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Abstract

We derive the differential equation of the periods of the hyperelliptic curves arising in chiral
Potts model in statistical mechanics, and obtain the Schwarz’s (triangle) function representaion
of the moduli of this hyperelliptic family of Riemann surfaces. Differential equation of Seiberg-
Witten periods of the family is also discussed.

1990 PACS: 02 05
1991 MSC: 14 35Q

1 Introduction

The integrable chiral Potts /N-state model in statistical mechanics is characterized by the "rapidity”
variables lying on the spectral curves, which form an one-parameter family of hyperelliptic curves
of genus N — 1, (see [1] [2] [4] [8] [10] [9] [11], and references therein). These algebraic curves
possess a large number of symmetries, a property which has been speculated for the explanation of
the role of these curves in solutions of the Yang-Baxter equation. For N = 2, the curves form the
elliptic family, and the statistical model is the eight-vertex model, where the solution was obtained
by using the uniformization of Boltzmann weights in terms of Jacobi elliptic functions [7]. For
N > 2, there have been attempts of applying a similar uniformizing method to the problem. In
(11}, R. J. Baxter found an expression of the hyperelliptic function parametrization of Boltzmann
weights via the classical work of Sonya Kowalevski; subsequently a mathematical understanding
of Baxter’s parametrization was given in [23] through the symmetry principal. However, to the
best of the author’s knowledge, the use of these quantitative results to calculations of the many
interesting physical quantities has not been achieved yet. This paper is a continuation of our
qualitative understanding of the chiral Potts hyperelliptic family. Other than for the mathematical
reason on the rich geometrical properties revealed by the curves, one hope is that our studies would
eventually shed new light on further developments of the physical theory. In this note we study
the periods of chiral Potts hyperelliptic curves from the differential equation point of view, and
obtain an uniformization of the modulus of the family. We shall present a detailed investigation
on roles of Schwarz’s (triangle) functions in chiral Potts models, and indicate the similarity of
their structures with those appeared in the study of mirror symmetry of elliptic curves in N = 2

'Supported in part by the NSC grant of Taiwan.
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SUSY Landau-Ginzburg theory [24]. We also notice that chiral Potts curves form a special one-
parameter sub-family inside the Seiberg-Witten curves, which appeared in N = 2 SUSY Yang-Mill
theory on strong-weak coupling duality [25] [26] [5] [12] [14] [17]. In Seiberg-Witten theory, there
associates a hyperelliptic Riemann surface for each kind of gauge groups, together with a preferred
differential Asw of the second kind, whose periods describe the spectrum of BPS-saturated states.
The degeneracy and monodromy of Seiberg-Witten periods, hence the associated Picard-Fuchs
partial differental equations, of the multi-moduli Riemann surfaces play a special role in the theory
[3] [20] [21]. While the chiral Potts family is characterized by hyperelliptic curves with a specific
type of symmetry structure, their Seiberg-Witten periods will be studied in this note. We find
that they are governed by the same type of differential equations as the periods of holomorphic
differentials.

The organization of this paper is as follows. In Section 2, we shall discuss some basic properties
of Schwarz’s (triangle) functions, aiming at a description suited for the latter studies in Section 4.
A summary of definitions and basic concepts of Schwarz’s functions in [6], which are needed for
the discussion of this paper, will be given in Appendix. In Section 3, we shall give a quick review
on the ”rapidity” curves in chiral Potts models, and give a characterization of these curves by the
symmetry structure. In Section 4, we investigate the period matrix of the chiral Potts "rapidity”
curves, and obtain an explicit relation of the modulus with Schwarz’s functions. In Section 5, we
discuss the Seiberg-Witten periods of the chiral Potts family.

2 Schwarz’s Function Uniformization

Let us consider the following differential equations of Fuchsian type :

(0% — k7 12(0+a)(©@+8)y(2) =0, @:=z(%, kKa,BeEQ, 1>a>p8>0, (1)

with three regular singular points z = 0,k,00. By the change of variables z = kz, the above

equation is equivalent to the hypergeometric equation:
d*y dy
z(l—m)F+(1—(a+ﬁ+1)m)E—-aﬁy=0 , ,BeEQ,1>a>p6>0. (2)

Hence the fundamental solutions at z = 0 of Eqn. (1) are given by the hypergeomertic series
f1(2) = Fa, B; 1,671 2)
together with another solution of the form
o0
fa(2) = log(2) f1(2) + D dn2".
n=1
The ratio

__fa(2)
Hp) = 2mif1(2) 3)

is related to Schwarz’s function S(z)(= S(0,a — 8,1 — a — 3;z)) by the following relation:

t(z) = S(x~12) + 2—:;1- l6gk . 4)
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( For the Schwarz’s functions and their basic properties, see Appendix ). The function t(z) is the
solution of the non-linear differential equation:

