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Abstract

Some computations in classical quantum dynamics can be simplified by substituting the Schrodinger Hamil-
tonian with a different operator. The time evolution can then be obtained by iterating a map. This allows
efficiently to determine the Fourier coefficients of the spectral measures of the new Hamiltonian. Many prop-
erties of the quantum evolution are not affected by the deformation of the Hamiltonian because the spectral
measures are only distorted. For example, a numerical computations of the Wiener averages allows to test
numerically for the existence of bound states. We illustrate the time discretisation for a tight binding model
of an electron in a constant or random magnetic field in the plane. As a theoretical illustration, we relate
the return probability for the quantum evolution on a graph to the return probability of the corresponding
random walk.

1 Introduction

For numerical simulations in quantum mechanics it is important that the orbits ¥(t) = exp(itL)y of the
quantum evolution can be determined efficiently. Even for a bounded operator L, the computation of
exp(itL)yY can become tremendous; in higher dimensions it is a task for super computers (e.g. [23]).

Many properties of the orbit () are determined by the spectral measures uy which are probability
measures on the real line. Dynamical properties of the system depend on the nature of the spectral measure
because the Fourier transform of py is fy(t) = (¥,%(t)). For example, a Hamiltonian L with absolutely
continuous spectrum leads by the Rieman-Lebesgue lemma to the transient behavior (¢, %(t)) — 0. On the
other hand, if an operator L has purely discrete spectrum, then (¥, ¥(t)) is almost periodic a fact which is
responsible for recurrent behavior of the dynamics.

In this note, we use the fact that it is often irrelevant, whether we evolve with the Hamiltonian L or if
we use a deformed Hamiltonian f(L), where f is an invertible smooth real function. The reason is that the
spectral measures of f(L) are only distorted versions of the spectral measures of L. It is therefore natural,
to look for a function f such that the discrete time step exp(if(L)) can be easily computed. Properties
of the spectrum, which are unchanged by a replacement L ~ f(L) can now be determined faster through
numerical experiments because iterating a map is more simple than integrating a differential equation.
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If L = arccos(al) where L has been rescaled such that aL has norm smaller or equal to 1, the time
evolution can be computed by iterating the map A : (¥,¢) — (2aLly — ¢,%) on H & H. This is the time
one map for the unitary evolution of L. This allows an efficient determination of the Fourier coefficients
fn = (¢¥,¢¥(n)) with A”(¢,0) = (¥(n),#(n)) of measures py on the circle, which determine the spectral
measures vy of L. Some properties of the quantum evolution are not affected by the change L — L because
the spectral measures # of L and the spectral measure v of L are related by (I) = v(cos(I)) for every
interval I.

One possibility to test for discrete spectrum of an operator is to determine numerically the Wiener
averages limy—co ™2 3 7_, |#£|2 = 3, Ie{z}|%. We illustrate this method for a tight binding model of an
electron in a constant or random magnetic field in the plane. For random magnetic fields, where the existence
of point spectrum is not known, we made numerical experiments on a grid of size up to 1000 x 1000.

We also illustrate the theoretical usefulness of the discrete time evolution by providing a relation between
quantum mechanical return probabilities of the generator for a random walk on a graph and the return
probability of the classical random walk on a graph: continuity properties of spectral measures with respect
to the a-dimensional Hausdorff measures are related to power-law decays of averaged return probabilities of
the random walk.

2 A unitary discretisation

Let L be a bounded selfadjoint operator on a separable Hilbert space H. After a rescaling L — aL, which
corresponds to a change of time in the evolution, we can assume that ||L|| < 1. Assume L solves cos(L) = L.
The unitary operators UZ = exp(xinL)) = cos(inarccos(L)) % isin(inarccos(L)) = Tn(L) + iR, (L) are
independent of the choice of L. Both Uy = L+iV/1—-L? solve U + U* = 2L and Uy has its spectrum
in {£ Im(z) > 0}. Here T,(z) = cos(n arccos(z)) is the n'th Chebychev polynomial of the first kind and
R, (z) = sin(narccos(z)) is the n’th Chebychev function of the second kind.

Proposition 2.1 If (t) = exp(itL)(0), then (t) evaluated at integer times satisfies the recursion v(n+
1) + ¢¥(n — 1) = 2L+y(n). Solutions of this recursion are given by ¥4(n) = ULy. In particular, ¥(n) =
(Y4 (n) +¥-(n))/2 is a solution, which is real if 1(0) is real.

