
A
to g(z) = f(—=z). Since

gy LA _ o 2'(y) L
()ﬁf(hm = x@fﬂw+f@)(w, (A.25)
one has
o0 d A log vk
[Ldz|—f-a)| < [ ay 14) @I+ IFGD.  (A26)
7‘: -0

This result is also true for g(z) = fTh(—z), and eqs (3.11) and (3.13) are then obtained. O
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A.4 Proof of lemma 3

From eqs (2.13) and (2.23) one has

M) = o [ a0 P [ dof(p) (A27)

x T(ip') (~ip) /0°° dk sinh(mk) D(=ip’ — ik + 0*) T(ip + ik + 0%),

where eq. (2.15) has been used. Stirling’s formula [9],

e = Zee[1e0(2)]. (A25)

where |arg z | < 7, implies that

sinh(7wk) ['(=ip’ — ik 4+ 0%) [(ip + ik + 0F)

i(p—p’ 2
= we"’%(ﬁp’}e(p w)lagh l1+0(1+22+2' )} )

The integral over k in eq. (A.27) is split into three terms according to the partition Ry =
[0, w] U (w, W) U [W,00), where w and W are two positive constants which are small and
large enough respectively. The contribution of the non-compact interval [W, c0) is given
from eq. (A.29) by

(A.29)

xdk ' é(p—p
/ 2% U(=k,p")"U(=k,p) = 4 ( 2mp )1 +
w 2 p(e*™® —1) (A.30)
3 1 t(p) t(pf)an 1 + 1 O 1 +p2 + p'2 '
o 7 e pp @ -y U W)

where the function t has been defined by
t(p) = T[(—ip) e75” &Plo8", (A.31)

and satisfies eq. (3.22) (see eq. (2.15)). The first term on the r.h.s. of eq. (A.30) is the half
of the kernel of NF*[f] (see eq. (2.27)), and thus

[ ey [T i) [ Uk A Uk = SN (4.32)
L ame magr e 170 5 mid D)ECP) 1] = Fe a4+
g | W@y [ PEER 4 o () | [T ¥ —mar

If € > 0 is small enough one has furthermore

/Gw dk sinh(mk) D(=ip’ — ik + 0%) D(ip + ik + 0%)
A.33
{ log (1+ %), if p,p' > >0, (4.33)

< Cezletr) x

log (1 + %) , otherwise,
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w
/ dk sinh(mk) D(=ip — ik + 0*) D(ip + ik + 0%) | < C W =549, (A.34)

w

where C' > 0 is a constant. From the last three equations one gets

N 1‘ 1 & A AN 1\ % = fu(p)t(p)
M-8 < o | [T Ty e d”PTp" (A.35)
© 1] () i ] N[ = 1)
vo | [CarEB ]| v o e (142)]| [ ALEL
c 1f ) ( w) © |f()
+C dp ——=1log (1 + — d
o T e —1) ) b ¥ T
which implies eq. (3.21). ]

A.5 Proof of lemma 4

TAY
The Fourier transform of f,,(z) is split into two terms,

/_Ooo dx ﬁ,o(:c) ehT = /07;': dz ]/’;o(——x) (e“”‘I - 1) + /oj dz ){';,o(—:c) (e‘“"I - l) (A.36)

kxo

where z, = e¥%. A bound for the first term on the r.h.s. of this last equation is given for
both the CGHS black-hole and thermal cases by

LVﬁZ dz ﬁ,o(—r) (e’”‘z — 1)

To obtained a bound for the second term, the CGHS black-hole and thermal cases must be
treated separately, although similar bounds will be found for these two cases. One assumes
in both cases that e£~% < z, so that use of assumption (4.7) can be made. In the second
term one has (kz,)™%° < z, one must thus have ef~% < (kz,)="®%. This means that the
bounds obtained below are true for 0 < k < e¥~2L,

< Ve | f]l,. (A.37)

The thermal case is first considered. Assumption (4.4) implies

AT (=2)| < ¢ f 2> elv A.38
|~fyo ( $)' —_ T [lOg((L‘xa)]l-’-a, 1‘f z — € b} ( . )
from which one deduces, if 0 < k < e¥~2L that
5 A : 2C 2=
dz f,Th(—z) (e7** —1 < — A.39
L— =) )| = % (woteem) (A.39)

Equations (A.37) and (A.39) imply eq. (4.5) for the thermal case.
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The case of the CGHS black hole is now considered. An auxiliary transformation y,(z)
is defined by

—log z, if 0<z<log2,
yu(z) = (A.40)
—z + log 2, if log2 <z < 0.
Since
1 L, if 0<z<log2,
y'(z) = — < 2Zx (A.41)
1—e 1, if log2 < 2 < oo,
assumption (4.4) implies when z > ef~%° that
A 90 l/z, if 0<z<log2,
| fo(—2)| < = X (A.42)
(Yo —ya(2)] 1; if log2 <z < co.