{t.z} =26721(0,a - B,1 - a - B;x7'2), (5)
with the conditions:
.0 2mit
y _ ' 6 A _ ) _
21_1}1‘(1]t(z) =00 ggg_ te¥z) =t(z) +1, }1_1}1‘1) = 1, (6)

here I(0,a — 3,1 — a — (; z) is defined by

1+2(a+8-2aB -1z + (1 — (a— F)?)z?
4z2(1 — 1)2 :

I{(0,a—fB,1—a—-B;z) =

(see also (26) in Appendix ). The multi-valued function t(z) defines an uniformizing coordirate for
the punctured disc near z = 0. By introducing the parameter

q= eZm’t

bl

one has a local isomorphism between the z-plane and q-plane near origins with the relation:

z=q+ Y caq", cn €C.
n>2

The Riemann surface for the Schwarz’s function S(z) gives rise a Riemann surface M over z- and
t-planes,

P! & M 5 t(M)cP!

with .
_J P —-{0,x} fa+pf=1,
L) = { P! — {0}  otherwise .
By the theory of hypergeometric functions, the value t(z) is always purely imaginary for a real
number z lying between 0 and . Indeed one has the following result.

Proposition 1. The values of t(z) varies from oci to t{x~) monctcniczally along the imaginary
axis as the real z moves from 0 to x with

P(a)T'(B)

_ 3
t(k7) = %(_27 —P(a) —9(B) - W +log k) ,
here « is the Euler constant, and (x) is the logarithmic derivative of I'-function. We have
1 F(a,B,a + B;1 — k™ 12) 1
o) ) = O T R g i) FlaA L)

Note that
fa+p>1,

0
Fla,,1;17) = - ;
(0, 8 ) {74—7—1—711[;_10‘);1{[3 fa+pB<1.

Proof: By (6) and ‘g% # 0, the function —it defines a bijective and decreasing function from (0, )
to (—it(x~),00). Hence one only needs to show the expression of t(x™), which by (4), is equivalent
to the Schwarz’s function S(z) (= S(0,a — 8,1 — a — B;z)) at z = 1~ is given by

2miS(17) = 2y —Y(a) - H(B) - % |



Roan 245

By the relation of hypergeometric functions ( [11] p.p. 110 ),

F(a, 8,0+ B;z)

m Z HotnTB+0) 5 og(1 - 2))(1 - 2)"

n2L()T(B)

one has

i ['(a+n)I(B+n)

~ 2T ()0 (B) fl =)™~ Yo (1 ~) e, B, 1~ 2)

Ne)D(B) F(e, B, + Biz) =

for |arg(1 — z)| < , where h, = 24(1 4+ n) — ¢(a + n) — (B + n). Therefore for |arg(z)| < 7, we
have

Fla+n)I'(B+n) ~ ~ | .
APT(a)0(@) o~ m)e"

hoF(a, B,1;z)—-T(a)T(B)F(a, B, a+P; 1—z) = log(z)F(a, B, 1; x)+§:
n=1

which is a solution of the hypergeometry equation (2) for «, 8. This implies

F(la,B,0+ B;1—1x)

21iS(z) = ho — ['(a)T(B) FapLa)

I omis(1-) = R T _ o —¥(B) -
i = hyp F(a,ﬁ,l;l')h 7 —ia] P

The conclusion of the proposition follows from (4) and (7). O

When o + § = 1, the hypergeometric equation (2) and its corresponding Schwarz’s equation are
invariant under the linear transformation

z—1—-1x,
hence Eqns (1), (5), are invariant under the transformation
ZHK—2Z.

Using ['(B)I'(1 — B) = mcsc(Bm) and the identity,

o .
)= —v-— 1og2q—5cot—q—+2cos :jlogsinq’;—j', 0<p<gq, pqeZl, (8)

1=1

P

Q3

(see [6]), one obtains the following results by Proposition 1.

Corollary. Fora+f8=1,8= g, we have

2T
(log(4h:q -2 Z cos mPJ log sin —J) ,

t(k™
)= b q q

27i

and

F(]‘ _ﬁ)ﬁv 1;1 _K'—lz)

2sin(Bmle(z) = (D) = 1= p g 3 T 1)
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hence the following duality property of t(z) holds:

—l
i —z)—t(k7)] = .
2sin(Bn)[t(k — z) — t(x7)] 2o (B [E(e) = 0o )]
O
By the above corollary, we have
o oLl 21 s 1
b)) =0 for (@B, =(5,5,16), (5,527, (5.7:64) - (9)

For (a,B8,x7!) = (3, 3,16), one has the relation

the 16-multiple of the inverse of the above function, 16z(7), is the classical elliptic modular function
k(1) ('see [6] p.p. 99 ). The remaining two cases in (9) were discussed in [24], where z(q) was
explicitly expressed by theta constants. In particular, for (o, 3,57 !) = (2, }1,64) it is the case for
Ising model, and the Schwarz’s function is expressed by

R

F(3,1,1;1—64z2)
l
F(3,1,1;64z2)