Proof. Uy + Ui = 2L implies that ¢4(n) = ULy as well as the linear combination ¥(n) satisfy this
recursion. O

The discrete time evolution is obtained by iterating the map

A:(¥,8)— (2LY - ¢,9) (2.1)

on H @ H. The unitary nature of the evolution is also evident because

4= (% 9 ) 2= (0T pcsatesontoy )

L-iV1=L%T L[+#/1-=1I3 )
A )

on H @ H are conjugated by A = C~1BC using C = ( 1

3 The Fourier coefficients of the spectral measures

For ¢ € H, the functional f — (4, f(L)¥) defines by Riesz representation theorem a measure vy, on [—1, 1],
which is the spectral measure of ¥. On the circle T, we are interested in the spectral measures py 4
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with respect to the unitary operators Uy which are also determined by their Fourier coefficients (fy +)n =
(¢, UZ4¢). Let iy be the spectral measure of ¥ with respect to L. These measures are related as follows:

Proposition 3.1 For every Borel setY on [0, 7] one has vy (Y) = vy(cos(Y')). The measure py = (py,+ +
py,-)/2 satisfies vy((Z + 2)/2) = py(Z) for every Borel set Z on the circle.

Proof. The first statement follows from the relation [ exp(itz) dv(cos(z)) = [exp(itarccos(z)) dv(z) =
(¢, exp(iarccos(L))y) = (¢, exp(itL)y) = [exp(itz) dir(z). The formula Us + Ui = 2L implies the second
relation. 0

Remarks.

1) The measure py on T is a spectral measure of ¥ x ¥ of the unitary operator U = Uy, @U_- on H @ H
which gives a the simultaneous evolution of 14 and 1¥_ on two copies of the Hilbert space H.

2) The study of orthogonal polynomials on [—1, 1] by lifting them onto the circle goes back to Szegd [29].
In [7], it was suggested to replace ordinary moments [ z” du by other moments [ pn(z) du in order to get
information on the spectral measures of operators. However, the case of Chebychev polynomials treated here
has been left out in [7]. We should note that Chebychev polynomials are also useful in similar contexts like
polynomial expansions of the Green functions (see [21]).

Proposition 3.2 The Fourier coefficients of the spectral measure pu = py = (py,+ + py,—)/2 satisfy
(Bg)n = (¥, Tu(L)¥) = (¥, 9(n)) -

Proof. We have (fiy,+)n = [ ™" dus y(t) = (¥, UZY) so that
(g )n = (g, +)n + (By,=)n = (¥, (UL + UZ)/2¢) = (4, Ta(L)¥) -
This, together with the definition (UL + UZ2)%/2 = (¥+(n) + ¥—-(n))/2 = ¥(n) implies the claim. o

4 Spectral properties and the dynamics

We review in this section some spectral properties which can be deduced from Fourier coefficients (y, ¥(n))
of spectral measures.

The discrete spectrum. Wiener’s theorem in Fourier theory

n n

lim n='Y (¥, Uk))? = lim n™ ) |a]? = u({z})?

Jlim ;( )I* = lim kg 226; ({=z})
allows to determine, whether there is some discrete part in the spectral measure py and so some eigenvalues
of L. This tool for detecting point spectrum is used in quantum dynamics (see [1]). If the potential takes
finitely many (rational) values, then n=1 3"F_, |/|? is a (rational) number which can be computed exactly.
Evolution (2.1) allows so to treat the evolution of any bounded discrete Schrodinger operators in one dimen-
sion with the same efficiency as kicked quantum oscillators or kicked Harper models.

The L*-absolutely continuous spectrum. If there exists a constant C, such that 3"} _, [(¢, U*¢)|? <
C then py € L?, because of Plancherel’s theorem Y 7_; |(¥, U*¥)|2 — [ |fy|? df with py(8) = fdf. It is
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more difficult to detect other absolutely continuous spectrum. While i, goes to zero by the Riemann-
Lebesgue lemma, if p is absolutely continuous, the decay can be arbitary slow and decay is also possible if
u is singular continuous. The L?-absolutely continuous spectrum is important because by a result of Kato,
the closure of all vectors ¥ with L2-absolutely continuous spectral measures juy is the absolutely continuous
subspace.