The cases (kz,) %% < log?2 and (kz,)”%% > log2 have to be considered separately. If
(kx,)7°® < log?2 , one has from eq. (A.42)

00 A log 2 20 0 20
da — < f d + d
/\/;Ta [ (=2)] < = " [log(zz,)]'T™  Jiog2 x(:c+yo-]0g2)1+°‘
2 =
< . 4
~  a (y,—logk)® (A.43)
If (kz,)™%° > log2, one has also from eq. (A.42)
A A o0 2C 2C 2
d ] & / d < _ (A.44
/;o = lalsel] £ T "etyo—10g2)™ = & (y,—logk—1) (A.44)
since 0 < —2logz < 1/z (if 0 < z < 1) implies for z = log 2 /kz,
1
0 < —log2(2loglog2+logk +yo) < T (A.45)

Equation (4.5) for the black hole case is then deduced from eqs (A.37), (A.43) and (A.44). O

A.6 Proof of lemma 5

The subscript y, is dropped in this subsection for clarity. Defining the transformation z,, =
z,,(y) by eq. (2.9), one gets by integrating by parts

Al !

V/_(; dzx (5;[\(3;) b %/_::0 dr [m’(y)f (m(y)) eikz(v) _ m’“(y) fp\Th(mTh(y)) ik, (v) (A.46)
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Equation (A.25) implies
0 i 1 o0 : ;
/ dz (gf(T) elkI — é { —/ dy f’(y) [ 1 e'kx(y) — L elerh(y)]

— z'(y) :L‘;_h(y)
Lo G- ] )

= é{/_‘::o dye¥ [ fly) + f,(y)] [eikx(y) _ eikrTh(y)] o+ ]::o dy f'(y) eikz(y) } ) (A.47)

Now if one defines z = e™¥ one gets

k
= |2 = 10 1 =+ 2 )
eY ‘e“ik-r(y) _ e—ikr”(y), < { Z [ & )] (A.48)
- 2
Z?
and in particular
o [l _ gmikena0)| < 2 (A.49)
Zm

where z,, is defined by k [ 2, — log(l 4 2,,)] = 2. Since 0 < z—log(1+2) < —Z;-, one obtains
32; < vk and thus

eY leikx(y) _ ek () | < k. (A.50)
Equations (A.47) and (A.50) imply finally eq. (4.6). )

A.7 Proof of lemma 6

a) Equation (4.16) implies eq. (A.12) with [ = log(1 + €*) < e* since |y(—z)| > z — log 2
and y'(—z) < 2 if z > log2. Lemma A.2 is then applied with @ > 1/2 and eq. (4.17) is
obtained.

b) Since f (—k)=0if k > 0, one has
VI (k) = [ dysty) [F0 et ] (A.51)

— Q0

One writes then

Var fo(=k) =

L+yo/2 . . +oo . .
[7 o {m ) a [ ayg ) [0 -] (s

-0

A bound for the first integral on the r.h.s. of this last equation is obtained from
lz(y) —y| < e, Yy e R. (A.53)
Assumption (4.16) is used in the second integral to deduce eq. (4.18).
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c) Equation (4.19) is obtained in the same way as eq. (3.11) of lemma 2. O

A.8 Proof of lemma 7

This lemma is deduced from eq. (3.21) of lemma 3. The second term on the r.h.s. of this
equation gives a contribution of order § if f = f2 .. To treat the first term with the principal
value, one writes in eq. (5.2),

eTiPYo = gTiPo¥e | p=iPove [e_i(P—'Po)yo _ 1] _ (A.54)

The real contribution of e™P°¥ in this first term vanishes because the function Aj is real
by assumption and the integrand is anti-hermitian. The imaginary contribution of e~'P¥ in
the first term is proportional to

[ [ 1) 40) ) | LB el Y )

and this expression may be bounded by a term of order §. Finally, the contributions of
g~ iPove [e‘i(”‘m) Yo — l} in this term are of order (1 +¢) from eq. (3.25) and the assumption

on |y.| (since |(p —po)yo| < €). =
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