V2t(z) =

From now on for the rest of this paper, we shall only concern ourselves with another type of
generalization of Ising model with the following «, a, 5:

-1

-1
_64 6___
K il « 2,

(which implies 8 < %). The function t and the Riemann surface M for the above @, 3,k will be
denoted by tg, Mg respectively. As the function

11

10,0 = f,1 —a=fFz) =10, 3,5

- 20;z)
is invariant by changing 3 to % — 3, we have the identification:

tg=t%_ﬁ y M[;:M%_

3 Chiral Pott N-state Curves

First we define the hyperelliptic curves which arise in the chiral Potts model of statistical mechanics
systems [11] [23]:

Definition. For N > 2, a chiral Potts N-state curve (CP N-curve) is a hyperelliptic curve of
genus g := N — 1 with an order N automorphism which fixes exactly 4 distinct elements. In this
paper, the hyperelliptic involution and the order /N automorphism of a CP N-curve will always be
denoted by o, 6, respectively.

Remark. The hyperellipticity for N = 2 simply means an elliptic curve E, which can be identified
with an 1-dimensional torus (E = €/lattice ). In this situation, the order 2 automorphisms ¢ and
@ are given by

o:lzg) = [z+2], 6:z] =[],
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where [zg] is a 2-torsion element of E. O

For a CP N-curve W, one has the following commutative diagram:

w L P o =w/<6>
1 Ix (10)
W/<o>= P! % P! =W/<8,0>

where ¥, 1, IT, 7 are the natural projections. For some suitable coordinates of IP!, one can express

¥, ™ by 1
p(t) =tV | 7;()\)=(1—“)§:2—k)\ ) taeP'=CuU{oo},

with &',k € € — {0, £1} satisfying the relation, k? 4+ k> = 1. Therefore all the CP N-curves form
a one-parameter family depending on &’ € €, and a CP N-curve W is isomorphic to a plane curve
of the following form for some &’:

N (1-KXN(1-KX1

= = , BAYETH, (11)

Wk :
with the projections ¥, II, and the automorphisms 8, c described by
TN =2, A =t, 8(LA) = (wt,)), oA =217,

where w := e~ . Note that Wy s is isomorphic to Wy 44, WN:t:-lﬂ as Riemann surfaces, i.e.
L

1 1
Wi =Wy <= (K'+ p)g (ky + R =%,
hence (k' + )? is the actual parameter for the isomorphic classes of CP N-curves. The (t,))-

coordinates of the branch points of ¥ and II are given by

Branch points of ¥: p = (00,0), p’ = (00,00), q = (0,k"), ¢’ = (0,k"71),

4 (12)
Branch points of II: bj = (w™7 §/iH5, -1), bl = (w7 ¥ 1_|_,c,,1) ;s I€TLEN
] ! i 1k 5
where ”,/i—j:’,g—, = N\/l};—f, eN 917 . By the birational transformation
k! 1
=—=(h-2), —{K*(w k2 +1
another equivalent expression for a CP N-curve is given by
Whp w2 = (tN - ht:)(tN i+)’§:) (t,w) € T, (13)
2V N g1, e=2%t—::;.

It is convenient to consider the above coordinates (¢, w) of C? as a local coordinates of the weighted
projective plane ]P%l,l, N) via the identification:

[l,t,iW] = [yl’y21y3] € ]P?]-.LN) ' (14)
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The compactification of (13) gives rise the hypersurface in IP?I,I, N)»

Yne:vi +43" +v3—etys =0, [y1,42,vs] € Pliny - (15)

We have the birational equivalence:
Witk = Y,

under which the branch locus of II corresponds to {y3 = 0}, and the branch locus of ¥ becomes
the union of zeros of y; for § = 1,2, with the corresponding [y1, ¥2, y3]-coordinates given by

p+«—[0,1,i], p'+—[0,1,-i]; q+«—[1,0,-i], q «— [1,0,i].

In terms of (¢, w) or [y1,¥2,ys]-coordinates, the hyperelliptic involution o and the order N auto-
morphism 6 of Yy . are given by

o:(t,w) — (t,—w), equivalently, [y1,¥2,¥3] — [¥1,¥2, —¥3)
6: (t,w) — (wt,w) , equivalently, (y1,y2,y3] — (y1,wy2,y3].

It is easy to see that the group of projective linear transformations of ]P(zl,l. ~)» Which preserve Eqn.
(15) for a general ¢, is generated by o, 8, together with the involution ¢,

; 1 w
L: [y17 Y2, y3] — [y21y1:y3] ) equ]va'lentIY1 (t,W) — (E: 'tW) .

It is easy to see that 6, ¢, generate a group isomorphic to the dihedral group Dy. Hence the
subgroup < 0,0, > of the automorphism group Aut(Yy,) of Riemann surface Yy  is isomorphic
Zy x Dy. For g > 2, 0,0, . generate all the symmetries of a CP N-curve Wy x+ for a general k'
[23]. Indeed one can determine Aut(Wy x) for every k' as follows.