Singular continuous spectrum. If (¢, U") does not converge to zero, then by the Riemann-Lebesgue
theorem, p1y, must have some singular spectrum. If also n=1 37, [(¥, U*1)|? converges to zero, then L has
purely singular continuous spectrum, a property, which is generic in many situations (see [25, 27]). However,
if L has purely singular continuous spectrum, it is still possible that (¢, U"%) — 0. The question, whether
(¥, U™y) converges to zero or not can be subtle and there are both singular continuous measures for which
(¥, U™y) does or does not converge to zero. Singular continuous spectrum occurs often in solid state physics.
The dynamics of U on the singular continuous subspace is the least understood. It follows from Wiener’s
theorem and Birkhoff’s ergodic theorem that the topological entropy of an unitary operator acting on the
weakly compact unit ball is zero [16].

Weak continuity properties. A discrete version of a result of Stricharz [28] tells that if there exists
a constant C and a function h € C(R) with h(0) = 0 such that u([a, b]) < Ch(|b — a|) for all intervals [a, b]
with length < 1 on the circle R/(27Z) (here identified with [0, 27)), then

n~t Y |, Um)P < CiCA(n™Y) (4.1)

k=1

for all n, where C; < 10 is a constant independent of anything. By a converse of Last [19], if Equation (4.1)
is satisfied, then p([a,b]) < C\/h(|b — a|) for all intervals [a, 8]. In this sense, Holder continuity properties of
the distribution function z — f: dpy(t) dt can be detected by computing (¢, U™). For recent developments
in the quantum dynamics of operators with singular continuous spectrum see [9, 5, 10, 19].

Hausdorff dimension. The a-energy of a spectral measure pon T is I (1) = [12 da(sin(Z5)) du(z) du(y
with ¢o(z) = 27, do(z) = —log|z|. A measure u = y; has finite a-energy, if and only if 3"y, k71| |? <
oo ([13]). The Hausdorff dimension of y, is the minimum of all Hausdorff dimensions of Borel sets S sat-
isfying p(S) = 1. It is bigger or equal to « if py has finite a-energy (see Theorem 4.13 in [6]). By finding
out, where the energy biows up, a lower bound on the Hausdortf dimension of u can be established and so
a lower bound on the Hausdorff dimension of the support of u can be obtained.

5 Quantum dynamics versus random walks

Assume L is the generator of a random walk on a graph (V| E) where V is the set of vertices and F is
the set of edges. The hopping probabilities p(y w) = P(w,v) to the vertices so that zw‘(u,w)ev Prow) =1
define the random walk. For example, if every edge has d neighbours and p, , = 1/d for every vertex
(w,v), we get a symmetric random walk on a regular graph. The operator Ly(v) = Z(w,u)Epr»Uw(w)
is selfadjoint and has norm 1. Let ¥, € {*(V) be a wave which is localized initially at a vertex v. The
quantum evolution T (L)%, = Re(exp(inarccos(L)))y, should be compared with the random walk L™v,:
while p, = (%, L™%,) is the probability that the walker starting at the vertex v returns to v in n steps,
fi2 = (Yu, Ta(L)¥y)? is the probability that the wave ¥, returns back after n steps of the quantum evolution.
Opposite to the irreversible random walk, the discrete time quantum evolution is invertible in the sense that
the pair ¥(n), ¥(n+1) determines ¥(0). The Fourier coefficients i, = (¥, ¥(n)) of u are easy to compute and
determine the measures v = 1/2(u + &) of ¥ with respect to L. In many examples of regular infinite graphs,
one does not know the spectral type. Aperiodic graphs defined by aperiodic tilings of R4 (see (18, 17]) are
examples, where the spectral type is unknown. The spectrum of a graph can be be pure point like in the case
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of a finite graph or certain self-similar graphs, it can be absolutely continuous like for Z¢ or for Cayley graphs
of infinite Abelian discrete groups, it can also be singular continuous as has been pointed out recently in [26].

In order to relate the return probability of the random walk with the Fourier coefficients, we consider a
one parameter family of operators L(#) = Lcos(6). Denote by fin(6) = Tn(L(8))oo the Fourier coefficients
of the spectral measure on the circle with respect to the operator L(9).