Lemma 1. For g > 2,

<0,0,0>~%Z x Dy fore#0, (k"2 # -1),

Aut(¥e)(= Aut(Wip)) = { <0,6,0 > x Doy fore=0, (k% = ~1)

where 6 is the automorphism on Yy defined by

(t,w) = (w'/%t,—w) , equivalently , [y1,v2,y3] — [y1,w" 292, —v3] .

Proof. By identifying Yx . with Wy, we are going to show the result for Aut(Wy ). The
hyperinvolution ¢ is in the center of Aut(Wy x). We consider the quotient space Wy x/ < o > as
IP! via the morphism II in (10), and regard the quotient group Aut(Wy /) (:= Aut(Wy )/ < 0 >)
as an automorphism group of IP!, characterized by the automorphism group of IP! whose elements
permute the branch points of IT (12), bj,b},1 < j < N. For H_‘F—z:l # 1, it is easy to see that
Aut(Wp x) is isomorphic to < €,¢ >, which implies

Aut(WN‘H) =<0,0,L. >~ ZyxDyn.

Now we consider the cases for |i;—’,§:| =1 and Aut(Wn ) #< 0,6,¢ >. In this situation, one can

conclude that the linear tansformation of P!,

1-Fk

2
1+k’)t k

o) = (}
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is an element of Aut(Wy ). Since ¢( ”‘/ﬁ’;—:) is a branch point of II, we have

N 1_k’ 3 N 1+k' . X I—k’ 4
( ———-1+k,) = 1_k,w7 for some j , hence (1+k’) =
Therefore L
T::—k;=ii, k? = -1,

hence it follows the conclusion for Aut(Wy ). O

Among hyperelliptic curves, the CP N-curves can be characterized by the structure of their sym-
metry groups. Indeed we have the following result:

Proposition 2 . Let W be a hyperelliptic curve of genus g = (N — 1) > 2. Then

W o~ WN,Ic’ for k' #+i < Aut(W) ~Ziy x Dy ,
W >~ Wh i < Aut(W) >~ ZZs x Doy .

Proof. We have shown the group structure of Aut(Wy ) in Lemma 1, so only the converse
statements need to be considered. Let W be an hyperelliptic curve with the hyperelliptic involution
o. Assume Aut(W) is isomorphic to Zg X Dy or ZZy X D,y via an isomorphism f,

f:Aut(W)—) ZoxD, D=Dyor Doy .

Then f(c) = (p1,p2) is in the center of ZZy x D. Identify W/ < o > with IP!, and regard
Aut(W)/ < o > as an automorphism group of IP!. Claim: the group Aut(W)/ < 8 > is isomorphic
to D. For p; = 1, (which automatically holds for D = Dy with N odd ), by changing the generator
of ZZs of 7ZZy x D if necessary, one can obtain the result. For p; = 0, ps is a non-trivial element
in the center of D, hence either D = Doy or D = Dy with N even. The automorphism group
Aut(W)/ < ¢ > of IP! is isomorphic to Zy x (D/ < pz >), where D/ < py >~ Dy or Dy,
Let [ be the element of Aut(W)/ < o > corresponding to the generator of the first factor group of
73 x (D] < pp >). For a suitable coordinate system of IP!, the transformation group D/ < ps >
is generated by

: N
tes e2™/My  tstTl ) te CU{oo}, m=orN.

Since [ is an involution commuting with the above automorphisms, the fixed point set of the first
automorphism is invariant under [, hence one has the following expression of {:

[idis % o dig—d,

If I(t) = —t~1, this implies m = 2. Then !l € D/ < py >, which contradicts the description
of Aut(W)/ < o >. Therefore I(t) = —t and m is odd. Hence Aut(W)/ < o > is isomorphic
to Dyn = D. Choose a suitable coordinate system of IP' such that the automorphism group
Aut(W)/ < o > is generated by the transformations

t"_+ eZTI'l/m"t , t — t_l , t e Pl ,

withm’ = N or 2N according as D = Dy or D,y respectively. The branch locus of the hyperelliptic
cover of W over IP! consists of 2V elements which are permuted under the action of Aut(W)/ < o >.
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They are given by {b;,b}|1 < j < N} in (12) for some k’. Therefore W is isomorphic to Wy,
and the results follow immediately. O
For k' = #i, the CP N-curve possesses the maximal symmetries, where the plane curve has the

following form:
"
w2 =N +1 , equivalently , tV = ?1()\ +27h.

By the substitution,

1
A=diz, t= \f——E,

one obtains another expression of the same curve:

ulV = 2V1(22 - 1),

which also appeared in the study of minimal surfaces [18].

4 Schwarz’s Function Representation of Modulus of Chiral Potts
Curves

The space of holomorphic differentials on the Riemann surface Wy s is a g-dimensional vector
space with a basis consisting of

iy dt .
#7i—, 1<j<g.

Let (Tjk)1<jk<g be the period matrix of Wiy y/, which is determined by integrals over two special
cycles A, B, together with the symmetrles of the Riemann surface, where A is the 1-cycle lying over

the segment from by (= ¥/1%) to by(= }/{2%) under the projection IT in (10), and B is 1-cycle

over a path from by (= w ¥ = +',§ ) to bN with A, B intersecting at by of intersection number 1. In

fact, 7jx’'s have the expressions:

1 9 o 1A i(,)—l/z IB ﬂ;lﬁ
‘T‘k=—E -1 (wr =1 - | = W . 16
v} N1=1( )( )77 n 2S]nN 2 t'v:dt ( )

where 1 < j,k,l < g, (for the details, see [11] [23] ). The values of 7;;, m, are connected by the
following g X g matrices:

(w™7%) (1) (%) = N (k) - (17)
Note that the above periods depend only on €, equivalently the value of k’2. Furthermore they are
functions of (k' + #)? since. under the isomorphism between Wy x and Wy 1,
Y

WN,k’ — WNi}. ) (t’w) =+ (w1/2t1w) )
'k

the corresponding A, B-cycles are identified, hence n;(k’) = nj(—*k—,l—).

Proposition 3. The functions n;'s have the following properties: .

(i) The equality, n; = nny—;, holdsfor 1 <7 <g.

(i) For the value € near 2, we have lim_,27; = co. For € = 2 + re?™ along the path from £ = 0 to
€ =27~ for |r| <« 1, the change of values of 5; is given by

nj—n+1, 1<5<g.
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(iii) For real € = oo , ( equivalently real k' — 17), we have

iwi/2 ep .
2§m 7;'\'2;2

_.lw_ . .
T3 L3732
2sin ’—;v-’-

nj —

R

Proof. On the Riemann surface Wy s, the following relations of holomorphic differentials hold:

U ldt,  —tN-i-1gt o 11t
e ) = A ) =u’ :

w w w w

(18)
By the equivalence of homologous 1-cycles,

(B)~071(B), iA)~-A,
the equality in (i) follows immediately. Let S be the algebraic surface composed of CP N-curves:

S = {([vy1,v2, 3], [er,€0)) € PYy s vy X P | ea(uf™ + 93" +43) —eovi'vg =01},
and denote p the projection of second factor,
p:S—P'=CUc , where [0,1] <00 , [l,¢] € P! —{[0,1]} €€ C.

Then S is a non-singular surface over the e-line. For e close to 2, the curves degenerate via the
equation:

(wi —vd' +iya)(wi —vd' —iya) = (e — 2)pi'vd -
At € = 2, the degenerate fiber p~!(2) is a union of two rational curves intersecting normally at the

following N elements: .
[yl,y2:y3] = [1,‘*)170] y 13N,

Around each of the above elements, there exists a local coordinates (¢.,t-) such that the local
description of the projection p is given by

E—2=t+t_.

( A similar conclusion holds also for the degeneration near ¢ = —2). By the theory of degeneration
of Riemann surfaces, the vanishing cycle on a general curve p~!(¢) near 2 is generated by the cycle
A. As € belongs to a small punctured disc near 2 which is of the form 2 + re?™ with 0 < £ < 2,
the change of cycles of a general fiber is described by the Picard-Lefschetz transformation L with
the following description:

L(A)~A, L(B)~B-A+0(A).

By (18), the linear map of the cohomology group induced by L~ gives rise to the change of periods:

f ti-1ldt f ti-ldt _
B w — B w 41 = ’

ti—1dt ti—1dt
Ja=" ls ="

hence we obtain (ii). For 0 < k' < 1, the cycle B in Wy is homologous to —A + B’ where B' is

the 1-cycle lying over the path
- 1-F T
g g ol e
e VTyrY 038y

[3v)
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with A- B’ =1. As k' tends to 17, one has

VI—E2w = /(1 - K2)E2V — 2(1 + k2)tN + (1 - k2) — V=&tV

hence
j-ld i—-1g - r0 i(j—N/2
fB - g - Ip th : 1fﬁfr/’Ne(J 2t lim (l___k)J/N /2 — o for j > N
Pt ‘dt =t ‘dt Joti-1-N2dt o114+ K 2’
which implies
—iw™I/2 N
li ;= for > —.
oi- Y 2sin oI =3

By (i), one obtains the conclusion of (iii) for j < —{} O

Remark. (I). One can also obtain (i) of the above proposition by (17) and the symmetric property
of matrices (7jx) and (w’*) with the relation

o --- 0 1
. 0 - 1 0 .
W =] . - .

(IT). For k' being real or purely imaginary, the curve Wy s possesses a canonical real structure
with the conjugation given by c: (t,w) — (¢,W). The value of n; for these curves has the following

property:
—_ ] —nj—1 forsmallk' € R - {0},
R s for k' € iR — {0} .