Proposition 5.1 The probability p, that the random walk starting at the vertez v returns to v in n steps
is related to the quantum mechanical return probability i2(8) of the discrete unitary quantum evolution of
L(6) by

(@) [ (@) o2 2
T

Proof. With z = exp(if), we have L(6) = L(z + z7!)/2. The function f,(z) = 2"~ 1f,(z) is a sum of an
analytic part and Lg,/z so that by Cauchy’s formula -ﬁ:l:l fn(2) dz = f(0) = Ly, = pn. Because py is real,
we get

(2m)~? -[r cos(2n0)jin(0) df = py, .

With Holder inequality, we have

pn = (27)! L cos(2n8)in () df < ((47)~! fT A2(6) do)H/? .

Corollary 5.2 If the spectral measure p,(0) satisfies p,(6)[a,b] < C(0)h(b — a) for all intervals strictly
contained in the circle T and all 6 # n/2, and if [ C(6) df < oo, then the random walk has the return
property n=1 32 _ p2 < Cy [ C(8) dfh(n~1), where Cy is a constant not depending on anythiny.

Proof. Consider the relation
[t um i@ doznt Y
x k=1 k=1

Applying Strichartz theorem described in the last section, we get from u,(8)[a,b) < C(8)h(b — a) that the
left hand side is < Cy [ C(#) d6h(n~') with some universal constant Cy. (In the case h(z) = z, C(8) does
not depend on 8. It follows that if a graph has a uniform return probability like on a finite graph, then by
Wiener’s theorem, there is some point spectrum implying quantum mechanical recurrence). ®]

A measure p, is called uniformly a-continuous if uy[a, ) < C(b — a)® for all intervals [a, b).

Corollary 5.3 If the spectral measure p, is uniformly a-continuous, then the return probabilities of the
random walk to the vertez v satisfy n~! 3 p? < n~P for all B < & and large enough n.

Proof. Because C(f) < cos(8)~'C(0) it follows that [ C(0)cos(f)™“df < oo for all € > 0. Apply Corol-
lary 5.2 gives n=1 37, pf < C) [ C(O)n~* < n=? for large n. (m
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6 Numerical experiments

We illustrate the discrete time evolution (2.1) in two numerical experiments.

(i) The first numerical experiment deals with an electron in the plane under a constant magnetic field
B reduced by a Landau gauge to a one-dimensional situation, where one considers the one-dimensional
Schrédinger operator L on I2(Z) of the form Lu(n) = Au(n)+ V(n)u(n) and take an initial condition which
is a localized wave %(0) = (---,0,0,0,1,0,0,0,---) at the origin k = 0. We use Wiener’s theorem to get
numerically information about the discrete part of the spectral measure. For this illustration, we take the
almost Mathieu (or Harper) operator ¥V, = A - cos(d + an), where much about the spectrum is known (see
(24, 20, 11] for reviews). Note that most of the known results hold only for almost all or generic  and under
some assumptions on the magnetic flux .

We did a numerical determination of S,(A) =n~? 3} _, |k|? using (2.1), up to n = 40’000 as a function
of A € [0,4] in the almost Mathieu operator with § = V3, a = \/T. p is the spectral measure on the circle
belonging to the vector ¢ = &g localized at the origin in Z. The value of 2, = (¢, U"¢) was computed using
evolution (2.1) with initial condition (¥, 0) on the grid [-n/2,n/2] so that the boundary effects the value i,
only after n steps: 1(n) has support in [—n,n] and the boundary begins to affect 1 after n/2 time steps and
so to influence fi, after n steps. The numerical experiment is in agreement with the now established fact
that there is no point spectrum for A < 2 for almost all & (for A = 2 see [8]) and some point spectrum for
A > 2 [12]. Longer runs, (S10000(2) = 0.004858, S20000(2) = 0.001900, S40000(2) = 0.001068) indicated that
indeed S5,(2) — 0 for n — oo.

(i1) In a second numerical experiment, we take a two dimensional operator L which is the Hamiltonian
for an electron in the discrete plane, where the magnetic field B is randomly taking values in U(1) (see [15]
for some theoretical results or [3, 2] for other numerical experiments on this model). If the distribution of
B(n),n € Z? is a Haar measure of U(1), then this field can be generated with a vector potential A;(n) =
**(") with independent random variables 8(n) having the uniform distribution in [0, 2r]. There is no free
parameter. The ergodic operator, which we consider, is

L(n) = Ay(n)(n + e1) + Ar(n = e)¥(n — 1) + As(n)(n + e2) + Az(n — e2)6(n — e2)
and the open question is what is the spectral type of L.