In fact, by the relations of cycles in Wy x,

“1(B)+ A—-0"1(A) for small ¥ € R — {0},
c(4) ~-A, ¢(B)~ { —6-1(B) for k' € iR — {0} .

ti—1dt ti—1dt 14t ti-1dt
([B - )/(]A - )=(fc<3, — )/([C(A) =),

which equals to either

77 1dt 7~ 1dt i, [ vldt t/-1dt -
(fw" W[ 5 - 1= 0 D e -1

w w

one has

for small ¥’ € R — {0} ; or
_ t'-ldt - Idt _i [ t71dt 9 1dt
([ e =50 =5 =wi | 5 55

w w

for ¥’ € /—1R — {0}. Then the conclusion follows immediately. O

Now we are going to derive the differential equation for n;. Let us consider a variation of (15) by
introducing more parameters in the equation:

sly%N + 82y§N +y§ - Soy]‘.Nyév =0 ’ [yl: y2;y3] € ]P(zl,l,N) , 50,851,583 € C.
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The periods of the above curves can be obtained by Dwork-Griffiths-Katz reduction method [13]
[16] [27] of residuum expression:

- _ N-1-j j—1¥%1dy2 A dys — y2dy: A dysz + Nyzdy: A dyz .
i(S0,51,$ , 1<753<g, (19
(80, 81, 92 //3“ % 51y + 523" + 3 — soyf vl <isg, (19)

where ~ is a small circle in ]P(l LN) normal to the curve, I'; are 1-circles on the curve. In terms of
(t,w)-coordinate in (13), the periods of Wy s are given by

dt 1+ k™
12" e
Gile L) = 2/J B akspy ol

One has the following symmetry properties for the periods @,’s:

@5 (A 50, A2V 51, A2V 59) = AN Dj(s0, 51, 82) ,

&)J'(So, )\2N31, /\_ZNSZ) = /\—(N_Zj)L?)J'(.So,SI, 32) , for e, (20)
whose infinitesimal forms give rise the differential equations:
(Soas—o+313'—+52§5—+ ) “j =0 ,
(sla‘g 32352+N 2j) @; =l
With the trivial relation y?Vy2" = (yNy2)?, one obtains a further equation:
32 32
— -] w;=0. 21
(651332 asg) i (L)
Introduce the parameter
¢ = 2152 1
sy €
and define the function '
wi(¢) := eN=INGi(e,1,1) .
By (20), one has the relation
§(N=25)/2N
@;(80,51,82) = W%‘(C) :
Eqgn. (21) can be transformed into the form:
3N 2 a 2N —j)(N -3
(ot -ng+ T - ng + EEBT D9 -0, (@

which has three regular singular points at { = 0, co, %. By the change of coordinates, z = z; — 1%,
and the relation

0 1,0 a a
B_C—(Z_EZ:?;’ (C“l)ac“—‘lzg»
Eqn. (22) takes a form of (1):
o} N-j 1 :
(0% — 642(0 + 0;)(© + B;))w; =0 0 =25, 5]-:WJ, a=pFi+5, 1<j<g.(23)
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We shall denote the Schwarz’s function (5) for the above system with the value f; simply by t;(z):
tj=tg , 1<j<g.

By B; + Bn-j = 3, we have
ti=tn-j,
which is the solution of the equation

(2} = 23700, L, =N g,y - 12640 - (Wg)l))z + 3(322)2
o 92’ 2N’ 222(1 — 642)2 )

(24)

with the condition (6). Note that the parameter z is related to the parameter k' of CP N-curves

W by the expression:
1 1L 1 1

s i? W — T i ! I
i T A TG
The value 7n; in (16) for the period of Wy x» can be considered as a (multi-valued) function of z,

)—2

n; = n;(z) .
We are going to determine the relation between the function 7;(2z) and Schwarz’s function t;(z).
Theorem 1. The following relations hold:
(i) ny(2) =t(2) — 3+ ilogd - EN__ cos —J——Iogsm k), fori1<j<g,

y - F(B;+1,8;,20;+%;1-64 .
(i) n;(2) = nv—;(2) = =T(8; + H)T(8,) 2& T 1 5. 1.647) d_ 1o fri<j<¥,

where 3; = f‘é_NJ.

Proof. The periods of Wy k1, [g ‘j—“:d‘,fA ”_\:d‘, as functions of z satisfy Eqn. (23), hence the
function 7;(2) is a solution the corresponding Schwarzian equation (24). By Propostion 3 (ii) ,
n;(z) satisfies the conditibns:

limn;(z) =00, lim 17](6 z) = ni(z) + 1.

z—0 E—y?
By the characterization of the Schwarz’s function t;(z), we have
1~ 1
ni(2) = tj(2) —ti(z7 ) —¢, 2€C—{0, =},

for some constant ¢;. As z is a real number tending to 6%_, one obtains the expression of c; by
Propostion 3 (iii):

1
< N
_) 1w Is g
&y = 1 N
& { 1—-w? j 2 o
Note that ¢; = cN_J-. In order to obtain the expression of t;(z) —n;(z), one needs only to consider
the case j < &, where the inequality, £ 4+ 26; > 1, holds. By (8) and Proposition 1, one obtains
(ii) and the relatlon

1- i k N
tj(6—4 )+ = Zcos log m%—log 2)
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Then the conclusion (i) of the theorem follows immediately. O
Remark. (I) When N = 2, Wy is an elliptic curve and we have

1 dt

= _JBw
m=gz7, T= dt *
Aw

By Theorem 1, the relation of 7 and the Schwarz’s function t(z)(:= t;(z)) is given by

T+ 1=2t,

which was obtained in [24] by another geometrical argument.
(IT) For N = 3, there is only one function 7; in our consideration, denoted by p := n; = n2. By
Theorem 1 (i), the functions p(z), t;(z), are related by

1 27

P(Z)—tl(z)—( +§—I 876

The period matrix of Wy, takes the form:

T11 T12 _ 2 1
91 T2 / 1 2 p
which was appeared in [11]. Hence the theta function of Wy x has the following expression :

19(5 ,,,_ Z eQm(mlsl+m2s2)62m(m2+m1mg+mz)p

my,m2

which can be decompsed as a sum of products of Jacobi elliptic theta functions associated to the
modulus p and 3p:

F(s1,82;7) = P2(51 + 52; 3p)F2(s1 — 825 ) + Fa(s1 + 52 3p)I3(s1 — 523 p) -
O
By Theorem 1, n;(2) is characterized as a solution of Eqn. (24) with the conditions:

2min;(z)
g ZN ! cos HJ— log sin 2 .

Imgpeh =, o ety sige) +1, hm— N2

For j = [%], Eqn. (24) becomes
{t,z} _2131(0 ,0;64z) , or 2131(0l ———1-642)
y ) 2’ 2N’ =
By the theory of Schwarz’s functions, the Riemann surface M[ N ](z)) is the uniformation of the
2

z-plane. The function u (:= n[%](z)) provides a uniformizing coordinate of the variable z. We

obtain a single-valued function n;(u) for each j, which is compatible with the z-functions.
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5 Seiberg-Witten Differential of Chiral Potts Curves

The spectral curve of N =2 SUSY SU(n) Yang-Mills theory is of the form [17] [22],

A2N
Iu+T+P(m) =0, (u,z)e €@, where P(z):=z" +uz" 2 +uszV 3+ ... +uy,

which, by the change of variables, y = p — A-E-N—, is equivalent to the plane curve:
y? = P(z)? —4A2 | (y,z) € 2.
The Seiberg-Witten differential is the following abelian differential of second kind:

N = 28— _,2P@)
Y

with the electric and magnetic masses a;, af’ , given by their periods along some special closed paths
on the Riemann surfaces:

ai = | Asw, aP=/D/\5W.
i %
The divisor of Agw is given by
2N 2N
: dP(z
avOsw) = m-20+9) , L= =0), prp'=(=c0),
=1 i=1

By the relation _ _
8y _ Paje™* 8yt —Plae¥

Ou; y ToOu y3 ’

the derivative of Asw with respective to u;,2 < i < N, is a holomorphic differential mudulus an

exact form: ‘ ,
%sw = —(N - i)zV~'y~ldz + ¥~y 3 P(z)dP(z)
=—(N - z')a:N“Ay_ldzl— g i+l gy =1
— .'L‘N—iy—ld.’.l': _ d(xN—t-}-ly—I)

Among the Seiberg-Witten family of hyperelliptic curves, there lies the following one-parameter
family of CP N-curves,

1
#+;+$N+UN =0,
whose relation with (11) is given by the following identification of variables:

k? 1+ k"
A=1,#=A,x’v=pt”, up=--=uy-1=0 , uy=

The expression of Seiberg-Witten differential of the above family is:

zNdz ~| k2 tdh
Xowr = =N y PN

With the coordinate (¢,w) in (13), one has the relation:

nf k' ot
FASW__N il
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Along the parameter of CP N-curve family, N\/f;a.,-, Ndféa? , are determined by the periods of
H::Vi over the cycles A and B. By replacing the (7 — 1) by N in (19), one obtains the equation of
[yt o 8dt along CP N-curves:

N — 1 0 1 1
(@ —642(@+W)(@—-2Tv-)) —0,@—2’— Z | e ——

Appendix: Schwarz’s Function

The hypergeometric equation (2) has three regular singular points,
z=0,1,00,
with the solution expressed by Riemann P-function :

1 o0
0 a ;x p=ay(z) +by(z), a,beC,
a-p8 pB

where y;’s are the fundamental solutions at £ = 0 with the hypergeomertic series y;(z),

0
P< O
0 1-

n(z) = F(a, 5;1;7)

bl

i a+n)1‘(ﬁ+n)zn

n!?

and y2(z) the another solution uniquely determined by form
(o o]
y2(z) = log(z)F(a, B; 1;7) + D _ anz”
n=1