While one knows the moments of the density of states of L (the n-th moment ot the density of states
is the number of closed paths in Z? of length n starting at 0 which give zero winding number to all
plaquettes [16]), nothing about the spectral type of L seems to be known. For the two dimensional
experiment, we experimented on a 1000 x 1000 lattice, were we can compute the first 1000 Fourier co-
efficients of the spectral measure exactly. Our experiments indicate no eigenvalues. If eigenvalues ex-
ist, they would have to be extremely uniformly distributed because lim,—.oo Sn = 3, |u{z}|? must be
small. The measurements done on a usual workstation indicate that S, goes to zero monotonically:
5200 = 0.00352372, 5400 = 0.00201089,5500 = 0.00148669,5&00 = 0.00121992,51000 = 0.00106374. Longer
runs with better computers on larger lattices are needed to confirm this picture.

Remark. We made also numerical experiments with a Aharonov-Bohm problem on the lattice. This is the
situation when the magnetic field B is different from 1 only at one plaquette n = (0,0). The vector potential
A in this situation can not be chosen differently from 1 in a compact set. However, in a suitable gauge, the
operator L is a compact perturbation of the free operator by a result of Mandelstham-Jitomirskaja [22] see
[16] for an other proof of this fact). As expected, there was no indication of some discrete spectrum. The

numerical experiments suggest that 3, |fx|? is bounded which would mean that the spectral measures are
in L2
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7 Relations with other numerical methods

The usual Schrédinger evolution exp(itL) needs a numerical integration like exp(it L)y ~ (1+ i L)"¢, where
n is so large that t"/n! is smaller than the desired accuracy €. Any such truncation produces high-frequency
noise after a relatively small number of time steps. An other method used in quantum dynamics is to
diagonalize a finite dimensional approximation Ly of L and to evolve its eigenfunctions (see for example [14]).
It is quantitatively not clear, how well a finite dimensional Galerkin cut-off respects the actual dynamics.
Moreover, in dimension d, the number of grid points N has to be so small that an eigensystem of a N¢
matrix can be found.

While numerical approximations of exp(itL) are not unitary, the evolution (2.1) is conjugated to a
unitary evolution. Other discrete unitary time evolutions have been considered in [4]. The problem to
preserve unitarity is similar to numerical integration problems for ODE’s, where for example symplecticity
should be preserved during the discretisation of a Hamiltonian system.

If ¥(0) has compact support, then 1(n) has this property too. This leads to a finite propagation speed as
in a relativistic set-up. This fact has computational advantages. For example, we know exactly, after which
time, boundary effects begin to influence the value of a wave at some point.

The discrete evolution preserves the (not necessarily closed) algebraic field in which L is defined. For
example, if L is an operator defined over the rationals Q and if the coordinates of ¥(0) are rational, then
¥(t) is rational and fi, € Q can be determined exactly.

The evolution (2.1) can be defined on all bounded sequences [*°(Z¢) and not only on 1?(Z¢). For example,
the evolution leaves almost periodic configurations invariant, elements z € 1°°(Z?), for which the closure of all
translated sequences (T™z)(k) = z(k+n) is compact in the uniform topology d(z, y) = max,¢z«|z(k)—y(k)]).
This is useful, because solutions of (2.1) define generalized eigenfunctions K¢ = 0 of an operator K defined
on space-time.

_ The unitary operator V' = —iU solves i(V —V*) = 2L which is a discretisation of the Schrodinger equation
iU = 2L. Since V* = U#, the evolutions U and V are essentially the same. The discrete evolution V™9 is a
second order approximation to exp(it2L)y in the sense that exp(iarcsin(2¢L)) = 1 —2ieL —2¢2L2 —2¢*L* . ..
and u — exp(2ieL) = 1 — 2ieL — 2e?L? + $ie3L® + 2¢*L* ... agree up to second order. This second order
approximation is more efficient than the second order but computationally more expensive Cayley method
(eL —i)(eL + i)~! = exp(2i arctan(eL)) = 1 — 2ieL — 22 L% + 2ie3L3 + 2¢4L% ... .
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