The ratio of the above functions defines the Schwarz’s ( triangle) function:

S() (= SO,a—B,1 - a—fiz)) = % (25)

In general, the local system for Eqn. (2) is described by the analytic continuation of ¥ (z) , y2(z),
or that of any other fundamental solutions:

ayy(z) + byz(z) , cyi(z) + dya(z) , ( z Z ) € SLy(C) .
The ratio
s(z) = ay1 () + bya(z)
ay1(z) + bya(z) ’

is invariant under the substitution

y(z) = g(z)y(z)
for an arbitrary given function g(z), which transfers Eqn. (2) into another second order linear
differential equation. By choosing

s —(a+8
gz) =z T (1-z) "o,
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the equation is put into the form,

ey o)y =
a;fﬁi_ (O,Q—ﬁ’,l—a—ﬂ,z)y—o )
where L2 ) s 5 )
—-p 1-v 1 +u* = p* =w
I 1) =
(omvi2) = =+ i oy 4z(1 - 2) (26)
Eliminating y in the system of equations:
{ (fr +10,a=f1-a-Fiz)y=0,
(i + 10,0 = B,1-a-fz))(sy) =0,
one obtains the non-linear Schwarzian differential equation for s(z),
{s,z} =210, — 3,1 —a - B;z), (27)

here the Schwarzian derivative is defined by {s,z} = gg% - %(g%%)? All solutions of the above

equation are equivalent under the SL,(C)-action :

as+b a b
H;s_-}——-—d,(Cd)ESLz(m).

Each solution gives rise to a local uniformization of a punctured disc near z = 0. It determines the
element
=1 L=
s(0) lim s(z) eP* =CU {oo},

and a parabolic transformation fixing s(0), which is given by the local monodromy around z = 0.
The Schwarz’s function S(z) is characterized as a solution of Eqn. (27) with the conditions:

. £2miS

lim S(z) = o0, lim S(ef'z)=S(z)+1, lim

z—0 £—2n— =0 T

=1.

It forms an uniformizing coordinate of the punctured disc at z = 0, and one has the power series
expansion: . .
o eZmS =R Zcuerﬂms , ,Cn € CD,
n>2

which defines an local isomorphism between the z-plane and e2™5-plane near origins. The analytical

continuation of S(z) gives rise to a Riemann surface M° which spreads over the S-plane and
infinitely covers over z-plane outside {0, %,oo}. By ffx—s # 0, the projection of M° to the S-plane
defines a local isomorphism with an open domain in IP* as its image. One has the following relations
between Riemann surfaces:

P! - {0,1,00} < M° = SM°)cCP!. (28)

For a — 8 > 0, one can extend M° to a Riemann surface over x = oo as follows. Since the
fundamental solutions of Eqn. (1) near £ = co can take the form:

1 1
- = _ﬂ bt
z pn(z) ? z pB(I) b |$| >>01
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for pe and pg power series in % with the constant term 1, on a connected region of M° near z = oo,

one has (1) 5 (1)
az”pa(z) + bz " pp(= a b
S(z) = x - € SLy(C), f 0.
& cx=Pa(z) + dz~Ppp(3) c d e Bl
Therefore ;
_0 1
Ill}ngo S(z) pi elp
Write l
a— = E

with k£ and ! two relatively prime positive integers. By the expression of S(z) near z = co, there
exists a local coordinate system w near £ = oo, and § near s = g-, such that over a small punctured
disc near z = oo, a connected region of M° has the local description:

wt =35, (w,3) #(0,0) .

Let u be the local coordinate of the desingularization of the above equation. The description of
(28) on a small connected region over a disc near z = co is now equivalent to the diagram:

(0<|w <8} +— {0O<|u<e} — {0<|5]<d} , vo=weu— =0,

which can be extended to the following one:

0<|w <8} «— {lu<e — {§l<d6} , F=weuai=u.
The above local construction provides the data for the extended Riemann surface of M° over z = oo
with the multiplicity k. By the assumption on a, 3, we have |1 — (a+ )| < 1. For 1 — (a+f3) # 0,

write .

L= (a+8) =5

With the same procedure as before, M° can again be extended to one over z = 1. The resulting
extended Riemann surface, denoted by M, will be called the Riemann surface associated to the
Schwarz’s function S(z). One obtains the extension of the diagram (28) for « — 8 > 0:

ged(l, KN =1.

P! & M 2 SM)cCP!,

with g
_J Pt -{0,1} fa+pB=1,
Im(z) = { P! — {0}  otherwise .

Note that if & — 3 is equal to the reciprocal value of an integer, the Riemann surface M is local
isomorphic to S(M) via the map S near an element in z7!(0c0). A similar phenomenon holds
for elements of z71(1) for the same description of the value of 1 — (o + ). In this situation, the
function 7 = S(z) has a meromorphic single-valued inverse function z = S~!(7) on a certain simply
connected region of 7-plane, which is called an automorphic function.
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